1
|
Thabah S, Joshi SR. Performance Evaluation of Native Plant Growth-Promoting Bacteria Associated with Organic Tea Plantations for Development of Bioinoculants for Crop Plants. Curr Microbiol 2024; 81:444. [PMID: 39495358 DOI: 10.1007/s00284-024-03962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
This study aimed at isolation of native plant growth-promoting bacteria (PGPB) associated with organic tea plantations. Most research on tea and associated microbes have been on Darjeeling and Assam, known for their world-class tea. However, emerging tea plantations in remote Northeast India are gaining prominence due to their unique geographical location, favorable climate, and organic practices. This study investigated PGBP associated with these organic tea plantations, aimed to assess their potential cross-infectivity on non-host plants. A total of 58 PGP bacterial isolates were isolated from four organic tea plantations. Six potential isolates were further evaluated individually and as consortium for their PGP on rice and maize. Bacillus, Pseudomonas, and Serratia spp. as individual and in consortium were found to have potent cross-infectivity with significant growth promotion in non-host plants indicated by plant height, root length, shoot, and root weight. The present findings suggest that PGPB native to organic tea plantations have potential cross-infectivity for use as a biofertilizers to improve the growth and productivity of non-host crops. This provides prospectives of using native bacteria on non-host plants paving the way for their potential application in sustainable agriculture practices for growth promotion of staple food crops.
Collapse
Affiliation(s)
- Stevenson Thabah
- Microbiology Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - S R Joshi
- Microbiology Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
2
|
Ouyang P, Wang Y, Peng X, Shi X, Chen X, Li Z, Ma Y. Harnessing plant-beneficial bacterial encapsulation: A sustainable strategy for facilitating cadmium bioaccumulation in Medicago sativa. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135232. [PMID: 39024768 DOI: 10.1016/j.jhazmat.2024.135232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Plant-beneficial bacteria (PBB) have emerged as a promising approach for assisting phytoremediation of heavy metal (HM)-contaminated soils. However, their colonization efficiency is often challenged by complex soil environments. In this study, we screened one rhizobacterium (Klebsiella variicola Y38) and one endophytic bacterium (Serratia surfactantfaciens Y15) isolated from HM-contaminated soils and plants for their high resistance to Cd and strong growth-promoting abilities. These strains were encapsulated individually or in combination with alginate and applied with Medicago sativa in Cd-contaminated soil pot experiments. The effectiveness of different bacterial formulations in promoting plant growth and enhancing Cd bioconcentration in M. sativa was evaluated. Results showed that PBB application enhanced plant growth and antioxidant capacity while reducing oxidative damage. Encapsulated formulations outperformed unencapsulated ones, with combined formulations yielding superior results to individual applications. Quantitative PCR indicated enhanced PBB colonization in Cd-contaminated soils with alginate encapsulation, potentially explaining the higher efficacy of alginate-encapsulated PBB. Additionally, the bacterial agents modified Cd speciation in soils, resulting in increased Cd bioaccumulation in M. sativa by 217-337 %. The alginate-encapsulated mixed bacterial agent demonstrated optimal effectiveness, increasing the Cd transfer coefficient by 3.2-fold. Structural equation modeling and correlation analysis elucidated that K. variicola Y38 promoted Cd bioaccumulation in M. sativa roots by reducing oxidative damage and enhancing root growth, while S. surfactantfaciens Y15 facilitated Cd translocation to shoots, promoting shoot growth. The combined application of these bacteria leveraged the benefits of both strains. These findings contribute to diversifying strategies for effectively and sustainably remediating Cd-contaminated soils, while laying a foundation for future investigations into bacteria-assisted phytoremediation.
Collapse
Affiliation(s)
- Peng Ouyang
- Chongqing Key Laboratory of Interface Process and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yue Wang
- Chongqing Key Laboratory of Interface Process and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xinyue Peng
- Hanhong College, Southwest University, Chongqing 400716, China
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Zhenlun Li
- Chongqing Key Laboratory of Interface Process and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Ying Ma
- Chongqing Key Laboratory of Interface Process and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
3
|
Gupta R, Khan F, Alqahtani FM, Hashem M, Ahmad F. Plant Growth-Promoting Rhizobacteria (PGPR) Assisted Bioremediation of Heavy Metal Toxicity. Appl Biochem Biotechnol 2024; 196:2928-2956. [PMID: 37097400 DOI: 10.1007/s12010-023-04545-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
Due to a variety of natural and anthropogenic processes, heavy metal toxicity of soil constitutes a substantial hazard to all living beings in the environment. The heavy metals alter the soil properties, which directly or indirectly influence the agriculture systems. Thus, plant growth-promoting rhizobacteria (PGPR)-assisted bioremediation is a promising, eco-friendly, and sustainable method for eradicating heavy metals. PGPR cleans up the heavy metal-contaminated environment using various approaches including efflux systems, siderophores and chelation, biotransformation, biosorption, bioaccumulation, precipitation, ACC deaminase activity, biodegradation, and biomineralization methods. These PGPRs have been found effective to bioremediate the heavy metal-contaminated soil through increased plant tolerance to metal stress, improved nutrient availability in soil, alteration of heavy metal pathways, and by producing some chemical compounds like siderophores and chelating ions. Many heavy metals are non-degradable; hence, another remediation approach with a broader scope of contamination removal is needed. This article also briefly emphasized the role of genetically modified PGPR strains which improve the soil's degradation rate of heavy metals. In this regard, genetic engineering, a molecular approach, could improve bioremediation efficiency and be helpful. Thus, the ability of PGPRs can aid in heavy metal bioremediation and promote a sustainable agricultural soil system.
Collapse
Affiliation(s)
- Rishil Gupta
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, U.P, India
| | - Faryad Khan
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, U.P, India
| | - Fatmah M Alqahtani
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Faheem Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, U.P, India.
| |
Collapse
|
4
|
Belhassan M, Farhat A, Abed HE, Chaabeen Z, Bouzid F, Elleuch A, Fendri I, Khemakhem B. Isolation and identification of a new Bacillus glycinifermentans strain from date palm rhizosphere and its effect on barley seeds under heavy metal stress. Braz J Microbiol 2024; 55:843-854. [PMID: 38270795 PMCID: PMC10920608 DOI: 10.1007/s42770-024-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
Soil contamination by heavy metals is one of the major problems that adversely decrease plant growth and biomass production. Inoculation with the plant growth-promoting rhizobacteria (PGPR) can attenuate the toxicity of heavy metals and enhancing the plant growth. In this study, we evaluated the potential of a novel extremotolerant strain (IS-2 T) isolated from date palm rhizosphere to improve barley seedling growth under heavy metal stress. The species-level identification was carried out using morphological and biochemical methods combined with whole genome sequencing. The bacterial strain was then used in vitro for inoculating Hordeum vulgare L. exposed to three different Cr, Zn, and Ni concentrations (0.5, 1, and 2 mM) in petri dishes and different morphological parameters were assessed. The strain was identified as Bacillus glycinifermentans species. This strain showed high tolerance to pH (6-11), salt stress (0.2-2 M), and heavy metals. Indeed, the minimum inhibitory concentrations at which bacterium was unable to grow were 4 mM for nickel, 3 mM for zinc, more than 8 mM for copper, and 40 mM for chromium, respectively. It was observed that inoculation of Hordeum vulgare L. under metal stress conditions with Bacillus glycinifermentans IS-2 T stain improved considerably the growth parameters. The capacity of the IS-2 T strain to withstand a range of abiotic stresses and improve barley seedling development under lab conditions makes it a promising candidate for use as a PGPR in zinc, nickel, copper, and chromium bioremediation.
Collapse
Affiliation(s)
- Mayssa Belhassan
- Laboratory of Plant Biotechnology Applied to the Improvement of Cultures, Faculty of Sciences of Sfax, University of Sfax, B.P. 1171, 3000, 3029, Sfax, Tunisia
| | - Ameny Farhat
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Hanen El Abed
- Laboratory of Plant Biotechnology Applied to the Improvement of Cultures, Faculty of Sciences of Sfax, University of Sfax, B.P. 1171, 3000, 3029, Sfax, Tunisia
| | - Zayneb Chaabeen
- Laboratory of Plant Biotechnology Applied to the Improvement of Cultures, Faculty of Sciences of Sfax, University of Sfax, B.P. 1171, 3000, 3029, Sfax, Tunisia
| | - Fériel Bouzid
- Laboratory of Molecular and Cellular Screening Process (LPCMC), Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Amine Elleuch
- Laboratory of Plant Biotechnology Applied to the Improvement of Cultures, Faculty of Sciences of Sfax, University of Sfax, B.P. 1171, 3000, 3029, Sfax, Tunisia
| | - Imen Fendri
- Laboratory of Plant Biotechnology Applied to the Improvement of Cultures, Faculty of Sciences of Sfax, University of Sfax, B.P. 1171, 3000, 3029, Sfax, Tunisia
| | - Bassem Khemakhem
- Laboratory of Plant Biotechnology Applied to the Improvement of Cultures, Faculty of Sciences of Sfax, University of Sfax, B.P. 1171, 3000, 3029, Sfax, Tunisia.
| |
Collapse
|
5
|
Zhang X, Peng J, Hao X, Feng G, Shen Y, Wang G, Chen Z. Serratia marcescens LYGN1 Reforms the Rhizosphere Microbial Community and Promotes Cucumber and Pepper Growth in Plug Seedling Cultivation. PLANTS (BASEL, SWITZERLAND) 2024; 13:592. [PMID: 38475438 DOI: 10.3390/plants13050592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The vegetable plug seedling plays an important role in improving vegetable production. The process of plug seedling contributes to high-quality vegetable seedlings. The substrate composition and chemical fertilizer are widely studied to promote seedling growth. However, little is known about the effect of beneficial bacteria in the rhizosphere microbial community and vegetables' growth during plug seedling. The use of beneficial microbes to promote vegetable seedling growth is of great potential. In this study, we showed that the Serratia marcescens strain LYGN1 enhanced the growth of cucumber and pepper seedlings in plug seedling cultivation. The treatment with LYGN1 significantly increased the biomass and the growth-related index of cucumber and pepper, improving the seedling quality index. Specifically, LYGN1 also improved the cucumber and pepper root system architecture and increased the root diameter. We applied high-throughput sequencing to analyze the microbial community of the seedlings' rhizosphere, which showed LYGN1 to significantly change the composition and structure of the cucumber and pepper rhizosphere microbial communities. The correlation analysis showed that the Abditibacteriota and Bdellovibrionota had positive effects on seedling growth. The findings of this study provide evidence for the effects of Serratia marcescens LYGN1 on the cucumber and pepper rhizosphere microbial communities, which also promoted seedling quality in plug seedling cultivation.
Collapse
Affiliation(s)
- Xu Zhang
- College of Life Science, Linyi University, Linyi 276000, China
| | - Jinxin Peng
- College of Life Science, Linyi University, Linyi 276000, China
| | - Xiaodong Hao
- College of Life Science, Linyi University, Linyi 276000, China
| | - Guifang Feng
- College of Life Science, Linyi University, Linyi 276000, China
| | - Yanhui Shen
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Guanghui Wang
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Zhiqun Chen
- College of Life Science, Linyi University, Linyi 276000, China
| |
Collapse
|
6
|
Bhatta D, Adhikari A, Kang SM, Kwon EH, Jan R, Kim KM, Lee IJ. Hormones and the antioxidant transduction pathway and gene expression, mediated by Serratia marcescens DB1, lessen the lethality of heavy metals (As, Ni, and Cr) in Oryza sativa L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115377. [PMID: 37597286 DOI: 10.1016/j.ecoenv.2023.115377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Microorganisms have recently gained recognition as efficient biological tool for reducing heavy metal toxicity in crops. In this experiment, we isolated a potent heavy metal (As, Ni, and Cr) resistant rhizobacterium Serratia marcescens DB1 and detected its plant growth promoting traits such as phosphate solubilization, gibberellin synthesis, organic acid production and amino acid regulation. Based on these findings, DB1 was further investigated for application in a rice var. Hwayeongbyeo subjected to 1 mM As, 4 mM Ni, and 4 mM Cr stress. The rice plants treated with Cr and Ni appeared healthy but were lethal, indicating unfitness for consumption due to toxic metal deposition, whereas the plants treated with > 1 mM As instantaneously died. Our results showed that DB1 inoculation significantly decreased metal accumulation in the rice shoots. Particularly, Cr uptake dropped by 16.55% and 22.12% in (Cr + DB1) and (Cr + As + Ni + DB1), respectively, As dropped by 48.90% and 35.82% in (As + DB1) and (Cr + As + Ni + DB1), respectively, and Ni dropped by 7.95% and 19.56% in (Ni + DB1) and (Cr + As + Ni + DB1), respectively. These findings were further validated by gene expression analysis results, which showed that DB1 inoculation significantly decreased the expression of OsPCS1 (a phytochelatin synthase gene), OsMTP1 (a metal transporting gene), and OsMTP5 (a gene for the expulsion of excess metal). Moreover, DB1 inoculation considerably enhanced the morphological growth of rice through modulation of endogenous phytohormones (abscisic acid, salicylic acid, and jasmonic acid) and uptake of essential elements such as K and P. These findings indicate that DB1 is an effective biofertilizer that can mitigate heavy metal toxicity in rice crops.
Collapse
Affiliation(s)
- Dibya Bhatta
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
7
|
Bhuyan B, Kotoky R, Pandey P. Impacts of rhizoremediation and biostimulation on soil microbial community, for enhanced degradation of petroleum hydrocarbons in crude oil-contaminated agricultural soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94649-94668. [PMID: 37535290 DOI: 10.1007/s11356-023-29033-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Hydrocarbonoclastic bacterial strains were isolated from rhizosphere of plants growing in crude oil-contaminated sites of Assam, India. These bacteria showed plant growth-promoting attributes, even when exposed to crude oil. Two independent pot trials were conducted to test the rhizodegradation ability of the bacterial consortium in combination of plants Azadirchta indica or Delonix regia in crude oil-contaminated soil. Field experiments were conducted at two crude oil-contaminated agricultural field at Assam (India), where plants (A. indica or D. regia) were grown with the selected bacterial consortium consisting of five hydrocarbonoclastic bacterial isolates (Gordonia amicalis BB-DAC, Pseudomonas aeruginosa BB-BE3, P. citronellolis BB-NA1, Rhodococcus ruber BB-VND, and Ochrobactrum anthropi BB-NM2), and NPK was added to the soil for biostimulation. The bacterial consortium-NPK biostimulation led to change in rhizosphere microbiome with enhanced degradation of petroleum hydrocarbons (PHs) in soils contaminated with crude oil. After 120 days of planting A. indica + consortium + NPK treatment, degradation of PHs was found to be up to 67%, which was 55% with D. regia with the same treatment. Significant changes in the activities of plant and soil enzymes were also noted. The shift is bacterial community was also apparent as with A. indica, the relative abundance of Proteobacteria, Actinobacteria, and Acidobacteria increased by 35.35%, 26.59%, and 20.98%, respectively. In the case of D. regia, the relative abundance of Proteobacteria, Actinobacteria, and Acidobacteria were increased by 39.28%, 35.79%, and 9.60%, respectively. The predicted gene functions shifted in favor of the breakdown of xenobiotic compounds. This study suggests that a combination of plant-bacterial consortium and NPK biostimulation could be a productive approach to bioengineering the rhizosphere microbiome for the purpose of commercial bioremediation of crude oil-contaminated sites, which is a major environmental issue faced globally.
Collapse
Affiliation(s)
- Bhrigu Bhuyan
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Rhitu Kotoky
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
8
|
Zulfiqar U, Haider FU, Maqsood MF, Mohy-Ud-Din W, Shabaan M, Ahmad M, Kaleem M, Ishfaq M, Aslam Z, Shahzad B. Recent Advances in Microbial-Assisted Remediation of Cadmium-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:3147. [PMID: 37687393 PMCID: PMC10490184 DOI: 10.3390/plants12173147] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Soil contamination with cadmium (Cd) is a severe concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Industries such as mining, manufacturing, building, etc., rapidly produce a substantial amount of Cd, posing environmental risks. Cd toxicity in crop plants decreases nutrient and water uptake and translocation, increases oxidative damage, interferes with plant metabolism and inhibits plant morphology and physiology. However, various conventional physicochemical approaches are available to remove Cd from the soil, including chemical reduction, immobilization, stabilization and electro-remediation. Nevertheless, these processes are costly and unfriendly to the environment because they require much energy, skilled labor and hazardous chemicals. In contrasting, contaminated soils can be restored by using bioremediation techniques, which use plants alone and in association with different beneficial microbes as cutting-edge approaches. This review covers the bioremediation of soils contaminated with Cd in various new ways. The bioremediation capability of bacteria and fungi alone and in combination with plants are studied and analyzed. Microbes, including bacteria, fungi and algae, are reported to have a high tolerance for metals, having a 98% bioremediation capability. The internal structure of microorganisms, their cell surface characteristics and the surrounding environmental circumstances are all discussed concerning how microbes detoxify metals. Moreover, issues affecting the effectiveness of bioremediation are explored, along with potential difficulties, solutions and prospects.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- University of Chinese Academy of Sciences, Beijing 100039, China
| | | | - Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
- Department of Soil and Environmental Sciences, Ghazi University, D. G. Khan 32200, Pakistan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Muhammad Shabaan
- Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan;
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
- Department of Agriculture, Extension, Azad Jammu & Kashmir, Pakistan
| | - Zoya Aslam
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
9
|
Martínez-Martínez JG, Rosales-Loredo S, Hernández-Morales A, Arvizu-Gómez JL, Carranza-Álvarez C, Macías-Pérez JR, Rolón-Cárdenas GA, Pacheco-Aguilar JR. Bacterial Communities Associated with the Roots of Typha spp. and Its Relationship in Phytoremediation Processes. Microorganisms 2023; 11:1587. [PMID: 37375088 DOI: 10.3390/microorganisms11061587] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Heavy metal pollution is a severe concern worldwide, owing to its harmful effects on ecosystems. Phytoremediation has been applied to remove heavy metals from water, soils, and sediments by using plants and associated microorganisms to restore contaminated sites. The Typha genus is one of the most important genera used in phytoremediation strategies because of its rapid growth rate, high biomass production, and the accumulation of heavy metals in its roots. Plant growth-promoting rhizobacteria have attracted much attention because they exert biochemical activities that improve plant growth, tolerance, and the accumulation of heavy metals in plant tissues. Because of their beneficial effects on plants, some studies have identified bacterial communities associated with the roots of Typha species growing in the presence of heavy metals. This review describes in detail the phytoremediation process and highlights the application of Typha species. Then, it describes bacterial communities associated with roots of Typha growing in natural ecosystems and wetlands contaminated with heavy metals. Data indicated that bacteria from the phylum Proteobacteria are the primary colonizers of the rhizosphere and root-endosphere of Typha species growing in contaminated and non-contaminated environments. Proteobacteria include bacteria that can grow in different environments due to their ability to use various carbon sources. Some bacterial species exert biochemical activities that contribute to plant growth and tolerance to heavy metals and enhance phytoremediation.
Collapse
Affiliation(s)
| | - Stephanie Rosales-Loredo
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | - Alejandro Hernández-Morales
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | - Jackeline Lizzeta Arvizu-Gómez
- Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic 63173, Mexico
| | - Candy Carranza-Álvarez
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | - José Roberto Macías-Pérez
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | - Gisela Adelina Rolón-Cárdenas
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | | |
Collapse
|
10
|
Peera Sheikh Kulsum PG, Khanam R, Das S, Nayak AK, Tack FMG, Meers E, Vithanage M, Shahid M, Kumar A, Chakraborty S, Bhattacharya T, Biswas JK. A state-of-the-art review on cadmium uptake, toxicity, and tolerance in rice: From physiological response to remediation process. ENVIRONMENTAL RESEARCH 2023; 220:115098. [PMID: 36586716 DOI: 10.1016/j.envres.2022.115098] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd), a major contaminant of concern, has been extensively reviewed and debated for its anthropogenic global shifts. Cadmium levels in rice grains raise wide food safety concerns. The aim of this review is therefore to capture the dynamics of Cd in paddy soil, translocation pathways of Cd from soil to consumption rice, and assess its bio-accessibility in human consumption. In crop plants, Cd reduces absorption of nutrients and water, triggers oxidative stress, and inhibits plant metabolism. Understanding the mechanisms and behaviour of Cd in paddy soil and rice allows to explain, predict and intervene in Cd transferability from soil to grains and human exposure. Factors affecting Cd movement in soil, and further to rice grain, are elucidated. Recently, physiological and molecular understanding of Cd transport in rice plants have been advanced. Morphological-biochemical characteristics and Cd transporters of plants in such a movement were also highlighted. Ecologically viable remediation approaches, including low input cost agronomic methods, phytoremediation and microbial bioremediation methods, are emerging.
Collapse
Affiliation(s)
| | - Rubina Khanam
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Shreya Das
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, West Bengal, India
| | - Amaresh Kumar Nayak
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Erik Meers
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Mohammad Shahid
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Anjani Kumar
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Sukalyan Chakraborty
- Environmental Engineering Laboratory, Department of Civil & Environmental Engineering, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| | - Tanushree Bhattacharya
- Environmental Engineering Laboratory, Department of Civil & Environmental Engineering, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies &International Centre for Ecological Engineering, Universityof Kalyani, Kalyani, Nadia, 741235, West Bengal, India.
| |
Collapse
|
11
|
Impact of lead (Pb 2+) on the growth and biological activity of Serratia marcescens selected for wastewater treatment and identification of its zntR gene-a metal efflux regulator. World J Microbiol Biotechnol 2023; 39:91. [PMID: 36752862 DOI: 10.1007/s11274-023-03535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Microorganisms isolated from contaminated areas play an important role in bioremediation processes. They promote heavy metal removal from the environment by adsorbing ions onto the cell wall surface, accumulating them inside the cells, or reducing, complexing, or precipitating these substances in the environment. Microorganism-based bioremediation processes can be highly efficient, low-cost and have low environmental impact. Thus, the present study aimed to select Pb2+-resistant bacteria and evaluate the growth rate, biological activity, and the presence of genes associated with metal resistance. Serratia marcescens CCMA 1010, that was previously isolated from coffee processing wastewater, was selected since was able to growth in Pb2+ concentrations of up to 4.0 mM. The growth rate and generation time did not differ from those of the control (without Pb2+), although biological activity decreased in the first hour of exposure to these ions and stabilized after this period. The presence of the zntR, zntA and pbrA genes was analysed, and only zntR was detected. The zntR gene encodes a protein responsible for regulating the production of ZntA, a transmembrane protein that facilitates Pb2+ extrusion out of the cell. S. marcescens CCMA 1010 demonstrated a potential for use as bioindicator that has potential to be used in bioremediation processes due to its resistance to high concentrations of Pb2+, ability to grow until 24 h of exposure, and possession of a gene that indicates the existence of mechanisms associated with resistance to lead (Pb2+).
Collapse
|
12
|
Manogaran M, Halmi MIE, Othman AR, Yasid NA, Gunasekaran B, Shukor MYA. Decolorization of Reactive Red 120 by a novel bacterial consortium: Kinetics and heavy metal inhibition study. AIMS ENVIRONMENTAL SCIENCE 2023; 10:424-445. [DOI: 10.3934/environsci.2023024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
<abstract><p>Juru River is one of the most polluted rivers in Malaysia. A dye-degrading bacterial consortium has been isolated from the river's sediment. This consortium JR3 consists of <italic>Pseudomonas aeruginosa</italic> MM01, <italic>Enterobacter</italic> sp. MM05 and <italic>Serratia marcescens</italic> MM06, which were able to decolorize up to 700 ppm of the Reactive Red 120 (RR120) dye under optimal conditions with limited substrate available. Substrate inhibition kinetics were investigated, and, based on the best model, Aiba, the maximum growth rate was 0.795 h<sup>–1</sup>, while the saturation constant and inhibitory constant were 0.185% and 0.14%, respectively. In addition, the influence of various metal ions on the growth and decolorization rate of this bacterial consortium on RR120 was investigated. Chromium showed the weakest effect on the decolorization of 200 ppm RR120, with 73.5% removal and bacterial growth of 11.461 log CFU mL<sup>–1</sup>. Zinc yielded the second weakest effect, followed by silver and lead, with percentages of RR120 decolorization of 63.8%, 54.6% and 50.5%, respectively. Meanwhile, cadmium, arsenic and copper reduced the decolorization of RR120 in consortium JR3 by half. Mercury strongly inhibited decolorization by 32.5%. Based on the least inhibited heavy metal in RR120 decolorization activity of consortium JR3, the best inhibitory kinetic model was Levenspiel, with a maximum growth rate of 0.632 h<sup>–1</sup>, while the saturation constant and inhibitory constants were 15.08% and 0.5783%, respectively. The metal-tolerant azo dye-degrading bacterial consortium will be very useful in dye remediation in metal-laden polluted environments.</p></abstract>
Collapse
Affiliation(s)
- Motharasan Manogaran
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| | - Mohd Izuan Effendi Halmi
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor D.E., Malaysia
| | - Nur Adeela Yasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| | - Baskaran Gunasekaran
- Faculty of Applied Sciences, UCSI University Kuala Lumpur (South Wing), No.1, Jalan Menara Gading, UCSI Heights 56000 Cheras, Kuala Lumpur, Malaysia
| | - Mohd Yunus Abd Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| |
Collapse
|
13
|
Phosphorus Recycling, Biocontrol, and Growth Promotion Capabilities of Soil Bacterial Isolates from Mexican Oak Forests: An Alternative to Reduce the Use of Agrochemicals in Maize Cultivation. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Six bacteria (Bacillus velezensis 13, Bacillus subtillis 42, Pseudomonas fluorescens E221, Pseudomonas Poae EE12, Rahnella sp. EM1, and Serratia sp. EM2) isolated from the soil and litter of Mexican oak forests were characterized by identifying their ability to acquire phosphorus from different sources, analyzed for their biocontrol capabilities against two different phytopathogenic fungi, and finally tested for their ability to stimulate the germination of maize seeds and promotion of maize seedling growth. The greatest capacity to biocontrol the mycelial growth of phytopathogenic fungi Botrytis cinerea and Fusarium oxysporum was found in B. velezensis 13 and B. subtillis 42. P. poae EE12 and P. fluorescens E221 significantly promoted germination and the length of the primary root in Zea mays. Rahnella sp. EM1 and Serratia sp. EM2 could produce indole compounds related to auxin synthesis and increased the fresh weight of the maize seedlings. Together, these isolates represent an alternative to reduce the use of agrochemicals in maize cultivation. In general, soil microorganisms from Mexican oak forests represent a source of genetic resources for the sustainable management and conservation of soils for agricultural use.
Collapse
|
14
|
Mondal M, Kumar V, Bhatnagar A, Vithanage M, Selvasembian R, Ambade B, Meers E, Chaudhuri P, Biswas JK. Bioremediation of metal(loid) cocktail, struvite biosynthesis and plant growth promotion by a versatile bacterial strain Serratia sp. KUJM3: Exploiting environmental co-benefits. ENVIRONMENTAL RESEARCH 2022; 214:113937. [PMID: 35931193 DOI: 10.1016/j.envres.2022.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
In this study the multiple metal(loid) (As, Cd, Cu and Ni) resistant bacterium Serratia sp. KUJM3 was able to grow in both single and multiple metal(loid) contaminated wastewater and removed them by 34.93-48.80% and 22.93-32%, respectively. It reduced As(v) to As(III) by 68.44-85.06% in a concentration dependent manner. The strain's IAA production potential increased significantly under both metal(loid)s regime. The lentil (Lens culinaris) seed germination and seed production were enhanced with the exogenous bacterial inoculation by 20.39 and 16.43%, respectively. Under both multi-metal(loid) regimes the bacterial inoculation promoted shoot length (22.65-51.34%), shoot dry weight (33.89-66.11%) and seed production (13.46-35%). Under bacterial manipulation the metal(loid)s immobilization increased with concomitant curtailment of translocation in lentil plant by 61.89-75.14% and 59.19-71.14% in shoot and seed, respectively. The strain biomineralized struvite (MgNH4 PO4 ·6H2O) from human urine @ 403 ± 6.24 mg L-1. The fertilizer potential of struvite was confirmed with the promotion of cowpea (Vigna unguiculata) growth traits e.g. leaf number (37.04%), pod number (234%), plant wet weight (65.47%) and seed number (134.52%). Thus Serratia sp. KUJM3 offers multiple benefits of metal(loid)s bioremediation, As(V) reduction, plant growth promotion, and struvite biomineralization garnering a suite of appealing environmental applications.
Collapse
Affiliation(s)
- Monojit Mondal
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Vineet Kumar
- Department of Basic and Applied Sciences, School of Engineering and Sciences, G D Goenka University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Balram Ambade
- Department of Chemistry, National Institute of Technology, Jamshedpur, 831014, Jharkhand, India
| | - Erik Meers
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Calcutta, 700019, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India; International Centre for Ecological Engineering, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
15
|
Rolón-Cárdenas GA, Arvizu-Gómez JL, Soria-Guerra RE, Pacheco-Aguilar JR, Alatorre-Cobos F, Hernández-Morales A. The role of auxins and auxin-producing bacteria in the tolerance and accumulation of cadmium by plants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3743-3764. [PMID: 35022877 DOI: 10.1007/s10653-021-01179-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/05/2021] [Indexed: 05/16/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals for plant physiology and development. This review discusses Cd effects on auxin biosynthesis and homeostasis, and the strategies for restoring plant growth based on exogenous auxin application. First, the two well-characterized auxin biosynthesis pathways in plants are described, as well as the effect of exogenous auxin application on plant growth. Then, review describes the impacts of Cd on the content, biosynthesis, conjugation, and oxidation of endogenous auxins, which are related to a decrease in root development, photosynthesis, and biomass production. Finally, compelling evidence of the beneficial effects of auxin-producing rhizobacteria in plants exposed to Cd is showed, focusing on photosynthesis, oxidative stress, and production of antioxidant compounds and osmolytes that counteract Cd toxicity, favoring plant growth and improve phytoremediation efficiency. Expanding our understanding of the positive effects of exogenous auxins application and the interactions between bacteria and plants growing in Cd-polluted environments will allow us to propose phytoremediation strategies for restoring environments contaminated with this metal.
Collapse
Affiliation(s)
- Gisela Adelina Rolón-Cárdenas
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México
| | - Jackeline Lizzeta Arvizu-Gómez
- Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Ruth Elena Soria-Guerra
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México
| | | | | | - Alejandro Hernández-Morales
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México.
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México.
| |
Collapse
|
16
|
Wang Y, Mao C, Shi Y, Fan X, Sun L, Zhuang Y. Transcriptome analysis of the response of Hypomyces chrysospermus to cadmium stress. Front Microbiol 2022; 13:990693. [PMID: 36212811 PMCID: PMC9539689 DOI: 10.3389/fmicb.2022.990693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Hypomyces chrysospermus is a fungal parasite that grows on Boletus species. One isolated strain of H. chrysospermus from B. griseus was obtained and proved of strong ability to tolerate and absorb cadmium (Cd) by previous research. However, the molecular mechanisms of underlying the resistance of H. chrysospermus to Cd stress have not been investigated. This study aimed to assess the effect of Cd stress on the global transcriptional regulation of H. chrysospermus. A total of 1,839 differentially expressed genes (DEGs) were identified under 120 mg/l Cd stress. Gene ontology (GO) enrichment analysis revealed that large amounts of DEGs were associated with cell membrane components, oxidoreductase activity, and transport activity. KEGG enrichment analysis revealed that these DEGs were mainly involved in the translation, amino acid metabolism, transport and catabolism, carbohydrate metabolism, and folding/sorting and degradation pathways under Cd stress. Moreover, the expression of DEGs encoding transporter proteins, antioxidant enzymes, nonenzymatic antioxidant proteins, detoxification enzymes, and transcription factors was associated with the Cd stress response. These results provide insights into the molecular mechanisms underlying Cd tolerance in H. chrysospermus and serve as a valuable reference for further studies on the detoxification mechanisms of heavy metal-tolerant fungi. Our findings may also facilitate the development of new and improved fungal bioremediation strategies.
Collapse
|
17
|
Mao Y, Tan H, Wang M, Jiang T, Wei H, Xu W, Jiang Q, Bao H, Ding Y, Wang F, Zhu C. Research Progress of Soil Microorganisms in Response to Heavy Metals in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8513-8522. [PMID: 35816106 DOI: 10.1021/acs.jafc.2c01437] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soil heavy-metal pollution leads to excessive heavy metals in rice and other food crops, which has caused serious impacts on the ecological environment and on human health. In recent years, environmental friendly treatment methods that reduce the bioavailability of heavy metals in soil by soil microorganisms improving the tolerance of heavy metals in rice and reducing the transfer of heavy metals from the roots to the above-ground parts of rice have attracted much attention. This paper reviews the role and mechanism of soil microorganisms in alleviating heavy-metal stress in rice at home and abroad in recent years. At present, microorganisms tolerant to heavy metals mainly include bacteria and fungi, and their mechanisms include the adsorption of heavy metals by microorganisms, the secretion of growth-promoting substances (growth hormone, ACC deaminase, IAA), changing the physical and chemical properties of the soil and the composition of the microbial community, changing the transport mode of heavy metals in soil, the improvement of the antioxidant capacity of rice, etc. Hence, soil microorganisms have good application value and prospects in rice and other crops. However, the vast majority of current research focuses on a single strain, the screening principles of strains are limited, the pathogenicities of the strains have not been evaluated, and there are still few field experiments under natural conditions. In the future, we should strengthen the action of soil microorganisms on rice in response to the above problems in heavy metals, to better promote the microbial remediation technology.
Collapse
Affiliation(s)
- Yangbin Mao
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Haifeng Tan
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Maomao Wang
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Tianheng Jiang
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Hewen Wei
- Jinhua Institute of Food and Drug Inspection and Testing, Jinhua 321000, China
| | - Wenping Xu
- Armed Police Sergeant School, Hangzhou 310018, China
| | - Qiong Jiang
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Hexigeduleng Bao
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Yanfei Ding
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Feijuan Wang
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
18
|
The structure-function relationship of bacterial transcriptional regulators as a target for enhanced biodegradation of aromatic hydrocarbons. Microbiol Res 2022; 262:127087. [DOI: 10.1016/j.micres.2022.127087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
|
19
|
Alleviation of salt stress and promotion of growth in peanut by Tsukamurella tyrosinosolvens and Burkholderia pyrrocinia. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01073-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Ghosh A, Pramanik K, Bhattacharya S, Mondal S, Ghosh SK, Maiti TK. A potent cadmium bioaccumulating Enterobacter cloacae strain displays phytobeneficial property in Cd-exposed rice seedlings. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100101. [PMID: 35024643 PMCID: PMC8724972 DOI: 10.1016/j.crmicr.2021.100101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/30/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Cd-resistant and halotolerant PGPR enterobacter cloacae AS10 was isolated. AS10 showed IAA, HCN production, P-solubilization, N2 fixation, ACCD activity. AAS-TEM-EDAX-XRD-XRF-FTIR studies confirmed Cd bioaccumulation by AS10. AS10 reduced oxidative stress, Cd uptake and improved rice seedling growth in vitro.
In agricultural soil, cadmium (Cd) pollution compromises soil health, reduces crop yield, and produces Cd-contaminated crops. Bio-based approaches are necessary as an eco-friendly and sustainable solution to mitigate Cd-polluted areas. A heavy metal-resistant rhizobacterial strain (AS10) has been isolated from a heavy metal-defiled rice field. The 16S rDNA sequence and MALDI-TOF MS analyses of ribosomal protein reveal its identity closely similar to Enterobacter cloacae. The strain was found to withstand up to 4000 μg/ml Cd2+, 3312 µg/ml Pb2+ and 1500 µg/ml As3+. The Cd2+ removal efficiency was recorded as high as 72.11% when grown in 4000 μg/ml Cd2+. The strain's Cd-accumulation efficiency was also apprehended by TEM-EDAX followed by XRD-XRF-FTIR analyses. Besides, the strain showed solubilization of inorganic phosphate, ACC deaminase activity, nitrogen fixation and IAA production ability. Added further, the strain, as an efficient bioinoculant, significantly improved rice plant growth at the seedling stage through Cd immobilization. It prevented the surge of stress ethylene and oxidative stress in rice seedlings, resulting in overall plant growth improvement. Hence, the strain AS10 as potent plant growth-promoting rhizobacteria (PGPR) may be beneficial, especially in heavy metal-contaminated crop fields.
Collapse
Affiliation(s)
- Antara Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104, India
| | - Krishnendu Pramanik
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati, Siksha Bhavana, Birbhum, Santiniketan, West Bengal 731235, India
| | - Shatabda Bhattacharya
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Sayanta Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104, India
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104, India
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104, India
| |
Collapse
|
21
|
Bacteria isolated from cultivated soil after liming promote seed germination and seedling growth of crop plants. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Katiyar P, Kumar S, Arora NK. Interactions of Nitrogen-Fixing Bacteria and Cereal Crops: An Important Dimension. NITROGEN FIXING BACTERIA: SUSTAINABLE GROWTH OF NON-LEGUMES 2022:169-194. [DOI: 10.1007/978-981-19-4906-7_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
|
23
|
Niu H, Sun Y, Zhang Z, Zhao D, Wang N, Wang L, Guo H. The endophytic bacterial entomopathogen Serratia marcescens promotes plant growth and improves resistance against Nilaparvata lugens in rice. Microbiol Res 2021; 256:126956. [PMID: 34995970 DOI: 10.1016/j.micres.2021.126956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022]
Abstract
Entomopathogenic bacteria are commonly used as biological agents to control different insect pests. However, little is known about the role of bacterial entomopathogens as endophytes in regulating both plant growth and resistance against insect pests. Here, we applied the entomopathogenic bacterium Serratia marcescens S-JS1 via rice seed inoculation and evaluated its effects on host plant growth and resistance against the rice pest Nilaparvata lugens. Furthermore, the induction of defense-related secondary metabolites by the bacterium was assessed by GC-MS/MS. We showed that S-JS1 was able to endophytically colonize the roots and shoots of rice seedlings following seed inoculation. Colonized plants showed increased seed germination (9.4-13.3 %), root (8.2-36.4 %) and shoot lengths (4.1-22.3 %), and root (26.7-69.3 %) and shoot fresh weights (19.0-49.0 %) compared to plants without inoculation. We also identified the production of indole-3-acetic acid by S-JS1, which is likely involved in enhancing rice plant growth. In a two-choice test, N. lugens adults preferred to feed on untreated control plants than on plants treated with S-JS1. In the no-choice feeding tests, the survival of N. lugens nymphs that fed on S-JS1-treated plants was significantly lower than that of nymphs that fed on untreated plants. Additionally, seeds treated with 109 cfu/mL S-JS1 resulted in elevated levels of secondary metabolites, which may be associated with N. lugens resistance in rice plants. Therefore, we suggest that the entomopathogenic bacterium S. marcescens be considered a potentially promising endophyte for use in an innovative strategy for the integrated management of insect pests.
Collapse
Affiliation(s)
- Hongtao Niu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Yang Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Zhichun Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Dongxiao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Na Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Lihua Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
24
|
Cadmium Bioremediation Potential of Bacillus sp. and Cupriavidus sp. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heavy metals are extremely toxic and their presence in the environment is a known risk factor. Out of them, cadmium is known for its fatal effects on the environment, humans and soil. Bioremediation offers an economical solution for detoxifying such metals. So, the present study aimed to isolate Bacillus sp. and Cupriavidus sp. from the cadmium contaminated soils and studied their cadmium bioremediation potential. Strains that have exhibited good tolerance upto 1000 ppm and 1500 ppm of cadmium concentration and good absorption to cadmium were studied by scanning electron microscopy. An increase in the size of the bacterial cells was observed. The absorption of cadmium by bacterial cells was further confirmed by atomic absorption spectroscopy and found that the sorption rate of Bacillus sp. ECd004 was 87% and of Cupriavidus sp. SCd005 was 90%. Furthermore, these strains were exposed to cadmium contaminated soil in the form of bioformulations and their role in the rate of seed germination of Vigna radiata and Cicer aertinum and impact on seedlings growth was determined. Seed germination and growth rate was found to be double in comparison to the negative control. This investigation proves their efficacy to use in highly cadmium contaminated soils making them a suitable choice for bioremediation.
Collapse
|
25
|
Srivastava A, Biswas S, Yadav S, Kumar S, Srivastava V, Mishra Y. Acute cadmium toxicity and post-stress recovery: Insights into coordinated and integrated response/recovery strategies of Anabaena sp. PCC 7120. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124822. [PMID: 33858073 DOI: 10.1016/j.jhazmat.2020.124822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Cyanobacteria, the first photoautotrophs have remarkable adaptive capabilities against most abiotic stresses, including Cd. A model cyanobacterium, Anabaena sp. PCC 7120 has been commonly used to understand cyanobacterial plasticity under different environmental stresses. However, very few studies have focused on the acute Cd toxicity. In this context, Anabaena was subjected to 100 μM Cd for 48 h (acute Cd stress, ACdS) and then transferred into the fresh medium for post-stress recovery (PSR). We further investigated the dynamics of morpho-ultrastructure, physiology, cytosolic proteome, thylakoidal complexes, chelators, and transporters after ACdS, as well as during early (ER), mid (MR), and late (LR) phases of PSR. The findings revealed that ACdS induced intracellular Cd accumulation and ROS production, altered morpho-ultrastructure, reduced photosynthetic pigments, and affected the structural organization of PSII, which subsequently hindered photosynthetic efficiency. Anabaena responded to ACdS and recovered during PSR by reprogramming the expression pattern of proteins/genes involved in cellular defense and repair; CO2 access, Calvin-Benson cycle, glycolysis, and pentose phosphate pathway; protein biosynthesis, folding, and degradation; regulatory functions; PSI-based cyclic electron flow; Cd chelation; and efflux. These modulations occurred in an integrated and coordinated manner that facilitated Anabaena to detoxify Cd and repair ACdS-induced cellular damage.
Collapse
Affiliation(s)
- Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Subhankar Biswas
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sandhya Yadav
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sanjiv Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
26
|
Pathom-Aree W, Matako A, Rangseekaew P, Seesuriyachan P, Srinuanpan S. Performance of Actinobacteria isolated from rhizosphere soils on plant growth promotion under cadmium toxicity. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1497-1505. [PMID: 33913782 DOI: 10.1080/15226514.2021.1913992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work aimed to evaluate the potential use of plant growth-promoting actinobacteria (PGPA) for enhanced cadmium (Cd) phytoremediation and plant growth. Forty-two actinobacteria were isolated from rhizosphere soils in Thailand. Among isolates tested, only Streptomyces phaeogriseichromatogenes isolate COS4, showed the high ability to produce siderophores as a plant growth stimulant and had a strong Cd tolerance potential. The significance of siderophores production and Cd tolerance ability under different Cd concentrations suggests the potential of isolate COS4 to work effectively. Plant culture revealed that the significant increase in root length, root to tip length, and total dried weight of sunflower were obtained after 2 h incubation of sunflower seeds with isolate COS4. The efficiency of Cd uptake was found to range between 42.3 and 61.3%. Translocation factor results confirmed that plant growth promoting S. phaeogriseichromatogenes isolate COS4-assisted phytoremediation can be considered as Cd absorbents for the restoration of polluted sites due to high translocation values.
Collapse
Affiliation(s)
- Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Science, Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Alisa Matako
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pharada Rangseekaew
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Phisit Seesuriyachan
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
27
|
Kumar R, Borker SS, Thakur A, Thapa P, Kumar S, Mukhia S, Anu K, Bhattacharya A, Kumar S. Physiological and genomic evidence supports the role of Serratia quinivorans PKL:12 as a biopriming agent for the biohardening of micropropagated Picrorhiza kurroa plantlets in cold regions. Genomics 2021; 113:1448-1457. [PMID: 33744342 DOI: 10.1016/j.ygeno.2021.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 11/29/2022]
Abstract
The medicinal herb, Picrorhiza kurroa Royle ex Benth has become endangered because of indiscriminate over-harvesting. Although micropropagation has been attempted for mass propagation of the plant, survival of in vitro plantlets under green house/open field poses a major challenge. Biopriming of micropropagated plantlets with plant growth-promoting rhizobacteria (PGPR) are among the successful methods to combat this problem. Serratia quinivorans PKL:12 was the best-characterized PGPR from rhizospheric soil of P. kurroa as it increased the vegetative growth and survival of the micropropagated plantlets most effectively. Complete genome (5.29 Mb) predicted genes encoding proteins for cold adaptation and plant growth-promoting traits in PKL:12. Antibiotic and biosynthetic gene cluster prediction supported PKL:12 as a potential biocontrol agent. Comparative genomics revealed 226 unique genes with few genes associated with plant growth-promoting potential. Physiological and genomic evidence supports S. quinivorans PKL:12 as a potential agent for bio-hardening of micropropagated P. kurroa plantlets in cold regions.
Collapse
Affiliation(s)
- Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201 002, India..
| | - Shruti Sinai Borker
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201 002, India
| | - Aman Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201 002, India
| | - Pooja Thapa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Sanjeet Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Kumari Anu
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Amita Bhattacharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| |
Collapse
|
28
|
Hussain B, Ashraf MN, Abbas A, Li J, Farooq M. Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142188. [PMID: 33254942 DOI: 10.1016/j.scitotenv.2020.142188] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/09/2020] [Accepted: 09/02/2020] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd) toxicity in paddy soil and accumulation in rice plants and grains have got global concern due to its health effects. This review highlights the effects of soil factors including soil organic matter, soil pH, redox potential, and soil microbes which influencing Cd uptake by rice plant. Therefore, a comprehensive review of innovative and environmentally friendly management practices for managing Cd stress in rice is lacking. Thus, this review discusses the effect of Cd toxicity in rice and describes management strategies to offset its effects. Moreover, future research thrusts to reduce its uptake by rice has also been highlighted. Through phytoremediation, Cd may be extracted and stabilized in the soil while through microbes Cd can be sequestrated inside the microbial bodies. Increased Cd uptake in hyperaccumulator plants to remediate and convert the toxic form of Cd into non-toxic forms. While in chemical remediation, Cd can be washed out, immobilized and stabilized in the soil through chemical amendments. The organic amendments may help through an increase in soil pH, adsorption in its functional groups, the formation of complexations, and the conversion of exchangeable to residual forms. Developing rice genotypes with restricted Cd uptake and reduced accumulation in grain through conventional and marker-assisted breeding are fundamental keys for safe rice production. In this regard, the use of molecular techniques including identification of QTLs, CRISPR/Cas9, and functional genomics may be quite helpful.
Collapse
Affiliation(s)
- Babar Hussain
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Muhammad Nadeem Ashraf
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aqleem Abbas
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jumei Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural, Marine Sciences Sultan Qaboos University, Al-Khoud 123, Oman.
| |
Collapse
|
29
|
Tanwir K, Javed MT, Abbas S, Shahid M, Akram MS, Chaudhary HJ, Iqbal M. Serratia sp. CP-13 alleviates Cd toxicity by morpho-physio-biochemical improvements, antioxidative potential and diminished Cd uptake in Zea mays L. cultivars differing in Cd tolerance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111584. [PMID: 33396107 DOI: 10.1016/j.ecoenv.2020.111584] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/11/2020] [Accepted: 10/27/2020] [Indexed: 05/13/2023]
Abstract
Cadmium (Cd) is highly toxic for plant metabolic processes even in low concentration due to higher retention rates, longer half-life and non-biodegradable nature. The current study was designed to assess the bioremediation potential of Cd tolerant PGPR, Serratia sp. CP-13 together with two differentially Cd tolerant maize cultivars (MMRI-Yellow, Sahiwal-2002) selected amongst ten cultivars after screening. The maize cultivars were grown under different Cd treatments (0, 6, 12, 18, 24, 30 µM) in Petri plates both with and without Serratia sp. CP-13 inoculation. Treated plants were analyzed for their biomass accumulation, chlorophylls, carotenoids, proline, anthocyanin, protein, malondialdehyde (MDA), H2O2 as well as for antioxidants (POD, SOD, CAT) and mineral elements (Ca, Mg, Zn, K, Fe, Na, Cd). The maize cultivar MMRI-Yellow (tolerant) and Sahiwal-2002 (sensitive) exhibited significant reduction in leaf area, nutrient contents, plant biomass, activity of antioxidants, total proteins, photosynthetic pigments as well as flavonoids with increased production of H2O2, proline, MDA and relative membrane permeability (RMP) under Cd stress. However, this reduction was cultivar specific and recorded higher in cv. Sahiwal-2002 as compared to MMRI-Yellow. Application of Serratia sp. CP-13 significantly augmented plant biomass, photosynthetic pigments, antioxidative machinery, as well as flavonoids and proline while diminishing H2O2, RMP MDA production even under Cd stress in studied cultivars. Furthermore, CP-13 inoculation assisted the Cd stressed plants to sustain an optimal level of essential nutrients (Ca, Mg, Zn, K, Fe) except for Na and Cd which responded antagonistically. It was inferred that both inoculated maize cultivars exhibited better health and metabolism but substantial Cd tolerance was acquired by the sensitive cv. Sahiwal-2002 than the tolerant cv. MMRI-Yellow under applied Cd regimes. Furthermore, studied maize cultivars depicted maximum Cd tolerance in order of 30 < 24 < 18 < 12 < 6 < 0 µM Cd treatments under Serratia sp. CP-13 inoculation. Findings of current work highlighted the importance of Serratia sp. CP-13 and its inoculation impact on morpho-physio-biochemical attributes of maize growth under Cd dominant environment, which is likely an addition towards efficient approaches for bacterially-assisted Cd bioremediation and minimal Cd retention in edible plant parts.
Collapse
Affiliation(s)
- Kashif Tanwir
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Saghir Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Sohail Akram
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Iqbal
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| |
Collapse
|
30
|
Obi LU, Tekere M, Roopnarain A, Sanko T, Maguvu TE, Bezuidenhout CC, Adeleke RA. Whole genome sequence of Serratia marcescens 39_H1, a potential hydrolytic and acidogenic strain. ACTA ACUST UNITED AC 2020; 28:e00542. [PMID: 33102161 PMCID: PMC7569290 DOI: 10.1016/j.btre.2020.e00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/27/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022]
Abstract
Serratia marcescens 39_H1 could enhance the hydrolysis of lignocellulosic biomass. Serratia marcescens 39_H1 is a plant growth promoting organism. Genome analysis showed diverse potential biotechnological application of organism. This is an original report on the hydrolytic and acidogenic attributes ofSerratia marcescens 39_H1 for biogas production.
Here, we report a high quality annotated draft genome of Serratia marcescens 39_H1, a Gram-negative facultative anaerobe that was isolated from an anaerobic digester. The strain exhibited hydrolytic/acidogenic properties by significantly improving methane production when used as a single isolate inoculum during anaerobic digestion of water hyacinth and cow dung. The total genome size of the isolate was 5,106,712 bp which corresponds to an N50 of 267,528 and G + C content of 59.7 %. Genome annotation with the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) predicted a total of 4,908 genes of which 4,755 were protein coding genes; there were no plasmids detected. A number of genes associated with hydrolytic/acidogenic activities as well as other metabolic activities were identified and discussed.
Collapse
Affiliation(s)
- Linda U Obi
- Department of Environmental Sciences, University of South Africa, Johannesburg, South Africa.,Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Arcadia, 0083, Pretoria, South Africa
| | - Memory Tekere
- Department of Environmental Sciences, University of South Africa, Johannesburg, South Africa
| | - Ashira Roopnarain
- Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Arcadia, 0083, Pretoria, South Africa
| | - Tomasz Sanko
- Unit for Environment Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Tawanda E Maguvu
- Unit for Environment Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Cornelius C Bezuidenhout
- Unit for Environment Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Rasheed A Adeleke
- Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Arcadia, 0083, Pretoria, South Africa.,Unit for Environment Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| |
Collapse
|
31
|
Rhizosphere assisted biodegradation of benzo(a)pyrene by cadmium resistant plant-probiotic Serratia marcescens S2I7, and its genomic traits. Sci Rep 2020; 10:5279. [PMID: 32210346 PMCID: PMC7093395 DOI: 10.1038/s41598-020-62285-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/12/2020] [Indexed: 12/02/2022] Open
Abstract
Melia azedarach-rhizosphere mediated degradation of benzo(a)pyrene (BaP), in the presence of cadmium (Cd) was studied, using efficient rhizobacterial isolate. Serratia marcescens S2I7, isolated from the petroleum-contaminated site, was able to tolerate up to 3.25 mM Cd. In the presence of Cd, the isolate S2I7 exhibited an increase in the activity of stress-responsive enzyme, glutathione-S-transferase. Gas Chromatography-Mass spectroscopy analysis revealed up to 59% in -vitro degradation of BaP after 21 days, while in the presence of Cd, the degradation was decreased by 14%. The bacterial isolate showed excellent plant growth-promoting attributes and could enhance the growth of host plant in Cd contaminated soil. The 52,41,555 bp genome of isolate S. marcescens S2I7 was sequenced, assembled and annotated into 4694 genes. Among these, 89 genes were identified for the metabolism of aromatic compounds and 172 genes for metal resistance, including the efflux pump system. A 2 MB segment of the genome was identified to contain operons for protocatechuate degradation, catechol degradation, benzoate degradation, and an IclR type regulatory protein pcaR, reported to be involved in the regulation of protocatechuate degradation. A pot trial was performed to validate the ability of S2I7 for rhizodegradation of BaP when applied through Melia azedarach rhizosphere. The rhizodegradation of BaP was significantly higher when augmented with S2I7 (85%) than degradation in bulk soil (68%), but decreased in the presence of Cd (71%).
Collapse
|