1
|
Kakati A, Karmakar T, Kalra AP. Triplet Energy Migration in Cytoskeletal Polymers. J Phys Chem B 2025; 129:128-138. [PMID: 39721596 DOI: 10.1021/acs.jpcb.4c06748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Dexter energy transfer (DET) of triplet electronic states is used to direct energy in photovoltaics, quench reactive singlet oxygen species in biological systems, and generate them in photodynamic therapy. However, the extent to which repeated DET between aromatic residues can lead to triplet energy migration in proteins has not been investigated. Here, we computationally describe DET rates in microtubules, actin filaments and the intermediate filament, vimentin. We discover instances where interaromatic residue Dexter couplings within individual protein subunits of these polymers are similar those of small molecules used for organic electronics. However, interaromatic residue coupling is mostly weak (<10-3 eV), limiting triplet energy diffusion lengths to 6.1, 0.5 and 1.0 Å in microtubules, actin filaments and vimentin, respectively. On the other hand, repeated förster resonance energy transfer (FRET) between aromatic residues leads to singlet energy diffusion lengths of 12.4 Å for actin filaments and about 8.6 Å for both microtubules and vimentin filaments. Our work shows that singlet energy migration dominates over triplet energy migration in cytoskeletal polymers.
Collapse
Affiliation(s)
- Arnab Kakati
- Centre for Biomedical Engineering, Indian Institute of Technology, Delhi 110016, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi 110016, India
| | - Aarat P Kalra
- Centre for Biomedical Engineering, Indian Institute of Technology, Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, Delhi 110029 New Delhi, India
- Amar Nath and Shashi Khosla School of Information Technology, Indian Institute of Technology, Delhi 110016 New Delhi, India
| |
Collapse
|
2
|
Özcan E, Šímová I, Bína D, Litvín R, Polívka T. Ultrafast spectroscopy of the hydrophilic carotenoid crocin at various pH. Phys Chem Chem Phys 2024; 26:10225-10233. [PMID: 38497307 DOI: 10.1039/d4cp00665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
This study delves into the pH-dependent effects on the excited-state behavior of crocin, a hydrophilic carotenoid with diverse functions in biological systems. Steady-state spectroscopy demonstrates notable changes in absorption and fluorescence spectra, characterized by a pH-dependent blue shift and altered resolution of vibrational bands. Transient absorption spectra further elucidate these effects, highlighting a significant blue shift in the S1-Sn peak with increasing pH. Detailed kinetic analysis shows the pH-dependent dynamics of crocin's excited states. At pH 11, a shortening of effective conjugation is observed, resulting in a prolonged S1/ICT lifetime. Conversely, at pH 9, our data suggest a more complex scenario, suggesting the presence of two distinct crocin species with different relaxation patterns. This implies structural alterations within the crocin molecule, potentially linked to the deprotonation of hydroxyl groups in crocin and/or saponification at high pH.
Collapse
Affiliation(s)
- Emrah Özcan
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| | - Ivana Šímová
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| | - David Bína
- Department of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, České Budějovice, Czech Republic
| | - Radek Litvín
- Department of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, České Budějovice, Czech Republic
| | - Tomáš Polívka
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
3
|
Özcan E, Kuznetsova V, Keşan G, Fuciman M, Litvín R, Polívka T. Ultrafast Excited States Dynamics of Metal Ion Complexes of the Carotenoid Astaxanthin. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Elvers I, Nguyen-Phan TC, Gardiner AT, Hunter CN, Cogdell RJ, Köhler J. Phasor Analysis Reveals Multicomponent Fluorescence Kinetics in the LH2 Complex from Marichromatium purpuratum. J Phys Chem B 2022; 126:10335-10346. [PMID: 36449272 DOI: 10.1021/acs.jpcb.2c04983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We investigated the fluorescence kinetics of LH2 complexes from Marichromatium purpuratum, the cryo-EM structure of which has been recently elucidated with 2.4 Å resolution. The experiments have been carried out as a function of the excitation density by varying both the excitation fluence and the repetition rate of the laser excitation. Instead of the usual multiexponential fitting procedure, we applied the less common phasor formalism for evaluating the transients because this allows for a model-free analysis of the data without a priori knowledge about the number of processes that contribute to a particular decay. For the various excitation conditions, this analysis reproduces consistently three lifetime components with decay times below 100 ps, 500 ps, and 730 ps, which were associated with the quenched state, singlet-triplet annihilation, and fluorescence decay, respectively. Moreover, it reveals that the number of decay components that contribute to the transients depends on whether the excitation wavelength is in resonance with the B800 BChl a molecules or with the carotenoids. Based on the mutual arrangement of the chromophores in their binding pockets, this leads us to conclude that the energy transfer pathways within the LH2 complex of this species differ significantly from each other for exciting either the B800 BChl molecules or the carotenoids. Finally, we speculate whether the illumination with strong laser light converts the LH2 complexes studied here into a quenched conformation that might be related to the development of the non-photochemical quenching mechanism that occurs in higher plants.
Collapse
Affiliation(s)
- Inga Elvers
- Spectroscopy of Soft Matter, University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany
| | - Tu C Nguyen-Phan
- School of Infection and Immunity, Glasgow University, Glasgow G12 8TA, U.K
| | - Alastair T Gardiner
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - C Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Richard J Cogdell
- School of Molecular Biosciences, Glasgow University, Glasgow G12 8QQ, U.K
| | - Jürgen Köhler
- Spectroscopy of Soft Matter, University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany.,Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany.,Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany
| |
Collapse
|
5
|
Klenina IB, Makhneva ZK, Moskalenko AA, Proskuryakov II. Selective Excitation of Carotenoids of the Allochromatium vinosum Light-Harvesting LH2 Complexes Leads to Oxidation of Bacteriochlorophyll. BIOCHEMISTRY (MOSCOW) 2022; 87:1130-1137. [DOI: 10.1134/s0006297922100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
He Z, Ferlez B, Kurashov V, Tank M, Golbeck JH, Bryant DA. Reaction centers of the thermophilic microaerophile, Chloracidobacterium thermophilum (Acidobacteria) I: biochemical and biophysical characterization. PHOTOSYNTHESIS RESEARCH 2019; 142:87-103. [PMID: 31161318 DOI: 10.1007/s11120-019-00650-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Chloracidobacterium thermophilum is a microaerophilic, anoxygenic member of the green chlorophototrophic bacteria. This bacterium is the first characterized oxygen-requiring chlorophototroph with chlorosomes, the FMO protein, and homodimeric type-1 reaction centers (RCs). The RCs of C. thermophilum are also unique because they contain three types of chlorophylls, bacteriochlorophyll aP esterified with phytol, Chl aPD esterified with Δ2,6-phytadienol, and Zn-BChl aP' esterified with phytol, in the approximate molar ratio 32:24:4. The light-induced difference spectrum of these RCs had a bleaching maximum at 839 nm and also revealed an electrochromic bandshift that is probably derived from a BChl a molecule near P840+. The FX [4Fe-4S] cluster had a midpoint potential of ca. - 581 mV, and the spectroscopic properties of the P+ F X - spin-polarized radical pair were very similar to those of reaction centers of heliobacteria and green sulfur bacteria. The data further indicate that electron transfer occurs directly from A0- to FX, as occurs in other homodimeric type-1 RCs. Washing experiments with isolated membranes suggested that the PscB subunit of these reaction centers is more tightly bound than PshB in heliobacteria. Thus, the reaction centers of C. thermophilum have some properties that resemble other homodimeric reaction centers but also have specific properties that are more similar to those of Photosystem I. These differences probably contribute to protection of the electron transfer chain from oxygen, contributing to the oxygen tolerance of this microaerophile.
Collapse
Affiliation(s)
- Zhihui He
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, S-002 Frear Building, University Park, PA, 16802, USA
| | - Bryan Ferlez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, S-002 Frear Building, University Park, PA, 16802, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, S-002 Frear Building, University Park, PA, 16802, USA
| | - Marcus Tank
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, S-002 Frear Building, University Park, PA, 16802, USA
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, S-002 Frear Building, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, S-002 Frear Building, University Park, PA, 16802, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
7
|
Tejeda-Ferrari ME, Brown CL, Coutinho GCCC, Gomes de Sá GA, Palma JL, Llansola-Portoles MJ, Kodis G, Mujica V, Ho J, Gust D, Moore TA, Moore AL. Electronic Structure and Triplet-Triplet Energy Transfer in Artificial Photosynthetic Antennas. Photochem Photobiol 2018; 95:211-219. [DOI: 10.1111/php.12979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/28/2018] [Indexed: 01/21/2023]
Affiliation(s)
| | - Chelsea L. Brown
- School of Molecular Sciences; Arizona State University; Tempe AZ
| | | | | | - Julio L. Palma
- Department of Chemistry; The Pennsylvania State University; Lemont Furnace PA
| | - Manuel J. Llansola-Portoles
- Institute for Integrative Biology of the Cell (I2BC); CEA; CNRS; Université Paris-Saclay; Gif-sur-Yvette Cedex France
| | - Gerdenis Kodis
- School of Molecular Sciences; Arizona State University; Tempe AZ
| | - Vladimiro Mujica
- School of Molecular Sciences; Arizona State University; Tempe AZ
| | - Junming Ho
- School of Chemistry; University of New South Wales; Sydney NSW Australia
| | - Devens Gust
- School of Molecular Sciences; Arizona State University; Tempe AZ
| | - Thomas A. Moore
- School of Molecular Sciences; Arizona State University; Tempe AZ
| | - Ana L. Moore
- School of Molecular Sciences; Arizona State University; Tempe AZ
| |
Collapse
|
8
|
Yu J, Tan LM, Kawakami T, Wang P, Fu LM, Wang-Otomo ZY, Zhang JP. Cooperative Photoprotection by Multicompositional Carotenoids in the LH1 Antenna from a Mutant Strain of Rhodobacter sphaeroides. J Phys Chem B 2018; 122:8028-8036. [DOI: 10.1021/acs.jpcb.8b06080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jie Yu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Li-Ming Tan
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | | | - Peng Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Li-Min Fu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | | | - Jian-Ping Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
9
|
Llansola-Portoles MJ, Pascal AA, Robert B. Electronic and vibrational properties of carotenoids: from in vitro to in vivo. J R Soc Interface 2018; 14:rsif.2017.0504. [PMID: 29021162 DOI: 10.1098/rsif.2017.0504] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/14/2017] [Indexed: 11/12/2022] Open
Abstract
Carotenoids are among the most important organic compounds present in Nature and play several essential roles in biology. Their configuration is responsible for their specific photophysical properties, which can be tailored by changes in their molecular structure and in the surrounding environment. In this review, we give a general description of the main electronic and vibrational properties of carotenoids. In the first part, we describe how the electronic and vibrational properties are related to the molecular configuration of carotenoids. We show how modifications to their configuration, as well as the addition of functional groups, can affect the length of the conjugated chain. We describe the concept of effective conjugation length, and its relationship to the S0 → S2 electronic transition, the decay rate of the S1 energetic level and the frequency of the ν1 Raman band. We then consider the dependence of these properties on extrinsic parameters such as the polarizability of their environment, and how this information (S0 → S2 electronic transition, ν1 band position, effective conjugation length and polarizability of the environment) can be represented on a single graph. In the second part of the review, we use a number of specific examples to show that the relationships can be used to disentangle the different mechanisms tuning the functional properties of protein-bound carotenoids.
Collapse
Affiliation(s)
- Manuel J Llansola-Portoles
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Andrew A Pascal
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Bruno Robert
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
10
|
Singlet and triplet excited states dynamics of photosynthetic pigment chlorophyll a investigated by sub-nanosecond pump-probe spectroscopy. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.09.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Sipka G, Maróti P. Photoprotection in intact cells of photosynthetic bacteria: quenching of bacteriochlorophyll fluorescence by carotenoid triplets. PHOTOSYNTHESIS RESEARCH 2018; 136:17-30. [PMID: 29064080 DOI: 10.1007/s11120-017-0434-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Upon high light excitation in photosynthetic bacteria, various triplet states of pigments can accumulate leading to harmful effects. Here, the generation and lifetime of flash-induced carotenoid triplets (3Car) have been studied by observation of the quenching of bacteriochlorophyll (BChl) fluorescence in different strains of photosynthetic bacteria including Rvx. gelatinosus (anaerobic and semianaerobic), Rsp. rubrum, Thio. roseopersicina, Rba. sphaeroides 2.4.1 and carotenoid- and cytochrome-deficient mutants Rba. sphaeroides Ga, R-26, and cycA, respectively. The following results were obtained: (1) 3Car quenching is observed during and not exclusively after the photochemical rise of the fluorescence yield of BChl indicating that the charge separation in the reaction center (RC) and the carotenoid triplet formation are not consecutive but parallel processes. (2) The photoprotective function of 3Car is not limited to the RC only and can be described by a model in which the carotenoids are distributed in the lake of the BChl pigments. (3) The observed lifetime of 3Car in intact cells is the weighted average of the lifetimes of the carotenoids with various numbers of conjugated double bonds in the bacterial strain. (4) The lifetime of 3Car measured in the light is significantly shorter (1-2 μs) than that measured in the dark (2-10 μs). The difference reveals the importance of the dynamics of 3Car before relaxation. The results will be discussed not only in terms of energy levels of the 3Car but also in terms of the kinetics of transitions among different sublevels in the excited triplet state of the carotenoid.
Collapse
Affiliation(s)
- Gábor Sipka
- Department of Medical Physics, University of Szeged, Rerrich Béla tér 1, Szeged, 6720, Hungary
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Péter Maróti
- Department of Medical Physics, University of Szeged, Rerrich Béla tér 1, Szeged, 6720, Hungary.
| |
Collapse
|
12
|
Affiliation(s)
- Dong Ryeol Whang
- Institute of Physical Chemistry; Johannes Kepler University Linz; Altenbergerstraße 69 4040 Linz Austria
| | - Dogukan Hazar Apaydin
- Institute of Physical Chemistry; Johannes Kepler University Linz; Altenbergerstraße 69 4040 Linz Austria
| |
Collapse
|
13
|
Gray V, Küçüköz B, Edhborg F, Abrahamsson M, Moth-Poulsen K, Albinsson B. Singlet and triplet energy transfer dynamics in self-assembled axial porphyrin–anthracene complexes: towards supra-molecular structures for photon upconversion. Phys Chem Chem Phys 2018; 20:7549-7558. [DOI: 10.1039/c8cp00884a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Singlet and triplet energy transfer dynamics in anthracene–ruthenium porphyrin complexes, and their application to photon upconversion.
Collapse
Affiliation(s)
- Victor Gray
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering
- Gothenburg
- Sweden
| | - Betül Küçüköz
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering
- Gothenburg
- Sweden
| | - Fredrik Edhborg
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering
- Gothenburg
- Sweden
| | - Maria Abrahamsson
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering
- Gothenburg
- Sweden
| | - Kasper Moth-Poulsen
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering
- Gothenburg
- Sweden
| | - Bo Albinsson
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering
- Gothenburg
- Sweden
| |
Collapse
|
14
|
Yu J, Fu LM, Yu LJ, Shi Y, Wang P, Wang-Otomo ZY, Zhang JP. Carotenoid Singlet Fission Reactions in Bacterial Light Harvesting Complexes As Revealed by Triplet Excitation Profiles. J Am Chem Soc 2017; 139:15984-15993. [DOI: 10.1021/jacs.7b09809] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Yu
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Li-Min Fu
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Long-Jiang Yu
- Faculty
of Science, Ibaraki University, Mito 310-8512, Japan
- Department
of Biology, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Ying Shi
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Peng Wang
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | | | - Jian-Ping Zhang
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
15
|
Triplet-triplet energy transfer in artificial and natural photosynthetic antennas. Proc Natl Acad Sci U S A 2017; 114:E5513-E5521. [PMID: 28652359 DOI: 10.1073/pnas.1614857114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In photosynthetic organisms, protection against photooxidative stress due to singlet oxygen is provided by carotenoid molecules, which quench chlorophyll triplet species before they can sensitize singlet oxygen formation. In anoxygenic photosynthetic organisms, in which exposure to oxygen is low, chlorophyll-to-carotenoid triplet-triplet energy transfer (T-TET) is slow, in the tens of nanoseconds range, whereas it is ultrafast in the oxygen-rich chloroplasts of oxygen-evolving photosynthetic organisms. To better understand the structural features and resulting electronic coupling that leads to T-TET dynamics adapted to ambient oxygen activity, we have carried out experimental and theoretical studies of two isomeric carotenoporphyrin molecular dyads having different conformations and therefore different interchromophore electronic interactions. This pair of dyads reproduces the characteristics of fast and slow T-TET, including a resonance Raman-based spectroscopic marker of strong electronic coupling and fast T-TET that has been observed in photosynthesis. As identified by density functional theory (DFT) calculations, the spectroscopic marker associated with fast T-TET is due primarily to a geometrical perturbation of the carotenoid backbone in the triplet state induced by the interchromophore interaction. This is also the case for the natural systems, as demonstrated by the hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of light-harvesting proteins from oxygenic (LHCII) and anoxygenic organisms (LH2). Both DFT and electron paramagnetic resonance (EPR) analyses further indicate that, upon T-TET, the triplet wave function is localized on the carotenoid in both dyads.
Collapse
|
16
|
Light harvesting in phototrophic bacteria: structure and function. Biochem J 2017; 474:2107-2131. [DOI: 10.1042/bcj20160753] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/23/2022]
Abstract
This review serves as an introduction to the variety of light-harvesting (LH) structures present in phototrophic prokaryotes. It provides an overview of the LH complexes of purple bacteria, green sulfur bacteria (GSB), acidobacteria, filamentous anoxygenic phototrophs (FAP), and cyanobacteria. Bacteria have adapted their LH systems for efficient operation under a multitude of different habitats and light qualities, performing both oxygenic (oxygen-evolving) and anoxygenic (non-oxygen-evolving) photosynthesis. For each LH system, emphasis is placed on the overall architecture of the pigment–protein complex, as well as any relevant information on energy transfer rates and pathways. This review addresses also some of the more recent findings in the field, such as the structure of the CsmA chlorosome baseplate and the whole-cell kinetics of energy transfer in GSB, while also pointing out some areas in need of further investigation.
Collapse
|
17
|
Białek R, Burdziński G, Jones MR, Gibasiewicz K. Bacteriopheophytin triplet state in Rhodobacter sphaeroides reaction centers. PHOTOSYNTHESIS RESEARCH 2016; 129:205-216. [PMID: 27368166 PMCID: PMC4935742 DOI: 10.1007/s11120-016-0290-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
It is well established that photoexcitation of Rhodobacter sphaeroides reaction centers (RC) with reduced quinone acceptors results in the formation of a triplet state localized on the primary electron donor P with a significant yield. The energy of this long-lived and therefore potentially damaging excited state is then efficiently quenched by energy transfer to the RC spheroidenone carotenoid, with its subsequent decay to the ground state by intersystem crossing. In this contribution, we present a detailed transient absorption study of triplet states in a set of mutated RCs characterized by different efficiencies of triplet formation that correlate with lifetimes of the initial charge-separated state P(+)H A (-) . On a microsecond time scale, two types of triplet state were detected: in addition to the well-known spheroidenone triplet state with a lifetime of ~4 μs, in some RCs we discovered a bacteriopheophytin triplet state with a lifetime of ~40 μs. As expected, the yield of the carotenoid triplet increased approximately linearly with the lifetime of P(+)H A (-) , reaching the value of 42 % for one of the mutants. However, surprisingly, the yield of the bacteriopheophytin triplet was the highest in RCs with the shortest P(+)H A (-) lifetime and the smallest yield of carotenoid triplet. For these the estimated yield of bacteriopheophytin triplet was comparable with the yield of the carotenoid triplet, reaching a value of ~7 %. Possible mechanisms of formation of the bacteriopheophytin triplet state are discussed.
Collapse
Affiliation(s)
- Rafał Białek
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Umultowska 85, 61-614, Poznan, Poland.
| | - Gotard Burdziński
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Umultowska 85, 61-614, Poznan, Poland
| | - Michael R Jones
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Krzysztof Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Umultowska 85, 61-614, Poznan, Poland
| |
Collapse
|
18
|
Sun C, Carey AM, Gao BR, Wraight CA, Woodbury NW, Lin S. Ultrafast Electron Transfer Kinetics in the LM Dimer of Bacterial Photosynthetic Reaction Center from Rhodobacter sphaeroides. J Phys Chem B 2016; 120:5395-404. [PMID: 27243380 DOI: 10.1021/acs.jpcb.6b05082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It has become increasingly clear that dynamics plays a major role in the function of many protein systems. One system that has proven particularly facile for studying the effects of dynamics on protein-mediated chemistry is the bacterial photosynthetic reaction center from Rhodobacter sphaeroides. Previous experimental and computational analysis have suggested that the dynamics of the protein matrix surrounding the primary quinone acceptor, QA, may be particularly important in electron transfer involving this cofactor. One can substantially increase the flexibility of this region by removing one of the reaction center subunits, the H-subunit. Even with this large change in structure, photoinduced electron transfer to the quinone still takes place. To evaluate the effect of H-subunit removal on electron transfer to QA, we have compared the kinetics of electron transfer and associated spectral evolution for the LM dimer with that of the intact reaction center complex on picosecond to millisecond time scales. The transient absorption spectra associated with all measured electron transfer reactions are similar, with the exception of a broadening in the QX transition and a blue-shift in the QY transition bands of the special pair of bacteriochlorophylls (P) in the LM dimer. The kinetics of the electron transfer reactions not involving quinones are unaffected. There is, however, a 4-fold decrease in the electron transfer rate from the reduced bacteriopheophytin to QA in the LM dimer compared to the intact reaction center and a similar decrease in the recombination rate of the resulting charge-separated state (P(+)QA(-)). These results are consistent with the concept that the removal of the H-subunit results in increased flexibility in the region around the quinone and an associated shift in the reorganization energy associated with charge separation and recombination.
Collapse
Affiliation(s)
- Chang Sun
- Department of Biochemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | - Bing-Rong Gao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Jilin, China 130012
| | - Colin A Wraight
- Department of Biochemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | |
Collapse
|
19
|
Kosumi D, Horibe T, Sugisaki M, Cogdell RJ, Hashimoto H. Photoprotection Mechanism of Light-Harvesting Antenna Complex from Purple Bacteria. J Phys Chem B 2016; 120:951-6. [PMID: 26800035 DOI: 10.1021/acs.jpcb.6b00121] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photosynthetic light-harvesting apparatus efficiently capture sunlight and transfer the energy to reaction centers, while they safely dissipate excess energy to surrounding environments for a protection of their organisms. In this study, we performed pump-probe spectroscopic measurements with a temporal window ranging from femtosecond to submillisecond on the purple bacterial antenna complex LH2 from Rhodobacter sphaeroides 2.4.1 to clarify its photoprotection functions. The observed excited state dynamics in the time range from subnanosecond to microsecond exhibits that the triplet-triplet excitation energy transfer from bacteriochlorophyll a to carotenoid takes place with a time constant of 16.7 ns. Furthermore, ultrafast spectroscopic data suggests that a molecular assembly of bacteriochlorophyll a in LH2 efficiently suppresses a generation of triple bacteriochlorophyll a.
Collapse
Affiliation(s)
- Daisuke Kosumi
- Institute of Pulsed Power Science, Kumamoto University , 2-39-1 Kurokami, Chuo-ku Kumamoto, 860-8555 Japan.,Department of Physics, Graduate School of Science and Technology, Kumamoto University , Chuo-ku Kumamoto, 860-8555 Japan
| | - Tomoko Horibe
- Department of Applied Chemistry for Environment, Faculty of Science and Technology, Kwansei Gakuin University , 2-1, Gakuen, Sanda, Hyogo 669-1337 Japan
| | - Mitsuru Sugisaki
- Department of Physics, Graduate School of Science, Osaka City University , 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585, Japan
| | - Richard J Cogdell
- Glasgow Biomedical Research Centre, University of Glasgow, 126 University Place , Glasgow, G12 8QQ, Scotland, U.K
| | - Hideki Hashimoto
- Department of Applied Chemistry for Environment, Faculty of Science and Technology, Kwansei Gakuin University , 2-1, Gakuen, Sanda, Hyogo 669-1337 Japan
| |
Collapse
|
20
|
Magdaong NM, LaFountain AM, Hacking K, Niedzwiedzki DM, Gibson GN, Cogdell RJ, Frank HA. Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum. PHOTOSYNTHESIS RESEARCH 2016; 127:171-187. [PMID: 26048106 DOI: 10.1007/s11120-015-0165-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Photosynthetic organisms produce a vast array of spectral forms of antenna pigment-protein complexes to harvest solar energy and also to adapt to growth under the variable environmental conditions of light intensity, temperature, and nutrient availability. This behavior is exemplified by Allochromatium (Alc.) vinosum, a photosynthetic purple sulfur bacterium that produces different types of LH2 light-harvesting complexes in response to variations in growth conditions. In the present work, three different spectral forms of LH2 from Alc. vinosum, B800-820, B800-840, and B800-850, were isolated, purified, and examined using steady-state absorption and fluorescence spectroscopy, and ultrafast time-resolved absorption spectroscopy. The pigment composition of the LH2 complexes was analyzed by high-performance liquid chromatography, and all were found to contain five carotenoids: lycopene, anhydrorhodovibrin, spirilloxanthin, rhodopin, and rhodovibrin. Spectral reconstructions of the absorption and fluorescence excitation spectra based on the pigment composition revealed significantly more spectral heterogeneity in these systems compared to LH2 complexes isolated from other species of purple bacteria. The data also revealed the individual carotenoid-to-bacteriochlorophyll energy transfer efficiencies which were correlated with the kinetic data from the ultrafast transient absorption spectroscopic experiments. This series of LH2 complexes allows a systematic exploration of the factors that determine the spectral properties of the bound pigments and control the rate and efficiency of carotenoid-to-bacteriochlorophyll energy transfer.
Collapse
Affiliation(s)
- Nikki M Magdaong
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT, 06269-3060, USA
| | - Amy M LaFountain
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT, 06269-3060, USA
| | - Kirsty Hacking
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, UK
| | - Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - George N Gibson
- Department of Physics, University of Connecticut, 2152 Hillside Road, Storrs, CT, 06269-3046, USA
| | - Richard J Cogdell
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, UK
| | - Harry A Frank
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT, 06269-3060, USA.
| |
Collapse
|
21
|
Leiger K, Freiberg A. Up-converted fluorescence from photosynthetic light-harvesting complexes linearly dependent on excitation intensity. PHOTOSYNTHESIS RESEARCH 2016; 127:77-87. [PMID: 25764015 DOI: 10.1007/s11120-015-0117-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
Weak up-converted fluorescence related to bacteriochlorophyll a was recorded from various detergent-isolated and membrane-embedded light-harvesting pigment-protein complexes as well as from the functional membranes of photosynthetic purple bacteria under continuous-wave infrared laser excitation at 1064 nm, far outside the optically allowed singlet absorption bands of the chromophore. The fluorescence increases linearly with the excitation power, distinguishing it from the previously observed two-photon excited fluorescence upon femtosecond pulse excitation. Possible mechanisms of this excitation are discussed.
Collapse
Affiliation(s)
- Kristjan Leiger
- Institute of Physics, University of Tartu, Ravila 14c, 51011, Tartu, Estonia.
| | - Arvi Freiberg
- Institute of Physics, University of Tartu, Ravila 14c, 51011, Tartu, Estonia.
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51014, Tartu, Estonia.
| |
Collapse
|
22
|
Schörner M, Beyer SR, Southall J, Cogdell RJ, Köhler J. Multi-Level, Multi Time-Scale Fluorescence Intermittency of Photosynthetic LH2 Complexes: A Precursor of Non-Photochemical Quenching? J Phys Chem B 2015; 119:13958-63. [PMID: 26419118 DOI: 10.1021/acs.jpcb.5b06979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The light harvesting complex LH2 is a chromoprotein that is an ideal system for studying protein dynamics via the spectral fluctuations of the emission of its intrinsic chromophores. We have immobilized these complexes in a polymer film and studied the fluctuations of the fluorescence intensity from individual complexes over 9 orders of magnitude in time. Combining time-tagged detection of single photons with a change-point analysis has allowed the unambigeous identification of the various intensity levels due to the huge statistical basis of the data set. We propose that the observed intensity level fluctuations reflect conformational changes of the protein backbone that might be a precursor of the mechanism from which nonphotochemical quenching of higher plants has evolved.
Collapse
Affiliation(s)
- Mario Schörner
- Experimental Physics IV and Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth , 95447 Bayreuth, Germany
| | - Sebastian Reinhardt Beyer
- Experimental Physics IV and Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth , 95447 Bayreuth, Germany
| | - June Southall
- Institute of Molecular, Cell & Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8QQ, United Kingdom
| | - Richard J Cogdell
- Institute of Molecular, Cell & Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8QQ, United Kingdom
| | - Jürgen Köhler
- Experimental Physics IV and Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth , 95447 Bayreuth, Germany
| |
Collapse
|
23
|
Beyer SR, Müller L, Southall J, Cogdell RJ, Ullmann GM, Köhler J. The open, the closed, and the empty: time-resolved fluorescence spectroscopy and computational analysis of RC-LH1 complexes from Rhodopseudomonas palustris. J Phys Chem B 2015; 119:1362-73. [PMID: 25526393 DOI: 10.1021/jp510822k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We studied the time-resolved fluorescence of isolated RC-LH1 complexes from Rhodopseudomonas palustris as a function of the photon fluence and the repetition rate of the excitation laser. Both parameters were varied systematically over 3 orders of magnitude. On the basis of a microstate description we developed a quantitative model for RC-LH1 and obtained very good agreement between experiments and elaborate simulations based on a global master equation approach. The model allows us to predict the relative population of RC-LH1 complexes with the special pair in the neutral state or in the oxidized state P(+) and those complexes that lack a reaction center.
Collapse
Affiliation(s)
- Sebastian R Beyer
- Experimental Physics IV and Bayreuther Institut für Makromolekülforschung (BIMF), University of Bayreuth , 95440 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Kressel L, Faries KM, Wander MJ, Zogzas CE, Mejdrich RJ, Hanson DK, Holten D, Laible PD, Kirmaier C. High yield of secondary B-side electron transfer in mutant Rhodobacter capsulatus reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1892-1903. [DOI: 10.1016/j.bbabio.2014.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/22/2014] [Accepted: 07/26/2014] [Indexed: 10/25/2022]
|
25
|
Niederman RA. Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension. PHOTOSYNTHESIS RESEARCH 2013; 116:333-348. [PMID: 23708977 DOI: 10.1007/s11120-013-9851-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/08/2013] [Indexed: 06/02/2023]
Abstract
Studies on membrane development in purple bacteria during adaptation to alterations in light intensity and oxygen tension are reviewed. Anoxygenic phototrophic such as the purple α-proteobacterium Rhodobacter sphaeroides have served as simple, dynamic, and experimentally accessible model organisms for studies of the photosynthetic apparatus. A major landmark in photosynthesis research, which dramatically illustrates this point, was provided by the determination of the X-ray structure of the reaction center (RC) in Blastochloris viridis (Deisenhofer and Michel, EMBO J 8:2149-2170, 1989), once it was realized that this represented the general structure for the photosystem II RC present in all oxygenic phototrophs. This seminal advance, together with a considerable body of subsequent research on the light-harvesting (LH) and electron transfer components of the photosynthetic apparatus has provided a firm basis for the current understanding of how phototrophs acclimate to alterations in light intensity and quality. Oxygenic phototrophs adapt to these changes by extensive thylakoid membrane remodeling, which results in a dramatic supramolecular reordering to assure that an appropriate flow of quinone redox species occurs within the membrane bilayer for efficient and rapid electron transfer. Despite the high level of photosynthetic unit organization in Rba. sphaeroides as observed by atomic force microscopy (AFM), fluorescence induction/relaxation measurements have demonstrated that the addition of the peripheral LH2 antenna complex in cells adapting to low-intensity illumination results in a slowing of the rate of electron transfer turnover by the RC of up to an order of magnitude. This is ascribed to constraints in quinone redox species diffusion between the RC and cytochrome bc1 complexes arising from the increased packing density as the intracytoplasmic membrane (ICM) bilayer becomes crowded with LH2 rings. In addition to downshifts in light intensity as a paradigm for membrane development studies in Rba. sphaeroides, the lowering of oxygen tension in chemoheterotropically growing cells results in a gratuitous formation of the ICM by an extensive membrane biogenesis process. These membrane alterations in response to lowered illumination and oxygen levels in purple bacteria are under the control of a number of interrelated two-component regulatory circuits reviewed here, which act at the transcriptional level to regulate the formation of both the pigment and apoprotein components of the LH, RC, and respiratory complexes. We have performed a proteomic examination of the ICM development process in which membrane proteins have been identified that are temporally expressed both during adaptation to low light intensity and ICM formation at low aeration and are spatially localized in both growing and mature ICM regions. For these proteomic analyses, membrane growth initiation sites and mature ICM vesicles were isolated as respective upper-pigmented band (UPB) and chromatophore fractions and subjected to clear native electrophoresis for isolation of bands containing the LH2 and RC-LH1 core complexes. In chromatophores, increasing levels of LH2 polypeptides relative to those of the RC-LH1 complex were observed as ICM membrane development proceeded during light-intensity downshifts, along with a large array of other associated proteins including high spectral counts for the F1FO-ATP synthase subunits and the cytochrome bc1 complex, as well as RSP6124, a protein of unknown function, that was correlated with increasing LH2 spectral counts. In contrast, the UPB was enriched in cytoplasmic membrane (CM) markers, including electron transfer and transport proteins, as well as general membrane protein assembly factors confirming the origin of the UPB from both peripheral respiratory membrane and sites of active CM invagination that give rise to the ICM. The changes in ICM vesicles were correlated to AFM mapping results (Adams and Hunter, Biochim Biophys Acta 1817:1616-1627, 2012), in which the increasing LH2 levels were shown to form densely packed LH2-only domains, representing the light-responsive antenna complement formed under low illumination. The advances described here could never have been envisioned when the author was first introduced in the mid-1960s to the intricacies of the photosynthetic apparatus during a lecture delivered in a graduate Biochemistry course at the University of Illinois by Govindjee, to whom this volume is dedicated on the occasion of his 80th birthday.
Collapse
Affiliation(s)
- Robert A Niederman
- Department of Molecular Biology and Biochemistry, Rutgers University, 604 Allison Road, Nelson Biological Laboratories, Piscataway, NJ, 08854-8082, USA,
| |
Collapse
|
26
|
Kosumi D, Maruta S, Horibe T, Nagaoka Y, Fujii R, Sugisaki M, Cogdell RJ, Hashimoto H. Ultrafast excited state dynamics of spirilloxanthin in solution and bound to core antenna complexes: Identification of the S* and T1 states. J Chem Phys 2012; 137:064505. [DOI: 10.1063/1.4737129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Gall A, Berera R, Alexandre MTA, Pascal AA, Bordes L, Mendes-Pinto MM, Andrianambinintsoa S, Stoitchkova KV, Marin A, Valkunas L, Horton P, Kennis JTM, van Grondelle R, Ruban A, Robert B. Molecular adaptation of photoprotection: triplet states in light-harvesting proteins. Biophys J 2011; 101:934-42. [PMID: 21843485 DOI: 10.1016/j.bpj.2011.05.057] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 10/17/2022] Open
Abstract
The photosynthetic light-harvesting systems of purple bacteria and plants both utilize specific carotenoids as quenchers of the harmful (bacterio)chlorophyll triplet states via triplet-triplet energy transfer. Here, we explore how the binding of carotenoids to the different types of light-harvesting proteins found in plants and purple bacteria provides adaptation in this vital photoprotective function. We show that the creation of the carotenoid triplet states in the light-harvesting complexes may occur without detectable conformational changes, in contrast to that found for carotenoids in solution. However, in plant light-harvesting complexes, the triplet wavefunction is shared between the carotenoids and their adjacent chlorophylls. This is not observed for the antenna proteins of purple bacteria, where the triplet is virtually fully located on the carotenoid molecule. These results explain the faster triplet-triplet transfer times in plant light-harvesting complexes. We show that this molecular mechanism, which spreads the location of the triplet wavefunction through the pigments of plant light-harvesting complexes, results in the absence of any detectable chlorophyll triplet in these complexes upon excitation, and we propose that it emerged as a photoprotective adaptation during the evolution of oxygenic photosynthesis.
Collapse
Affiliation(s)
- Andrew Gall
- CEA, Institute of Biology and Technology of Saclay, Gif sur Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Singlet molecular oxygen and primary mechanisms of photo-oxidative damage of chloroplasts. Studies based on detection of oxygen and pigment phosphorescence. ACTA ACUST UNITED AC 2011. [DOI: 10.1017/s0269727000014147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SynopsisPhotogeneration of singlet oxygen molecules (1O2), their vibrationally excited stateand dimols (1O2)2has been shown by measuring photosensitised delayed luminescence in pigment-containing media. All singlet oxygen species are formed as a result of energy transfer to O2from triplet pigment molecules. Monomeric pigment molecules are the most efficient singlet oxygen generators. The1O2quantum yields are 40–80% in aerobic solutions of monomeric chlorophylls and pheophytins. Pigment aggregation causes a strong decrease in singlet oxygen production. The1O2quantum yield in chloroplasts has been estimated using literature and experimental data on formation of the chlorophyll triplet states in the photosynthetic apparatus. The most probable value is 0.1%. One of the major sources of singlet oxygen is likely to be the triplet states of newly formed pigment molecules which are not quenched by carotenoids and can be detected by measuring low-temperature pigment phosphorescence. Quenching of singlet oxygen by the thylakoid components has been analysed and the1O2lifetime estimated. The data suggest that carotenoids and chlorophylls are the most efficient physical1O2quenchers and the1O2lifetime is about 70 ns in thylakoids. The quantum yield of1O2-induced pigment photodestruction was estimated to be about 10−6–10−5. This value is close to the quantum yield of chlorophyll photobleaching experimentally observed in aerobic suspensions of isolated chloroplasts. The intensity of pigment phosphorescence at 77 K correlates with the rate of chlorophyll photobleaching in plant materials. The data suggest that1O2generation by the pigment triplet states is the most likely reason for chloroplast photodamage. The intensity of pigment phosphorescence can be used as an index of the degree of plant photo-oxidative stress.
Collapse
|
29
|
Pflock TJ, Oellerich S, Southall J, Cogdell RJ, Ullmann GM, Köhler J. The Electronically Excited States of LH2 Complexes from Rhodopseudomonas acidophila Strain 10050 Studied by Time-Resolved Spectroscopy and Dynamic Monte Carlo Simulations. I. Isolated, Non-Interacting LH2 Complexes. J Phys Chem B 2011; 115:8813-20. [DOI: 10.1021/jp202353c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tobias J. Pflock
- Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Silke Oellerich
- Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| | - June Southall
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Biomedical Research Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Richard J. Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Biomedical Research Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - G. Matthias Ullmann
- Computational Biochemistry/Bioinformatics, University of Bayreuth, D-95440 Bayreuth
| | - Jürgen Köhler
- Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
30
|
Pflock TJ, Oellerich S, Krapf L, Southall J, Cogdell RJ, Ullmann GM, Köhler J. The Electronically Excited States of LH2 Complexes from Rhodopseudomonas acidophila Strain 10050 Studied by Time-Resolved Spectroscopy and Dynamic Monte Carlo Simulations. II. Homo-Arrays Of LH2 Complexes Reconstituted Into Phospholipid Model Membranes. J Phys Chem B 2011; 115:8821-31. [DOI: 10.1021/jp2023583] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tobias J. Pflock
- Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Silke Oellerich
- Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Lisa Krapf
- Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| | - June Southall
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Biomedical Research Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Richard J. Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Biomedical Research Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - G. Matthias Ullmann
- Computational Biochemistry/Bioinformatics, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Jürgen Köhler
- Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
31
|
You ZQ, Hsu CP. Ab inito study on triplet excitation energy transfer in photosynthetic light-harvesting complexes. J Phys Chem A 2011; 115:4092-100. [PMID: 21410281 DOI: 10.1021/jp200200x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the triplet energy transfer (TET) for photosynthetic light-harvesting complexes, the bacterial light-harvesting complex II (LH2) of Rhodospirillum molischianum and Rhodopseudomonas acidophila, and the peridinin-chlorophyll a protein (PCP) from Amphidinium carterae. The electronic coupling factor was calculated with the recently developed fragment spin difference scheme (You and Hsu, J. Chem. Phys. 2010, 133, 074105), which is a general computational scheme that yields the overall coupling under the Hamiltonian employed. The TET rates were estimated based on the couplings obtained. For all light-harvesting complexes studied, there exist nanosecond triplet energy transfer from the chlorophylls to the carotenoids. This result supports a direct triplet quenching mechanism for the photoprotection function of carotenoids. The TET rates are similar for a broad range of carotenoid triplet state energy, which implies a general and robust TET quenching role for carotenoids in photosynthesis. This result is also consistent with the weak dependence of TET kinetics on the type or the number of π conjugation lengths in the carotenoids and their analogues reported in the literature. We have also explored the possibility of forming triplet excitons in these complexes. In B850 of LH2 or the peridinin cluster in PCP, it is unlikely to have triplet exciton since the energy differences of any two neighboring molecules are likely to be much larger than their TET couplings. Our results provide theoretical limits to the possible photophysics in the light-harvesting complexes.
Collapse
Affiliation(s)
- Zhi-Qiang You
- Taiwan International Graduate Program, Academia Sinica, 128 Section 2 Academia Road, Nankang, Taipei 11529, Taiwan
| | | |
Collapse
|
32
|
Arellano JB, Melø TB, Fyfe PK, Cogdell RJ, Naqvi KR. Multichannel Flash Spectroscopy of the Reaction Centers of Wild-type and Mutant Rhodobacter sphaeroides: BacteriochlorophyllB-mediated Interaction Between the Carotenoid Triplet and the Special Pair¶†. Photochem Photobiol 2011. [DOI: 10.1111/j.1751-1097.2004.tb09859.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Unusual enhancement of triplet carotenoid formation in pigmentprotein complexes as revealed by femtosecond pump-probe spectroscopy. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.phpro.2011.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Campillo AJ, Hyer RC, Monger TG, Parson WW, Shapiro SL. Light collection and harvesting processes in bacterial photosynthesis investigated on a picosecond time scale. Proc Natl Acad Sci U S A 2010; 74:1997-2001. [PMID: 16592397 PMCID: PMC431060 DOI: 10.1073/pnas.74.5.1997] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fluorescence lifetimes have been determined for four strains of Rhodopseudomonas sphaeroides. Chromatophore samples were excited with a single picosecond flash, and the fluorescence was detected with a streak camera. The decay times are 100 psec in strains 2.4.1 and Ga, and 300 psec in the carotenoidless strain R-26. These times are related to the transfer of energy from the light-harvesting antenna pigment molecules to the photochemical reaction center. In strain PM-8 dpl, which lacks reaction centers, the lifetime is 1.1 nsec. In addition, we have obtained curves relating the quantum yield of fluorescence to the photon density of the excitation pulse. These curves can be fit with a simple model that relates excitonic processes to properties of the photosynthetic unit and that qualitatively describes differences between the mutant strains.
Collapse
Affiliation(s)
- A J Campillo
- University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, 87545
| | | | | | | | | |
Collapse
|
35
|
Amarie S, Lupo D, Lenz MO, Saegesser R, Ghosh R, Wachtveitl J. Excitation energy pathways in the photosynthetic units of reaction center LM- and H-subunit deletion mutants of Rhodospirillum rubrum. PHOTOSYNTHESIS RESEARCH 2010; 103:141-151. [PMID: 20099080 DOI: 10.1007/s11120-009-9520-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 12/17/2009] [Indexed: 05/28/2023]
Abstract
Light-induced reaction dynamics of isolated photosynthetic membranes obtained from wild-type (WT) and reaction center (RC)-subunit deletion strains SPUHK1 (an H-subunit deletion mutant) and SK Delta LM (an (L+M) deletion mutant) of the purple non-sulphur bacterium Rhodospirillum rubrum have been investigated by femtosecond transient absorption spectroscopy. Upon excitation of the spirilloxanthin (Spx) S(2) state at 546 nm, of the bacteriochlorophyll Soret band at 388 nm and probing spectral regions, which are characteristic for carotenoids, similar dynamics in the SPUHK1, SK Delta LM and WT strains could be observed. The excitation of Spx S(2) is followed by the simultaneous population of the lower singlet excited states S(1) and S* which decay with lifetimes of 1.4 and 5 ps, respectively for the mutants, and 1.4 and 4 ps, respectively, for the wild-type. The excitation of the BChl Soret band is followed by relaxation into BChl lower excited states which compete with excitation energy transfer BChl-to-Spx. The deexcitation pathway BChl(Soret) --> Spx(S(2)) --> Spx(S(1)) occurs with the same transition rate for all investigated samples (WT, SPUHK1 and SK Delta LM). The kinetic traces measured for the Spx S(1) --> S(N) transition display similar behaviour for all samples showing a positive signal which increases within the first 400 fs (i.e. the time needed for the excitation energy to reach the Spx S(1) excited state) and decays with a lifetime of about 1.5 ps. This suggests that the Spx excited state dynamics in the investigated complexes do not differ significantly. Moreover, a longer excited state lifetime of BChl for SPUHK1 in comparison to WT was observed, consistent with a photochemical quenching channel present in the presence of RC. For long delay times, photobleaching of the RC special pair and an electrochromic blue shift of the monomeric BChl a can be observed only for the WT but not for the mutants. The close similarity of the excited state decay processes of all strains indicates that the pigment geometry of the LH1 complex in native membranes is unaffected by the presence of an RC and allows us to draw a model representation of the WT, SK Delta LM and SPUHK1 PSU complexes.
Collapse
Affiliation(s)
- Sergiu Amarie
- Institute for Physical and Theoretical Chemistry, Institute of Biophysics, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, Building N120/224, 60438, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Marchanka A, Paddock M, Lubitz W, van Gastel M. Low-temperature pulsed EPR study at 34 GHz of the triplet states of the primary electron Donor P865 and the carotenoid in native and mutant bacterial reaction centers of Rhodobacter sphaeroides. Biochemistry 2007; 46:14782-94. [PMID: 18052205 DOI: 10.1021/bi701593r] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photosynthetic charge separation in bacterial reaction centers occurs predominantly along one of two nearly symmetric branches of cofactors. Low-temperature EPR spectra of the triplet states of the chlorophyll and carotenoid pigments in the reaction center of Rhodobacter sphaeroides R-26.1, 2.4.1 and two double-mutants GD(M203)/AW(M260) and LH(M214)/AW(M260) have been recorded at 34 GHz to investigate the relative activities of the "A" and "B" branches. The triplet states are found to derive from radical pair and intersystem crossing mechanisms, and the rates of formation are anisotropic. The former mechanism is operative for Rb. sphaeroides R-26.1, 2.4.1, and mutant GD(M203)/AW(M260) and indicates that A-branch charge separation proceeds at temperatures down to 10 K. The latter mechanism, derived from the spin polarization and operative for mutant LH(M214)/AW(M260), indicates that no long-lived radical pairs are formed upon direct excitation of the primary donor and that virtually no charge separation at the B-branch occurs at low temperatures. When the temperature is raised above 30 K, B-branch charge separation is observed, which is at most 1% of A-branch charge separation. B-branch radical pair formation can be induced at 10 K with low yield by direct excitation of the bacteriopheophytin of the B-branch at 590 nm. The formation of a carotenoid triplet state is observed. The rate of formation depends on the orientation of the reaction center in the magnetic field and is caused by a magnetic field dependence of the oscillation frequency by which the singlet and triplet radical pair precursor states interchange. Combination of these findings with literature data provides strong evidence that the thermally activated transfer step on the B-branch occurs between the primary donor, P865, and the accessory bacteriochlorophyll, whereas this step is barrierless down to 10 K along the A-branch.
Collapse
Affiliation(s)
- Aliaksandr Marchanka
- Max-Planck-Institut für Bioanorganische Chemie, P.O. Box 101365, D-45413 Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
37
|
|
38
|
Alric J. In vivo carotenoid triplet formation in response to excess light: a supramolecular photoprotection mechanism revisited. PHOTOSYNTHESIS RESEARCH 2005; 83:335-41. [PMID: 16143923 DOI: 10.1007/s11120-005-1105-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 01/25/2005] [Indexed: 05/04/2023]
Abstract
Carotenoids have been known for their photoprotective role for about 50 years. However, despite many advances in laser flash photolysis, no photodynamic studies have been so far performed on whole cells to determine the harmful threshold of light. In the present work, we investigate the coupling between energy conversion and energy deactivation, in isolated complexes of RC-LH1 and LH2 increasingly integrated systems up to intact cells of the purple anaerobic photosynthetic bacterium Rubrivivax gelatinosus. A continuous light similar to the mean daily sun irradiance on the surface of the earth is found to saturate the in vivo electron transfer turnover and to give rise to carotenoid triplet formation. This accounts for the widespread use of carotenoids among phototrophic prokaryotes and emphasizes their essential protective role in the natural environment.
Collapse
Affiliation(s)
- Jean Alric
- Laboratoire de Génétique et Biophysique des Plantes, UMR, 6191 CNRS-CEA-Aix-Marseille II, France.
| |
Collapse
|
39
|
Rutkauskas D, Novoderezhkin V, Cogdell RJ, van Grondelle R. Fluorescence spectroscopy of conformational changes of single LH2 complexes. Biophys J 2004; 88:422-35. [PMID: 15501944 PMCID: PMC1305019 DOI: 10.1529/biophysj.104.048629] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have investigated the energy landscape of the bacterial photosynthetic peripheral light-harvesting complex LH2 of purple bacterium Rhodopseudomonas acidophila by monitoring sequences of fluorescence spectra of single LH2 assemblies, at room temperature, with different excitation intensities as well as at elevated temperatures, utilizing a confocal microscope. The fluorescence peak wavelength of individual LH2 complexes was found to abruptly move between long-lived quasi-stable levels differing by up to 30 nm. The frequency and size of these fluorescence peak movements were found to increase linearly with the excitation intensity. These spectral shifts either to the blue or to the red were accompanied by a broadening and decrease of the intensity of the fluorescence spectrum. The probability for a particle to undergo significant spectral shift in either direction was found to be roughly the same. Using the modified Redfield theory, the observed changes in spectral shape and intensity were accounted for by changes in the realization of the static disorder. Long lifetimes of the quasi-stable states suggest large energetic barriers between the states characterized by different emission spectra.
Collapse
Affiliation(s)
- Danielis Rutkauskas
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
40
|
Arellano JB, Melø TB, Fyfe PK, Cogdell RJ, Naqvi KR. Multichannel Flash Spectroscopy of the Reaction Centers of Wild-type and Mutant Rhodobacter sphaeroides: BacteriochlorophyllB-mediated Interaction Between the Carotenoid Triplet and the Special Pair†¶. Photochem Photobiol 2004. [DOI: 10.1562/0031-8655(2004)79<68:mfsotr>2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Borovykh IV, Klenina IB, Proskuryakov II, Gast P, Hoff AJ. Magnetophotoselection Study of the Carotenoid Triplet State in Rhodobacter sphaeroides Reaction Centers. J Phys Chem B 2002. [DOI: 10.1021/jp0125810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Igor V. Borovykh
- Department of Biophysics, Huygens Laboratory, P.O. Box 9504, 2300 RA Leiden, The Netherlands and Institute of Basic Biological Problems RAS, Pushchino, 142290, Russia
| | - Irina B. Klenina
- Department of Biophysics, Huygens Laboratory, P.O. Box 9504, 2300 RA Leiden, The Netherlands and Institute of Basic Biological Problems RAS, Pushchino, 142290, Russia
| | - Ivan I. Proskuryakov
- Department of Biophysics, Huygens Laboratory, P.O. Box 9504, 2300 RA Leiden, The Netherlands and Institute of Basic Biological Problems RAS, Pushchino, 142290, Russia
| | - Peter Gast
- Department of Biophysics, Huygens Laboratory, P.O. Box 9504, 2300 RA Leiden, The Netherlands and Institute of Basic Biological Problems RAS, Pushchino, 142290, Russia
| | - Arnold J. Hoff
- Department of Biophysics, Huygens Laboratory, P.O. Box 9504, 2300 RA Leiden, The Netherlands and Institute of Basic Biological Problems RAS, Pushchino, 142290, Russia
| |
Collapse
|
42
|
Mukai-Kuroda Y, Fujii R, Ko-chi N, Sashima T, Koyama Y, Abe M, Gebhard R, van der Hoef I, Lugtenburg J. Changes in Molecular Structure upon Triplet Excitation of All-trans-Spheroidene in n-Hexane Solution and 15-cis-Spheroidene Bound to the Photo-Reaction Center from Rhodobacter sphaeroides As Revealed by Resonance-Raman Spectroscopy and Normal-Coordinate Analysis. J Phys Chem A 2002. [DOI: 10.1021/jp0130822] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | - Motoko Abe
- Department of Domestic Science, Shoin Women's College, Obanoyama-cho, Shinohara, Nadaku, Kobe 657-0015, Japan
| | | | | | | |
Collapse
|
43
|
Fujii R, Furuichi K, Zhang JP, Nagae H, Hashimoto H, Koyama Y. Cis-to-trans Isomerization of Spheroidene in the Triplet State as Detected by Time-Resolved Absorption Spectroscopy. J Phys Chem A 2002. [DOI: 10.1021/jp011309n] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ritsuko Fujii
- Faculty of Science, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan, Kobe City University of Foreign Studies, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2187, Japan, and Department of Materials Science and Chemical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Hamamatsu 432-8561, Japan
| | - Kentaro Furuichi
- Faculty of Science, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan, Kobe City University of Foreign Studies, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2187, Japan, and Department of Materials Science and Chemical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Hamamatsu 432-8561, Japan
| | - Jian-Ping Zhang
- Faculty of Science, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan, Kobe City University of Foreign Studies, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2187, Japan, and Department of Materials Science and Chemical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Hamamatsu 432-8561, Japan
| | - Hiroyoshi Nagae
- Faculty of Science, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan, Kobe City University of Foreign Studies, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2187, Japan, and Department of Materials Science and Chemical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Hamamatsu 432-8561, Japan
| | - Hideki Hashimoto
- Faculty of Science, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan, Kobe City University of Foreign Studies, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2187, Japan, and Department of Materials Science and Chemical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Hamamatsu 432-8561, Japan
| | - Yasushi Koyama
- Faculty of Science, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan, Kobe City University of Foreign Studies, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2187, Japan, and Department of Materials Science and Chemical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Hamamatsu 432-8561, Japan
| |
Collapse
|
44
|
Klimov V, Ke B, Dolan E. Effect of photoreduction of the photosystem-II intermediary electron acceptor (pheophytin) on triplet state of carotenoids. FEBS Lett 2001. [DOI: 10.1016/0014-5793(80)81232-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
|
46
|
Bittl R, Schlodder E, Geisenheimer I, Lubitz W, Cogdell RJ. Transient EPR and Absorption Studies of Carotenoid Triplet Formation in Purple Bacterial Antenna Complexes. J Phys Chem B 2001. [DOI: 10.1021/jp0033014] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert Bittl
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany, and Divison of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Eberhard Schlodder
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany, and Divison of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Irene Geisenheimer
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany, and Divison of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Wolfgang Lubitz
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany, and Divison of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Richard J. Cogdell
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany, and Divison of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
47
|
Gradinaru CC, Kennis JT, Papagiannakis E, van Stokkum IH, Cogdell RJ, Fleming GR, Niederman RA, van Grondelle R. An unusual pathway of excitation energy deactivation in carotenoids: singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc Natl Acad Sci U S A 2001; 98:2364-9. [PMID: 11226245 PMCID: PMC30144 DOI: 10.1073/pnas.051501298] [Citation(s) in RCA: 279] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2000] [Indexed: 11/18/2022] Open
Abstract
Carotenoids are important biomolecules that are ubiquitous in nature and find widespread application in medicine. In photosynthesis, they have a large role in light harvesting (LH) and photoprotection. They exert their LH function by donating their excited singlet state to nearby (bacterio)chlorophyll molecules. In photosynthetic bacteria, the efficiency of this energy transfer process can be as low as 30%. Here, we present evidence that an unusual pathway of excited state relaxation in carotenoids underlies this poor LH function, by which carotenoid triplet states are generated directly from carotenoid singlet states. This pathway, operative on a femtosecond and picosecond timescale, involves an intermediate state, which we identify as a new, hitherto uncharacterized carotenoid singlet excited state. In LH complex-bound carotenoids, this state is the precursor on the reaction pathway to the triplet state, whereas in extracted carotenoids in solution, this state returns to the singlet ground state without forming any triplets. We discuss the possible identity of this excited state and argue that fission of the singlet state into a pair of triplet states on individual carotenoid molecules constitutes the mechanism by which the triplets are generated. This is, to our knowledge, the first ever direct observation of a singlet-to-triplet conversion process on an ultrafast timescale in a photosynthetic antenna.
Collapse
Affiliation(s)
- C C Gradinaru
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang JP, Inaba T, Watanabe Y, Koyama Y. Sub-picosecond time-resolved absorption spectroscopy of all-trans-neurosporene in solution and bound to the LH2 complex from Rhodobacter sphaeroides G1C. Chem Phys Lett 2000. [DOI: 10.1016/s0009-2614(00)01165-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Cogdell RJ, Howard TD, Bittl R, Schlodder E, Geisenheimer I, Lubitz W. How carotenoids protect bacterial photosynthesis. Philos Trans R Soc Lond B Biol Sci 2000; 355:1345-9. [PMID: 11127989 PMCID: PMC1692869 DOI: 10.1098/rstb.2000.0696] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The essential function of carotenoids in photosynthesis is to act as photoprotective agents, preventing chlorophylls and bacteriochlorophylls from sensitizing harmful photodestructive reactions in the presence of oxygen. Based upon recent structural studies on reaction centres and antenna complexes from purple photosynthetic bacteria, the detailed organization of the carotenoids is described. Then with specific reference to bacterial antenna complexes the details of the photoprotective role, triplet triplet energy transfer, are presented.
Collapse
Affiliation(s)
- R J Cogdell
- Division of Biochemistry and Molecular Biology, IBLS, University of Glasgow, UK.
| | | | | | | | | | | |
Collapse
|
50
|
Bernhardt K, Trissl H. Escape probability and trapping mechanism in purple bacteria: revisited. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1457:1-17. [PMID: 10692545 DOI: 10.1016/s0005-2728(99)00103-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite intensive research for decades, the trapping mechanism in the core complex of purple bacteria is still under discussion. In this article, it is attempted to derive a conceptionally simple model that is consistent with all basic experimental observations and that allows definite conclusions on the trapping mechanism. Some experimental data reported in the literature are conflicting or incomplete. Therefore we repeated two already published experiments like the time-resolved fluorescence decay in LH1-only purple bacteria Rhodospirillum rubrum and Rhodopseudomonas viridis chromatophores with open and closed (Q(A)(-)) reaction centers. Furthermore, we measured fluorescence excitation spectra for both species under the two redox-conditions. These data, all measured at room temperature, were analyzed by a target analysis based on a three-state model (antenna, primary donor, and radical pair). All states were allowed to react reversibly and their decay channels were taken into consideration. This leads to seven rate constants to be determined. It turns out that a unique set of numerical values of these rate constants can be found, when further experimental constraints are met simultaneously, i.e. the ratio of the fluorescence yields in the open and closed (Q(A)(-)) states F(m)/F(o) approximately 2 and the P(+)H(-)-recombination kinetics of 3-6 ns. The model allows to define and to quantify escape probabilities and the transfer equilibrium. We conclude that trapping in LH1-only purple bacteria is largely transfer-to-the-trap-limited. Furthermore, the model predicts properties of the reaction center (RC) in its native LH1-environment. Within the framework of our model, the predicted P(+)H(-)-recombination kinetics are nearly indistinguishable for a hypothetically isolated RC and an antenna-RC complex, which is in contrast to published experimental data for physically isolated RCs. Therefore RC preparations may display modified kinetic properties.
Collapse
Affiliation(s)
- K Bernhardt
- Abteilung Biophysik, Fachbereich Biologie/Chemie, University of Osnabrück, Barbarastr. 11, D-49069, Osnabrück, Germany
| | | |
Collapse
|