1
|
Cazzaniga S, Kim M, Pivato M, Perozeni F, Sardar S, D'Andrea C, Jin E, Ballottari M. Photosystem II monomeric antenna CP26 plays a key role in nonphotochemical quenching in Chlamydomonas. PLANT PHYSIOLOGY 2023; 193:1365-1380. [PMID: 37403662 DOI: 10.1093/plphys/kiad391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023]
Abstract
Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic photosynthetic organisms. Here, we investigated the function of the monomeric photosystem II (PSII) antenna protein CP26 in photoprotection and light harvesting in Chlamydomonas reinhardtii, a model organism for green algae. We used CRISPR/Cas9 genome editing and complementation to generate cp26 knockout mutants (named k6#) that did not negatively affect CP29 accumulation, which differed from previous cp26 mutants, allowing us to compare mutants specifically deprived of CP26, CP29, or both. The absence of CP26 partially affected PSII activity, causing reduced growth at low or medium light but not at high irradiances. However, the main phenotype observed in k6# mutants was a more than 70% reduction of NPQ compared to the wild type (Wt). This phenotype was fully rescued by genetic complementation and complemented strains accumulating different levels of CP26, demonstrating that ∼50% of CP26 content, compared to the Wt, was sufficient to restore the NPQ capacity. Our findings demonstrate a pivotal role for CP26 in NPQ induction, while CP29 is crucial for PSII activity. The genetic engineering of these 2 proteins could be a promising strategy to regulate the photosynthetic efficiency of microalgae under different light regimes.
Collapse
Affiliation(s)
- Stefano Cazzaniga
- Dipartimento di Biotecnologie, Università di Verona, Verona 37134, Italy
| | - Minjae Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Matteo Pivato
- Dipartimento di Biotecnologie, Università di Verona, Verona 37134, Italy
| | - Federico Perozeni
- Dipartimento di Biotecnologie, Università di Verona, Verona 37134, Italy
| | - Samim Sardar
- Istituto Italiano di Tecnologia, Center for Nano Science and Technology, Milano 20134, Italy
| | - Cosimo D'Andrea
- Istituto Italiano di Tecnologia, Center for Nano Science and Technology, Milano 20134, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milano 20133, Italy
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università di Verona, Verona 37134, Italy
| |
Collapse
|
2
|
Virtanen O, Tyystjärvi E. Plastoquinone pool redox state and control of state transitions in Chlamydomonas reinhardtii in darkness and under illumination. PHOTOSYNTHESIS RESEARCH 2023; 155:59-76. [PMID: 36282464 PMCID: PMC9792418 DOI: 10.1007/s11120-022-00970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Movement of LHCII between two photosystems has been assumed to be similarly controlled by the redox state of the plastoquinone pool (PQ-pool) in plants and green algae. Here we show that the redox state of the PQ-pool of Chlamydomonas reinhardtii can be determined with HPLC and use this method to compare the light state in C. reinhardtii with the PQ-pool redox state in a number of conditions. The PQ-pool was at least moderately reduced under illumination with all tested types of visible light and oxidation was achieved only with aerobic dark treatment or with far-red light. Although dark incubations and white light forms with spectral distribution favoring one photosystem affected the redox state of PQ-pool differently, they induced similar Stt7-dependent state transitions. Thus, under illumination the dynamics of the PQ-pool and its connection with light state appears more complicated in C. reinhardtii than in plants. We suggest this to stem from the larger number of LHC-units and from less different absorption profiles of the photosystems in C. reinhardtii than in plants. The data demonstrate that the two different control mechanisms required to fulfill the dual function of state transitions in C. reinhardtii in photoprotection and in balancing light utilization are activated via different means.
Collapse
Affiliation(s)
- Olli Virtanen
- Department of Life Technologies/Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Esa Tyystjärvi
- Department of Life Technologies/Molecular Plant Biology, University of Turku, 20014, Turku, Finland.
| |
Collapse
|
3
|
Cazzaniga S, Perozeni F, Baier T, Ballottari M. Engineering astaxanthin accumulation reduces photoinhibition and increases biomass productivity under high light in Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:77. [PMID: 35820961 PMCID: PMC9277849 DOI: 10.1186/s13068-022-02173-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022]
Abstract
Background Astaxanthin is a highly valuable ketocarotenoid with strong antioxidative activity and is natively accumulated upon environmental stress exposure in selected microorganisms. Green microalgae are photosynthetic, unicellular organisms cultivated in artificial systems to produce biomass and industrially relevant bioproducts. While light is required for photosynthesis, fueling carbon fixation processes, application of high irradiance causes photoinhibition and limits biomass productivity. Results Here, we demonstrate that engineered astaxanthin accumulation in the green alga Chlamydomonas reinhardtii conferred high light tolerance, reduced photoinhibition and improved biomass productivity at high irradiances, likely due to strong antioxidant properties of constitutively accumulating astaxanthin. In competitive co-cultivation experiments, astaxanthin-rich Chlamydomonas reinhardtii outcompeted its corresponding parental background strain and even the fast-growing green alga Chlorella vulgaris. Conclusions Metabolic engineering inducing astaxanthin and ketocarotenoids accumulation caused improved high light tolerance and increased biomass productivity in the model species for microalgae Chlamydomonas reinhardtii. Thus, engineering microalgal pigment composition represents a powerful strategy to improve biomass productivities in customized photobioreactors setups. Moreover, engineered astaxanthin accumulation in selected strains could be proposed as a novel strategy to outperform growth of other competing microalgal strains. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02173-3.
Collapse
|
4
|
Ueno Y, Shimakawa G, Aikawa S, Miyake C, Akimoto S. Photoprotection mechanisms under different CO 2 regimes during photosynthesis in a green alga Chlorella variabilis. PHOTOSYNTHESIS RESEARCH 2020; 144:397-407. [PMID: 32377933 DOI: 10.1007/s11120-020-00757-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/23/2020] [Indexed: 05/28/2023]
Abstract
Oxygenic photosynthesis converts light energy into chemical energy via electron transport and assimilates CO2 in the Calvin-Benson cycle with the chemical energy. Thus, high light and low CO2 conditions induce the accumulation of electrons in the photosynthetic electron transport system, resulting in the formation of reactive oxygen species. To prevent the accumulation of electrons, oxygenic photosynthetic organisms have developed photoprotection mechanisms, including non-photochemical quenching (NPQ) and alternative electron flow (AEF). There are diverse molecular mechanisms underlying NPQ and AEF, and the corresponding molecular actors have been identified and characterized using a model green alga Chlamydomonas reinhardtii. In contrast, detailed information about the photoprotection mechanisms is lacking for other green algal species. In the current study, we examined the photoprotection mechanisms responsive to CO2 in the green alga Chlorella variabilis by combining the analyses of pulse-amplitude-modulated fluorescence, O2 evolution, and the steady-state and time-resolved fluorescence spectra. Under the CO2-limited condition, ΔpH-dependent NPQ occurred in photosystems I and II. Moreover, O2-dependent AEF was also induced. Under the CO2-limited condition with carbon supplementation, NPQ was relaxed and light-harvesting chlorophyll-protein complex II was isolated from both photosystems. In C. variabilis, the O2-dependent AEF and the mechanisms that instantly convert the light-harvesting functions of both photosystems may be important for maintaining efficient photosynthetic activities under various CO2 conditions.
Collapse
Affiliation(s)
- Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| | - Ginga Shimakawa
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Shimpei Aikawa
- Japan International Research Center for Agricultural Sciences, Tsukuba, 305-8686, Japan
| | - Chikahiro Miyake
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
5
|
Cazzaniga S, Kim M, Bellamoli F, Jeong J, Lee S, Perozeni F, Pompa A, Jin E, Ballottari M. Photosystem II antenna complexes CP26 and CP29 are essential for nonphotochemical quenching in Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2020; 43:496-509. [PMID: 31724187 PMCID: PMC7004014 DOI: 10.1111/pce.13680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/04/2019] [Indexed: 05/08/2023]
Abstract
Photosystems must balance between light harvesting to fuel the photosynthetic process for CO2 fixation and mitigating the risk of photodamage due to absorption of light energy in excess. Eukaryotic photosynthetic organisms evolved an array of pigment-binding proteins called light harvesting complexes constituting the external antenna system in the photosystems, where both light harvesting and activation of photoprotective mechanisms occur. In this work, the balancing role of CP29 and CP26 photosystem II antenna subunits was investigated in Chlamydomonas reinhardtii using CRISPR-Cas9 technology to obtain single and double mutants depleted of monomeric antennas. Absence of CP26 and CP29 impaired both photosynthetic efficiency and photoprotection: Excitation energy transfer from external antenna to reaction centre was reduced, and state transitions were completely impaired. Moreover, differently from higher plants, photosystem II monomeric antenna proteins resulted to be essential for photoprotective thermal dissipation of excitation energy by nonphotochemical quenching.
Collapse
Affiliation(s)
| | - Minjae Kim
- Department of Life ScienceHanyang UniversitySeoulSouth Korea
| | | | - Jooyoen Jeong
- Department of Life ScienceHanyang UniversitySeoulSouth Korea
| | - Sangmuk Lee
- Department of Life ScienceHanyang UniversitySeoulSouth Korea
| | | | - Andrea Pompa
- Dipartimento di Scienze BiomolecolariUniversità degli Studi di UrbinoUrbinoItaly
- Istituto di Bioscienze e BiorisorseConsiglio Nazionale delle RicerchePerugiaItaly
| | - EonSeon Jin
- Department of Life ScienceHanyang UniversitySeoulSouth Korea
| | | |
Collapse
|
6
|
Ueno Y, Aikawa S, Kondo A, Akimoto S. Adaptation of light-harvesting functions of unicellular green algae to different light qualities. PHOTOSYNTHESIS RESEARCH 2019; 139:145-154. [PMID: 29808364 DOI: 10.1007/s11120-018-0523-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Oxygenic photosynthetic organisms perform photosynthesis efficiently by distributing captured light energy to photosystems (PSs) at an appropriate balance. Maintaining photosynthetic efficiency under changing light conditions requires modification of light-harvesting and energy-transfer processes. In the current study, we examined how green algae regulate their light-harvesting functions in response to different light qualities. We measured low-temperature time-resolved fluorescence spectra of unicellular green algae Chlamydomonas reinhardtii and Chlorella variabilis cells grown under different light qualities. By observing the delayed fluorescence spectra, we demonstrated that both types of green algae primarily modified the associations between light-harvesting chlorophyll protein complexes (LHCs) and PSs (PSII and PSI). Under blue light, Chlamydomonas transferred more energy from LHC to chlorophyll (Chl) located far from the PSII reaction center, while energy was transferred from LHC to PSI via different energy-transfer pathways in Chlorella. Under green light, both green algae exhibited enhanced energy transfer from LHCs to both PSs. Red light induced fluorescence quenching within PSs in Chlamydomonas and LHCs in Chlorella. In Chlorella, energy transfer from PSII to PSI appears to play an important role in balancing excitation between PSII and PSI.
Collapse
Affiliation(s)
- Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Shimpei Aikawa
- Japan International Research Center for Agricultural Sciences, Tsukuba, 305-8686, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, 657-8501, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
7
|
Dumas L, Zito F, Blangy S, Auroy P, Johnson X, Peltier G, Alric J. A stromal region of cytochrome b6f subunit IV is involved in the activation of the Stt7 kinase in Chlamydomonas. Proc Natl Acad Sci U S A 2017; 114:12063-12068. [PMID: 29078388 PMCID: PMC5692589 DOI: 10.1073/pnas.1713343114] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The cytochrome (cyt) b6f complex and Stt7 kinase regulate the antenna sizes of photosystems I and II through state transitions, which are mediated by a reversible phosphorylation of light harvesting complexes II, depending on the redox state of the plastoquinone pool. When the pool is reduced, the cyt b6f activates the Stt7 kinase through a mechanism that is still poorly understood. After random mutagenesis of the chloroplast petD gene, coding for subunit IV of the cyt b6f complex, and complementation of a ΔpetD host strain by chloroplast transformation, we screened for impaired state transitions in vivo by chlorophyll fluorescence imaging. We show that residues Asn122, Tyr124, and Arg125 in the stromal loop linking helices F and G of cyt b6f subunit IV are crucial for state transitions. In vitro reconstitution experiments with purified cyt b6f and recombinant Stt7 kinase domain show that cyt b6f enhances Stt7 autophosphorylation and that the Arg125 residue is directly involved in this process. The peripheral stromal structure of the cyt b6f complex had, until now, no reported function. Evidence is now provided of a direct interaction with Stt7 on the stromal side of the membrane.
Collapse
Affiliation(s)
- Louis Dumas
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Aix-Marseille Université, UMR 7265, Institut de Biosciences et Biotechnologies d'Aix-Marseille, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France
| | - Francesca Zito
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique, CNRS, UMR7099, University Paris Diderot, Sorbonne Paris Cité, Paris Sciences et Lettres Research University, F-75005 Paris, France
| | - Stéphanie Blangy
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Aix-Marseille Université, UMR 7265, Institut de Biosciences et Biotechnologies d'Aix-Marseille, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France
| | - Pascaline Auroy
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Aix-Marseille Université, UMR 7265, Institut de Biosciences et Biotechnologies d'Aix-Marseille, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France
| | - Xenie Johnson
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Aix-Marseille Université, UMR 7265, Institut de Biosciences et Biotechnologies d'Aix-Marseille, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France
| | - Gilles Peltier
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Aix-Marseille Université, UMR 7265, Institut de Biosciences et Biotechnologies d'Aix-Marseille, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France
| | - Jean Alric
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Aix-Marseille Université, UMR 7265, Institut de Biosciences et Biotechnologies d'Aix-Marseille, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France;
| |
Collapse
|
8
|
Kalaji HM, Schansker G, Brestic M, Bussotti F, Calatayud A, Ferroni L, Goltsev V, Guidi L, Jajoo A, Li P, Losciale P, Mishra VK, Misra AN, Nebauer SG, Pancaldi S, Penella C, Pollastrini M, Suresh K, Tambussi E, Yanniccari M, Zivcak M, Cetner MD, Samborska IA, Stirbet A, Olsovska K, Kunderlikova K, Shelonzek H, Rusinowski S, Bąba W. Frequently asked questions about chlorophyll fluorescence, the sequel. PHOTOSYNTHESIS RESEARCH 2017; 132:13-66. [PMID: 27815801 PMCID: PMC5357263 DOI: 10.1007/s11120-016-0318-y] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/17/2016] [Indexed: 05/20/2023]
Abstract
Using chlorophyll (Chl) a fluorescence many aspects of the photosynthetic apparatus can be studied, both in vitro and, noninvasively, in vivo. Complementary techniques can help to interpret changes in the Chl a fluorescence kinetics. Kalaji et al. (Photosynth Res 122:121-158, 2014a) addressed several questions about instruments, methods and applications based on Chl a fluorescence. Here, additional Chl a fluorescence-related topics are discussed again in a question and answer format. Examples are the effect of connectivity on photochemical quenching, the correction of F V /F M values for PSI fluorescence, the energy partitioning concept, the interpretation of the complementary area, probing the donor side of PSII, the assignment of bands of 77 K fluorescence emission spectra to fluorescence emitters, the relationship between prompt and delayed fluorescence, potential problems when sampling tree canopies, the use of fluorescence parameters in QTL studies, the use of Chl a fluorescence in biosensor applications and the application of neural network approaches for the analysis of fluorescence measurements. The answers draw on knowledge from different Chl a fluorescence analysis domains, yielding in several cases new insights.
Collapse
Affiliation(s)
- Hazem M. Kalaji
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | | | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Filippo Bussotti
- Department of Agricultural, Food and Environmental Sciences, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Angeles Calatayud
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Ctra. Moncada-Náquera Km 4.5., 46113 Moncada, Valencia Spain
| | - Lorenzo Ferroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Corso Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Vasilij Goltsev
- Department of Biophysics and Radiobiology, Faculty of Biology, St. Kliment Ohridski University of Sofia, 8 Dr.Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Anjana Jajoo
- School of Life Sciences, Devi Ahilya University, Indore, M.P. 452 001 India
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Pasquale Losciale
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria [Research Unit for Agriculture in Dry Environments], 70125 Bari, Italy
| | - Vinod K. Mishra
- Department of Biotechnology, Doon (P.G.) College of Agriculture Science, Dehradun, Uttarakhand 248001 India
| | - Amarendra N. Misra
- Centre for Life Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Ranchi, 835205 India
| | - Sergio G. Nebauer
- Departamento de Producción vegetal, Universitat Politècnica de València, Camino de Vera sn., 46022 Valencia, Spain
| | - Simonetta Pancaldi
- Department of Life Sciences and Biotechnology, University of Ferrara, Corso Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Consuelo Penella
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Ctra. Moncada-Náquera Km 4.5., 46113 Moncada, Valencia Spain
| | - Martina Pollastrini
- Department of Agricultural, Food and Environmental Sciences, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Kancherla Suresh
- ICAR – Indian Institute of Oil Palm Research, Pedavegi, West Godavari Dt., Andhra Pradesh 534 450 India
| | - Eduardo Tambussi
- Institute of Plant Physiology, INFIVE (Universidad Nacional de La Plata — Consejo Nacional de Investigaciones Científicas y Técnicas), Diagonal 113 N°495, CC 327, La Plata, Argentina
| | - Marcos Yanniccari
- Institute of Plant Physiology, INFIVE (Universidad Nacional de La Plata — Consejo Nacional de Investigaciones Científicas y Técnicas), Diagonal 113 N°495, CC 327, La Plata, Argentina
| | - Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Magdalena D. Cetner
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Izabela A. Samborska
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | | | - Katarina Olsovska
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Kristyna Kunderlikova
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Henry Shelonzek
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia, ul. Jagiellońska 28, 40-032 Katowice, Poland
| | - Szymon Rusinowski
- Institute for Ecology of Industrial Areas, Kossutha 6, 40-844 Katowice, Poland
| | - Wojciech Bąba
- Department of Plant Ecology, Institute of Botany, Jagiellonian University, Lubicz 46, 31-512 Kraków, Poland
| |
Collapse
|
9
|
Excitation energy transfer in Chlamydomonas reinhardtii deficient in the PSI core or the PSII core under conditions mimicking state transitions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:625-33. [PMID: 26946087 DOI: 10.1016/j.bbabio.2016.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/16/2016] [Accepted: 03/01/2016] [Indexed: 11/22/2022]
Abstract
The efficient use of excitation energy in photosynthetic membranes is achieved by a dense network of pigment-protein complexes. These complexes fulfill specific functions and interact dynamically with each other in response to rapidly changing environmental conditions. Here, we studied how in the intact cells of Chlamydomonas reinhardtii (C.r.) the lack of the photosystem I (PSI) core or the photosystem II (PSII) core affects these interactions. To that end the mutants F15 and M18 (both PSI-deficient) and FUD7 (PSII-deficient) were incubated under conditions known to promote state transitions in wild-type. The intact cells were then instantly frozen to 77K and the full-spectrum time-resolved fluorescence emission of the cells was measured by means of streak camera. In the PSI-deficient mutants excitation energy transfer (EET) towards light-harvesting complexes of PSI (Lhca) occurs in less than 0.5 ns, and fluorescence from Lhca decays in 3.1 ns. Decreased trapping by PSII and increased fluorescence of Lhca upon state 1 (S1)→state 2 (S2) transition appears in the F15 and less in the M18 mutant. In the PSII-deficient mutant FUD7, quenched (0.5 ns) and unquenched (2 ns) light-harvesting complexes of PSII (LHCII) are present in both states, with the quenched form more abundant in S2 than in S1. Moreover, EET of 0.4 ns from the remaining LHCII to PSI increases upon S1→S2 transition. We relate the excitation energy kinetics observed in F15, M18 and FUD7 to the remodeling of the photosynthetic apparatus in these mutants under S1 and S2 conditions.
Collapse
|
10
|
Le Quiniou C, Tian L, Drop B, Wientjes E, van Stokkum IHM, van Oort B, Croce R. PSI-LHCI of Chlamydomonas reinhardtii: Increasing the absorption cross section without losing efficiency. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1847:458-467. [PMID: 25681242 PMCID: PMC4547092 DOI: 10.1016/j.bbabio.2015.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 11/28/2022]
Abstract
Photosystem I (PSI) is an essential component of photosynthetic membranes. Despite the high sequence and structural homologies, its absorption properties differ substantially in algae, plants and cyanobacteria. In particular it is characterized by the presence of low-energy chlorophylls (red forms), the number and the energy of which vary in different organisms. The PSI-LHCI (PSI-light harvesting complex I) complex of the green alga Chlamydomonas reinhardtii (C.r.) is significantly larger than that of plants, containing five additional light-harvesting complexes (together binding≈65 chlorophylls), and contains red forms with higher energy than plants. To understand how these differences influence excitation energy transfer and trapping in the system, we studied two PSI-LHCI C.r. particles, differing in antenna size and red-form content, using time-resolved fluorescence and compared them to plant PSI-LHCI. The excited state kinetics in C.r. shows the same average lifetime (50 ps) as in plants suggesting that the effect of antenna enlargement is compensated by higher energy red forms. The system equilibrates very fast, indicating that all Lhcas are well-connected, despite their long distance to the core. The differences between C.r. PSI-LHCI with and without Lhca2 and Lhca9 show that these Lhcas bind red forms, although not the red-most. The red-most forms are in (or functionally close to) other Lhcas and slow down the trapping, but hardly affect the quantum efficiency, which remains as high as 97% even in a complex that contains 235 chlorophylls.
Collapse
Affiliation(s)
- Clotilde Le Quiniou
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Institute for Lasers, Life and Biophotonics Amsterdam, LaserLaB Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Lijin Tian
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Institute for Lasers, Life and Biophotonics Amsterdam, LaserLaB Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Bartlomiej Drop
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Institute for Lasers, Life and Biophotonics Amsterdam, LaserLaB Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Emilie Wientjes
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Institute for Lasers, Life and Biophotonics Amsterdam, LaserLaB Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ivo H M van Stokkum
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Institute for Lasers, Life and Biophotonics Amsterdam, LaserLaB Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Bart van Oort
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Institute for Lasers, Life and Biophotonics Amsterdam, LaserLaB Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Institute for Lasers, Life and Biophotonics Amsterdam, LaserLaB Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Ferroni L, Baldisserotto C, Giovanardi M, Pantaleoni L, Morosinotto T, Pancaldi S. Revised assignment of room-temperature chlorophyll fluorescence emission bands in single living cells of Chlamydomonas reinhardtii. J Bioenerg Biomembr 2011; 43:163-73. [PMID: 21336619 DOI: 10.1007/s10863-011-9343-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 01/08/2011] [Indexed: 10/18/2022]
Abstract
Room temperature (RT) microspectrofluorimetry in vivo of single cells has a great potential in photosynthesis studies. In order to get new information on RT chlorophyll fluorescence bands, we analyzed the spectra of Chlamydomonas reinhardtii mutants lacking fundamental proteins of the thylakoid membrane and spectra of photoinhibited WT cells. RT spectra of single living cells were characterized thorough derivative analyses and Gaussian deconvolution. The results obtained suggest that the dynamism in LHCII assembly could be sufficient to explain the variations in amplitudes of F680 (free LHCII), F694 (LHCII-PSII) and F702 (LHCII aggregates); F686 was assigned to the PSII core. Based on the revised assignments and on the variations observed, we discuss the meaning of the two fluorescence emission ratios F680/(F686 + F694) and F702/(F686 + F694), showing that these are sensitive parameters under moderate photoinhibition. In the most photoinhibited samples, the RT spectra tended to degenerate, showing characteristics of mutants that are partly depleted in PSII.
Collapse
Affiliation(s)
- Lorenzo Ferroni
- Laboratory of Plant Cytophysiology, Department of Biology and Evolution, University of Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Iwai M, Kato N, Minagawa J. Distinct physiological responses to a high light and low CO2 environment revealed by fluorescence quenching in photoautotrophically grown Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2007; 94:307-14. [PMID: 17680341 DOI: 10.1007/s11120-007-9220-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 07/03/2007] [Indexed: 05/16/2023]
Abstract
Mechanisms for countering environmental stress are essential to photosynthetic organisms. Alteration of the photosynthetic apparatus, a mechanism for balancing the flux of light energy and carbon fixation, can be characterized by fluorescence properties. In this study, we have established a simple protocol to determine the extent of energy-dependent quenching (qE) and quenching by state transition (qT) in Chlamydomonas cells by examining their fluorescence properties under light fluctuations. We identified qE as the uncoupler-sensitive NPQ component that was rapidly relaxed upon transition to dark conditions. We characterized the qT component by determining low-temperature fluorescence spectra and analyzing a state-transition-less mutant. By these methods, we observed that similar abiotic stresses-high light conditions (where excess energy is supplied) and low CO2 conditions (where energy utilization is limited)-induced different types of NPQ. High light conditions induced mainly qE-quenching that increased gradually while low CO2 conditions induced mainly qT-quenching that peaked in 20 min and then decreased gradually. That high light and low carbon signals induced different physiological responses suggests that they triggered different genetic responses, which altered protein expression under each of the conditions.
Collapse
Affiliation(s)
- Masakazu Iwai
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | | | | |
Collapse
|
13
|
Morgan-Kiss R, Ivanov AG, Williams J, Huner NPA. Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1561:251-65. [PMID: 11997125 DOI: 10.1016/s0005-2736(02)00352-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sensitivity of the photosynthetic thylakoid membranes to thermal stress was investigated in the psychrophilic Antarctic alga Chlamydomonas subcaudata. C. subcaudata thylakoids exhibited an elevated heat sensitivity as indicated by a temperature-induced rise in F(o) fluorescence in comparison with the mesophilic species, Chlamydomonas reinhardtii. This was accompanied by a loss of structural stability of the photosystem (PS) II core complex and functional changes at the level of PSI in C. reinhardtii, but not in C. subcaudata. Lastly, C. subcaudata exhibited an increase in unsaturated fatty acid content of membrane lipids in combination with unique fatty acid species. The relationship between lipid unsaturation and the functioning of the photosynthetic apparatus under elevated temperatures is discussed.
Collapse
|
14
|
Casper-Lindley C, Björkman O. Nigericin insensitive post-illumination reduction in fluorescence yield in Dunaliella tertiolecta (chlorophyte). PHOTOSYNTHESIS RESEARCH 1996; 50:209-222. [PMID: 24271960 DOI: 10.1007/bf00033120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/1996] [Accepted: 10/21/1996] [Indexed: 06/02/2023]
Abstract
Cells of the green alga Dunaliella tertiolecta grown in a light/dark cycle were exposed to high light for about 15 min. In light, energy-dependent quenching reduced fluorescence emission and decreased PS II efficiency. Within 3 minutes after darkening fluorescence quenching largely relaxed. However, PS II fluorescence emission decreased again after further darkening. Fo and Fm decreased to the same relative extent and the PS II efficiency was not reduced. This Reduction in Fluorescence yield in Darkness, termed RFD for the purpose of this paper, lasted about 20 min. The deepoxidation state of xanthophylls remained unchanged during and after the 15-min exposure to high light. We show that RFD is insensitive to the uncoupler nigericin and thus unrelated to energy-dependent quenching. RFD correlated with a reduction of the PQ pool after darkening and low levels of far red or blue light (430 nm more than 460 nm) prevented RFD. This is in contrast to observations in higher plants, where a post-illumination reduction of the PQ pool causes and increase in Fo (Groom et al. (1993) Photosynth Res 36: 205-215). Changes in the adenylate energy charge were not correlated with RFD. Antimycin A and cyanide, both inhibitors of the PQ-oxidase, caused an increase in RFD whereas SHAM, an inhibitor of the chloroplastic glycolate-quinone oxidoreductase, caused a decrease. Low CO2 concentrations, known to increase the oxygenase activity of Rubisco and to generate glycolate and P-glycolate in light, caused an increase in RFD. We propose that accumulated glycolate and P-glycolate reduce the PQ pool in darkness, leading to the formation of RFD. During RFD, 77 K fluorescence emission from PS II was more reduced than that from PS I, thus resembling a state I, state II transition. However, the reduction in fluorescence yield during RFD is much larger than the reduction previously attributed to state transitions and it is unclear whether RFD and state transitions are identical. The formation and relaxation of RFD increased with higher temperatures and the extent of RFD was largest at the growth temperature (25°C). RFD has to be taken into account when fluorescence is measured after darkening as it may be mistaken for energy-dependent quenching.
Collapse
Affiliation(s)
- C Casper-Lindley
- Carnegie Institution of Washington, 290, Panama Street, 94305, Stanford, CA, USA
| | | |
Collapse
|
15
|
Sato N, Sonoike K, Tsuzuki M, Kawaguchi A. Impaired photosystem II in a mutant of Chlamydomonas reinhardtii defective in sulfoquinovosyl diacylglycerol. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:16-23. [PMID: 8529635 DOI: 10.1111/j.1432-1033.1995.016_c.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The photosynthetic apparatus was characterized in a mutant of Chlamydomonas reinhardtii, hf-2, defective in the synthesis of a chloroplast-specific lipid, sulfoquinovosyl diacylglycerol (SQui-acyl2Gro). hf-2 showed reduced photosystem II (PSII) activity with little effect on photosystem I (PSI) activity, as compared with the parent. PAGE in the presence of dodecyl beta-D-maltoside (DodGlc2) of C. reinhardtii thylakoid membranes was used to isolate chlorophyll-protein complexes without chlorophyll (Chl) release in order to examine lipid species bound to these complexes. The four complexes obtained were shown to be the PSI complex, the PSII core complex and the two groups of the light-harvesting complex of PSII by analyses of 77-K emission spectra of Chl fluorescence and of subunit compositions. Lipid analysis of Chl-protein complexes in the parent revealed the localization of SQui-acyl2Gro in the PSII core complex and the two groups of the light-harvesting complex of PSII, but not in the PSI complex. These results suggest that SQui-acyl2Gro is responsible for PSII activity by associating with the core and light-harvesting complexes of PSII.
Collapse
Affiliation(s)
- N Sato
- Department of Biology, College of Arts and Sciences, University of Tokyo, Japan
| | | | | | | |
Collapse
|
16
|
Woolf VM, Wittmershaus BP, Vermaas WF, Tran TD. Resolution of low-energy chlorophylls in Photosystem I of Synechocystis sp. PCC 6803 at 77 and 295 K through fluorescence excitation anisotropy. PHOTOSYNTHESIS RESEARCH 1994; 40:21-34. [PMID: 24311211 DOI: 10.1007/bf00019042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/1992] [Accepted: 11/08/1993] [Indexed: 06/02/2023]
Abstract
Fluorescence excitation spectra of highly anisotropic emission from Photosystem I (PS I) were measured at 295 and 77 K on a PS II-less mutant of the cyanobacterium Synechocystis sp. PCC 6803 (S. 6803). When PS I was excited with light at wavelengths greater than 715 nm, fluorescence observed at 745 nm was highly polarized with anisotropies of 0.32 and 0.20 at 77 and 295 K, respectively. Upon excitation at shorter wavelengths, the 745-nm fluorescence had low anisotropy. The highly anisotropic emission observed at both 77 and 295 K is interpreted as evidence for low-energy chlorophylls (Chls) in cyanobacteria at room temperature. This indicates that low-energy Chls, defined as Chls with first excited singlet-state energy levels below or near that of the reaction center, P700, are not artifacts of low-temperature measurements.If the low-energy Chls are a distinct subset of Chls and a simple two-pool model describes the excitation transfer network adequately, one can take advantage of the low-energy Chls' high anisotropy to approximate their fluorescence excitation spectra. Maxima at 703 and 708 nm were calculated from 295 and 77 K data, respectively. Upper limits for the number of low-energy Chls per P700 in PS I from S. 6803 were calculated to be 8 (295 K) and 11 (77 K).
Collapse
Affiliation(s)
- V M Woolf
- Department of Physics and Astronomy, Arizona State University, 85287, Tempe, AZ, USA
| | | | | | | |
Collapse
|
17
|
Wittmershaus BP, Woolf VM, Vermaas WF. Temperature dependence and polarization of fluorescence from Photosystem I in the cyanobacterium Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 1992; 31:75-87. [PMID: 24407980 DOI: 10.1007/bf00028785] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/1991] [Accepted: 09/23/1991] [Indexed: 06/03/2023]
Abstract
To determine the fluorescence properties of cyanobacterial Photosystem I (PS I) in relatively intact systems, fluorescence emission from 20 to 295 K and polarization at 77 K have been measured from phycobilisomes-less thylakoids of Synechocystis sp. PCC 6803 and a mutant strain lacking Photosystem II (PS II). At 295 K, the fluorescence maxima are 686 nm in the wild type from PS I and PS II and at 688 nm from PS I in the mutant. This emission is characteristic of bulk antenna chlorophylls (Chls). The 690-nm fluorescence component of PS I is temperature independent. For wild-type and mutant, 725-nm fluorescence increases by a factor of at least 40 from 295 to 20 K. We model this temperature dependence assuming a small number of Chls within PS I, emitting at 725 nm, with an energy level below that of the reaction center, P700. Their excitation transfer rate to P700 decreases with decreasing temperature increasing the yield of 725-nm fluorescence.Fluorescence excitation spectra of polarized emission from low-energy Chls were measured at 77 and 295 K on the mutant lacking PS II. At excitation wavelengths longer than 715 nm, 760-nm emission is highly polarized indicating either direct excitation of the emitting Chls with no participation in excitation transfer or total alignment of the chromophores. Fluorescence at 760 nm is unpolarized for excitation wavelengths shorter than 690 nm, inferring excitation transfer between Chls before 760-nm fluorescence occurs.Our measurements illustrate that: 1) a single group of low-energy Chls (F725) of the core-like PS I complex in cyanobacteria shows a strongly temperature-dependent fluorescence and, when directly excited, nearly complete fluorescence polarization, 2) these properties are not the result of detergent-induced artifacts as we are examining intact PS I within the thylakoid membrane of S. 6803, and 3) the activation energy for excitation transfer from F725 Chls to P700 is less than that of F735 Chls in green plants; F725 Chls may act as a sink to locate excitations near P700 in PS I.
Collapse
Affiliation(s)
- B P Wittmershaus
- Department of Physics and Astronomy, Arizona State University, 85287, Tempe, AZ, USA
| | | | | |
Collapse
|
18
|
Lin S, Knox RS. Studies of excitation energy transfer within the green alga Chlamydomonas reinhardtii and its mutants at 77 K. PHOTOSYNTHESIS RESEARCH 1991; 27:157-168. [PMID: 24414688 DOI: 10.1007/bf00035837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/1990] [Accepted: 12/05/1990] [Indexed: 06/03/2023]
Abstract
The 77 K picosecond fluorescence of intact Chlamydomonas reinhardtii exhibits a 680-nm band (F680) that can be identified with light-harvesting chlorophyll. Analysis of the time and spectral dependence of F680 reveal a forward transfer rate of 1/(15 ps) from this 680-nm species to photosystem II. The possibility of transfer through LHC I, the light-harvesting complex closely associated with photosystem I with a transfer time of 60 to 100 ps, is indicated by analysis of similar data in the 700-720 nm region. Simple kinetic models that account for the time dependence of the emissions F707, F703 and F715 are proposed.
Collapse
Affiliation(s)
- S Lin
- Department of Physics and Astronomy, University of Rochester, 14627, Rochester, NY, USA
| | | |
Collapse
|
19
|
Garnier J, Wu B, Jeannine M, Guyon D, Trémolières A. Restoration of both an oligomeric form of the light-harvesting antenna CP II and a fluorescence state II-state I transition by Δ3-trans-hexadecenoic acid-containing phosphatidylglycerol, in cells of a mutant of Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1990. [DOI: 10.1016/0005-2728(90)90046-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Maroc J, Tremolieres A. Chlorophyll a′ and pheophytin a, as determined by HPLC, in photosynthesis mutants and double mutants of Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1990. [DOI: 10.1016/0005-2728(90)90111-g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Chlorophyll—protein complexes related to photosystem I in Chlamydomonas reinhardtii. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1989. [DOI: 10.1016/1011-1344(89)80105-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Maroc J, Trémolières A, Garnier J, Guyon D. Oligomeric form of the light-harvesting chlorophyll a + b-protein complex CP II, phosphatidyldiacylglycerol, Δ3-trans-hexadecenoic acid and energy transfer in Chlamydomonas reinhardtii, wild type and mutants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1987. [DOI: 10.1016/0005-2728(87)90152-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|