1
|
Kalejaye L, Wu IE, Terry T, Lai PK. DeepSP: Deep learning-based spatial properties to predict monoclonal antibody stability. Comput Struct Biotechnol J 2024; 23:2220-2229. [PMID: 38827232 PMCID: PMC11140563 DOI: 10.1016/j.csbj.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Therapeutic antibody development faces challenges due to high viscosities and aggregation tendencies. The spatial charge map (SCM) and spatial aggregation propensity (SAP) are computational techniques that aid in predicting viscosity and aggregation, respectively. These methods rely on structural data derived from molecular dynamics (MD) simulations, which are computationally demanding. DeepSCM, a deep learning surrogate model based on sequence information to predict SCM, was recently developed to screen high-concentration antibody viscosity. This study further utilized a dataset of 20,530 antibody sequences to train a convolutional neural network deep learning surrogate model called Deep Spatial Properties (DeepSP). DeepSP directly predicts SAP and SCM scores in different domains of antibody variable regions based solely on their sequences without performing MD simulations. The linear correlation coefficient between DeepSP scores and MD-derived scores for 30 properties achieved values between 0.76 and 0.96 with an average of 0.87. DeepSP descriptors were employed as features to build machine learning models to predict the aggregation rate of 21 antibodies, and the performance is similar to the results obtained from the previous study using MD simulations. This result demonstrates that the DeepSP approach significantly reduces the computational time required compared to MD simulations. The DeepSP model enables the rapid generation of 30 structural properties that can also be used as features in other research to train machine learning models for predicting various antibody stability using sequences only. DeepSP is freely available as an online tool via https://deepspwebapp.onrender.com and the codes and parameters are freely available at https://github.com/Lailabcode/DeepSP.
Collapse
Affiliation(s)
- Lateefat Kalejaye
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken 07030, NJ, United States
| | - I-En Wu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken 07030, NJ, United States
| | - Taylor Terry
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken 07030, NJ, United States
| | - Pin-Kuang Lai
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken 07030, NJ, United States
| |
Collapse
|
2
|
Vittorio S, Lunghini F, Morerio P, Gadioli D, Orlandini S, Silva P, Jan Martinovic, Pedretti A, Bonanni D, Del Bue A, Palermo G, Vistoli G, Beccari AR. Addressing docking pose selection with structure-based deep learning: Recent advances, challenges and opportunities. Comput Struct Biotechnol J 2024; 23:2141-2151. [PMID: 38827235 PMCID: PMC11141151 DOI: 10.1016/j.csbj.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
Molecular docking is a widely used technique in drug discovery to predict the binding mode of a given ligand to its target. However, the identification of the near-native binding pose in docking experiments still represents a challenging task as the scoring functions currently employed by docking programs are parametrized to predict the binding affinity, and, therefore, they often fail to correctly identify the ligand native binding conformation. Selecting the correct binding mode is crucial to obtaining meaningful results and to conveniently optimizing new hit compounds. Deep learning (DL) algorithms have been an area of a growing interest in this sense for their capability to extract the relevant information directly from the protein-ligand structure. Our review aims to present the recent advances regarding the development of DL-based pose selection approaches, discussing limitations and possible future directions. Moreover, a comparison between the performances of some classical scoring functions and DL-based methods concerning their ability to select the correct binding mode is reported. In this regard, two novel DL-based pose selectors developed by us are presented.
Collapse
Affiliation(s)
- Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli 25, I-20133 Milano, Italy
| | - Filippo Lunghini
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso de Amicis 95, 80123 Naples, Italy
| | - Pietro Morerio
- Pattern Analysis and Computer Vision, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy
| | - Davide Gadioli
- Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, I-20133 Milano, Italy
| | - Sergio Orlandini
- SCAI, SuperComputing Applications and Innovation Department, CINECA, Via dei Tizii 6, Rome 00185, Italy
| | - Paulo Silva
- IT4Innovations, VSB – Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| | - Jan Martinovic
- IT4Innovations, VSB – Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| | - Alessandro Pedretti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli 25, I-20133 Milano, Italy
| | - Domenico Bonanni
- Department of Physical and Chemical Sciences, University of L′Aquila, via Vetoio, L′Aquila 67010, Italy
| | - Alessio Del Bue
- Pattern Analysis and Computer Vision, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy
| | - Gianluca Palermo
- Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, I-20133 Milano, Italy
| | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli 25, I-20133 Milano, Italy
| | - Andrea R. Beccari
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso de Amicis 95, 80123 Naples, Italy
| |
Collapse
|
3
|
Lucarini A, Cascio ML, Marras S, Sirca C, Spano D. Artificial intelligence and Eddy covariance: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175406. [PMID: 39127196 DOI: 10.1016/j.scitotenv.2024.175406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The Eddy Covariance (EC) method allows for monitoring carbon, water, and energy fluxes between Earth's surface and atmosphere. Due to its varying interdependent data streams and abundance of data as a whole, EC is naturally suited to Artificial Intelligence (AI) approaches. The integration of AI and EC will likely play a crucial role in the climate change mitigation and adaptation goals defined in the Sustainable Development Goals (SDGs) of the Agenda 2030. To aid this, we present a scoping review in which the novelty of various AI techniques in monitoring fluxes through the EC method from the past two decades has been collected. Overall, we find a clear positive trend in the quantity of research in this area, particularly in the last five years. We also find a lack of uniformity in available techniques, due to the diverse technologies and variables employed across environmental conditions and ecosystems. We highlight the most applied Machine Learning (ML) models, over the 71 algorithms identified in the scoping review, such as Random Forest (RF), Support Vector Machine (SVM), Artificial Neural Network (ANN), Support Vector Regression (SVR), and K-Nearest Neigbor (KNN). We suggest that future progress in this field requires an international, collaborative effort involving computer scientists and ecologists. Modern Deep Learning (DL) techniques such as Transformers and generative AI must be investigated to find how they may benefit our field. A forward-looking strategy must be formed for the optimal utilization of AI combined with EC to define future actions in flux monitoring in the face of climate change.
Collapse
Affiliation(s)
- Arianna Lucarini
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100 Sassari, Italy; University School for Advanced Studies IUSS Pavia, Palazzo del Broletto, Piazza della Vittoria 15, 27100 Pavia, Italy.
| | - Mauro Lo Cascio
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100 Sassari, Italy; CMCC Foundation - Euro-Mediterranean Centre on Climate Change, Italy
| | - Serena Marras
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100 Sassari, Italy; CMCC Foundation - Euro-Mediterranean Centre on Climate Change, Italy
| | - Costantino Sirca
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100 Sassari, Italy; CMCC Foundation - Euro-Mediterranean Centre on Climate Change, Italy; National Biodiversity Future Center (NBFC), Palazzo Steri, Piazza Marina 61, Palermo 90133, Italy
| | - Donatella Spano
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100 Sassari, Italy; CMCC Foundation - Euro-Mediterranean Centre on Climate Change, Italy; National Biodiversity Future Center (NBFC), Palazzo Steri, Piazza Marina 61, Palermo 90133, Italy
| |
Collapse
|
4
|
Wang H, He W, Liao J, Wang S, Dai X, Yu M, Xie Y, Chen Y. Catalytic Biomaterials-Activated In Situ Chemical Reactions: Strategic Modulation and Enhanced Disease Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411967. [PMID: 39498674 DOI: 10.1002/adma.202411967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/19/2024] [Indexed: 11/07/2024]
Abstract
Chemical reactions underpin biological processes, and imbalances in critical biochemical pathways within organisms can lead to the onset of severe diseases. Within this context, the emerging field of "Nanocatalytic Medicine" leverages nanomaterials as catalysts to modulate fundamental chemical reactions specific to the microenvironments of diseases. This approach is designed to facilitate the targeted synthesis and localized accumulation of therapeutic agents, thus enhancing treatment efficacy and precision while simultaneously reducing systemic side effects. The effectiveness of these nanocatalytic strategies critically hinges on a profound understanding of chemical kinetics and the intricate interplay of reactions within particular pathological microenvironments to ensure targeted and effective catalytic actions. This review methodically explores in situ catalytic reactions and their associated biomaterials, emphasizing regulatory strategies that control therapeutic responses. Furthermore, the discussion encapsulates the crucial elements-reactants, catalysts, and reaction conditions/environments-necessary for optimizing the thermodynamics and kinetics of these reactions, while rigorously addressing both the biochemical and biophysical dimensions of the disease microenvironments to enhance therapeutic outcomes. It seeks to clarify the mechanisms underpinning catalytic biomaterials and evaluate their potential to revolutionize treatment strategies across various pathological conditions.
Collapse
Affiliation(s)
- Huijing Wang
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wenjin He
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Jing Liao
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Shuangshuang Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| |
Collapse
|
5
|
Goldman SN, Hui AT, Choi S, Mbamalu EK, Tirabady P, Eleswarapu AS, Gomez JA, Alvandi LM, Fornari ED. Applications of artificial intelligence for adolescent idiopathic scoliosis: mapping the evidence. Spine Deform 2024; 12:1545-1570. [PMID: 39153073 PMCID: PMC11499369 DOI: 10.1007/s43390-024-00940-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 07/13/2024] [Indexed: 08/19/2024]
Abstract
PURPOSE Adolescent idiopathic scoliosis (AIS) is a common spinal deformity with varying progression, complicating treatment decisions. Artificial intelligence (AI) and machine learning (ML) are increasingly prominent in orthopedic care, aiding in diagnosis, risk-stratification, and treatment guidance. This scoping review outlines AI applications in AIS. METHODS This study followed PRISMA-ScR guidelines and included articles that reported the development, use, or validation of AI models for treating, diagnosing, or predicting clinical outcomes in AIS. RESULTS 40 full-text articles were included, with most studies published in the last 5 years (77.5%). Common ML techniques were convolutional neural networks (55%), decision trees and random forests (15%), and artificial neural networks (15%). Most AI applications in AIS were for imaging analysis (25/40; 62.5%), focusing on automatic measurement of Cobb angle, and axial vertebral rotation (13/25; 52%) and curve classification/severity (13/25; 52%). Prediction was the second most common application (15/40; 37.5%), with studies predicting curve progression (9/15; 60%), and Cobb angles (9/15; 60%). Only 15 studies (37.5%) reported clinical implementation guidelines for AI in AIS management. 52.5% of studies reported model accuracy, with an average of 85.4%. CONCLUSION This review highlights the applications of AI in AIS care, notably including automatic radiographic analysis, curve type classification, prediction of curve progression, and AIS diagnosis. However, the current lack of clear clinical implementation guidelines, model transparency, and external validation of studied models limits clinician trust and the generalizability and applicability of AI in AIS management.
Collapse
Affiliation(s)
- Samuel N Goldman
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Aaron T Hui
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Sharlene Choi
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Emmanuel K Mbamalu
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Parsa Tirabady
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Ananth S Eleswarapu
- Department of Orthopaedics, Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Jaime A Gomez
- Department of Orthopaedics, Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Leila M Alvandi
- Department of Orthopaedics, Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Eric D Fornari
- Department of Orthopaedics, Montefiore Medical Center, Bronx, NY, 10461, USA
| |
Collapse
|
6
|
Yang Y, Li Y, Tang L, Li J. Single-Molecule Bioelectronic Sensors with AI-Aided Data Analysis: Convergence and Challenges. PRECISION CHEMISTRY 2024; 2:518-538. [PMID: 39483271 PMCID: PMC11523000 DOI: 10.1021/prechem.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 11/03/2024]
Abstract
Single-molecule bioelectronic sensing, a groundbreaking domain in biological research, has revolutionized our understanding of molecules by revealing deep insights into fundamental biological processes. The advent of emergent technologies, such as nanogapped electrodes and nanopores, has greatly enhanced this field, providing exceptional sensitivity, resolution, and integration capabilities. However, challenges persist, such as complex data sets with high noise levels and stochastic molecular dynamics. Artificial intelligence (AI) has stepped in to address these issues with its powerful data processing capabilities. AI algorithms effectively extract meaningful features, detect subtle changes, improve signal-to-noise ratios, and uncover hidden patterns in massive data. This review explores the synergy between AI and single-molecule bioelectronic sensing, focusing on how AI enhances signal processing and data analysis to boost accuracy and reliability. We also discuss current limitations and future directions for integrating AI, highlighting its potential to advance biological research and technological innovation.
Collapse
Affiliation(s)
- Yuxin Yang
- State
Key Laboratory of Extreme Photonics and Instrumentation, College of
Optical Science and Engineering, Zhejiang
University, Hangzhou 310027, China
- Nanhu
Brain-Computer Interface Institute, Hangzhou, Zhejiang 311100, China
| | - Yueqi Li
- Center
for BioAnalytical Chemistry, Hefei National Laboratory of Physical
Science at Microscale, University of Science
and Technology of China, Hefei 230026, China
| | - Longhua Tang
- State
Key Laboratory of Extreme Photonics and Instrumentation, College of
Optical Science and Engineering, Zhejiang
University, Hangzhou 310027, China
- Nanhu
Brain-Computer Interface Institute, Hangzhou, Zhejiang 311100, China
| | - Jinghong Li
- Department
of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of
Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Beijing
Institute of Life Science and Technology, Beijing 102206, China
- New
Cornerstone Science Institute, Beijing 102206, China
- Center
for BioAnalytical Chemistry, Hefei National Laboratory of Physical
Science at Microscale, University of Science
and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Han J, Zhang S, Guan M, Li Q, Gao X, Liu J. GeoNet enables the accurate prediction of protein-ligand binding sites through interpretable geometric deep learning. Structure 2024:S0969-2126(24)00446-5. [PMID: 39488202 DOI: 10.1016/j.str.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024]
Abstract
The identification of protein binding residues is essential for understanding their functions in vivo. However, it remains a computational challenge to accurately identify binding sites due to the lack of known residue binding patterns. Local residue spatial distribution and its interactive biophysical environment both determine binding patterns. Previous methods could not capture both information simultaneously, resulting in unsatisfactory performance. Here, we present GeoNet, an interpretable geometric deep learning model for predicting DNA, RNA, and protein binding sites by learning the latent residue binding patterns. GeoNet achieves this by introducing a coordinate-free geometric representation to characterize local residue distributions and generating an eigenspace to depict local interactive biophysical environments. Evaluation shows that GeoNet is superior compared to other leading predictors and it shows a strong interpretability of learned representations. We present three test cases, where interaction interfaces were successfully identified with GeoNet.
Collapse
Affiliation(s)
- Jiyun Han
- School of Mathematics and Statistics, Shandong University, Weihai 264209, China
| | - Shizhuo Zhang
- School of Mathematics and Statistics, Shandong University, Weihai 264209, China
| | - Mingming Guan
- School of Mathematics and Statistics, Shandong University, Weihai 264209, China
| | - Qiuyu Li
- School of Mathematics and Statistics, Shandong University, Weihai 264209, China
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Juntao Liu
- School of Mathematics and Statistics, Shandong University, Weihai 264209, China.
| |
Collapse
|
8
|
Pan Z, Wang H, Wan J, Zhang L, Huang J, Shen Y. Efficient federated learning for pediatric pneumonia on chest X-ray classification. Sci Rep 2024; 14:23272. [PMID: 39375440 PMCID: PMC11458595 DOI: 10.1038/s41598-024-74491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
According to the World Health Organization (WHO), pneumonia kills about 2 million children under the age of 5 every year. Traditional machine learning methods can be used to diagnose chest X-rays of pneumonia in children, but there is a privacy and security issue in centralizing the data for training. Federated learning prevents data privacy leakage by sharing only the model and not the data, and it has a wide range of application in the medical field. We use federated learning method for classification, which effectively protects data security. And for the data heterogeneity phenomenon existing in the actual scenario, which will seriously affect the classification effect, we propose a method based on two-end control variables. Specifically, based on the classical federated learning FedAvg algorithm, we modify the loss function on the client side by adding a regular term or a penalty term, and add momentum after the average aggregation on the server side. The federated learning approach prevents the data privacy leakage problem compared to the traditional machine learning approach. In order to solve the problem of low classification accuracy due to data heterogeneity, our proposed method based on two-end control variables achieves an average improvement of 2% and an accuracy of 98% on average, and 99% individually, compared to the previous federated learning algorithms and the latest diffusion model-based method. The classification results and methodology of this study can be utilized by clinicians worldwide to improve the overall detection of pediatric pneumonia.
Collapse
Affiliation(s)
- Zegang Pan
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Haijiang Wang
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China.
- Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Hangzhou, China.
| | - Jian Wan
- Zhejiang Institute of Water Resources and Hydropower, Hangzhou, 310018, Zhejiang, China
- Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Hangzhou, China
| | - Lei Zhang
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
- Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Hangzhou, China
| | - Jie Huang
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
- Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Hangzhou, China
| | - Yangyu Shen
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| |
Collapse
|
9
|
Hou X, He Y, Fang P, Mei SQ, Xu Z, Wu WC, Tian JH, Zhang S, Zeng ZY, Gou QY, Xin GY, Le SJ, Xia YY, Zhou YL, Hui FM, Pan YF, Eden JS, Yang ZH, Han C, Shu YL, Guo D, Li J, Holmes EC, Li ZR, Shi M. Using artificial intelligence to document the hidden RNA virosphere. Cell 2024:S0092-8674(24)01085-7. [PMID: 39389057 DOI: 10.1016/j.cell.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Current metagenomic tools can fail to identify highly divergent RNA viruses. We developed a deep learning algorithm, termed LucaProt, to discover highly divergent RNA-dependent RNA polymerase (RdRP) sequences in 10,487 metatranscriptomes generated from diverse global ecosystems. LucaProt integrates both sequence and predicted structural information, enabling the accurate detection of RdRP sequences. Using this approach, we identified 161,979 potential RNA virus species and 180 RNA virus supergroups, including many previously poorly studied groups, as well as RNA virus genomes of exceptional length (up to 47,250 nucleotides) and genomic complexity. A subset of these novel RNA viruses was confirmed by RT-PCR and RNA/DNA sequencing. Newly discovered RNA viruses were present in diverse environments, including air, hot springs, and hydrothermal vents, with virus diversity and abundance varying substantially among ecosystems. This study advances virus discovery, highlights the scale of the virosphere, and provides computational tools to better document the global RNA virome.
Collapse
Affiliation(s)
- Xin Hou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yong He
- Apsara Lab, Alibaba Cloud Intelligence, Alibaba Group, Hangzhou, China
| | - Pan Fang
- Apsara Lab, Alibaba Cloud Intelligence, Alibaba Group, Hangzhou, China
| | - Shi-Qiang Mei
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zan Xu
- Apsara Lab, Alibaba Cloud Intelligence, Alibaba Group, Hangzhou, China
| | - Wei-Chen Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jun-Hua Tian
- Wuhan Centers for Disease Control and Prevention, Wuhan, China
| | - Shun Zhang
- Apsara Lab, Alibaba Cloud Intelligence, Alibaba Group, Hangzhou, China
| | - Zhen-Yu Zeng
- Apsara Lab, Alibaba Cloud Intelligence, Alibaba Group, Hangzhou, China
| | - Qin-Yu Gou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Gen-Yang Xin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shi-Jia Le
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yin-Yue Xia
- Polar Research Institute of China, Shanghai, China
| | - Yu-Lan Zhou
- Department of Nursing, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Feng-Ming Hui
- School of Geospatial Engineering and Science, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, China; Key Laboratory of Comprehensive Observation of Polar Environment, Ministry of Education, Sun Yat-sen University, Zhuhai, China
| | - Yuan-Fei Pan
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University Shanghai, Shanghai, China
| | - John-Sebastian Eden
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, Australia; School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Zhao-Hui Yang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chong Han
- School of Life Science, Guangzhou University, Guangzhou, China
| | - Yue-Long Shu
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Deyin Guo
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Edward C Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China.
| | - Zhao-Rong Li
- Apsara Lab, Alibaba Cloud Intelligence, Alibaba Group, Hangzhou, China.
| | - Mang Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| |
Collapse
|
10
|
Amjad A, Ahmed S, Kabir M, Arif M, Alam T. A novel deep learning identifier for promoters and their strength using heterogeneous features. Methods 2024; 230:119-128. [PMID: 39168294 DOI: 10.1016/j.ymeth.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024] Open
Abstract
Promoters, which are short (50-1500 base-pair) in DNA regions, have emerged to play a critical role in the regulation of gene transcription. Numerous dangerous diseases, likewise cancer, cardiovascular, and inflammatory bowel diseases, are caused by genetic variations in promoters. Consequently, the correct identification and characterization of promoters are significant for the discovery of drugs. However, experimental approaches to recognizing promoters and their strengths are challenging in terms of cost, time, and resources. Therefore, computational techniques are highly desirable for the correct characterization of promoters from unannotated genomic data. Here, we designed a powerful bi-layer deep-learning based predictor named "PROCABLES", which discriminates DNA samples as promoters in the first-phase and strong or weak promoters in the second-phase respectively. The proposed method utilizes five distinct features, such as word2vec, k-spaced nucleotide pairs, trinucleotide propensity-based features, trinucleotide composition, and electron-ion interaction pseudopotentials, to extract the hidden patterns from the DNA sequence. Afterwards, a stacked framework is formed by integrating a convolutional neural network (CNN) with bidirectional long-short-term memory (LSTM) using multi-view attributes to train the proposed model. The PROCABLES model achieved an accuracy of 0.971 and 0.920 and the MCC 0.940 and 0.840 for the first and second-layer using the ten-fold cross-validation test, respectively. The predicted results anticipate that the proposed PROCABLES protocol outperformed the advanced computational predictors targeting promoters and their types. In summary, this research will provide useful hints for the recognition of large-scale promoters in particular and other DNA problems in general.
Collapse
Affiliation(s)
- Aqsa Amjad
- School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan
| | - Saeed Ahmed
- School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan
| | - Muhammad Kabir
- School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan.
| | - Muhammad Arif
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar.
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar.
| |
Collapse
|
11
|
Sajdeya R, Narouze S. Harnessing artificial intelligence for predicting and managing postoperative pain: a narrative literature review. Curr Opin Anaesthesiol 2024; 37:604-615. [PMID: 39011674 DOI: 10.1097/aco.0000000000001408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
PURPOSE OF REVIEW This review examines recent research on artificial intelligence focusing on machine learning (ML) models for predicting postoperative pain outcomes. We also identify technical, ethical, and practical hurdles that demand continued investigation and research. RECENT FINDINGS Current ML models leverage diverse datasets, algorithmic techniques, and validation methods to identify predictive biomarkers, risk factors, and phenotypic signatures associated with increased acute and chronic postoperative pain and persistent opioid use. ML models demonstrate satisfactory performance to predict pain outcomes and their prognostic trajectories, identify modifiable risk factors and at-risk patients who benefit from targeted pain management strategies, and show promise in pain prevention applications. However, further evidence is needed to evaluate the reliability, generalizability, effectiveness, and safety of ML-driven approaches before their integration into perioperative pain management practices. SUMMARY Artificial intelligence (AI) has the potential to enhance perioperative pain management by providing more accurate predictive models and personalized interventions. By leveraging ML algorithms, clinicians can better identify at-risk patients and tailor treatment strategies accordingly. However, successful implementation needs to address challenges in data quality, algorithmic complexity, and ethical and practical considerations. Future research should focus on validating AI-driven interventions in clinical practice and fostering interdisciplinary collaboration to advance perioperative care.
Collapse
Affiliation(s)
- Ruba Sajdeya
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Samer Narouze
- Division of Pain Medicine, University Hospitals Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Kumari K, Pahuja SK, Kumar S. A Comprehensive Examination of ChatGPT's Contribution to the Healthcare Sector and Hepatology. Dig Dis Sci 2024:10.1007/s10620-024-08659-4. [PMID: 39354272 DOI: 10.1007/s10620-024-08659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024]
Abstract
Artificial Intelligence and Natural Language Processing technology have demonstrated significant promise across several domains within the medical and healthcare sectors. This technique has numerous uses in the field of healthcare. One of the primary challenges in implementing ChatGPT in healthcare is the requirement for precise and up-to-date data. In the case of the involvement of sensitive medical information, it is imperative to carefully address concerns regarding privacy and security when using GPT in the healthcare sector. This paper outlines ChatGPT and its relevance in the healthcare industry. It discusses the important aspects of ChatGPT's workflow and highlights the usual features of ChatGPT specifically designed for the healthcare domain. The present review uses the ChatGPT model within the research domain to investigate disorders associated with the hepatic system. This review demonstrates the possible use of ChatGPT in supporting researchers and clinicians in analyzing and interpreting liver-related data, thereby improving disease diagnosis, prognosis, and patient care.
Collapse
Affiliation(s)
- Kabita Kumari
- Department of Instrumentation and Control Engineering, Dr B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, 144011, India.
| | - Sharvan Kumar Pahuja
- Department of Instrumentation and Control Engineering, Dr B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, 144011, India
| | - Sanjeev Kumar
- Biomedical Instrumentation Unit, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh, India
| |
Collapse
|
13
|
Sarantopoulos A, Mastori Kourmpani C, Yokarasa AL, Makamanzi C, Antoniou P, Spernovasilis N, Tsioutis C. Artificial Intelligence in Infectious Disease Clinical Practice: An Overview of Gaps, Opportunities, and Limitations. Trop Med Infect Dis 2024; 9:228. [PMID: 39453255 PMCID: PMC11511260 DOI: 10.3390/tropicalmed9100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
The integration of artificial intelligence (AI) in clinical medicine marks a revolutionary shift, enhancing diagnostic accuracy, therapeutic efficacy, and overall healthcare delivery. This review explores the current uses, benefits, limitations, and future applications of AI in infectious diseases, highlighting its specific applications in diagnostics, clinical decision making, and personalized medicine. The transformative potential of AI in infectious diseases is emphasized, addressing gaps in rapid and accurate disease diagnosis, surveillance, outbreak detection and management, and treatment optimization. Despite these advancements, significant limitations and challenges exist, including data privacy concerns, potential biases, and ethical dilemmas. The article underscores the need for stringent regulatory frameworks and inclusive databases to ensure equitable, ethical, and effective AI utilization in the field of clinical and laboratory infectious diseases.
Collapse
Affiliation(s)
- Andreas Sarantopoulos
- School of Medicine, European University of Cyprus, 2404 Nicosia, Cyprus; (A.S.); (C.M.K.); (A.L.Y.); (C.M.); (P.A.)
- Brigham Women’s and Children Hospital, Boston, MA 02115, USA
| | - Christina Mastori Kourmpani
- School of Medicine, European University of Cyprus, 2404 Nicosia, Cyprus; (A.S.); (C.M.K.); (A.L.Y.); (C.M.); (P.A.)
| | - Atshaya Lily Yokarasa
- School of Medicine, European University of Cyprus, 2404 Nicosia, Cyprus; (A.S.); (C.M.K.); (A.L.Y.); (C.M.); (P.A.)
| | - Chiedza Makamanzi
- School of Medicine, European University of Cyprus, 2404 Nicosia, Cyprus; (A.S.); (C.M.K.); (A.L.Y.); (C.M.); (P.A.)
| | - Polyna Antoniou
- School of Medicine, European University of Cyprus, 2404 Nicosia, Cyprus; (A.S.); (C.M.K.); (A.L.Y.); (C.M.); (P.A.)
| | - Nikolaos Spernovasilis
- Department of Infectious Diseases, German Oncology Centre, 4108 Limassol, Cyprus;
- School of Medicine, University of Crete, 71110 Heraklion, Greece
| | - Constantinos Tsioutis
- School of Medicine, European University of Cyprus, 2404 Nicosia, Cyprus; (A.S.); (C.M.K.); (A.L.Y.); (C.M.); (P.A.)
| |
Collapse
|
14
|
Theocharopoulos C, Davakis S, Ziogas DC, Theocharopoulos A, Foteinou D, Mylonakis A, Katsaros I, Gogas H, Charalabopoulos A. Deep Learning for Image Analysis in the Diagnosis and Management of Esophageal Cancer. Cancers (Basel) 2024; 16:3285. [PMID: 39409906 PMCID: PMC11475041 DOI: 10.3390/cancers16193285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Esophageal cancer has a dismal prognosis and necessitates a multimodal and multidisciplinary approach from diagnosis to treatment. High-definition white-light endoscopy and histopathological confirmation remain the gold standard for the definitive diagnosis of premalignant and malignant lesions. Artificial intelligence using deep learning (DL) methods for image analysis constitutes a promising adjunct for the clinical endoscopist that could effectively decrease BE overdiagnosis and unnecessary surveillance, while also assisting in the timely detection of dysplastic BE and esophageal cancer. A plethora of studies published during the last five years have consistently reported highly accurate DL algorithms with comparable or superior performance compared to endoscopists. Recent efforts aim to expand DL utilization into further aspects of esophageal neoplasia management including histologic diagnosis, segmentation of gross tumor volume, pretreatment prediction and post-treatment evaluation of patient response to systemic therapy and operative guidance during minimally invasive esophagectomy. Our manuscript serves as an introduction to the growing literature of DL applications for image analysis in the management of esophageal neoplasia, concisely presenting all currently published studies. We also aim to guide the clinician across basic functional principles, evaluation metrics and limitations of DL for image recognition to facilitate the comprehension and critical evaluation of the presented studies.
Collapse
Affiliation(s)
| | - Spyridon Davakis
- First Department of Surgery, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.); (A.M.); (I.K.); (A.C.)
| | - Dimitrios C. Ziogas
- First Department of Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.C.Z.); (D.F.); (H.G.)
| | - Achilleas Theocharopoulos
- Department of Electrical and Computer Engineering, National Technical University of Athens, 10682 Athens, Greece;
| | - Dimitra Foteinou
- First Department of Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.C.Z.); (D.F.); (H.G.)
| | - Adam Mylonakis
- First Department of Surgery, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.); (A.M.); (I.K.); (A.C.)
| | - Ioannis Katsaros
- First Department of Surgery, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.); (A.M.); (I.K.); (A.C.)
| | - Helen Gogas
- First Department of Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.C.Z.); (D.F.); (H.G.)
| | - Alexandros Charalabopoulos
- First Department of Surgery, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.); (A.M.); (I.K.); (A.C.)
| |
Collapse
|
15
|
Yu C, Shi X, Luo W, Feng J, Zheng Z, Yorozu A, Hu Y, Guo J. MLG-YOLO: A Model for Real-Time Accurate Detection and Localization of Winter Jujube in Complex Structured Orchard Environments. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0258. [PMID: 39314991 PMCID: PMC11418275 DOI: 10.34133/plantphenomics.0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024]
Abstract
Our research focuses on winter jujube trees and is conducted in a greenhouse environment in a structured orchard to effectively control various growth conditions. The development of a robotic system for winter jujube harvesting is crucial for achieving mechanized harvesting. Harvesting winter jujubes efficiently requires accurate detection and location. To address this issue, we proposed a winter jujube detection and localization method based on the MobileVit-Large selective kernel-GSConv-YOLO (MLG-YOLO) model. First, a winter jujube dataset is constructed to comprise various scenarios of lighting conditions and leaf obstructions to train the model. Subsequently, the MLG-YOLO model based on YOLOv8n is proposed, with improvements including the incorporation of MobileViT to reconstruct the backbone and keep the model more lightweight. The neck is enhanced with LSKblock to capture broader contextual information, and the lightweight convolutional technology GSConv is introduced to further improve the detection accuracy. Finally, a 3-dimensional localization method combining MLG-YOLO with RGB-D cameras is proposed. Through ablation studies, comparative experiments, 3-dimensional localization error tests, and full-scale tree detection tests in laboratory environments and structured orchard environments, the effectiveness of the MLG-YOLO model in detecting and locating winter jujubes is confirmed. With MLG-YOLO, the mAP increases by 3.50%, while the number of parameters is reduced by 61.03% in comparison with the baseline YOLOv8n model. Compared with mainstream object detection models, MLG-YOLO excels in both detection accuracy and model size, with a mAP of 92.70%, a precision of 86.80%, a recall of 84.50%, and a model size of only 2.52 MB. The average detection accuracy in the laboratory environmental testing of winter jujube reached 100%, and the structured orchard environmental accuracy reached 92.82%. The absolute positioning errors in the X, Y, and Z directions are 4.20, 4.70, and 3.90 mm, respectively. This method enables accurate detection and localization of winter jujubes, providing technical support for winter jujube harvesting robots.
Collapse
Affiliation(s)
- Chenhao Yu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaoyi Shi
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenkai Luo
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Junzhe Feng
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhouzhou Zheng
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
| | - Ayanori Yorozu
- Institute of Systems and Information Engineering,
University of Tsukuba, Tsukuba 305-8573, Japan
| | - Yaohua Hu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China
- Institute of Systems and Information Engineering,
University of Tsukuba, Tsukuba 305-8573, Japan
| | - Jiapan Guo
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
16
|
Zhu Z. Advancements in automated classification of chronic obstructive pulmonary disease based on computed tomography imaging features through deep learning approaches. Respir Med 2024; 234:107809. [PMID: 39299523 DOI: 10.1016/j.rmed.2024.107809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) represents a global public health issue that significantly impairs patients' quality of life and overall health. As one of the primary causes of chronic respiratory diseases and global mortality, effective diagnosis and classification of COPD are crucial for clinical management. Pulmonary function tests (PFTs) are standard for diagnosing COPD, yet their accuracy is influenced by patient compliance and other factors, and they struggle to detect early disease pathologies. Furthermore, the complexity of COPD pathological changes poses additional challenges for clinical diagnosis, increasing the difficulty for physicians in practice. Recently, deep learning (DL) technologies have demonstrated significant potential in medical image analysis, particularly for the diagnosis and classification of COPD. By analyzing key radiological features such as airway alterations, emphysema, and vascular characteristics in Computed Tomography (CT) scan images, DL enhances diagnostic accuracy and efficiency, providing more precise treatment plans for COPD patients. This article reviews the latest research advancements in DL methods based on principal radiological features of COPD for its classification and discusses the advantages, challenges, and future research directions of DL in this field, aiming to provide new perspectives for the personalized management and treatment of COPD.
Collapse
Affiliation(s)
- Zirui Zhu
- School of Medicine, Xiamen University, Xiamen 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
17
|
Muralidharan A, Swaminathan A, Poulose A. Deep learning dives: Predicting anxiety in zebrafish through novel tank assay analysis. Physiol Behav 2024; 287:114696. [PMID: 39293590 DOI: 10.1016/j.physbeh.2024.114696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Behavior is fundamental to neuroscience research, providing insights into the mechanisms underlying thoughts, actions and responses. Various model organisms, including mice, flies, and fish, are employed to understand these mechanisms. Zebrafish, in particular, serve as a valuable model for studying anxiety-like behavior, typically measured through the novel tank diving (NTD) assay. Traditional methods for analyzing NTD assays are either manually intensive or costly when using specialized software. To address these limitations, it is useful to develop methods for the automated analysis of zebrafish NTD assays using deep-learning models. In this study, we classified zebrafish based on their anxiety levels using DeepLabCut. Subsequently, based on a training dataset of image frames, we compared deep-learning models to identify the model best suited to classify zebrafish as anxious or non anxious and found that specific architectures, such as InceptionV3, are able to effectively perform this classification task. Our findings suggest that these deep learning models hold promise for automated behavioral analysis in zebrafish, offering an efficient and cost-effective alternative to traditional methods.
Collapse
Affiliation(s)
- Anagha Muralidharan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.
| | - Amrutha Swaminathan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.
| | - Alwin Poulose
- School of Data Science, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.
| |
Collapse
|
18
|
Khelimskii D, Badoyan A, Krymcov O, Baranov A, Manukian S, Lazarev M. AI in interventional cardiology: Innovations and challenges. Heliyon 2024; 10:e36691. [PMID: 39281582 PMCID: PMC11402142 DOI: 10.1016/j.heliyon.2024.e36691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Artificial Intelligence (AI) permeates all areas of our lives. Even now, we all use AI algorithms in our daily activities, and medicine is no exception. The potential of AI technology is hard to overestimate; AI has already proven its effectiveness in many fields of science and technology. A vast number of methods have been proposed and are being implemented in various areas of medicine, including interventional cardiology. A hallmark of this discipline is the extensive use of visualization techniques not only for diagnosis but also for the treatment of patients with coronary heart disease. The implementation of instrumental AI will reduce costs, in a broad sense. In this article, we provide an overview of AI research in interventional cardiology, practical applications, as well as the problems hindering the widespread use of neural network technologies in interventional cardiology.
Collapse
Affiliation(s)
- Dmitrii Khelimskii
- Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| | - Aram Badoyan
- Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| | - Oleg Krymcov
- Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| | - Aleksey Baranov
- Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| | - Serezha Manukian
- Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| | | |
Collapse
|
19
|
Chavlis S, Poirazi P. Dendrites endow artificial neural networks with accurate, robust and parameter-efficient learning. ARXIV 2024:arXiv:2404.03708v2. [PMID: 39314509 PMCID: PMC11419189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Artificial neural networks (ANNs) are at the core of most Deep learning (DL) algorithms that successfully tackle complex problems like image recognition, autonomous driving, and natural language processing. However, unlike biological brains who tackle similar problems in a very efficient manner, DL algorithms require a large number of trainable parameters, making them energy-intensive and prone to overfitting. Here, we show that a new ANN architecture that incorporates the structured connectivity and restricted sampling properties of biological dendrites counteracts these limitations. We find that dendritic ANNs are more robust to overfitting and outperform traditional ANNs on several image classification tasks while using significantly fewer trainable parameters. These advantages are likely the result of a different learning strategy, whereby most of the nodes in dendritic ANNs respond to multiple classes, unlike classical ANNs that strive for class-specificity. Our findings suggest that the incorporation of dendritic properties can make learning in ANNs more precise, resilient, and parameter-efficient and shed new light on how biological features can impact the learning strategies of ANNs.
Collapse
Affiliation(s)
- Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| |
Collapse
|
20
|
Zhao M, Song L, Zhu J, Zhou T, Zhang Y, Chen SC, Li H, Cao D, Jiang YQ, Ho W, Cai J, Ren G. Non-contrasted computed tomography (NCCT) based chronic thromboembolic pulmonary hypertension (CTEPH) automatic diagnosis using cascaded network with multiple instance learning. Phys Med Biol 2024; 69:185011. [PMID: 39191289 DOI: 10.1088/1361-6560/ad7455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
Objective.The diagnosis of chronic thromboembolic pulmonary hypertension (CTEPH) is challenging due to nonspecific early symptoms, complex diagnostic processes, and small lesion sizes. This study aims to develop an automatic diagnosis method for CTEPH using non-contrasted computed tomography (NCCT) scans, enabling automated diagnosis without precise lesion annotation.Approach.A novel cascade network (CN) with multiple instance learning (CNMIL) framework was developed to improve the diagnosis of CTEPH. This method uses a CN architecture combining two Resnet-18 CNN networks to progressively distinguish between normal and CTEPH cases. Multiple instance learning (MIL) is employed to treat each 3D CT case as a 'bag' of image slices, using attention scoring to identify the most important slices. An attention module helps the model focus on diagnostically relevant regions within each slice. The dataset comprised NCCT scans from 300 subjects, including 117 males and 183 females, with an average age of 52.5 ± 20.9 years, consisting of 132 normal cases and 168 cases of lung diseases, including 88 cases of CTEPH. The CNMIL framework was evaluated using sensitivity, specificity, and the area under the curve (AUC) metrics, and compared with common 3D supervised classification networks and existing CTEPH automatic diagnosis networks.Main results. The CNMIL framework demonstrated high diagnostic performance, achieving an AUC of 0.807, accuracy of 0.833, sensitivity of 0.795, and specificity of 0.849 in distinguishing CTEPH cases. Ablation studies revealed that integrating MIL and the CN significantly enhanced performance, with the model achieving an AUC of 0.978 and perfect sensitivity (1.000) in normal classification. Comparisons with other 3D network architectures confirmed that the integrated model outperformed others, achieving the highest AUC of 0.8419.Significance. The CNMIL network requires no additional scans or annotations, relying solely on NCCT. This approach can improve timely and accurate CTEPH detection, resulting in better patient outcomes.
Collapse
Affiliation(s)
- Mayang Zhao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Liming Song
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Jiarui Zhu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Ta Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Yuanpeng Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Shu-Cheng Chen
- School of Nursing, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Haojiang Li
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Centre, Guangzhou, People's Republic of China
| | - Di Cao
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Centre, Guangzhou, People's Republic of China
| | - Yi-Quan Jiang
- Department of Minimally Invasive Interventional Therapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Waiyin Ho
- Department of Nuclear Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region of China , People's Republic of China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Ge Ren
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China, People's Republic of China
| |
Collapse
|
21
|
Yoshinori F, Imai K, Horton P. Prediction of mitochondrial targeting signals and their cleavage sites. Methods Enzymol 2024; 706:161-192. [PMID: 39455214 DOI: 10.1016/bs.mie.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
In this chapter we survey prediction tools and computational methods for the prediction of amino acid sequence elements which target proteins to the mitochondria. We will primarily focus on the prediction of N-terminal mitochondrial targeting signals (MTSs) and their N-terminal cleavage sites by mitochondrial peptidases. We first give practical details useful for using and installing some prediction tools. Then we describe procedures for preparing datasets of MTS containing proteins for statistical analysis or development of new prediction methods. Following that we lightly survey some of the computational techniques used by prediction tools. Finally, after discussing some caveats regarding the reliability of such methods to predict the effects of mutations on MTS function; we close with a discussion of possible future directions of computer prediction methods related to mitochondrial proteins.
Collapse
Affiliation(s)
- Fukasawa Yoshinori
- Center for Bioscience Research and Education, Utsunomiya University, Japan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
| | - Paul Horton
- Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan.
| |
Collapse
|
22
|
Begazo R, Aguilera A, Dongo I, Cardinale Y. A Combined CNN Architecture for Speech Emotion Recognition. SENSORS (BASEL, SWITZERLAND) 2024; 24:5797. [PMID: 39275707 PMCID: PMC11398044 DOI: 10.3390/s24175797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024]
Abstract
Emotion recognition through speech is a technique employed in various scenarios of Human-Computer Interaction (HCI). Existing approaches have achieved significant results; however, limitations persist, with the quantity and diversity of data being more notable when deep learning techniques are used. The lack of a standard in feature selection leads to continuous development and experimentation. Choosing and designing the appropriate network architecture constitutes another challenge. This study addresses the challenge of recognizing emotions in the human voice using deep learning techniques, proposing a comprehensive approach, and developing preprocessing and feature selection stages while constructing a dataset called EmoDSc as a result of combining several available databases. The synergy between spectral features and spectrogram images is investigated. Independently, the weighted accuracy obtained using only spectral features was 89%, while using only spectrogram images, the weighted accuracy reached 90%. These results, although surpassing previous research, highlight the strengths and limitations when operating in isolation. Based on this exploration, a neural network architecture composed of a CNN1D, a CNN2D, and an MLP that fuses spectral features and spectogram images is proposed. The model, supported by the unified dataset EmoDSc, demonstrates a remarkable accuracy of 96%.
Collapse
Affiliation(s)
- Rolinson Begazo
- Electrical and Electronics Engineering Department, Universidad Católica San Pablo, Arequipa 04001, Peru
| | - Ana Aguilera
- Escuela de Ingeniería Informática, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Interdisciplinary Center for Biomedical Research and Health Engineering "MEDING", Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Irvin Dongo
- Electrical and Electronics Engineering Department, Universidad Católica San Pablo, Arequipa 04001, Peru
- ESTIA Institute of Technology, University Bordeaux, 64210 Bidart, France
| | - Yudith Cardinale
- Grupo de Investigación en Ciencia de Datos, Universidad Internacional de Valencia, 46002 Valencia, Spain
| |
Collapse
|
23
|
Saavedra JP, Droppelmann G, Jorquera C, Feijoo F. Automated segmentation and classification of supraspinatus fatty infiltration in shoulder magnetic resonance image using a convolutional neural network. Front Med (Lausanne) 2024; 11:1416169. [PMID: 39290391 PMCID: PMC11405335 DOI: 10.3389/fmed.2024.1416169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Background Goutallier's fatty infiltration of the supraspinatus muscle is a critical condition in degenerative shoulder disorders. Deep learning research primarily uses manual segmentation and labeling to detect this condition. Employing unsupervised training with a hybrid framework of segmentation and classification could offer an efficient solution. Aim To develop and assess a two-step deep learning model for detecting the region of interest and categorizing the magnetic resonance image (MRI) supraspinatus muscle fatty infiltration according to Goutallier's scale. Materials and methods A retrospective study was performed from January 1, 2019 to September 20, 2020, using 900 MRI T2-weighted images with supraspinatus muscle fatty infiltration diagnoses. A model with two sequential neural networks was implemented and trained. The first sub-model automatically detects the region of interest using a U-Net model. The second sub-model performs a binary classification using the VGG-19 architecture. The model's performance was computed as the average of five-fold cross-validation processes. Loss, accuracy, Dice coefficient (CI. 95%), AU-ROC, sensitivity, and specificity (CI. 95%) were reported. Results Six hundred and six shoulders MRIs were analyzed. The Goutallier distribution was presented as follows: 0 (66.50%); 1 (18.81%); 2 (8.42%); 3 (3.96%); 4 (2.31%). Segmentation results demonstrate high levels of accuracy (0.9977 ± 0.0002) and Dice score (0.9441 ± 0.0031), while the classification model also results in high levels of accuracy (0.9731 ± 0.0230); sensitivity (0.9000 ± 0.0980); specificity (0.9788 ± 0.0257); and AUROC (0.9903 ± 0.0092). Conclusion The two-step training method proposed using a deep learning model demonstrated strong performance in segmentation and classification tasks.
Collapse
Affiliation(s)
- Juan Pablo Saavedra
- School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Guillermo Droppelmann
- Clínica MEDS, Santiago, Chile
- Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Carlos Jorquera
- Facultad de Ciencias, Escuela de Nutrición y Dietética, Universidad Mayor, Santiago, Chile
| | - Felipe Feijoo
- School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
24
|
Hu Y, Sandt R, Spatschek R. Practical feature filter strategy to machine learning for small datasets in chemistry. Sci Rep 2024; 14:20449. [PMID: 39242744 PMCID: PMC11379859 DOI: 10.1038/s41598-024-71342-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Many potential use cases for machine learning in chemistry and materials science suffer from small dataset sizes, which demands special care for the model design in order to deliver reliable predictions. Hence, feature selection as the key determinant for dataset design is essential here. We propose a practical and efficient feature filter strategy to determine the best input feature candidates. We illustrate this strategy for the prediction of adsorption energies based on a public dataset and sublimation enthalpies using an in-house training dataset. The input of adsorption energies reduces the feature space from 12 dimensions to two and still delivers accurate results. For the sublimation enthalpies, three input configurations are filtered from 14 possible configurations with different dimensions for further productive predictions as being most relevant by using our feature filter strategy. The best extreme gradient boosting regression model possesses a good performance and is evaluated from statistical and theoretical perspectives, reaching a level of accuracy comparable to density functional theory computations and allowing for physical interpretations of the predictions. Overall, the results indicate that the feature filter strategy can help interdisciplinary scientists without rich professional AI knowledge and limited computational resources to establish a reliable small training dataset first, which may make the final machine learning model training easier and more accurate, avoiding time-consuming hyperparameter explorations and improper feature selection.
Collapse
Affiliation(s)
- Yang Hu
- Institute of Energy Materials and Devices IMD-1, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany.
- Georesources and Materials Engineering, RWTH Aachen University, 52062, Aachen, Germany.
| | - Roland Sandt
- Institute of Energy Materials and Devices IMD-1, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
- Georesources and Materials Engineering, RWTH Aachen University, 52062, Aachen, Germany
| | - Robert Spatschek
- Institute of Energy Materials and Devices IMD-1, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
- Georesources and Materials Engineering, RWTH Aachen University, 52062, Aachen, Germany
- JARA Energy, 52428, Jülich, Germany
| |
Collapse
|
25
|
Ye Z, Zhang D, Zhao Y, Chen M, Wang H, Seery S, Qu Y, Xue P, Jiang Y. Deep learning algorithms for melanoma detection using dermoscopic images: A systematic review and meta-analysis. Artif Intell Med 2024; 155:102934. [PMID: 39088883 DOI: 10.1016/j.artmed.2024.102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/21/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Melanoma is a serious risk to human health and early identification is vital for treatment success. Deep learning (DL) has the potential to detect cancer using imaging technologies and many studies provide evidence that DL algorithms can achieve high accuracy in melanoma diagnostics. OBJECTIVES To critically assess different DL performances in diagnosing melanoma using dermatoscopic images and discuss the relationship between dermatologists and DL. METHODS Ovid-Medline, Embase, IEEE Xplore, and the Cochrane Library were systematically searched from inception until 7th December 2021. Studies that reported diagnostic DL model performances in detecting melanoma using dermatoscopic images were included if they had specific outcomes and histopathologic confirmation. Binary diagnostic accuracy data and contingency tables were extracted to analyze outcomes of interest, which included sensitivity (SEN), specificity (SPE), and area under the curve (AUC). Subgroup analyses were performed according to human-machine comparison and cooperation. The study was registered in PROSPERO, CRD42022367824. RESULTS 2309 records were initially retrieved, of which 37 studies met our inclusion criteria, and 27 provided sufficient data for meta-analytical synthesis. The pooled SEN was 82 % (range 77-86), SPE was 87 % (range 84-90), with an AUC of 0.92 (range 0.89-0.94). Human-machine comparison had pooled AUCs of 0.87 (0.84-0.90) and 0.83 (0.79-0.86) for DL and dermatologists, respectively. Pooled AUCs were 0.90 (0.87-0.93), 0.80 (0.76-0.83), and 0.88 (0.85-0.91) for DL, and junior and senior dermatologists, respectively. Analyses of human-machine cooperation were 0.88 (0.85-0.91) for DL, 0.76 (0.72-0.79) for unassisted, and 0.87 (0.84-0.90) for DL-assisted dermatologists. CONCLUSIONS Evidence suggests that DL algorithms are as accurate as senior dermatologists in melanoma diagnostics. Therefore, DL could be used to support dermatologists in diagnostic decision-making. Although, further high-quality, large-scale multicenter studies are required to address the specific challenges associated with medical AI-based diagnostics.
Collapse
Affiliation(s)
- Zichen Ye
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Daqian Zhang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuankai Zhao
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingyang Chen
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huike Wang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Samuel Seery
- Population Health Sciences Institute, School of Pharmacy, Newcastle University, Newcastle NE1 7RU, United Kingdom of Great Britain and Northern Ireland
| | - Yimin Qu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Xue
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yu Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
26
|
Ghosh S, Burger P, Simeunovic-Ostojic M, Maas J, Petković M. Review of machine learning solutions for eating disorders. Int J Med Inform 2024; 189:105526. [PMID: 38935998 DOI: 10.1016/j.ijmedinf.2024.105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Eating Disorders (EDs) are one of the most complex psychiatric disorders, with significant impairment of psychological and physical health, and psychosocial functioning, and are associated with low rates of early detection, low recovery and high relapse rates. This underscores the need for better diagnostic and treatment methods. OBJECTIVE This narrative review explores current Machine Learning (ML) and Artificial Intelligence (AI) applications in the domain of EDs, with a specific emphasis on clinical management in treatment settings. The primary objective are to (i) decrease the knowledge gap between ED researchers and AI-practitioners, by presenting the current state-of-the-art AI applications (including models for causality) in different ED use-cases; (ii) identify limitations of these existing AI interventions and how to address them. RESULTS AI/ML methods have been applied in different ED use-cases, including ED risk factor identification and incidence prediction (including the analysis of social media content in the general population), diagnosis, monitoring patients and treatment response and prognosis in clinical populations. A comparative analysis of AI-techniques deployed in these use-cases have been performed, considering factors such as complexity, flexibility, functionality, explainability and adaptability to healthcare constraints. CONCLUSION Multiple restrictions have been identified in the existing methods in ML and Causality in terms of achieving actionable healthcare for ED, like lack of good quality and quantity of data for models to train on, while requiring models to be flexible, high-performing, yet being explainable and producing counterfactual explanations, for ensuring the fairness and trustworthiness of its decisions. We conclude that to overcome these limitations and for future AI research and application in clinical management of ED, (i) careful considerations are required with regards to AI-model selection, and (ii) joint efforts from ED researcher and patient community are essential in building better quality and quantity of dedicated ED datasets and secure AI-solution framework.
Collapse
Affiliation(s)
- Sreejita Ghosh
- Dept. M & CS, Technical University of Eindhoven, Groene Loper 5, 5612 AZ Eindhoven, the Netherlands.
| | - Pia Burger
- Center of Eating Disorders, GGZ Oost-Brabant, Wesselmanlaan 25a, 5707 HA Helmond, the Netherlands.
| | | | - Joyce Maas
- Center of Eating Disorders, GGZ Oost-Brabant, Wesselmanlaan 25a, 5707 HA Helmond, the Netherlands; Dept. Medical and Clinical Psychology, Tilburg University, Prof. Cobbenhagenlaan, 5037 AB Tilburg, the Netherlands
| | - Milan Petković
- Dept. M & CS, Technical University of Eindhoven, Groene Loper 5, 5612 AZ Eindhoven, the Netherlands; Philips Hospital Patient Monitoring, High Tech Campus 34, 5656 AE Eindhoven, the Netherlands
| |
Collapse
|
27
|
Jairath N, Pahalyants V, Shah R, Weed J, Carucci JA, Criscito MC. Artificial Intelligence in Dermatology: A Systematic Review of Its Applications in Melanoma and Keratinocyte Carcinoma Diagnosis. Dermatol Surg 2024; 50:791-798. [PMID: 38722750 DOI: 10.1097/dss.0000000000004223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
BACKGROUND Limited access to dermatologic care may pose an obstacle to the early detection and intervention of cutaneous malignancies. The role of artificial intelligence (AI) in skin cancer diagnosis may alleviate potential care gaps. OBJECTIVE The aim of this systematic review was to offer an in-depth exploration of published AI algorithms trained on dermoscopic and macroscopic clinical images for the diagnosis of melanoma, basal cell carcinoma, and cutaneous squamous cell carcinoma (cSCC). METHODS Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, a systematic review was conducted on peer-reviewed articles published between January 1, 2000, and January 26, 2023. RESULTS AND DISCUSSION Among the 232 studies in this review, the overall accuracy, sensitivity, and specificity of AI for tumor detection averaged 90%, 87%, and 91%, respectively. Model performance improved with time. Despite seemingly impressive performance, the paucity of external validation and limited representation of cSCC and skin of color in the data sets limits the generalizability of the current models. In addition, dermatologists coauthored only 12.9% of all studies included in the review. Moving forward, it is imperative to prioritize robustness in data reporting, inclusivity in data collection, and interdisciplinary collaboration to ensure the development of equitable and effective AI tools.
Collapse
Affiliation(s)
- Neil Jairath
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | - Vartan Pahalyants
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | - Rohan Shah
- Rutgers University School of Medicine, Newark, New Jersey
| | - Jason Weed
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | - John A Carucci
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | - Maressa C Criscito
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
28
|
Assim OM, Mahmood AF. A novel universal deep learning approach for accurate detection of epilepsy. Med Eng Phys 2024; 131:104219. [PMID: 39284648 DOI: 10.1016/j.medengphy.2024.104219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Epilepsy claims the lives of many people, so researchers strive to build highly accurate diagnostic models. One of the limitations of obtaining high accuracy is the scarcity of Electroencephalography (EEG) data and the fact that they are from different devices in terms of the channels number and sampling frequency. The paper proposes universal epilepsy diagnoses with high accuracy from electroencephalography signals taken from any device. The novelty of the proposal is to convert VEEG video into images, separating some parts and unifying images taken from different devices. The images were tested by dividing the video into labeled frames of different periods. By adding the spatial attention layer to the deep learning in the new model, classification accuracy increased to 99.95 %, taking five seconds/frame. The proposed has high accuracy in detecting epilepsy from any EEG without being restricted to a specific number of channels or sampling frequencies.
Collapse
|
29
|
Li T, Li B, Zhong J, Xu X, Wang T, Liu F. A prediction model of dementia conversion for mild cognitive impairment by combining plasma pTau181 and structural imaging features. CNS Neurosci Ther 2024; 30:e70051. [PMID: 39294845 PMCID: PMC11410557 DOI: 10.1111/cns.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
AIMS The early stages of Alzheimer's disease (AD) are no longer insurmountable. Therefore, identifying at-risk individuals is of great importance for precise treatment. We developed a model to predict cognitive deterioration in patients with mild cognitive impairment (MCI). METHODS Based on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, we constructed models in a derivation cohort of 761 participants with MCI (138 of whom developed dementia at the 36th month) and verified them in a validation cohort of 353 cognitively normal controls (54 developed MCI and 19 developed dementia at the 36th month). In addition, 1303 participants with available AD cerebrospinal fluid core biomarkers were selected to clarify the ability of the model to predict AD core features. We assessed 32 parameters as candidate predictors, including clinical information, blood biomarkers, and structural imaging features, and used multivariable logistic regression analysis to develop our prediction model. RESULTS Six independent variables of MCI deterioration were identified: apolipoprotein E ε4 allele status, lower Mini-Mental State Examination scores, higher levels of plasma pTau181, smaller volumes of the left hippocampus and right amygdala, and a thinner right inferior temporal cortex. We established an easy-to-use risk heat map and risk score based on these risk factors. The area under the curve (AUC) for both internal and external validations was close to 0.850. Furthermore, the AUC was above 0.800 in identifying participants with high brain amyloid-β loads. Calibration plots demonstrated good agreement between the predicted probability and actual observations in the internal and external validations. CONCLUSION We developed and validated an accurate prediction model for dementia conversion in patients with MCI. Simultaneously, the model predicts AD-specific pathological changes. We hope that this model will contribute to more precise clinical treatment and better healthcare resource allocation.
Collapse
Affiliation(s)
- Tao‐Ran Li
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Bai‐Le Li
- Department of HematologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
- Beijing Children's Hospital, Beijing Pediatric Research InstituteCapital Medical University, National Center for Children's HealthBeijingChina
| | - Jin Zhong
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Xin‐Ran Xu
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Tai‐Shan Wang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
- Department of NeurologyYangzhou Friendship HospitalYangzhouChina
| | - Feng‐Qi Liu
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
- Department of HematologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | | |
Collapse
|
30
|
Yadalam PK, Anegundi RV, Saravanan M, Meles HN, Heboyan A. Deep Learning Prediction of Inflammatory Inducing Protein Coding mRNA in P. gingivalis Released Outer Membrane Vesicles. Biomed Eng Comput Biol 2024; 15:11795972241277081. [PMID: 39221175 PMCID: PMC11365027 DOI: 10.1177/11795972241277081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Aim The Insilco study uses deep learning algorithms to predict the protein-coding pg m RNA sequences. Material and methods The NCBI GEO DATA SET GSE218606's GEO R tool discovered P.G's outer membrane vesicles' most differentially expressed mRNA. Genemania analyzed differentially expressed gene networks. Transcriptomics data were collected and labeled on P. gingivalis protein-coding mRNA sequence and pseudogene, lincRNA, and bidirectional promoter lincRNA. Orange, a machine learning tool, analyzed and predicted data after preprocessing. Naïve Bayes, neural networks, and gradient descent partition data into training and testing sets, yielding accurate results. Cross-validation, model accuracy, and ROC curve were evaluated after model validation. Results Three models, Neural Networks, Naive Bayes, and Gradient Boosting, were evaluated using metrics like Area Under the Curve (AUC), Classification Accuracy (CA), F1 Score, Precision, Recall, and Specificity. Gradient Boosting achieved a balanced performance (AUC: 0.72, CA: 0.41, F1: 0.32) compared to Neural Networks (AUC: 0.721, CA: 0.391, F1: 0.314) and Naive Bayes (AUC: 0.701, CA: 0.172, F1: 0.114). While statistical tests revealed no significant differences between the models, Gradient Boosting exhibited a more balanced precision-recall relationship. Conclusion In silico analysis using machine learning techniques successfully predicted protein-coding mRNA sequences within Porphyromonas gingivalis OMVs. Gradient Boosting outperformed other models (Neural Networks, Naive Bayes) by achieving a balanced performance across metrics like AUC, classification accuracy, and precision-recall, suggests its potential as a reliable tool for protein-coding mRNA prediction in P. gingivalis OMVs.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Raghavendra Vamsi Anegundi
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental college and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamilnadu, India
| | - Hadush Negash Meles
- Unit of Medical Microbiology, Department of Medical Laboratory Sciences, College of Medicine and Health Science, Adigrat University, Adigrat, Ethiopia
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| |
Collapse
|
31
|
Nasir J, Bruno B, Dillenbourg P. Social robots as skilled ignorant peers for supporting learning. Front Robot AI 2024; 11:1385780. [PMID: 39238948 PMCID: PMC11375219 DOI: 10.3389/frobt.2024.1385780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/19/2024] [Indexed: 09/07/2024] Open
Abstract
When designing social robots for educational settings, there is often an emphasis on domain knowledge. This presents challenges: 1) Either robots must autonomously acquire domain knowledge, a currently unsolved problem in HRI, or 2) the designers provide this knowledge implying re-programming the robot for new contexts. Recent research explores alternative, relatively easier to port, knowledge areas like student rapport, engagement, and synchrony though these constructs are typically treated as the ultimate goals, when the final goal should be students' learning. Our aim is to propose a shift in how engagement is considered, aligning it naturally with learning. We introduce the notion of a skilled ignorant peer robot: a robot peer that has little to no domain knowledge but possesses knowledge of student behaviours conducive to learning, i.e., behaviours indicative of productive engagement as extracted from student behavioral profiles. We formally investigate how such a robot's interventions manipulate the children's engagement conducive to learning. Specifically, we evaluate two versions of the proposed robot, namely, Harry and Hermione, in a user study with 136 students where each version differs in terms of the intervention strategy. Harry focuses on which suggestions to intervene with from a pool of communication, exploration, and reflection inducing suggestions, while Hermione also carefully considers when and why to intervene. While the teams interacting with Harry have higher productive engagement correlated to learning, this engagement is not affected by the robot's intervention scheme. In contrast, Hermione's well-timed interventions, deemed more useful, correlate with productive engagement though engagement is not correlated to learning. These results highlight the potential of a social educational robot as a skilled ignorant peer and stress the importance of precisely timing the robot interventions in a learning environment to be able to manipulate moderating variable of interest such as productive engagement.
Collapse
Affiliation(s)
- Jauwairia Nasir
- Chair of Human-Centered Artificial Intelligence, University of Augsburg, Augsburg, Germany
- Computer Human Interaction for Learning and Instruction Lab, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Barbara Bruno
- Computer Human Interaction for Learning and Instruction Lab, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Socially Assistive Robotics with Artificial Intelligence Lab, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Pierre Dillenbourg
- Computer Human Interaction for Learning and Instruction Lab, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
32
|
Davies H, Nenadic G, Alfattni G, Arguello Casteleiro M, Al Moubayed N, Farrell S, Radford AD, Noble PJM. Text mining for disease surveillance in veterinary clinical data: part two, training computers to identify features in clinical text. Front Vet Sci 2024; 11:1352726. [PMID: 39239390 PMCID: PMC11376235 DOI: 10.3389/fvets.2024.1352726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/17/2024] [Indexed: 09/07/2024] Open
Abstract
In part two of this mini-series, we evaluate the range of machine-learning tools now available for application to veterinary clinical text-mining. These tools will be vital to automate extraction of information from large datasets of veterinary clinical narratives curated by projects such as the Small Animal Veterinary Surveillance Network (SAVSNET) and VetCompass, where volumes of millions of records preclude reading records and the complexities of clinical notes limit usefulness of more "traditional" text-mining approaches. We discuss the application of various machine learning techniques ranging from simple models for identifying words and phrases with similar meanings to expand lexicons for keyword searching, to the use of more complex language models. Specifically, we describe the use of language models for record annotation, unsupervised approaches for identifying topics within large datasets, and discuss more recent developments in the area of generative models (such as ChatGPT). As these models become increasingly complex it is pertinent that researchers and clinicians work together to ensure that the outputs of these models are explainable in order to instill confidence in any conclusions drawn from them.
Collapse
Affiliation(s)
- Heather Davies
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Goran Nenadic
- Department of Computer Science, Manchester University, Manchester, United Kingdom
| | - Ghada Alfattni
- Department of Computer Science, Manchester University, Manchester, United Kingdom
| | | | - Noura Al Moubayed
- Department of Computer Science, Durham University, Durham, United Kingdom
| | - Sean Farrell
- Department of Computer Science, Durham University, Durham, United Kingdom
| | - Alan D Radford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - P-J M Noble
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
33
|
Ail BE, Ramele R, Gambini J, Santos JM. An Intrinsically Explainable Method to Decode P300 Waveforms from EEG Signal Plots Based on Convolutional Neural Networks. Brain Sci 2024; 14:836. [PMID: 39199527 PMCID: PMC11487430 DOI: 10.3390/brainsci14080836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
This work proposes an intrinsically explainable, straightforward method to decode P300 waveforms from electroencephalography (EEG) signals, overcoming the black box nature of deep learning techniques. The proposed method allows convolutional neural networks to decode information from images, an area where they have achieved astonishing performance. By plotting the EEG signal as an image, it can be both visually interpreted by physicians and technicians and detected by the network, offering a straightforward way of explaining the decision. The identification of this pattern is used to implement a P300-based speller device, which can serve as an alternative communication channel for persons affected by amyotrophic lateral sclerosis (ALS). This method is validated by identifying this signal by performing a brain-computer interface simulation on a public dataset from ALS patients. Letter identification rates from the speller on the dataset show that this method can identify the P300 signature on the set of 8 patients. The proposed approach achieves similar performance to other state-of-the-art proposals while providing clinically relevant explainability (XAI).
Collapse
Affiliation(s)
- Brian Ezequiel Ail
- Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires C1437, Argentina;
| | - Rodrigo Ramele
- Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires C1437, Argentina;
| | - Juliana Gambini
- Centro de Investigación en Informática Aplicada (CIDIA), Universidad Nacional de Hurlingham (UNAHUR), Hurlingham B1688, Argentina; (J.G.); (J.M.S.)
- CPSI—Universidad Tecnológica Nacional, FRBA, Buenos Aires C1041, Argentina
| | - Juan Miguel Santos
- Centro de Investigación en Informática Aplicada (CIDIA), Universidad Nacional de Hurlingham (UNAHUR), Hurlingham B1688, Argentina; (J.G.); (J.M.S.)
| |
Collapse
|
34
|
Alamir SH, Tufaro V, Trilli M, Kitslaar P, Mathur A, Baumbach A, Jacob J, Bourantas CV, Torii R. Rapid prediction of wall shear stress in stenosed coronary arteries based on deep learning. Front Bioeng Biotechnol 2024; 12:1360330. [PMID: 39188371 PMCID: PMC11345599 DOI: 10.3389/fbioe.2024.1360330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/12/2024] [Indexed: 08/28/2024] Open
Abstract
There is increasing evidence that coronary artery wall shear stress (WSS) measurement provides useful prognostic information that allows prediction of adverse cardiovascular events. Computational Fluid Dynamics (CFD) has been extensively used in research to measure vessel physiology and examine the role of the local haemodynamic forces on the evolution of atherosclerosis. Nonetheless, CFD modelling remains computationally expensive and time-consuming, making its direct use in clinical practice inconvenient. A number of studies have investigated the use of deep learning (DL) approaches for fast WSS prediction. However, in these reports, patient data were limited and most of them used synthetic data generation methods for developing the training set. In this paper, we implement 2 approaches for synthetic data generation and combine their output with real patient data in order to train a DL model with a U-net architecture for prediction of WSS in the coronary arteries. The model achieved 6.03% Normalised Mean Absolute Error (NMAE) with inference taking only 0.35 s; making this solution time-efficient and clinically relevant.
Collapse
Affiliation(s)
- Salwa Husam Alamir
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Vincenzo Tufaro
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Matilde Trilli
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | | | - Anthony Mathur
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom
| | - Andreas Baumbach
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Joseph Jacob
- Satsuma Lab, Centre for Medical Image Computing, University College London, London, United Kingdom
- UCL Respiratory, University College London, London, United Kingdom
| | - Christos V. Bourantas
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
35
|
Sarmadi A, Razavi ZS, van Wijnen AJ, Soltani M. Comparative analysis of vision transformers and convolutional neural networks in osteoporosis detection from X-ray images. Sci Rep 2024; 14:18007. [PMID: 39097627 PMCID: PMC11297930 DOI: 10.1038/s41598-024-69119-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
Within the scope of this investigation, we carried out experiments to investigate the potential of the Vision Transformer (ViT) in the field of medical image analysis. The diagnosis of osteoporosis through inspection of X-ray radio-images is a substantial classification problem that we were able to address with the assistance of Vision Transformer models. In order to provide a basis for comparison, we conducted a parallel analysis in which we sought to solve the same problem by employing traditional convolutional neural networks (CNNs), which are well-known and commonly used techniques for the solution of image categorization issues. The findings of our research led us to conclude that ViT is capable of achieving superior outcomes compared to CNN. Furthermore, provided that methods have access to a sufficient quantity of training data, the probability increases that both methods arrive at more appropriate solutions to critical issues.
Collapse
Affiliation(s)
- Ali Sarmadi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Zahra Sadat Razavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran
- Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada.
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada.
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada.
- Centre for Sustainable Business, International Business University, Toronto, Canada.
| |
Collapse
|
36
|
Russo AP, Pastorello Y, Dénes L. Automated Cobb Angle Measurements for Scoliosis Diagnosis and Assessment: AI Applications and Accuracy Enhancement Through Image Processing Techniques. Cureus 2024; 16:e66736. [PMID: 39268269 PMCID: PMC11391110 DOI: 10.7759/cureus.66736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Scoliosis is characterized by an abnormal curvature of the spine in the coronal plane. Idiopathic scoliosis is the most prevalent type, though specific causes are sometimes identifiable. Genetic factors significantly influence adolescent idiopathic scoliosis (AIS), which is diagnosed through clinical and radiographic evaluations, primarily using the Cobb angle to measure curvature severity. The classification of scoliosis severity ranges from mild scoliosis, where sometimes the absence of pain is encountered, to moderate and severe, which is usually associated with lancinating pain. Early onset and high progression rates in idiopathic scoliosis are indicative of poorer prognoses. Methods The study analyzed 197 radiographic images from a private clinic database between December 2023 and April 2024. Inclusion criteria focused on anteroposterior images of the thorax and abdomen, excluding unclear and non-spinal images. Manual Cobb angle measurements were performed using RadiAnt DICOM Viewer 2020.2, followed by automated measurements using the Cobb Angle Calculator software. Discrepancies led to further image processing with enhanced color contrast for improved visualization. Data were analyzed using GraphPad InStat to assess error margins between manual and automated measurements. Results Initial results indicated discrepancies between manual and automated Cobb angle measurements. Enhanced image processing improved accuracy, demonstrating the efficacy of both manual and automated techniques in evaluating spinal deformities. Statistical analysis revealed significant error margins, prompting a refined approach for minimizing measurement errors. Discussion The study highlights the importance of accurate Cobb angle measurement in diagnosing and classifying scoliosis. Manual measurements, while reliable, are time-consuming and prone to human error. Automated methods, particularly those enhanced by machine learning algorithms, offer promising accuracy and efficiency. The integration of image processing techniques further enhances the reliability of scoliosis evaluation. Conclusion Accurate assessment of scoliosis through Cobb angle measurement is crucial for effective diagnosis and treatment planning. The study demonstrates that combining manual techniques with advanced automated methods and image processing significantly improves measurement accuracy. Such an approach is intended to support better clinical outcomes. Future research should focus on refining these technologies for broader clinical applications.
Collapse
Affiliation(s)
- Aurelio Pio Russo
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
| | - Ylenia Pastorello
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
| | - Lóránd Dénes
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
| |
Collapse
|
37
|
Viswanathan VS, Parmar V, Madabhushi A. Towards equitable AI in oncology. Nat Rev Clin Oncol 2024; 21:628-637. [PMID: 38849530 DOI: 10.1038/s41571-024-00909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/09/2024]
Abstract
Artificial intelligence (AI) stands at the threshold of revolutionizing clinical oncology, with considerable potential to improve early cancer detection and risk assessment, and to enable more accurate personalized treatment recommendations. However, a notable imbalance exists in the distribution of the benefits of AI, which disproportionately favour those living in specific geographical locations and in specific populations. In this Perspective, we discuss the need to foster the development of equitable AI tools that are both accurate in and accessible to a diverse range of patient populations, including those in low-income to middle-income countries. We also discuss some of the challenges and potential solutions in attaining equitable AI, including addressing the historically limited representation of diverse populations in existing clinical datasets and the use of inadequate clinical validation methods. Additionally, we focus on extant sources of inequity including the type of model approach (such as deep learning, and feature engineering-based methods), the implications of dataset curation strategies, the need for rigorous validation across a variety of populations and settings, and the risk of introducing contextual bias that comes with developing tools predominantly in high-income countries.
Collapse
Affiliation(s)
| | - Vani Parmar
- Department of Breast Surgical Oncology, Punyashlok Ahilyadevi Holkar Head & Neck Cancer Institute of India, Mumbai, India
| | - Anant Madabhushi
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
- Atlanta Veterans Administration Medical Center, Atlanta, GA, USA.
| |
Collapse
|
38
|
Yadav AK, Gupta PK, Singh TR. PMTPred: machine-learning-based prediction of protein methyltransferases using the composition of k-spaced amino acid pairs. Mol Divers 2024; 28:2301-2315. [PMID: 39033257 DOI: 10.1007/s11030-024-10937-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Protein methyltransferases (PMTs) are a group of enzymes that help catalyze the transfer of a methyl group to its substrates. These enzymes play an important role in epigenetic regulation and can methylate various substrates with DNA, RNA, protein, and small-molecule secondary metabolites. Dysregulation of methyltransferases is implicated in various human cancers. However, in light of the well-recognized significance of PMTs, reliable and efficient identification methods are essential. In the present work, we propose a machine-learning-based method for the identification of PMTs. Various sequence-based features were calculated, and prediction models were trained using various machine-learning algorithms using a tenfold cross-validation technique. After evaluating each model on the dataset, the SVM-based CKSAAP model achieved the highest prediction accuracy with balanced sensitivity and specificity. Also, this SVM model outperformed deep-learning algorithms for the prediction of PMTs. In addition, cross-database validation was performed to ensure the robustness of the model. Feature importance was assessed using shapley additive explanations (SHAP) values, providing insights into the contributions of different features to the model's predictions. Finally, the SVM-based CKSAAP model was implemented in a standalone tool, PMTPred, due to its consistent performance during independent testing and cross-database evaluation. We believe that PMTPred will be a useful and efficient tool for the identification of PMTs. The PMTPred is freely available for download at https://github.com/ArvindYadav7/PMTPred and http://www.bioinfoindia.org/PMTPred/home.html for research and academic use.
Collapse
Affiliation(s)
- Arvind Kumar Yadav
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan- 173234, Himachal Pradesh, India
| | - Pradeep Kumar Gupta
- Department of Computer Science and Engineering, Jaypee University of Information Technology, Solan- 173234, Himachal Pradesh, India
- School of Computing, Department of Data Science and Engineering, Mohan Babu University, Tirupati- 517102, Andhra Pradesh, India
| | - Tiratha Raj Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan- 173234, Himachal Pradesh, India.
- Centre of Excellence in Healthcare Technologies and Informatics (CHETI), Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan- 173234, Himachal Pradesh, India.
| |
Collapse
|
39
|
Hendrickx J, Gracea RS, Vanheers M, Winderickx N, Preda F, Shujaat S, Jacobs R. Can artificial intelligence-driven cephalometric analysis replace manual tracing? A systematic review and meta-analysis. Eur J Orthod 2024; 46:cjae029. [PMID: 38895901 PMCID: PMC11185929 DOI: 10.1093/ejo/cjae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
OBJECTIVES This systematic review and meta-analysis aimed to investigate the accuracy and efficiency of artificial intelligence (AI)-driven automated landmark detection for cephalometric analysis on two-dimensional (2D) lateral cephalograms and three-dimensional (3D) cone-beam computed tomographic (CBCT) images. SEARCH METHODS An electronic search was conducted in the following databases: PubMed, Web of Science, Embase, and grey literature with search timeline extending up to January 2024. SELECTION CRITERIA Studies that employed AI for 2D or 3D cephalometric landmark detection were included. DATA COLLECTION AND ANALYSIS The selection of studies, data extraction, and quality assessment of the included studies were performed independently by two reviewers. The risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. A meta-analysis was conducted to evaluate the accuracy of the 2D landmarks identification based on both mean radial error and standard error. RESULTS Following the removal of duplicates, title and abstract screening, and full-text reading, 34 publications were selected. Amongst these, 27 studies evaluated the accuracy of AI-driven automated landmarking on 2D lateral cephalograms, while 7 studies involved 3D-CBCT images. A meta-analysis, based on the success detection rate of landmark placement on 2D images, revealed that the error was below the clinically acceptable threshold of 2 mm (1.39 mm; 95% confidence interval: 0.85-1.92 mm). For 3D images, meta-analysis could not be conducted due to significant heterogeneity amongst the study designs. However, qualitative synthesis indicated that the mean error of landmark detection on 3D images ranged from 1.0 to 5.8 mm. Both automated 2D and 3D landmarking proved to be time-efficient, taking less than 1 min. Most studies exhibited a high risk of bias in data selection (n = 27) and reference standard (n = 29). CONCLUSION The performance of AI-driven cephalometric landmark detection on both 2D cephalograms and 3D-CBCT images showed potential in terms of accuracy and time efficiency. However, the generalizability and robustness of these AI systems could benefit from further improvement. REGISTRATION PROSPERO: CRD42022328800.
Collapse
Affiliation(s)
- Julie Hendrickx
- Department of Oral Health Sciences, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Rellyca Sola Gracea
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Michiel Vanheers
- Department of Oral Health Sciences, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Nicolas Winderickx
- Department of Oral Health Sciences, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Flavia Preda
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Sohaib Shujaat
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- King Abdullah International Medical Research Center, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 14611, Kingdom of Saudi Arabia
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- Department of Dental Medicine, Karolinska Institutet, 141 04 Stockholm, Sweden
| |
Collapse
|
40
|
Tucci F, Laurinavicius A, Kather JN, Eloy C. The digital revolution in pathology: Towards a smarter approach to research and treatment. TUMORI JOURNAL 2024; 110:241-251. [PMID: 38606831 DOI: 10.1177/03008916241231035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Artificial intelligence (AI) applications in oncology are at the forefront of transforming healthcare during the Fourth Industrial Revolution, driven by the digital data explosion. This review provides an accessible introduction to the field of AI, presenting a concise yet structured overview of the foundations of AI, including expert systems, classical machine learning, and deep learning, along with their contextual application in clinical research and healthcare. We delve into the current applications of AI in oncology, with a particular focus on diagnostic imaging and pathology. Numerous AI tools have already received regulatory approval, and more are under active development, bringing clear benefits but not without challenges. We discuss the importance of data security, the need for transparent and interpretable models, and the ethical considerations that must guide AI development in healthcare. By providing a perspective on the opportunities and challenges, this review aims to inform and guide researchers, clinicians, and policymakers in the adoption of AI in oncology.
Collapse
Affiliation(s)
- Francesco Tucci
- School of Pathology, University of Milan, Milan, Italy
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | - Arvydas Laurinavicius
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
- National Centre of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Catarina Eloy
- Ipatimup - Institute of Molecular Pathology and Immunology of University of Porto, Porto, Portugal
- Medical Faculty, University of Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| |
Collapse
|
41
|
Lee S, Kim S, Koh G, Ahn H. Identification of Time-Series Pattern Marker in Its Application to Mortality Analysis of Pneumonia Patients in Intensive Care Unit. J Pers Med 2024; 14:812. [PMID: 39202004 PMCID: PMC11355743 DOI: 10.3390/jpm14080812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Electronic Health Records (EHRs) are a significant source of big data used to track health variables over time. The analysis of EHR data can uncover medical markers or risk factors, aiding in the diagnosis and monitoring of diseases. We introduce a novel method for identifying markers with various temporal trend patterns, including monotonic and fluctuating trends, using machine learning models such as Long Short-Term Memory (LSTM). By applying our method to pneumonia patients in the intensive care unit using the MIMIC-III dataset, we identified markers exhibiting both monotonic and fluctuating trends. Specifically, monotonic markers such as red cell distribution width, urea nitrogen, creatinine, calcium, morphine sulfate, bicarbonate, sodium, troponin T, albumin, and prothrombin time were more frequently observed in the mortality group compared to the recovery group throughout the 10-day period before discharge. Conversely, fluctuating trend markers such as dextrose in sterile water, polystyrene sulfonate, free calcium, and glucose were more frequently observed in the mortality group as the discharge date approached. Our study presents a method for detecting time-series pattern markers in EHR data that respond differently according to disease progression. These markers can contribute to monitoring disease progression and enable stage-specific treatment, thereby advancing precision medicine.
Collapse
Affiliation(s)
- Suhyeon Lee
- Division of Data Science, The University of Suwon, Hwaseong-si 16419, Republic of Korea; (S.L.); (S.K.); (G.K.)
- DS&ML Center, The University of Suwon, Hwaseong-si 16419, Republic of Korea
| | - Suhyun Kim
- Division of Data Science, The University of Suwon, Hwaseong-si 16419, Republic of Korea; (S.L.); (S.K.); (G.K.)
- DS&ML Center, The University of Suwon, Hwaseong-si 16419, Republic of Korea
| | - Gayoun Koh
- Division of Data Science, The University of Suwon, Hwaseong-si 16419, Republic of Korea; (S.L.); (S.K.); (G.K.)
- DS&ML Center, The University of Suwon, Hwaseong-si 16419, Republic of Korea
| | - Hongryul Ahn
- Division of Data Science, The University of Suwon, Hwaseong-si 16419, Republic of Korea; (S.L.); (S.K.); (G.K.)
- DS&ML Center, The University of Suwon, Hwaseong-si 16419, Republic of Korea
| |
Collapse
|
42
|
Kim Y, Abebe AM, Kim J, Hong S, An K, Shim J, Baek J. Deep learning-based elaiosome detection in milk thistle seed for efficient high-throughput phenotyping. FRONTIERS IN PLANT SCIENCE 2024; 15:1395558. [PMID: 39129764 PMCID: PMC11310567 DOI: 10.3389/fpls.2024.1395558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024]
Abstract
Milk thistle, Silybum marianum (L.), is a well-known medicinal plant used for the treatment of liver diseases due to its high content of silymarin. The seeds contain elaiosome, a fleshy structure attached to the seeds, which is believed to be a rich source of many metabolites including silymarin. Segmentation of elaiosomes using only image analysis is difficult, and this makes it impossible to quantify the elaiosome phenotypes. This study proposes a new approach for semi-automated detection and segmentation of elaiosomes in milk thistle seed using the Detectron2 deep learning algorithm. One hundred manually labeled images were used to train the initial elaiosome detection model. This model was used to predict elaiosome from new datasets, and the precise predictions were manually selected and used as new labeled images for retraining the model. Such semi-automatic image labeling, i.e., using the prediction results of the previous stage for retraining the model, allowed the production of sufficient labeled data for retraining. Finally, a total of 6,000 labeled images were used to train Detectron2 for elaiosome detection and attained a promising result. The results demonstrate the effectiveness of Detectron2 in detecting milk thistle seed elaiosomes with an accuracy of 99.9%. The proposed method automatically detects and segments elaiosome from the milk thistle seed. The predicted mask images of elaiosome were used to analyze its area as one of the seed phenotypic traits along with other seed morphological traits by image-based high-throughput phenotyping in ImageJ. Enabling high-throughput phenotyping of elaiosome and other seed morphological traits will be useful for breeding milk thistle cultivars with desirable traits.
Collapse
Affiliation(s)
- Younguk Kim
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Alebel Mekuriaw Abebe
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Jaeyoung Kim
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Suyoung Hong
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | | | | | - Jeongho Baek
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
43
|
Lai Y, Koelmel JP, Walker DI, Price EJ, Papazian S, Manz KE, Castilla-Fernández D, Bowden JA, Nikiforov V, David A, Bessonneau V, Amer B, Seethapathy S, Hu X, Lin EZ, Jbebli A, McNeil BR, Barupal D, Cerasa M, Xie H, Kalia V, Nandakumar R, Singh R, Tian Z, Gao P, Zhao Y, Froment J, Rostkowski P, Dubey S, Coufalíková K, Seličová H, Hecht H, Liu S, Udhani HH, Restituito S, Tchou-Wong KM, Lu K, Martin JW, Warth B, Godri Pollitt KJ, Klánová J, Fiehn O, Metz TO, Pennell KD, Jones DP, Miller GW. High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12784-12822. [PMID: 38984754 PMCID: PMC11271014 DOI: 10.1021/acs.est.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.
Collapse
Affiliation(s)
- Yunjia Lai
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Jeremy P. Koelmel
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Douglas I. Walker
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elliott J. Price
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Stefano Papazian
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Katherine E. Manz
- Department
of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Delia Castilla-Fernández
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - John A. Bowden
- Center for
Environmental and Human Toxicology, Department of Physiological Sciences,
College of Veterinary Medicine, University
of Florida, Gainesville, Florida 32611, United States
| | | | - Arthur David
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Vincent Bessonneau
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Bashar Amer
- Thermo
Fisher Scientific, San Jose, California 95134, United States
| | | | - Xin Hu
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elizabeth Z. Lin
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Akrem Jbebli
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Brooklynn R. McNeil
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Dinesh Barupal
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Marina Cerasa
- Institute
of Atmospheric Pollution Research, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Hongyu Xie
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Vrinda Kalia
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Renu Nandakumar
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Randolph Singh
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Zhenyu Tian
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Peng Gao
- Department
of Environmental and Occupational Health, and Department of Civil
and Environmental Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- UPMC Hillman
Cancer Center, Pittsburgh, Pennsylvania 15232, United States
| | - Yujia Zhao
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584CM, The Netherlands
| | | | | | - Saurabh Dubey
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Kateřina Coufalíková
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Hana Seličová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Helge Hecht
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Sheng Liu
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Hanisha H. Udhani
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sophie Restituito
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kam-Meng Tchou-Wong
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kun Lu
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, The University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jonathan W. Martin
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - Krystal J. Godri Pollitt
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Jana Klánová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Oliver Fiehn
- West Coast
Metabolomics Center, University of California−Davis, Davis, California 95616, United States
| | - Thomas O. Metz
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Kurt D. Pennell
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Dean P. Jones
- Department
of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Gary W. Miller
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| |
Collapse
|
44
|
Siddiqi R, Javaid S. Deep Learning for Pneumonia Detection in Chest X-ray Images: A Comprehensive Survey. J Imaging 2024; 10:176. [PMID: 39194965 DOI: 10.3390/jimaging10080176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
This paper addresses the significant problem of identifying the relevant background and contextual literature related to deep learning (DL) as an evolving technology in order to provide a comprehensive analysis of the application of DL to the specific problem of pneumonia detection via chest X-ray (CXR) imaging, which is the most common and cost-effective imaging technique available worldwide for pneumonia diagnosis. This paper in particular addresses the key period associated with COVID-19, 2020-2023, to explain, analyze, and systematically evaluate the limitations of approaches and determine their relative levels of effectiveness. The context in which DL is applied as both an aid to and an automated substitute for existing expert radiography professionals, who often have limited availability, is elaborated in detail. The rationale for the undertaken research is provided, along with a justification of the resources adopted and their relevance. This explanatory text and the subsequent analyses are intended to provide sufficient detail of the problem being addressed, existing solutions, and the limitations of these, ranging in detail from the specific to the more general. Indeed, our analysis and evaluation agree with the generally held view that the use of transformers, specifically, vision transformers (ViTs), is the most promising technique for obtaining further effective results in the area of pneumonia detection using CXR images. However, ViTs require extensive further research to address several limitations, specifically the following: biased CXR datasets, data and code availability, the ease with which a model can be explained, systematic methods of accurate model comparison, the notion of class imbalance in CXR datasets, and the possibility of adversarial attacks, the latter of which remains an area of fundamental research.
Collapse
Affiliation(s)
- Raheel Siddiqi
- Computer Science Department, Karachi Campus, Bahria University, Karachi 73500, Pakistan
| | - Sameena Javaid
- Computer Science Department, Karachi Campus, Bahria University, Karachi 73500, Pakistan
| |
Collapse
|
45
|
Garbey M, Lesport Q, Girma H, Öztosen G, Abu-Rub M, Guidon AC, Juel V, Nowak R, Soliven B, Aban I, Kaminski HJ. Application of Digital Tools and Artificial Intelligence to the Myasthenia Gravis Core Examination. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.19.24310691. [PMID: 39072011 PMCID: PMC11275678 DOI: 10.1101/2024.07.19.24310691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Advances in video image analysis and artificial intelligence provide the opportunity to transform the approach to patient evaluation through objective digital evaluation. Objectives We assessed ability to quantitate Zoom video recordings of a standardized neurological examination the myasthenia gravis core examination (MG-CE), which had been designed for telemedicine evaluations. Methods We used Zoom (Zoom Video Communications) videos of patients with myasthenia gravis undergoing the MG-CE. Computer vision in combination with artificial intelligence methods were used to build algorithms to analyze videos with a focus on eye or body motions. For the assessment of examinations involving vocalization, signal processing methods were developed, including natural language processing. A series of algorithms were built that could automatically compute the metrics of the MG-CE. Results Fifty-one patients with MG with videos recorded twice on separate days and 15 control subjects were assessed once. We were successful in quantitating lid, eye, and arm positions and as well as well as develop respiratory metrics using breath counts. Cheek puff exercise was found to be of limited value for quantitation. Technical limitations included variations in illumination, bandwidth, and recording being done on the examiner side, not the patient. Conclusions Several aspects of the MG-CE can be quantitated to produce continuous measures via standard Zoom video recordings. Further development of the technology offer the ability for trained, non-physician, health care providers to perform precise examination of patients with MG outside the clinic, including for clinical trials. Plain Language Summary Advances in video image analysis and artificial intelligence provide the opportunity to transform the approach to patient evaluation. Here, we asked whether video recordings of the typical telemedicine examination for the patient with myasthenia gravis be used to quantitate examination findings? Despite recordings not made for purpose, we were able to develop and apply computer vision and artificial intelligence to Zoom recorded videos to successfully quantitate eye muscle, facial muscle, and limb fatigue. The analysis also pointed out limitations of human assessments of bulbar and respiratory assessments. The neuromuscular examination can be enhanced by advance technologies, which have the promise to improve clinical trial outcome measures as well as standard care.
Collapse
|
46
|
Teshale AB, Htun HL, Vered M, Owen AJ, Freak-Poli R. A Systematic Review of Artificial Intelligence Models for Time-to-Event Outcome Applied in Cardiovascular Disease Risk Prediction. J Med Syst 2024; 48:68. [PMID: 39028429 PMCID: PMC11271333 DOI: 10.1007/s10916-024-02087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Artificial intelligence (AI) based predictive models for early detection of cardiovascular disease (CVD) risk are increasingly being utilised. However, AI based risk prediction models that account for right-censored data have been overlooked. This systematic review (PROSPERO protocol CRD42023492655) includes 33 studies that utilised machine learning (ML) and deep learning (DL) models for survival outcome in CVD prediction. We provided details on the employed ML and DL models, eXplainable AI (XAI) techniques, and type of included variables, with a focus on social determinants of health (SDoH) and gender-stratification. Approximately half of the studies were published in 2023 with the majority from the United States. Random Survival Forest (RSF), Survival Gradient Boosting models, and Penalised Cox models were the most frequently employed ML models. DeepSurv was the most frequently employed DL model. DL models were better at predicting CVD outcomes than ML models. Permutation-based feature importance and Shapley values were the most utilised XAI methods for explaining AI models. Moreover, only one in five studies performed gender-stratification analysis and very few incorporate the wide range of SDoH factors in their prediction model. In conclusion, the evidence indicates that RSF and DeepSurv models are currently the optimal models for predicting CVD outcomes. This study also highlights the better predictive ability of DL survival models, compared to ML models. Future research should ensure the appropriate interpretation of AI models, accounting for SDoH, and gender stratification, as gender plays a significant role in CVD occurrence.
Collapse
Affiliation(s)
- Achamyeleh Birhanu Teshale
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Htet Lin Htun
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Mor Vered
- Department of Data Science and AI, Faculty of Information Technology, Monash University, Clayton, VIC, Australia
| | - Alice J Owen
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Rosanne Freak-Poli
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
- Stroke and Ageing Research, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
47
|
Fu DS, Huang J, Hazra D, Dwivedi AK, Gupta SK, Shivahare BD, Garg D. Enhancing sports image data classification in federated learning through genetic algorithm-based optimization of base architecture. PLoS One 2024; 19:e0303462. [PMID: 38990969 PMCID: PMC11239052 DOI: 10.1371/journal.pone.0303462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/25/2024] [Indexed: 07/13/2024] Open
Abstract
Nowadays, federated learning is one of the most prominent choices for making decisions. A significant benefit of federated learning is that, unlike deep learning, it is not necessary to share data samples with the model owner. The weight of the global model in traditional federated learning is created by averaging the weights of all clients or sites. In the proposed work, a novel method has been discussed to generate an optimized base model without hampering its performance, which is based on a genetic algorithm. Chromosome representation, crossover, and mutation-all the intermediate operations of the genetic algorithm have been illustrated with useful examples. After applying the genetic algorithm, there is a significant improvement in inference time and a huge reduction in storage space. Therefore, the model can be easily deployed on resource-constrained devices. For the experimental work, sports data has been used in balanced and unbalanced scenarios with various numbers of clients in a federated learning environment. In addition, we have used four famous deep learning architectures, such as AlexNet, VGG19, ResNet50, and EfficientNetB3, as the base model. We have achieved 92.34% accuracy with 9 clients in the balanced data set by using EfficientNetB3 as the base model using a GA-based approach. Moreover, after applying the genetic algorithm to optimize EfficientNetB3, there is an improvement in inference time and storage space by 20% and 2.35%, respectively.
Collapse
Affiliation(s)
- De Sheng Fu
- College of Public Education, ZheJiang Institute of Economics and Trade HangZhou, ZheJiang, China
| | - Jie Huang
- College of Business administration ZheJiang Institute of Economics and Trade HangZhou, ZheJiang, China
| | - Dibyanarayan Hazra
- School of Computer Science Engineering and Technology, Bennett University, Greater Noida, India
| | - Amit Kumar Dwivedi
- School of Computer Science Engineering and Technology, Bennett University, Greater Noida, India
| | | | | | | |
Collapse
|
48
|
Xin X, Tian X, Chen C, Chen C, Li K, Ma X, Zhao L, Lv X. A method for accurate identification of Uyghur medicinal components based on Raman spectroscopy and multi-label deep learning. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124251. [PMID: 38626675 DOI: 10.1016/j.saa.2024.124251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/10/2024] [Accepted: 04/03/2024] [Indexed: 04/18/2024]
Abstract
Uyghur medicine is one of the four major ethnic medicines in China and is a component of traditional Chinese medicine. The intrinsic quality of Uyghur medicinal materials will directly affect the clinical efficacy of Uyghur medicinal preparations. However, in recent years, problems such as adulteration of Uyghur medicinal materials and foreign bodies with the same name still exist, so it is necessary to strengthen the quality control of Uyghur medicines to guarantee Uyghur medicinal efficacy. Identifying the components of Uyghur medicines can clarify the types of medicinal materials used, is a crucial step to realizing the quality control of Uyghur medicines, and is also an important step in screening the effective components of Uyghur medicines. Currently, the method of identifying the components of Uyghur medicines relies on manual detection, which has the problems of high toxicity of the unfolding agent, poor stability, high cost, low efficiency, etc. Therefore, this paper proposes a method based on Raman spectroscopy and multi-label deep learning model to construct a model Mix2Com for accurate identification of Uyghur medicine components. The experiments use computer-simulated mixtures as the dataset, introduce the Long Short-Term Memory Model (LSTM) and Attention mechanism to encode the Raman spectral data, use multiple parallel networks for decoding, and ultimately realize the macro parallel prediction of medicine components. The results show that the model is trained to achieve 90.76% accuracy, 99.41% precision, 95.42% recall value and 97.37% F1 score. Compared to the traditional XGBoost model, the method proposed in the experiment improves the accuracy by 49% and the recall value by 18%; compared with the DeepRaman model, the accuracy is improved by 9% and the recall value is improved by 14%. The method proposed in this paper provides a new solution for the accurate identification of Uyghur medicinal components. It helps to improve the quality standard of Uyghur medicinal materials, advance the research on screening of effective chemical components of Uyghur medicines and their action mechanisms, and then promote the modernization and development of Uyghur medicine.
Collapse
Affiliation(s)
- Xiaotong Xin
- College of Software, Xinjiang University, Urumqi 830046, China.
| | - Xuecong Tian
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.
| | - Cheng Chen
- College of Software, Xinjiang University, Urumqi 830046, China.
| | - Chen Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi 830046, China; Xinjiang Cloud Computing Application Laboratory, Karamay 834099, China.
| | - Keao Li
- Xinjiang Qikang Habowei Medicine Co., Ltd., Urumqi 830010, China.
| | - Xuan Ma
- Xinjiang Qimu Institute of Medicine, Urumqi 830010, China.
| | - Lu Zhao
- Xinjiang Qimu Institute of Medicine, Urumqi 830010, China.
| | - Xiaoyi Lv
- College of Software, Xinjiang University, Urumqi 830046, China; Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
49
|
Chukwujindu E, Faiz H, Ai-Douri S, Faiz K, De Sequeira A. Role of artificial intelligence in brain tumour imaging. Eur J Radiol 2024; 176:111509. [PMID: 38788610 DOI: 10.1016/j.ejrad.2024.111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Artificial intelligence (AI) is a rapidly evolving field with many neuro-oncology applications. In this review, we discuss how AI can assist in brain tumour imaging, focusing on machine learning (ML) and deep learning (DL) techniques. We describe how AI can help in lesion detection, differential diagnosis, anatomic segmentation, molecular marker identification, prognostication, and pseudo-progression evaluation. We also cover AI applications in non-glioma brain tumours, such as brain metastasis, posterior fossa, and pituitary tumours. We highlight the challenges and limitations of AI implementation in radiology, such as data quality, standardization, and integration. Based on the findings in the aforementioned areas, we conclude that AI can potentially improve the diagnosis and treatment of brain tumours and provide a path towards personalized medicine and better patient outcomes.
Collapse
Affiliation(s)
| | | | | | - Khunsa Faiz
- McMaster University, Department of Radiology, L8S 4L8, Canada.
| | | |
Collapse
|
50
|
Byrne AL, Mulvogue J, Adhikari S, Cutmore E. Discriminative and exploitive stereotypes: Artificial intelligence generated images of aged care nurses and the impacts on recruitment and retention. Nurs Inq 2024; 31:e12651. [PMID: 38940314 DOI: 10.1111/nin.12651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
This article uses critical discourse analysis to investigate artificial intelligence (AI) generated images of aged care nurses and considers how perspectives and perceptions impact upon the recruitment and retention of nurses. The article demonstrates a recontextualization of aged care nursing, giving rise to hidden ideologies including harmful stereotypes which allow for discrimination and exploitation. It is argued that this may imply that nurses require fewer clinical skills in aged care, diminishing the value of working in this area. AI relies on existing data sets, and thus represent existing stereotypes and biases. The discourse analysis has highlighted key issues which may further impact upon nursing recruitment and retention, and advocates for stronger ethical consideration, including the use of experts in data validation, for the way that aged care services and nurses are depicted and thus valued.
Collapse
Affiliation(s)
- Amy-Louise Byrne
- School of Nursing, Midwifery, and Social Sciences, CQUniversity, Brisbane, Queensland, Australia
| | - Jennifer Mulvogue
- School of Nursing, Midwifery, and Social Sciences, CQUniversity, Brisbane, Queensland, Australia
| | - Siju Adhikari
- School of Nursing, Midwifery, and Social Sciences, CQUniversity, Brisbane, Queensland, Australia
| | - Ellie Cutmore
- School of Nursing, Midwifery, and Social Sciences, CQUniversity, Brisbane, Queensland, Australia
| |
Collapse
|