1
|
Keenan T, Hatton NE, Porter J, Vendeville JB, Wheatley DE, Ghirardello M, Wahart AJC, Ahmadipour S, Walton J, Galan MC, Linclau B, Miller GJ, Fascione MA. Reverse thiophosphorylase activity of a glycoside phosphorylase in the synthesis of an unnatural Manβ1,4GlcNAc library. Chem Sci 2023; 14:11638-11646. [PMID: 37920340 PMCID: PMC10619541 DOI: 10.1039/d3sc04169g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
β-Mannosides are ubiquitous in nature, with diverse roles in many biological processes. Notably, Manβ1,4GlcNAc a constituent of the core N-glycan in eukaryotes was recently identified as an immune activator, highlighting its potential for use in immunotherapy. Despite their biological significance, the synthesis of β-mannosidic linkages remains one of the major challenges in glycoscience. Here we present a chemoenzymatic strategy that affords a series of novel unnatural Manβ1,4GlcNAc analogues using the β-1,4-d-mannosyl-N-acetyl-d-glucosamine phosphorylase, BT1033. We show that the presence of fluorine in the GlcNAc acceptor facilitates the formation of longer β-mannan-like glycans. We also pioneer a "reverse thiophosphorylase" enzymatic activity, favouring the synthesis of longer glycans by catalysing the formation of a phosphorolysis-stable thioglycoside linkage, an approach that may be generally applicable to other phosphorylases.
Collapse
Affiliation(s)
- Tessa Keenan
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Natasha E Hatton
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Jack Porter
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | | | - David E Wheatley
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Alice J C Wahart
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | - Sanaz Ahmadipour
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | - Julia Walton
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - M Carmen Galan
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Bruno Linclau
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
- Department of Organic and Macromolecular Chemistry, Ghent University Campus Sterre, Krijgslaan 281-S4 Ghent 9000 Belgium
| | - Gavin J Miller
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | - Martin A Fascione
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
2
|
Zhang Y, Chen C, Gao Y, Yang M, He Z, Zhang B, Gu G, Tang B, Cai F. β-l-Rhamnosylation and β-d-Mannosylation Mediated by 4- O-Ester Groups in a Weakly Nucleophilic Environment. Org Lett 2023; 25:7120-7125. [PMID: 37738091 DOI: 10.1021/acs.orglett.3c02566] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
eq-4-O-Acyl group directed β-rhamnosylation and β-mannosylation are achieved in a carborane or BARF anion formed weakly nucleophilic environment with the assistance of a 2,3-orthocarbonate group. The 4-O-acyl group plays a critical role in directing the β-selectivity, and the weakly coordinating anion is essential to amplify this direction. The orthocarbonate group could be readily removed with 1,3-propanediol in the presence of BF3·Et2O.
Collapse
Affiliation(s)
- Yongliang Zhang
- National Glycoengineering Research Center and Shandong Key laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd Qingdao 266237, China
| | - Changsheng Chen
- National Glycoengineering Research Center and Shandong Key laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd Qingdao 266237, China
| | - Yongtao Gao
- National Glycoengineering Research Center and Shandong Key laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd Qingdao 266237, China
| | - Min Yang
- Center for Analysis and Characterization, School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Rd, Shanghai 201210, China
| | - Zehuan He
- National Glycoengineering Research Center and Shandong Key laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd Qingdao 266237, China
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Key laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd Qingdao 266237, China
| | - Bencan Tang
- Faculty of Science and Engineering, The University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| | - Feng Cai
- National Glycoengineering Research Center and Shandong Key laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd Qingdao 266237, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Kawakita M, Oyama T, Shirai I, Tanaka S, Akaki K, Abe S, Asahi T, Cui G, Itoh F, Sasaki M, Shibata N, Ikuta K, Hatakeyama T, Takahara K. Cell wall N-glycan of Candida albicans ameliorates early hyper- and late hypo-immunoreactivity in sepsis. Commun Biol 2021; 4:342. [PMID: 33727664 PMCID: PMC7966402 DOI: 10.1038/s42003-021-01870-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/11/2021] [Indexed: 12/29/2022] Open
Abstract
Severe infection often causes a septic cytokine storm followed by immune exhaustion/paralysis. Not surprisingly, many pathogens are equipped with various anti-inflammatory mechanisms. Such mechanisms might be leveraged clinically to control septic cytokine storms. Here we show that N-glycan from pathogenic C. albicans ameliorates mouse sepsis through immunosuppressive cytokine IL-10. In a sepsis model using lipopolysaccharide (LPS), injection of the N-glycan upregulated serum IL-10, and suppressed pro-inflammatory IL-1β, TNF-α and IFN-γ. The N-glycan also improved the survival of mice challenged by LPS. Analyses of structurally defined N-glycans from several yeast strains revealed that the mannose core is key to the upregulation of IL-10. Knocking out the C-type lectin Dectin-2 abrogated the N-glycan-mediated IL-10 augmentation. Furthermore, C. albicans N-glycan ameliorated immune exhaustion/immune paralysis after acute inflammation. Our results suggest a strategy where the immunosuppressive mechanism of one pathogen can be applied to attenuate a severe inflammation/cytokine storm caused by another pathogen.
Collapse
Affiliation(s)
- Masataka Kawakita
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Taiki Oyama
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ikuma Shirai
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shuto Tanaka
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kotaro Akaki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Fumie Itoh
- Division of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Masato Sasaki
- Division of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Nobuyuki Shibata
- Division of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomomitsu Hatakeyama
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Nagasaki, Japan
| | - Kazuhiko Takahara
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
4
|
Oshiro KGN, Rodrigues G, Monges BED, Cardoso MH, Franco OL. Bioactive Peptides Against Fungal Biofilms. Front Microbiol 2019; 10:2169. [PMID: 31681179 PMCID: PMC6797862 DOI: 10.3389/fmicb.2019.02169] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
Infections caused by invasive fungal biofilms have been widely associated with high morbidity and mortality rates, mainly due to the advent of antibiotic resistance. Moreover, fungal biofilms impose an additional challenge, leading to multidrug resistance. This fact, along with the contamination of medical devices and the limited number of effective antifungal agents available on the market, demonstrates the importance of finding novel drug candidates targeting pathogenic fungal cells and biofilms. In this context, an alternative strategy is the use of antifungal peptides (AFPs) against fungal biofilms. AFPs are considered a group of bioactive molecules with broad-spectrum activities and multiple mechanisms of action that have been widely used as template molecules for drug design strategies aiming at greater specificity and biological efficacy. Among the AFP classes most studied in the context of fungal biofilms, defensins, cathelicidins and histatins have been described. AFPs can also act by preventing the formation of fungal biofilms and eradicating preformed biofilms through mechanisms associated with cell wall perturbation, inhibition of planktonic fungal cells’ adhesion onto surfaces, gene regulation and generation of reactive oxygen species (ROS). Thus, considering the critical scenario imposed by fungal biofilms and associated infections and the application of AFPs as a possible treatment, this review will focus on the most effective AFPs described to date, with a core focus on antibiofilm peptides, as well as their efficacy in vivo, application on surfaces and proposed mechanisms of action.
Collapse
Affiliation(s)
- Karen G N Oshiro
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Bruna Estéfani D Monges
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
5
|
Liao J, Pan B, Liao G, Zhao Q, Gao Y, Chai X, Zhuo X, Wu Q, Jiao B, Pan W, Guo Z. Synthesis and immunological studies of β-1,2-mannan-peptide conjugates as antifungal vaccines. Eur J Med Chem 2019; 173:250-260. [DOI: 10.1016/j.ejmech.2019.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 01/06/2023]
|
6
|
Engineering of Yeast Glycoprotein Expression. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 175:93-135. [DOI: 10.1007/10_2018_69] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Korolenko TA, Johnston TP, Machova E, Bgatova NP, Lykov AP, Goncharova NV, Nescakova Z, Shintyapina AB, Maiborodin IV, Karmatskikh OL. Hypolipidemic effect of mannans from C. albicans serotypes a and B in acute hyperlipidemia in mice. Int J Biol Macromol 2017; 107:2385-2394. [PMID: 29074085 DOI: 10.1016/j.ijbiomac.2017.10.111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
Mannans, which are biological macromolecules of polysaccharide origin and function as immunomodulators, have been shown to stimulate macrophages in vivo by interaction with the mannose receptor. Thus, they can be used to stimulate macrophages in order to effectively remove circulating atherogenic lipoproteins. Our primary aim was to evaluate the hypolipidemic potential of mannans from C. albicans serotype A (mannan A) and serotype B (mannan B) in a murine model of hyperlipidemia. Mannan A and mannan B were shown to significantly (p<0.05) stimulate both the proliferation (p <0.05) and nitric oxide production of murine peritoneal macrophages in vitro. Pre-treatment of CBA/Lac mice with mannan A prior to induction of hyperlipidemia significantly (p<0.001) reduced serum atherogenic LDL-cholesterol, total cholesterol, and triglycerides. Mannan B exhibited a similar, but more potent, hypolipidemic effect. Electron microscopic analysis of liver revealed a significant (p<0.001) decrease in the volume of lipid droplets when hyperlipidemic mice were pretreated by both mannans. In conclusion, our findings would suggest that both polysaccharide-based biological macromolecules evaluated in the present study, specifically, the natural immunomodulators (mannans A and B), appeared to function as effective lipid-lowering macromolecules, which could potentially serve as adjunct therapy to more conventional hypolipidemic medications such as a statin drug.
Collapse
Affiliation(s)
- T A Korolenko
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.
| | - T P Johnston
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO, United States.
| | - E Machova
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - N P Bgatova
- Scientific Institute of Clinical and Experimental Lymphology-filial of the Institute of Cytology and Genetic Siberian Branch of Russian Academy of Science, Novosibirsk, Russia.
| | - A P Lykov
- Scientific Institute of Clinical and Experimental Lymphology-filial of the Institute of Cytology and Genetic Siberian Branch of Russian Academy of Science, Novosibirsk, Russia.
| | - N V Goncharova
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.
| | - Z Nescakova
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - A B Shintyapina
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia.
| | - I V Maiborodin
- The Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - O L Karmatskikh
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.
| |
Collapse
|
8
|
Flores RJD, Ohashi T, Kawasaki H, Fujiyama K. The neutral N-linked glycans of the ustilaginomycete yeast Sympodiomycopsis paphiopedili. Yeast 2017; 34:305-317. [PMID: 28384382 DOI: 10.1002/yea.3233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/01/2017] [Accepted: 03/21/2017] [Indexed: 11/08/2022] Open
Abstract
Sympodiomycopsis paphiopedili is a basidiomycetous yeast under the subphylum Ustilaginomycotina and is a commensal organism originally isolated from the nectar of a plant species in Japan. In this study, the neutral N-linked glycans of S. paphiopedili were prepared and structurally analysed using high-performance liquid chromatography (HPLC) and mass spectrometry (MS). Glycosidase digestion analyses were also performed to verify certain glycan linkages. HPLC and MS analyses revealed the presence of neutral N-linked glycans ranging from Man3 GlcNAc2 -PA to Man9 GlcNAc2 -PA in length. The most abundant neutral N-linked glycan structure in this species was found to be the Manα1-2Manα1-6(Manα1-3)Manα1-6(Manα1-2Manα1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc (M8A). Moreover, the second and third most abundant neutral N-linked glycan in S. paphiopedili were the Manα1-2Manα1-6(Manα1-2Manα1-3)Manα1-6(Manα1-2Manα1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc (M9A) and the Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc (M3B). On the other hand, the effect of the combination of glycoprotein extraction methods (citrate buffer extraction or bead extraction) and the subsequent glycan release methods (hydrazinolysis or PNGase F digestion) on the detection of N-linked glycan peaks was also examined for S. paphiopedili and Saccharomyces cerevisiae in order to avoid under-representation of N-linked glycan structures. High mannose and possible hypermannosylated glycan peaks were detected in all method combinations in S. cerevisiae with the citrate buffer extraction-hydrazinolysis method giving the highest peak yields as compared with the other methods. Here we report the first account of the structural analysis of the neutral N-linked glycan of S. paphiopedili and the comparison of the effect of combinations of glycoprotein extraction methods and glycan release methods with that of the glycan analysis in S. paphiopedili and S. cerevisiae. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Takao Ohashi
- International Center for Biotechnology, Osaka University, Japan
| | - Hiroko Kawasaki
- NITE Biological Resource Center, National Institute of Technology and Evaluation, Chiba, Japan
| | | |
Collapse
|
9
|
Korolenko T, Johnston TP, Lykov AP, Shintyapina AB, Khrapova MV, Goncharova NV, Korolenko E, Bgatova NP, Machova E, Nescakova Z, Sakhno LV. A comparative study of the hypolipidaemic effects of a new polysaccharide, mannan Candida albicans serotype A, and atorvastatin in mice with poloxamer 407-induced hyperlipidaemia. J Pharm Pharmacol 2016; 68:1516-1526. [DOI: 10.1111/jphp.12633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/10/2016] [Indexed: 01/15/2023]
Abstract
Abstract
Objectives
We evaluated the hypolipidaemic effect of mannan Candida albicans serotype A, relative to atorvastatin, in a mouse model of hyperlipidaemia.
Methods
Mannan serotype A was investigated in vitro and in vivo to determine its effects on macrophage proliferation, nitric oxide (NO) production by cultured macrophages, serum and liver lipids, changes in liver morphology and serum chitotriosidase activity and its expression in the liver.
Key findings
Mannan serotype A stimulates the macrophage proliferation and NO production in murine peritoneal macrophages in vitro. The activity of serum chitotriosidase (an enzyme released from the activated macrophages) was found to be significantly increased in P-407-induced hyperlipidaemic mice pretreated with low-dose mannan compared with mice administered P-407 only. Mannan treatment in mice was shown to significantly increase the chitotriosidase expression in the liver of both non-hyperlipidaemic and P-407-induced hyperlipidaemic mice. Lastly, mice pretreated with mannan before the induction of hyperlipidaemia with P-407 showed a significant reduction in the serum concentration of atherogenic LDL cholesterol, total cholesterol, triglycerides and liver triglycerides.
Conclusions
It is suggested that mannan serotype A, like β-glucan, may represent another hypolipidaemic agent, which could potentially be used as an adjunctive therapy with conventional antihyperlipidaemic drugs (statins and fibrates) in humans.
Collapse
Affiliation(s)
- Tatyana Korolenko
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Alexander P Lykov
- Scientific Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia
| | | | - Marina V Khrapova
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Natalya V Goncharova
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | | | - Nataliya P Bgatova
- Scientific Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia
| | - Eva Machova
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Nescakova
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ludmila V Sakhno
- Scientific Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
10
|
Román E, Correia I, Salazin A, Fradin C, Jouault T, Poulain D, Liu FT, Pla J. The Cek1‑mediated MAP kinase pathway regulates exposure of α‑1,2 and β‑1,2‑mannosides in the cell wall of Candida albicans modulating immune recognition. Virulence 2016; 7:558-77. [PMID: 27191378 DOI: 10.1080/21505594.2016.1163458] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Cek1 MAP kinase (MAPK) mediates vegetative growth and cell wall biogenesis in the fungal pathogen Candida albicans. Alterations in the fungal cell wall caused by a defective Cek1‑mediated signaling pathway leads to increased β‑1,3‑glucan exposure influencing dectin‑1 fungal recognition by immune cells. We show here that cek1 cells also display an increased exposure of α‑1,2 and β‑1,2‑mannosides (α‑M and β‑M), a phenotype shared by strains defective in the activating MAPKK Hst7, suggesting a general defect in cell wall assembly. cek1 cells display walls with loosely bound material as revealed by transmission electron microscopy and are sensitive to tunicamycin, an inhibitor of N‑glycosylation. Transcriptomal analysis of tunicamycin treated cells revealed a differential pattern between cek1 and wild type cells which involved mainly cell wall and stress related genes. Mapping α‑M and β‑M epitopes in the mannoproteins of different cell wall fractions (CWMP) revealed an important shift in the molecular weight of the mannan derived from mutants defective in this MAPK pathway. We have also assessed the role of galectin‑3, a member of a β‑galactoside‑binding protein family shown to bind to and kill C. albicans through β‑M recognition, in the infection caused by cek1 mutants. Increased binding of cek1 to murine macrophages was shown to be partially blocked by lactose. Galectin-3(-/-) mice showed increased resistance to fungal infection, although galectin-3 did not account for the reduced virulence of cek1 mutants in a mouse model of systemic infection. All these data support a role for the Cek1‑mediated pathway in fungal cell wall maintenance, virulence and antifungal discovery.
Collapse
Affiliation(s)
- E Román
- a Departamento de Microbiología II , Facultad de Farmacia, Universidad Complutense de Madrid , Madrid , Spain
| | - I Correia
- a Departamento de Microbiología II , Facultad de Farmacia, Universidad Complutense de Madrid , Madrid , Spain
| | - A Salazin
- b Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center , Lille , France
| | - C Fradin
- b Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center , Lille , France
| | - T Jouault
- b Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center , Lille , France
| | - D Poulain
- b Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center , Lille , France
| | - F-T Liu
- c Department of Dermatology , University of California, Davis, School of Medicine , Sacramento , CA , USA.,d Institute of Biomedical Sciences, Academia Sinica , Taipei , Taiwan
| | - J Pla
- a Departamento de Microbiología II , Facultad de Farmacia, Universidad Complutense de Madrid , Madrid , Spain
| |
Collapse
|
11
|
Hurtaux T, Sfihi-Loualia G, Brissonnet Y, Bouckaert J, Mallet JM, Sendid B, Delplace F, Fabre E, Gouin SG, Guérardel Y. Evaluation of monovalent and multivalent iminosugars to modulate Candida albicans β-1,2-mannosyltransferase activities. Carbohydr Res 2016; 429:123-7. [PMID: 26852253 DOI: 10.1016/j.carres.2016.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 11/30/2022]
Abstract
β-1,2-Linked oligomannosides substitute the cell wall of numerous yeast species. Several of those including Candida albicans may cause severe infections associated with high rates of morbidity and mortality, especially in immunocompromised patients. β-1,2-Mannosides are known to be involved in the pathogenic process and to elicit an immune response from the host. In C. albicans, the synthesis of β-mannosides is under the control of a family of nine genes coding for putative β-mannosyltransferases. Two of them, CaBmt1 and CaBmt3, have been shown to initiate and prime the elongation of the β-mannosides on the cell-wall mannan core. In the present study, we have assessed the modulating activities of monovalent and multivalent iminosugar analogs on these enzymes in order to control the enzymatic bio-synthesis of β-mannosides. We have identified a monovalent deoxynojirimycin (DNJ) derivative that inhibits the CaBmt1-catalyzed initiating activity, and mono-, tetra- and polyvalent deoxymannojirimycin (DMJ) that modulate the CaBmt1 activity toward the formation of a single major product. Analysis of the aggregating properties of the multivalent iminosugars showed their ability to elicit clusterization of both CaBmt1 and CaBmt3, without affecting their activity. These results suggest promising roles for multivalent iminosugars as controlling agents for the biosynthesis of β-1,2 mannosides and for monovalent DNJ derivative as a first target for the design of future β-mannosyltransferase inhibitors.
Collapse
Affiliation(s)
- Thomas Hurtaux
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, F 59000 Lille, France; CHU Lille, U995-LIRIC-Lille Inflammation Research International Center, Inserm, F-59000 Lille, France
| | - Ghenima Sfihi-Loualia
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, F 59000 Lille, France
| | - Yoan Brissonnet
- CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, LUNAM Université, UMR CNRS 6230, UFR des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Julie Bouckaert
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, F 59000 Lille, France
| | - Jean-Maurice Mallet
- Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, École Normale Supérieure-PSL Research University, CNRS UMR 7203 LBM, 24, rue Lhomond, 75005 Paris, France
| | - Boualem Sendid
- CHU Lille, U995-LIRIC-Lille Inflammation Research International Center, Inserm, F-59000 Lille, France
| | - Florence Delplace
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, F 59000 Lille, France
| | - Emeline Fabre
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, F 59000 Lille, France
| | - Sébastien G Gouin
- CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, LUNAM Université, UMR CNRS 6230, UFR des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Yann Guérardel
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, F 59000 Lille, France.
| |
Collapse
|
12
|
Initiation of phospholipomannan β-1,2 mannosylation involves Bmts with redundant activity, influences its cell wall location and regulates β-glucans homeostasis but is dispensable for Candida albicans systemic infection. Biochimie 2016; 120:96-104. [PMID: 26427558 PMCID: PMC7614791 DOI: 10.1016/j.biochi.2015.09.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/25/2015] [Indexed: 11/20/2022]
Abstract
Pathogenic and non-pathogenic fungi synthesize glycosphingolipids, which have a crucial role in growth and viability. Glycosphingolipids also contribute to fungal-associated pathogenesis. The opportunistic yeast pathogen Candida albicans synthesizes phospholipomannan (PLM), which is a glycosphingolipid of the mannosylinositol phosphorylceramide family. Through its lipid and glycan moieties, PLM contributes to the initial recognition of the yeast, causing immune system disorder and persistent fungal disease through activation of host signaling pathways. The lipid moiety of PLM activates the deregulation signaling pathway involved in yeast phagocytosis whereas its glycan moiety, composed of β-1,2 mannosides (β-Mans), participates to inflammatory processes through a mechanism involving Galectin-3. Biosynthesis of PLM β-Mans involves two β-1,2 mannosyltransferases (Bmts) that initiate (Bmt5) and elongate (Bmt6) the glycan chains. After generation of double bmtsΔ mutants, we show that Bmt5 has redundant activity with Bmt2, which can replace Bmt5 in bmt5Δ mutant. We also report that PLM is located in the inner layer of the yeast cell wall. PLM seems to be not essential for systemic infection of the yeast. However, defect of PLM β-mannosylation increases resistance of C. albicans to inhibitors of β-glucans and chitin synthesis, highlighting a role of PLM in cell wall homeostasis.
Collapse
|
13
|
Sfihi-Loualia G, Hurtaux T, Fabre E, Fradin C, Mée A, Pourcelot M, Maes E, Bouckaert J, Mallet JM, Poulain D, Delplace F, Guérardel Y. Candida albicans β-1,2-mannosyltransferase Bmt3 prompts the elongation of the cell-wall phosphopeptidomannan. Glycobiology 2015; 26:203-14. [PMID: 26525402 DOI: 10.1093/glycob/cwv094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/26/2015] [Indexed: 01/06/2023] Open
Abstract
β-1,2-Linked mannosides are expressed on numerous cell-wall glycoconjugates of the opportunistic pathogen yeast Candida albicans. Several studies evidenced their implication in the host-pathogen interaction and virulence mechanisms. In the present study, we characterized the in vitro activity of CaBmt3, a β-1,2-mannosyltransferase involved in the elongation of β-1,2-oligomannosides oligomers onto the cell-wall polymannosylated N-glycans. A recombinant soluble enzyme Bmt3p was produced in Pichia pastoris and its enzyme activity was investigated using natural and synthetic oligomannosides as potential acceptor substrates. Bmt3p was shown to exhibit an exquisite enzymatic specificity by adding a single terminal β-mannosyl residue to α-1,2-linked oligomannosides capped by a Manβ1-2Man motif. Furthermore, we demonstrated that the previously identified CaBmt1 and CaBmt3 efficiently act together to generate Manβ1-2Manβ1-2[Manα1-2]n sequence from α-1,2-linked oligomannosides onto exogenous and endogenous substrates.
Collapse
Affiliation(s)
- Ghenima Sfihi-Loualia
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Thomas Hurtaux
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Emeline Fabre
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Chantal Fradin
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Anaïs Mée
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 7203 LBM, 24, rue Lhomond, 75005 Paris, France
| | - Marilyne Pourcelot
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 7203 LBM, 24, rue Lhomond, 75005 Paris, France
| | - Emmanuel Maes
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Julie Bouckaert
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Jean-Maurice Mallet
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 7203 LBM, 24, rue Lhomond, 75005 Paris, France
| | - Daniel Poulain
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Florence Delplace
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Yann Guérardel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| |
Collapse
|
14
|
Machová E, Fiačanová L, Čížová A, Korcová J. Mannoproteins from yeast and hyphal form of Candida albicans considerably differ in mannan and protein content. Carbohydr Res 2015; 408:12-7. [DOI: 10.1016/j.carres.2015.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/03/2015] [Accepted: 03/02/2015] [Indexed: 11/28/2022]
|
15
|
Chiku K, Nihira T, Suzuki E, Nishimoto M, Kitaoka M, Ohtsubo K, Nakai H. Discovery of two β-1,2-mannoside phosphorylases showing different chain-length specificities from Thermoanaerobacter sp. X-514. PLoS One 2014; 9:e114882. [PMID: 25500577 PMCID: PMC4264767 DOI: 10.1371/journal.pone.0114882] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/14/2014] [Indexed: 11/19/2022] Open
Abstract
We characterized Teth514_1788 and Teth514_1789, belonging to glycoside hydrolase family 130, from Thermoanaerobacter sp. X-514. These two enzymes catalyzed the synthesis of 1,2-β-oligomannan using β-1,2-mannobiose and d-mannose as the optimal acceptors, respectively, in the presence of the donor α-d-mannose 1-phosphate. Kinetic analysis of the phosphorolytic reaction toward 1,2-β-oligomannan revealed that these enzymes followed a typical sequential Bi Bi mechanism. The kinetic parameters of the phosphorolysis of 1,2-β-oligomannan indicate that Teth514_1788 and Teth514_1789 prefer 1,2-β-oligomannans containing a DP ≥3 and β-1,2-Man2, respectively. These results indicate that the two enzymes are novel inverting phosphorylases that exhibit distinct chain-length specificities toward 1,2-β-oligomannan. Here, we propose 1,2-β-oligomannan:phosphate α-d-mannosyltransferase as the systematic name and 1,2-β-oligomannan phosphorylase as the short name for Teth514_1788 and β-1,2-mannobiose:phosphate α-d-mannosyltransferase as the systematic name and β-1,2-mannobiose phosphorylase as the short name for Teth514_1789.
Collapse
Affiliation(s)
- Kazuhiro Chiku
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | | | - Erika Suzuki
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Mamoru Nishimoto
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Motomitsu Kitaoka
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | | | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University, Niigata, Japan
| |
Collapse
|
16
|
Characterization of the recombinant Candida albicans β-1,2-mannosyltransferase that initiates the β-mannosylation of cell wall phosphopeptidomannan. Biochem J 2014; 457:347-60. [PMID: 24138199 DOI: 10.1042/bj20131012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The presence of β-mannosides in their cell walls confers specific features on the pathogenic yeasts Candida albicans and Candida glabrata compared with non-pathogenic yeasts. In the present study, we investigated the enzymatic properties of Bmt1 (β-mannosyltransferase 1), a member of the recently identified β-mannosyltransferase family, from C. albicans. A recombinant soluble enzyme lacking the N-terminal region was expressed as a secreted protein from the methylotrophic yeast Pichia pastoris. In parallel, functionalized natural oligosaccharides isolated from Saccharomyces cerevisiae and a C. albicans mutant strain, as well as synthetic α-oligomannosides, were prepared and used as potential acceptor substrates. Bmt1p preferentially utilizes substrates containing linear chains of α-1,2-linked mannotriose or mannotetraose. The recombinant enzyme consecuti-vely transfers two mannosyl units on to these acceptors, leading to the production of α-mannosidase-resistant oligomannosides. NMR experiments further confirmed the presence of a terminal βMan (β-1,2-linked mannose) unit in the first enzyme product. In the future, a better understanding of specific β-1,2-mannosyltransferase molecular requirements will help the design of new potential antifungal drugs.
Collapse
|
17
|
Chen WH, Du L, Chag SM, Ma C, Tricoche N, Tao X, Seid CA, Hudspeth EM, Lustigman S, Tseng CTK, Bottazzi ME, Hotez PJ, Zhan B, Jiang S. Yeast-expressed recombinant protein of the receptor-binding domain in SARS-CoV spike protein with deglycosylated forms as a SARS vaccine candidate. Hum Vaccin Immunother 2013; 10:648-58. [PMID: 24355931 DOI: 10.4161/hv.27464] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Development of vaccines for preventing a future pandemic of severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV) and for biodefense preparedness is urgently needed. Our previous studies have shown that a candidate SARS vaccine antigen consisting of the receptor-binding domain (RBD) of SARS-CoV spike protein can induce potent neutralizing antibody responses and protection against SARS-CoV challenge in vaccinated animals. To optimize expression conditions for scale-up production of the RBD vaccine candidate, we hypothesized that this could be potentially achieved by removing glycosylation sites in the RBD protein. In this study, we constructed two RBD protein variants: 1) RBD193-WT (193-aa, residues 318-510) and its deglycosylated forms (RBD193-N1, RBD193-N2, RBD193-N3); 2) RBD219-WT (219-aa, residues 318-536) and its deglycosylated forms (RBD219-N1, RBD219-N2, and RBD219-N3). All constructs were expressed as recombinant proteins in yeast. The purified recombinant proteins of these constructs were compared for their antigenicity, functionality and immunogenicity in mice using alum as the adjuvant. We found that RBD219-N1 exhibited high expression yield, and maintained its antigenicity and functionality. More importantly, RBD219-N1 induced significantly stronger RBD-specific antibody responses and a higher level of neutralizing antibodies in immunized mice than RBD193-WT, RBD193-N1, RBD193-N3, or RBD219-WT. These results suggest that RBD219-N1 could be selected as an optimal SARS vaccine candidate for further development.
Collapse
Affiliation(s)
- Wen-Hsiang Chen
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX USA
| | - Lanying Du
- Lindsley F Kimball Research Institute; New York Blood Center; New York, NY USA
| | - Shivali M Chag
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX USA
| | - Cuiqing Ma
- Lindsley F Kimball Research Institute; New York Blood Center; New York, NY USA
| | - Nancy Tricoche
- Lindsley F Kimball Research Institute; New York Blood Center; New York, NY USA
| | - Xinrong Tao
- Department of Microbiology and Immunology; University of Texas Medical Branch; Galveston, TX USA
| | - Christopher A Seid
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX USA
| | - Elissa M Hudspeth
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX USA
| | - Sara Lustigman
- Lindsley F Kimball Research Institute; New York Blood Center; New York, NY USA
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology; University of Texas Medical Branch; Galveston, TX USA
| | - Maria Elena Bottazzi
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX USA
| | - Peter J Hotez
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX USA
| | - Bin Zhan
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX USA
| | - Shibo Jiang
- Lindsley F Kimball Research Institute; New York Blood Center; New York, NY USA; Key Laboratory of Medical Molecular Virology of MOE/MOH; Shanghai Medical College and Institute of Medical Microbiology; Fudan University; Shanghai, PR China
| |
Collapse
|
18
|
The identification of surface interaction of apotransferrin with Candida albicans. Arch Pharm Res 2013; 37:1301-7. [PMID: 24263410 DOI: 10.1007/s12272-013-0301-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
Abstract
Our recent data indicate that apotransferrin, an iron-chelating protein, has anti-candidal activity by binding to the Candida albicans surface rather than just simple iron-chelation. Following that study, in this present study, we investigated the nature of the candidal surface substance that is responsible for the anticandidal activity by using (59)Fe(3+)-apotransferrin and biological assay methods. Data resulting from the binding studies showed that the yeast cells had one class of binding sites as analyzed by the Scatchard equation, and the binding was specific as determined by competitive binding assay with unlabeled and labeled transferrin. All these observations indicate that there is a substance(s) that mediates the binding. Thus, a mannoprotein-like substance was extracted from C. albicans surface using hot water-treatment. Radioisotope binding study revealed that the substance blocked the transferrin binding. At 25 μg of IHS (inhibitory substance) addition, there was 65 % inhibition of the transferrin binding to C. albicans (5 × 10(7) cells/ml) (P < 0.05). The blockage of the transferrin binding disrupted the anticandidal activity of transferrin, resulting in a full recovery from growth inhibition. These results explain our previous observation that there is partial growth inhibition when C. albicans interacts directly with iron-saturated transferrin (100 %). Thus, it was concluded that a candidate for transferrin receptor is involved in the anticandidal activity of transferrin when in direct contact with C. albicans.
Collapse
|
19
|
Evaluation of immunostimulatory activities of synthetic mannose-containing structures mimicking the β-(1->2)-linked cell wall mannans of Candida albicans. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1889-93. [PMID: 22993407 DOI: 10.1128/cvi.00298-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunostimulatory properties of synthetic structures mimicking the β-(1→2)-linked mannans of Candida albicans were evaluated in vitro. Contrary to earlier observations, tumor necrosis factor (TNF) production was not detected after stimulation with mannotetraose in mouse macrophages. Divalent disaccharide 1,4-bis(α-D-mannopyranosyloxy)butane induced TNF and some molecules induced low levels of gamma interferon (IFN-γ) in human peripheral blood mononuclear cells (PBMC).
Collapse
|
20
|
Mille C, Fradin C, Delplace F, Trinel PA, Masset A, François N, Coddeville B, Bobrowicz P, Jouault T, Guerardel Y, Wildt S, Janbon G, Poulain D. Members 5 and 6 of the Candida albicans BMT family encode enzymes acting specifically on β-mannosylation of the phospholipomannan cell-wall glycosphingolipid. Glycobiology 2012; 22:1332-42. [PMID: 22745283 DOI: 10.1093/glycob/cws097] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A family of nine genes encoding proteins involved in the synthesis of β-1,2 mannose adhesins of Candida albicans has been identified. Four of these genes, BMT1-4, encode enzymes acting stepwise to add β-mannoses on to cell-wall phosphopeptidomannan (PPM). None of these acts on phospholipomannan (PLM), a glycosphingolipid member of the mannose-inositol-phosphoceramide family, which contributes with PPM to β-mannose surface expression. We show that deletion of BMT5 and BMT6 led to a dramatic reduction of PLM glycosylation and accumulation of PLM with a truncated β-oligomannoside chain, respectively. Disruptions had no effect on sphingolipid biosynthesis and on PPM β-mannosylation. β-Mannose surface expression was not affected, confirming that β-mannosylation is a process based on specificity of acceptor molecules, but liable to global regulation.
Collapse
|
21
|
Takahashi S, Kudoh A, Okawa Y, Shibata N. Significant differences in the cell-wall mannans from three Candida glabrata strains correlate with antifungal drug sensitivity. FEBS J 2012; 279:1844-56. [PMID: 22404982 DOI: 10.1111/j.1742-4658.2012.08564.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Candida glabrata is often the second or third most common cause of candidiasis after Candida albicans. C. glabrata infections are difficult to treat, often resistant to many azole antifungal agents and are associated with a high mortality rate in compromised patients. We determined the antigenic structure of the cell-wall mannoproteins from three C. glabrata strains, NBRC 0005, NBRC 0622 and NBRC 103857. (1)H NMR and methylation analyses of the acetolysis products of these mannoproteins showed a significant difference in the amount of the β-1,2-linked mannose residue and side-chain structure. The C. glabrata NBRC 103857 strain contained up to the triose side chains and the nonreducing terminal of the triose was predominantly the β-1,2-linked mannose residue. By contrast, the mannans of the two former strains possessed up to the tetraose side chains and the amount of the β-1,2-linked mannose residue was very low. Larger oligosaccharides than tetraose in the acetolysis products of these mannans were identified as incomplete cleavage fragments by analyzing methylation, (1)H NMR spectra and the α1-2,3 mannosidase degradation reaction. Resistance to the antifungal drugs itraconazole and micafungin was significantly different in these strains. Interestingly, the NBRC 103857 strain, which involved a large amount of the β-1,2-linked mannose residues, exhibited significant sensitivity to these antifungal drugs.
Collapse
Affiliation(s)
- Shizuka Takahashi
- Department of Infection and Host Defense, Tohoku Pharmaceutical University, Aoba-ku, Sendai, Japan
| | | | | | | |
Collapse
|
22
|
Hopkins D, Gomathinayagam S, Rittenhour AM, Du M, Hoyt E, Karaveg K, Mitchell T, Nett JH, Sharkey NJ, Stadheim TA, Li H, Hamilton SR. Elimination of β-mannose glycan structures in Pichia pastoris. Glycobiology 2011; 21:1616-26. [PMID: 21840970 DOI: 10.1093/glycob/cwr108] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The methylotrophic yeast, Pichia pastoris, is an important organism used for the production of therapeutic proteins. However, the presence of fungal-like glycans, such as those containing β-mannose (Man) linkages, can elicit an immune response or bind to Man receptors, thus reducing their efficacy. Recent studies have confirmed that P. pastoris has four genes from the β-mannosyl transferase (BMT) family and that Bmt2p is responsible for the majority of β-Man linkages on glycans. While expressing recombinant human erythropoietin (rhEPO) in a developmental glycoengineered strain devoid of BMT2 gene expression, cross-reactivity was observed with an antibody raised against host cell antigens. Treatment of the rhEPO with protein N-glycosidase F eliminated cross-reactivity, indicating that the antigen was associated with the glycan. Thorough analysis of the glycan profile of rhEPO demonstrated the presence of low amounts of α-1,2-mannosidase resistant high-Man glycoforms. In an attempt to eliminate the α-mannosidase resistant glycoforms, we used a systemic approach to genetically knock-out the remaining members of the BMT family culminating in a quadruple bmt2,4,1,3 knock-out strain. Data presented here conclude that the additive elimination of Bmt2p, Bmt3p and Bmt1p activities are required for total abolition of β-Man-associated glycans and their related antigenicity. Taken together, the elimination of β-Man containing glycoforms represents an important step forward for the Pichia production platform as a suitable system for the production of therapeutic glycoproteins.
Collapse
Affiliation(s)
- Daniel Hopkins
- GlycoFi Inc., A wholly-Owned Subsidiary of Merck & Co. Inc., 21 Lafayette street, Suite 200, Lebanon, NH 03766, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gomathinayagam S, Mitchell T, Zartler ER, Heiss C, Azadi P, Zha D, Houston-Cummings NR, Jiang Y, Li F, Giaccone E, Porambo RJ, Anderson CL, Sethuraman N, Li H, Stadheim TA. Structural elucidation of an -1,2-mannosidase resistant oligosaccharide produced in Pichia pastoris. Glycobiology 2011; 21:1606-15. [DOI: 10.1093/glycob/cwr082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Martinez-Esparza M, Tapia-Abellan A, Vitse-Standaert A, Garcia-Penarrubia P, Arguelles JC, Poulain D, Jouault T. Glycoconjugate expression on the cell wall of tps1/tps1 trehalose-deficient Candida albicans strain and implications for its interaction with macrophages. Glycobiology 2011; 21:796-805. [DOI: 10.1093/glycob/cwr007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
25
|
Tsai PW, Yang CY, Chang HT, Lan CY. Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PLoS One 2011; 6:e17755. [PMID: 21448240 PMCID: PMC3056723 DOI: 10.1371/journal.pone.0017755] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 02/09/2011] [Indexed: 11/19/2022] Open
Abstract
Candida albicans is the major fungal pathogen of humans. Fungal adhesion to host cells is the first step of mucosal infiltration. Antimicrobial peptides play important roles in the initial mucosal defense against C. albicans infection. LL-37 is the only member of the human cathelicidin family of antimicrobial peptides and is commonly expressed in various tissues and cells, including epithelial cells of both the oral cavity and urogenital tract. We found that, at sufficiently low concentrations that do not kill the fungus, LL-37 was still able to reduce C. albicans infectivity by inhibiting C. albicans adhesion to plastic surfaces, oral epidermoid OECM-1 cells, and urinary bladders of female BALB/c mice. Moreover, LL-37-treated C. albicans floating cells that did not adhere to the underlying substratum aggregated as a consequence of LL-37 bound to the cell surfaces. According to the results of a competition assay, the inhibitory effects of LL-37 on cell adhesion and aggregation were mediated by its preferential binding to mannan, the main component of the C. albicans cell wall, and partially by its ability to bind chitin or glucan, which underlie the mannan layer. Therefore, targeting of cell-wall carbohydrates by LL-37 provides a new strategy to prevent C. albicans infection, and LL-37 is a useful, new tool to screen for other C. albicans components involved in adhesion.
Collapse
Affiliation(s)
- Pei-Wen Tsai
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Cheng-Yao Yang
- Division of Animal Medicine, Animal Technology Institute Taiwan, Miaoli, Taiwan
| | - Hao-Teng Chang
- Graduate Institute of Molecular Systems Biomedicine, China Medical University, Taichung, Taiwan
- Center for Inflammation Research, China Medical University, Taichung, Taiwan
- * E-mail: (CYL); (HTC)
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail: (CYL); (HTC)
| |
Collapse
|
26
|
Shibata N, Okawa Y. Chemical structure of -galactofuranose-containing polysaccharide and O-linked oligosaccharides obtained from the cell wall of pathogenic dematiaceous fungus Fonsecaea pedrosoi. Glycobiology 2010; 21:69-81. [DOI: 10.1093/glycob/cwq132] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
27
|
Shibata N, Okawa Y. Conformational Analysis of .BETA.-1,2-Linked Mannobiose to Mannoheptaose, Specific Antigen of Pathogenic Yeast Candida albicans. Chem Pharm Bull (Tokyo) 2010; 58:1386-90. [DOI: 10.1248/cpb.58.1386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nobuyuki Shibata
- Department of Infection and Host Defense, Tohoku Pharmaceutical University
| | - Yoshio Okawa
- Department of Infection and Host Defense, Tohoku Pharmaceutical University
| |
Collapse
|
28
|
Goto K, Suzuki A, Shibata N, Okawa Y. Some properties of beta-1,2-mannosyltransferases related to the biosynthesis of the acid-labile oligomannosyl side chains in Candida albicans NIH B-792 strain cells. Biol Pharm Bull 2009; 32:1921-3. [PMID: 19881309 DOI: 10.1248/bpb.32.1921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We detected the beta-1,2-mannosyltransferases (beta-1,2-MTs), which participate in the biosynthesis of oligomannosyl side chains in the mannan acid-labile fraction, in a particulate insoluble fractions prepared from Candida albicans NIH B-792 strain cells grown at 27 degrees C and at 37 degrees C in a yeast extract-added Sabouraud liquid medium (YSLM). The beta-1,2-MT VI-6 prepared from the cells grown at 27 degrees C exhibited the maximum activity at pH 7.0 and at 30 degrees C. The beta-1,2-MT VI-6 activity was only slightly affected by Mn2+, Mg2+, Ca2+, and ethylenediaminetetraacetic acid, but completely inhibited by Zn2+ and Ni2+. The beta-1,2-MT activities from the cells grown at 37 degrees C were lower than that from the cells grown at 27 degrees C, especially on the longer beta-1,2-mannooligosaccharides than tetraose.
Collapse
Affiliation(s)
- Kouji Goto
- Department of Infection and Host Defense, Tohoku Pharmaceutical University, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | | | | | | |
Collapse
|
29
|
Poláková M, Roslund MU, Ekholm FS, Saloranta T, Leino R. Synthesis of β-(1→2)-Linked Oligomannosides. European J Org Chem 2009. [DOI: 10.1002/ejoc.200801024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Maes E, Mille C, Trivelli X, Janbon G, Poulain D, Guérardel Y. Molecular phenotyping of mannosyltransferases-deficient Candida albicans cells by high-resolution magic angle spinning NMR. J Biochem 2009; 145:413-9. [PMID: 19218187 DOI: 10.1093/jb/mvp008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The yeast Candida albicans is an opportunistic pathogen that causes infections in immunocompromised individuals with a high morbidity and mortality levels. Recognition of yeasts by host cells is directly mediated by cell wall components of the yeast, including a wide range of abundantly expressed glycoconjugates. Of particular interest in C. albicans are the beta-mannosylated epitopes that show a complex expression pattern on N-glycan moiety of phosphopeptidomannans and are absent in the non-pathogenic species Saccharomyces cerevisiae. Being known as potent antigens for the adaptive immune response and elicitors of specific infection-protective antibodies, the exact delineation of beta-mannosides regulation and expression pathways has lately become a major milestone toward the comprehension of host-pathogen interplay. Using the newly developed HR-MAS NMR methodology, we demonstrate the possibility of assessing the general profiles of cell-surface-exposed glycoconjugates from intact living yeast cells without any prior purification step. This technique permitted to directly observe structural modifications of surface expressed phosphodiester-linked beta-mannosides on a series of deletion strains in beta-mannosyltransferases and phospho-mannosyltransferases compared with their parental strains.
Collapse
Affiliation(s)
- Emmanuel Maes
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, IFR 147, Université des Sciences et Technologies de Lille 1, 59655, Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
31
|
Karelin AA, Tsvetkov YE, Paulovicová L, Bystrický S, Paulovicová E, Nifantiev NE. Synthesis of a heptasaccharide fragment of the mannan from Candida guilliermondii cell wall and its conjugate with BSA. Carbohydr Res 2008; 344:29-35. [PMID: 18976984 DOI: 10.1016/j.carres.2008.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 09/06/2008] [Accepted: 09/17/2008] [Indexed: 11/25/2022]
Abstract
The 3-aminopropyl glycoside of a heptasaccharide fragment of the cell wall mannan from Candida guilliermondii 18, which corresponds to the antigenic Factor 9, has been synthesized by a convergent approach based on glycosylation of a tetrasaccharide acceptor with a trisaccharide donor as the key step to give a protected heptasaccharide 17. Subsequent two-step deprotection of 17 afforded the heptamannoside 18, which was then conjugated with BSA using the squarate procedure.
Collapse
Affiliation(s)
- Alexander A Karelin
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
32
|
Beta-1,2 oligomannose adhesin epitopes are widely distributed over the different families of Candida albicans cell wall mannoproteins and are associated through both N- and O-glycosylation processes. Infect Immun 2008; 76:4509-17. [PMID: 18644880 DOI: 10.1128/iai.00368-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Beta-1,2-linked mannosides (beta-Mans) are believed to contribute to Candida albicans virulence. The presence of beta-Mans has been chemically established for two molecules (phosphopeptidomannan [PPM] and phospholipomannan) that are noncovalently linked to the cell wall, where they correspond to specific epitopes. However, a large number of cell wall mannoproteins (CWMPs) also express beta-Man epitopes, although their nature and mode of beta-mannosylation are unknown. We therefore used Western blotting to map beta-Man epitopes for the different families of mannoproteins gradually released from the cell wall according to their mode of anchorage (soluble, released by dithiothreitol, beta-1,3 glucan linked, and beta-1,6 glucan linked). Reduction of beta-Man epitope expression occurred after chemical and enzymatic deglycosylation of the different cell wall fractions, as well as in a secreted form of Hwp1, a representative of the CWMPs linked by glycosylphosphatidylinositol remnants. Enzyme-linked immunosorbent assay inhibition tests were performed to assess the presence of beta-Man epitopes in released oligomannosides. A comparison of the results obtained with CWMPs to the results obtained with PPM and the use of mutants with mutations affecting O and N glycosylation demonstrated that both O glycosylation and N glycosylation participate in the association of beta-Mans with the protein moieties of CWMPs. This process, which can alter the function of cell wall molecules and their recognition by the host, is therefore more important and more complex than originally thought, since it differs from the model established previously with PPM.
Collapse
|
33
|
Oyamada H, Ogawa Y, Shibata N, Okawa Y, Suzuki S, Kobayashi H. Structural analysis of cell wall mannan of Candida sojae, a new yeast species isolated from defatted soybean flakes. Arch Microbiol 2008; 189:483-90. [PMID: 18084740 DOI: 10.1007/s00203-007-0339-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 11/26/2007] [Accepted: 11/26/2007] [Indexed: 10/22/2022]
Abstract
We investigated the structural and immunochemical characteristics of cell wall mannan obtained from Candida sojae JCM 1644, which is a new yeast species isolated from defatted soybean flakes. The results of a slide-agglutination test and of an enzyme-linked immunosorbent assay using anti-factor sera to the pathogenic Candida species indicated that the cells and the C. sojae mannan were cross-reactive to the specific anti-factor sera against Candida albicans serotype A (FAb 6) and Candida guilliermondii (FAb 9). Two-dimensional homonuclear Hartmann-Hahn analysis indicated that the mannan consisted of various linked oligomannosyl side chains containing alpha-1,2-, alpha-1,3-, alpha-1,6- and beta-1,2-linked mannose residues. However, although the determinants of antigenic factors 6 and 9 could be not found in this mannan, branched side chains, Manbeta1-2Manalpha1-3[Manalpha1-6]Manalpha1-(2Manalpha1-)n2Man and a linear alpha-1,6-linked polymannosyl backbone, which are cross-reacted by FAbs 6 and 9, respectively, were identified. The mannan was subjected to acetolysis in order to determine the polymerization length of the alpha-1,2-linked oligomannosyl residue in the side chains. The result of (1)H-nuclear magnetic resonance analysis of the released oligosaccharides showed that the remarkable regularity in the length of alpha-1,2-linked oligomannosyl side chains, which were previously found in mannans of other Candida species, is not observed in this mannan.
Collapse
Affiliation(s)
- Hiroko Oyamada
- Department of Microbiology, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Mille C, Bobrowicz P, Trinel PA, Li H, Maes E, Guerardel Y, Fradin C, Martínez-Esparza M, Davidson RC, Janbon G, Poulain D, Wildt S. Identification of a New Family of Genes Involved in β-1,2-Mannosylation of Glycans in Pichia pastoris and Candida albicans. J Biol Chem 2008; 283:9724-36. [DOI: 10.1074/jbc.m708825200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
35
|
Human pathogen Candida dubliniensis: A cell wall mannan with a high content of β-1,2-linked mannose residues. Carbohydr Polym 2007. [DOI: 10.1016/j.carbpol.2007.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Comparative analysis of cell wall surface glycan expression in Candida albicans and Saccharomyces cerevisiae yeasts by flow cytometry. J Immunol Methods 2006; 314:90-102. [DOI: 10.1016/j.jim.2006.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 05/21/2006] [Accepted: 06/07/2006] [Indexed: 11/16/2022]
|
37
|
Masuoka J, Hazen KC. Effect of monosaccharide composition, glycosidic linkage position and anomericity on the electrophoretic mobility of labeled oligosaccharides. Electrophoresis 2006; 27:365-72. [PMID: 16342321 DOI: 10.1002/elps.200500411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fluorophore-assisted carbohydrate electrophoresis (FACE) is useful for separation and characterization of oligosaccharides from various sources and for comparing several samples at once. While characterizing fungal surface glycans by FACE we observed that samples and standards of the same mass did not comigrate as expected. Subsequent experiments showed that the samples did not contain contaminating sugars. Therefore, our observation suggested that glycan electrophoretic mobility is affected by factors in addition to molecular mass. This work assesses the contribution of monosaccharide composition, linkage position, and linkage anomericity to glycan mobility. Commercially available (and synthesized when available) bioses of known composition were derivatized with a charged fluorophore, and electrophoretic mobilities compared in a slab gel format. The results indicate that all three parameters mentioned above affect observed migration. Further, no migration patterns emerged to suggest a set of rules for assigning band identity based on mobility alone. These results emphasize the importance of including known, matched, standards to facilitate interpretation of FACE data.
Collapse
Affiliation(s)
- James Masuoka
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908-0904, USA.
| | | |
Collapse
|
38
|
Masuoka J, Hazen KC. Cell wall mannan and cell surface hydrophobicity in Candida albicans serotype A and B strains. Infect Immun 2004; 72:6230-6. [PMID: 15501748 PMCID: PMC523023 DOI: 10.1128/iai.72.11.6230-6236.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell surface hydrophobicity contributes to the pathogenesis of the opportunistic fungal pathogen Candida albicans. Previous work demonstrated a correlation between hydrophobicity status and changes in the acid-labile, phosphodiester-linked beta-1,2-oligomannoside components of the N-linked glycans of cell wall mannoprotein. Glycan composition also defines the two major serotypes, A and B, of C. albicans strains. Here, we show that the cell surface hydrophobicity of the two serotypes is qualitatively different, suggesting that the serotypes may differ in how they modulate cell surface hydrophobicity status. The cell wall mannoproteins from hydrophilic and hydrophobic cells of both serotypes were compared to determine whether the glycan differences due to serotype affect the glycan differences due to hydrophobicity status. Composition analysis showed that the protein, hexose, and phosphate contents of the mannoprotein fraction did not differ significantly among the strains tested. Electrophoretic profiles of the acid-labile mannan differed only with hydrophobicity status, not serotype, though some strain-specific differences were observed. Furthermore, a newly available beta-1,2-oligomannoside ladder allowed unambiguous identification of acid-labile mannan components. Finally, to assess whether the acid-stable mannan also affects cell surface hydrophobicity status, this fraction was fragmented into its component branches by acetolysis. The electrophoretic profiles of the acid-stable branches were very similar regardless of hydrophobicity status. However, differences were observed between serotypes. These results support and extend our current model that modification of the acid-labile beta-1,2-oligomannoside chain length but not modification of the acid-stable region is one common mechanism by which switching of cell surface hydrophobicity status of C. albicans strains occurs.
Collapse
Affiliation(s)
- James Masuoka
- Department of Pathology, University of Virginia Health System, Charlottesville 22908-0904, USA.
| | | |
Collapse
|
39
|
Munro CA, Bates S, Buurman ET, Hughes HB, MacCallum DM, Bertram G, Atrih A, Ferguson MAJ, Bain JM, Brand A, Hamilton S, Westwater C, Thomson LM, Brown AJP, Odds FC, Gow NAR. Mnt1p and Mnt2p of Candida albicans are partially redundant alpha-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. J Biol Chem 2004; 280:1051-60. [PMID: 15519997 PMCID: PMC3749086 DOI: 10.1074/jbc.m411413200] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MNT1 gene of the human fungal pathogen Candida albicans is involved in O-glycosylation of cell wall and secreted proteins and is important for adherence of C. albicans to host surfaces and for virulence. Here we describe the molecular analysis of CaMNT2, a second member of the MNT1-like gene family in C. albicans. Mnt2p also functions in O-glycosylation. Mnt1p and Mnt2p encode partially redundant alpha-1,2-mannosyltransferases that catalyze the addition of the second and third mannose residues in an O-linked mannose pentamer. Deletion of both copies of MNT1 and MNT2 resulted in reduction in the level of in vitro mannosyltransferase activity and truncation of O-mannan. Both the mnt2Delta and mnt1Delta single mutants were significantly reduced in adherence to human buccal epithelial cells and Matrigel-coated surfaces, indicating a role for O-glycosylated cell wall proteins or O-mannan itself in adhesion to host surfaces. The double mnt1Deltamnt2Delta mutant formed aggregates of cells that appeared to be the result of abnormal cell separation. The double mutant was attenuated in virulence, underlining the importance of O-glycosylation in pathogenesis of C. albicans infections.
Collapse
Affiliation(s)
- Carol A. Munro
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Steven Bates
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Ed T. Buurman
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - H. Bleddyn Hughes
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Donna M. MacCallum
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Gwyneth Bertram
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Abdel Atrih
- School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee DD1 4NH, United Kingdom
| | - Michael A. J. Ferguson
- School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee DD1 4NH, United Kingdom
| | - Judith M. Bain
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Alexandra Brand
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Suzanne Hamilton
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Caroline Westwater
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Lynn M. Thomson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Alistair J. P. Brown
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Frank C. Odds
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Neil A. R. Gow
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
- To whom correspondence should be addressed. Tel.: 44-1224-555879; Fax.: 44-1224-555844;
| |
Collapse
|
40
|
Dalle F, Jouault T, Trinel PA, Esnault J, Mallet JM, d'Athis P, Poulain D, Bonnin A. Beta-1,2- and alpha-1,2-linked oligomannosides mediate adherence of Candida albicans blastospores to human enterocytes in vitro. Infect Immun 2004; 71:7061-8. [PMID: 14638796 PMCID: PMC308904 DOI: 10.1128/iai.71.12.7061-7068.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is a commensal dimorphic yeast of the digestive tract that causes hematogenously disseminated infections in immunocompromised individuals. Endogenous invasive candidiasis develops from C. albicans adhering to the intestinal epithelium. Adherence is mediated by the cell wall surface, a domain composed essentially of mannopyranosyl residues bound to proteins, the N-linked moiety of which comprises sequences of alpha-1,2- and beta-1,2-linked mannose residues. Beta-1,2-linked mannosides are also associated with a glycolipid, phospholipomannan, at the C. albicans surface. In order to determine the roles of beta-1,2 and alpha-1,2 oligomannosides in the C. albicans-enterocyte interaction, we developed a model of adhesion of C. albicans VW32 blastospores to the apical regions of differentiated Caco-2 cells. Preincubation of yeasts with monoclonal antibodies (MAbs) specific for alpha-1,2 and beta-1,2 mannan epitopes resulted in a dose-dependent decrease in adhesion (50% of the control with a 60- micro g/ml MAb concentration). In competitive assays beta-1,2 and alpha-1,2 tetramannosides were the most potent carbohydrate inhibitors, with 50% inhibitory concentrations of 2.58 and 6.99 mM, respectively. Immunolocalization on infected monolayers with MAbs specific for alpha-1,2 and beta-1,2 oligomannosides showed that these epitopes were shed from the yeast to the enterocyte surface. Taken together, our data indicate that alpha-1,2 and beta-1,2 oligomannosides are involved in the C. albicans-enterocyte interaction and participate in the adhesion of the yeasts to the mucosal surface.
Collapse
Affiliation(s)
- Fredéric Dalle
- Laboratoire de Parasitologie Mycologie, Hôpital du Bocage, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Shibata N, Kobayashi H, Okawa Y, Suzuki S. Existence of novel beta-1,2 linkage-containing side chain in the mannan of Candida lusitaniae, antigenically related to Candida albicans serotype A. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2565-75. [PMID: 12787022 DOI: 10.1046/j.1432-1033.2003.03622.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The antigenicity of Candida lusitaniae cells was found to be the same as that of Candida albicans serotype A cells, i.e. both cell wall mannans react with factors 1, 4, 5, and 6 sera of Candida Check. However, the structure of the mannan of C. lusitaniae was significantly different from that of C. albicans serotype A, and we found novel beta-1,2 linkages among the side-chain oligosaccharides, Manbeta1-->2Manbeta1--> 2Manalpha1-->2Manalpha1-->2Man (LM5), and Manbeta1-->2Man-beta1-->2Manbeta1-->2Manalpha1-->2Manalpha1-->2Man (LM6). The assignment of these oligosaccharides suggests that the mannoheptaose containing three beta-1,2 linkages obtained from the mannan of C. albicans in a preceding study consisted of isomers. The molar ratio of the side chains of C. lusitaniae mannan was determined from the complete assignment of its H-1 and H-2 signals and these signal dimensions. More than 80% of the oligomannosyl side chains contained beta-1,2-linked mannose units; no alpha-1,3 linkages or alpha-1,6-linked branching points were found in the side chains. An enzyme-linked immunosorbent inhibition assay using oligosaccharides indicated that LM5 behaves as factor 6, which is the serotype A-specific epitope of C. albicans. Unexpectedly, however, LM6 did not act as factor 6.
Collapse
Affiliation(s)
- Nobuyuki Shibata
- Second Department of Hygienic Chemistry, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan
| | | | | | | |
Collapse
|
42
|
Okawa Y, Monma K, Shibata N, Kobayashi H, Yamada Y. A new mannoheptaose containing alpha and beta-(1-->2) linkages isolated from the mannan of Torulaspora delbrueckii: ELISA inhibition studies. Carbohydr Res 2003; 338:1175-82. [PMID: 12747859 DOI: 10.1016/s0008-6215(03)00146-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Torulaspora delbrueckii starin IFO 0955 was examined with respect to its structural and serological properties of the cell wall mannan (Td-0955-M). Td-0955-M revealed significant reactivities with sera from a commercially available factor serum kit (Candida Check) in ELISA. Td-0955-M was investigated for its chemical structure by acetolysis under conventional and mild conditions. NMR and GC techniques were used as analytical techniques. The mannooligosaccharide fractions eluted from a Bio-Gel P-2 column were found to consist of Man(alpha1-2)Man, M2, Man(alpha1-2)Man(alpha1-2)Man and Man(beta1-2)Man(alpha1-2)Man, M3, Man(alpha1-2)Man(beta1-2)Man(beta1-2)Man(alpha1-2)Man, M5, and a new mannoheptaose, which possesses the structure, Man(alpha1-2)Man(beta1-2)Man(beta1-2)Man(beta1-2)Man(beta1-2)Man(alpha1-2)Man, M7. The results of the inhibition ELISA showed that the M7 oligosaccharide significantly inhibited the reactivities in the Td-0955-M-factor serum systems.
Collapse
Affiliation(s)
- Yoshio Okawa
- Second Department of Hygienic Chemistry, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Sendai Aoba-ku, 981-8558, Miyagi, Japan.
| | | | | | | | | |
Collapse
|
43
|
Kruppa M, Goins T, Cutler JE, Lowman D, Williams D, Chauhan N, Menon V, Singh P, Li D, Calderone R. The role of the Candida albicans histidine kinase [CHK1) gene in the regulation of cell wall mannan and glucan biosynthesis. FEMS Yeast Res 2003; 3:289-99. [PMID: 12689636 DOI: 10.1111/j.1567-1364.2003.tb00170.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The human pathogen Candida albicans encodes at least three putative two-component histidine kinase signal transduction proteins, including Chk1p and a response regulator protein (Cssk1p). Strains deleted in CHK1 are avirulent in a murine model of hematogenously disseminated disease. The specific function of Chk1p has not been established, but hyphae of the chk1 mutant exhibit extensive flocculation while yeast forms are less adherent to reconstituted human esophageal tissue, indicating that this protein may regulate cell surface properties. Herein, we analyze glucan, mannan and chitin profiles in strains deleted in chk1 (CHK21) compared to a gene-reconstituted strain (CHK23) and a parental strain CAF2. Total alkali-soluble hexose from the cell wall of the chk1 mutant (strain CHK21) was significantly reduced. Western blots of cell wall extracts from CHK21, CHK23 and CAF2 reacted with a Mab to the acid-stable mannan fraction revealed extensive staining of lower molecular mass species in strain CHK21 only. FACE (fluorophore assisted carbohydrate electrophoresis) was used to characterize the oligosaccharide side chains of beta-eliminated (O-linked), acid-hydrolyzed (acid-labile phosphomannan) and acetolysis (acid-stable mannan) extracted fractions of total mannan. The profiles of O-linked as well as the acid-labile oligosaccharides were similar in both CAF2 and CHK21, but the acid-stable oligosaccharide side chains were significantly truncated. We also characterized the beta-glucan from each strain using NMR, and found that both the degree of polymerization and the ratio of (1-3)/(1-6) linkages was lower in CHK21 relative to wild-type cells. The sensitivity of CHK21 to antifungal drugs and inhibitors was unaffected. In summary, our data have identified a new function for a histidine kinase two-component signal protein in a human pathogenic fungus.
Collapse
Affiliation(s)
- Michael Kruppa
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kondori N, Edebo L, Mattsby-Baltzer I. Candida albicans cell wall antigens for serological diagnosis of candidemia. Med Mycol 2003; 41:21-30. [PMID: 12627801 DOI: 10.1080/mmy.41.1.21.30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Serological tests for diagnosis of disseminated fungal infections in the immunocompromised host are used with varying results. In the present study, the relative ability of antibodies to specifically recognize Candida albicans cell wall components was evaluated in order to find antigenic markers for serological diagnosis of candidemia. Native C. albicans cell wall fragments (CW), periodate- (CWIO4) and proteinase-K- (CWP) treated CW, a mildly extracted phosphopeptidomannan (PPM), and beta(1-3)(1-6)-glucan were used as antigens in ELISA with sera from rabbits immunized with C. albicans (n = 10), patients with culture proven candidemia (n = 8) and healthy individuals (n = 8). The antibody response in rabbits consisted predominantly of anti-PPM antibodies, a finding that was substantiated by inhibition-ELISA. Consistently, periodate treatment (CW104) destroyed a major proportion of the antigenic epitopes. Low rabbit antibody levels were found against glucan, the major Candida cell wall component. These results supported the conclusion that glucan is localized mainly in the inner part of the C. albicans cell wall. In contrast to rabbits' serum IgG antibody response against PPM, which was at least tenfold higher than that raised against CW, patients with candidemia had similar IgG antibody levels against both antigens. These levels were significantly higher than those seen in healthy controls (CW, P = 0.0005 and PPM, P < 0.0001). Although the human anti-glucan and anti-CWIO4 IgG antibody levels were low overall, they were nonetheless significantly increased in the patient group (P = 0.0159 for antiglucan and P = 0.0491 for anti-CWIO4). In addition, a correlation was noticed between levels of these antibodies. No significant differences were found between patients and controls for IgM antibodies when CW, CWIO4, PPM and Glu were used as antigens. In conclusion, IgG antibodies to PPM and native cell wall fragments (CW) were highly discriminatory for recognition of candidemia and these antigens are thus promising candidates for use in serodiagnosis.
Collapse
Affiliation(s)
- N Kondori
- Department of Clinical Bacteriology, Göteborg University, Guldhedsgatan 10, S-413 46 Göteborg, Sweden
| | | | | |
Collapse
|
45
|
Dromer F, Chevalier R, Sendid B, Improvisi L, Jouault T, Robert R, Mallet JM, Poulain D. Synthetic analogues of beta-1,2 oligomannosides prevent intestinal colonization by the pathogenic yeast Candida albicans. Antimicrob Agents Chemother 2002; 46:3869-76. [PMID: 12435690 PMCID: PMC132753 DOI: 10.1128/aac.46.12.3869-3876.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2002] [Revised: 05/13/2002] [Accepted: 07/15/2002] [Indexed: 11/20/2022] Open
Abstract
The pathogenic yeast Candida albicans displays at its cell surface beta-1,2 oligomannosides (beta-1,2-Mans). In contrast to the ubiquitous alpha-Mans, beta-1,2-Mans bind to galectin-3, a major endogenous lectin expressed on epithelial cells. The specific role of beta-1,2-Mans in colonization of the gut by C. albicans was assessed in a mouse model. A selected virulent strain of C. albicans (expressing more beta-1,2-Man epitopes) induced more intense and sustained colonization than an avirulent strain (expressing less beta-1,2-Man epitopes). Synthetic (Sigma) beta-and alpha-linked tetramannosides with antigenicities that mimicked the antigenicities of C. albicans-derived oligomannosides were then constructed. Oral administration of Sigmabeta-1,2-Man (30 mg/kg of body weight) prior to inoculation with the virulent strain resulted in almost complete eradication of yeasts from stool samples, whereas administration of Sigmaalpha-Man at the same dose did not. As most cases of human systemic candidiasis are endogenous in origin, this first demonstration that a synthetic analogue of a yeast adhesin can prevent yeast colonization in the gut opens the possibility of new prophylactic strategies.
Collapse
Affiliation(s)
- Françoise Dromer
- Unité de Mycologie Moléculaire, Institut Pasteur, 75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Poulain D, Slomianny C, Jouault T, Gomez JM, Trinel PA. Contribution of phospholipomannan to the surface expression of beta-1,2-oligomannosides in Candida albicans and its presence in cell wall extracts. Infect Immun 2002; 70:4323-8. [PMID: 12117941 PMCID: PMC128193 DOI: 10.1128/iai.70.8.4323-4328.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
beta-1,2-Oligomannosides (beta-1,2-Man) derived from Candida albicans mannan have been shown to act as adhesins and to induce protective antibodies. We used monoclonal antibodies specific for beta-1,2-Man in electron, confocal, and fluorescence microscopy to study the surface expression of beta-1,2-Man epitopes. These monoclonal antibodies were also used for Western blotting of cell surface extracts to study the nature of the molecules expressing the beta-Man epitopes. Evidence was obtained for the contribution of a glycolipid, phospholipomannan (PLM), to the complex expression of beta-1,2-Man epitopes at the cell wall surfaces of yeasts grown on solid media. PLM was present in intercellular matrixes of colonies grown on agar and was detected as a contaminant in mannan batches prepared by conventional methods.
Collapse
Affiliation(s)
- D Poulain
- Laboratoire de Mycologie Fondamentale et Appliquée, INSERM EPI 9915, Faculté de Médecine, Pôle Recherche, 59045 Lille Cedex, Italy.
| | | | | | | | | |
Collapse
|
47
|
Herrero AB, Uccelletti D, Hirschberg CB, Dominguez A, Abeijon C. The Golgi GDPase of the fungal pathogen Candida albicans affects morphogenesis, glycosylation, and cell wall properties. EUKARYOTIC CELL 2002; 1:420-31. [PMID: 12455990 PMCID: PMC118022 DOI: 10.1128/ec.1.3.420-431.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell wall mannoproteins are largely responsible for the adhesive properties and immunomodulation ability of the fungal pathogen Candida albicans. The outer chain extension of yeast mannoproteins occurs in the lumen of the Golgi apparatus. GDP-mannose must first be transported from the cytosol into the Golgi lumen, where mannose is transferred to mannans. GDP is hydrolyzed by a GDPase, encoded by GDA1, to GMP, which then exits the Golgi lumen in a coupled, equimolar exchange with cytosolic GDP-mannose. We isolated and disrupted the C. albicans homologue of the Saccharomyces cerevisiae GDA1 gene in order to investigate its role in protein mannosylation and pathogenesis. CaGda1p shares four apyrase conserved regions with other nucleoside diphosphatases. Membranes prepared from the C. albicans disrupted gda1/gda1 strain had a 90% decrease in the ability to hydrolyze GDP compared to wild type. The gda1/gda1 mutants showed a severe defect in O-mannosylation and reduced cell wall phosphate content. Other cell wall-related phenotypes are present, such as elevated chitin levels and increased susceptibility to attack by beta-1,3-glucanases. Our results show that the C. albicans organism contains beta-mannose at their nonreducing end, differing from S. cerevisiae, which has only alpha-linked mannose residues in its O-glycans. Mutants lacking both alleles of GDA1 grow at the same rate as the wild type but are partially blocked in hyphal formation in Lee solid medium and during induction in liquid by changes in temperature and pH. However, the mutants still form normal hyphae in the presence of serum and N-acetylglucosamine and do not change their adherence to HeLa cells. Taken together, our data are in agreement with the hypothesis that several pathways regulate the yeast-hypha transition. Gda1/gda1 cells offer a model for discriminating among them.
Collapse
Affiliation(s)
- Ana B Herrero
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
48
|
Jouault T, Fradin C, Dzierszinski F, Borg-Von-Zepelin M, Tomavo S, Corman R, Trinel PA, Kerckaert JP, Poulain D. Peptides that mimic Candida albicans-derived beta-1,2-linked mannosides. Glycobiology 2001; 11:693-701. [PMID: 11479280 DOI: 10.1093/glycob/11.8.693] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Beta-1,2-linked mannosides from Candida albicans phosphopeptidomannan (PPM) bind to macrophages through a receptor independent from the macrophage alpha-linked mannose receptor and stimulate these cells to secrete immune mediators. Anti-beta-1,2-linked mannoside but not anti-alpha-linked mannoside antibodies produced after immunization with neoglycoproteins protect animals from disseminated candidiasis. In this study, peptides that mimic beta-1,2-linked mannosides were isolated using phage display methodology. A phage library expressing random peptides was panned with an anti-beta-1,2-linked mannoside monoclonal antibody (mAb). After three rounds of biopanning, the isolated phages were able to inhibit recognition of C. albicans by the mAb. Sixty percent of the phages had an identical DNA insert corresponding to the peptide sequence FHENWPS that was recognized specifically by the mAb. Injection of KLH-coupled peptide into mice generated high titers of polyclonal antibodies against C. albicans yeast cell walls. The anti-FHENWPS antibodies bound to C. albicans PPM and were inhibited by soluble beta-1,2-mannotetraose. Together, these data provide evidence for mimotopic activity of the peptide selected by biopanning with the anti-beta-1,2-oligomannoside mAb.
Collapse
Affiliation(s)
- T Jouault
- Laboratoire de Mycologie Fondamentale et Appliquée, INSERM EPI 9915, Université de Lille II, Faculté de Médecine H. Warembourg, Pôle Recherche, Place Verdun, 59037 Lille Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Crich D, Li H, Yao Q, Wink DJ, Sommer RD, Rheingold AL. Direct synthesis of beta-mannans. A hexameric [-->3)-beta-D-Man-(1](3) subunit of the antigenic polysaccharides from Leptospira biflexa and the octameric (1-->2)-linked beta-D-mannan of the Candida albicans phospholipomannan. X-ray crystal structure of a protected tetramer. J Am Chem Soc 2001; 123:5826-8. [PMID: 11403627 DOI: 10.1021/ja015985e] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D Crich
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, USA.
| | | | | | | | | | | |
Collapse
|
50
|
|