1
|
Structures of the intermediates in the catalytic cycle of mitochondrial cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148933. [PMID: 36403794 DOI: 10.1016/j.bbabio.2022.148933] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
|
2
|
Glyoxylate protects against cyanide toxicity through metabolic modulation. Sci Rep 2022; 12:4982. [PMID: 35322094 PMCID: PMC8943054 DOI: 10.1038/s41598-022-08803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/04/2022] [Indexed: 11/09/2022] Open
Abstract
Although cyanide's biological effects are pleiotropic, its most obvious effects are as a metabolic poison. Cyanide potently inhibits cytochrome c oxidase and potentially other metabolic enzymes, thereby unleashing a cascade of metabolic perturbations that are believed to cause lethality. From systematic screens of human metabolites using a zebrafish model of cyanide toxicity, we have identified the TCA-derived small molecule glyoxylate as a potential cyanide countermeasure. Following cyanide exposure, treatment with glyoxylate in both mammalian and non-mammalian animal models confers resistance to cyanide toxicity with greater efficacy and faster kinetics than known cyanide scavengers. Glyoxylate-mediated cyanide resistance is accompanied by rapid pyruvate consumption without an accompanying increase in lactate concentration. Lactate dehydrogenase is required for this effect which distinguishes the mechanism of glyoxylate rescue as distinct from countermeasures based solely on chemical cyanide scavenging. Our metabolic data together support the hypothesis that glyoxylate confers survival at least in part by reversing the cyanide-induced redox imbalances in the cytosol and mitochondria. The data presented herein represent the identification of a potential cyanide countermeasure operating through a novel mechanism of metabolic modulation.
Collapse
|
3
|
Du WGH, Götz AW, Noodleman L. Mössbauer Property Calculations on Fea33+∙∙∙H2O∙∙∙CuB2+ Dinuclear Center Models of the Resting Oxidized as-Isolated Cytochrome c Oxidase. Chemphyschem 2022; 23:e202100831. [PMID: 35142420 PMCID: PMC9054037 DOI: 10.1002/cphc.202100831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/03/2022] [Indexed: 11/24/2022]
Abstract
Mössbauer isomer shift and quadrupole splitting properties have been calculated using the OLYP‐D3(BJ) density functional method on previously obtained (W.‐G. Han Du, et al., Inorg Chem. 2020, 59, 8906–8915) geometry optimized Fea33+−H2O−CuB2+ dinuclear center (DNC) clusters of the resting oxidized (O state) “as‐isolated” cytochrome c oxidase (CcO). The calculated results are highly consistent with the available experimental observations. The calculations have also shown that the structural heterogeneities of the O state DNCs implicated by the Mössbauer experiments are likely consequences of various factors, particularly the variable positions of the central H2O molecule between the Fea33+ and CuB2+ sites in different DNCs, whether or not this central H2O molecule has H‐bonding interaction with another H2O molecule, the different spin states having similar energies for the Fea33+ sites, and whether the Fea33+ and CuB2+ sites are ferromagnetically or antiferromagnetically spin‐coupled.
Collapse
Affiliation(s)
- Wen-Ge Han Du
- The Scripps Research Institute, Integrative Structural and Computational Biology, UNITED STATES
| | | | - Louis Noodleman
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, Hz112, 10550 North Torrey Pines Road, 92037, La Jolla, UNITED STATES
| |
Collapse
|
4
|
Borisov VB, Forte E. Impact of Hydrogen Sulfide on Mitochondrial and Bacterial Bioenergetics. Int J Mol Sci 2021; 22:12688. [PMID: 34884491 PMCID: PMC8657789 DOI: 10.3390/ijms222312688] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
This review focuses on the effects of hydrogen sulfide (H2S) on the unique bioenergetic molecular machines in mitochondria and bacteria-the protein complexes of electron transport chains and associated enzymes. H2S, along with nitric oxide and carbon monoxide, belongs to the class of endogenous gaseous signaling molecules. This compound plays critical roles in physiology and pathophysiology. Enzymes implicated in H2S metabolism and physiological actions are promising targets for novel pharmaceutical agents. The biological effects of H2S are biphasic, changing from cytoprotection to cytotoxicity through increasing the compound concentration. In mammals, H2S enhances the activity of FoF1-ATP (adenosine triphosphate) synthase and lactate dehydrogenase via their S-sulfhydration, thereby stimulating mitochondrial electron transport. H2S serves as an electron donor for the mitochondrial respiratory chain via sulfide quinone oxidoreductase and cytochrome c oxidase at low H2S levels. The latter enzyme is inhibited by high H2S concentrations, resulting in the reversible inhibition of electron transport and ATP production in mitochondria. In the branched respiratory chain of Escherichia coli, H2S inhibits the bo3 terminal oxidase but does not affect the alternative bd-type oxidases. Thus, in E. coli and presumably other bacteria, cytochrome bd permits respiration and cell growth in H2S-rich environments. A complete picture of the impact of H2S on bioenergetics is lacking, but this field is fast-moving, and active ongoing research on this topic will likely shed light on additional, yet unknown biological effects.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
5
|
Shimada A, Hara F, Shinzawa-Itoh K, Kanehisa N, Yamashita E, Muramoto K, Tsukihara T, Yoshikawa S. Critical roles of the Cu B site in efficient proton pumping as revealed by crystal structures of mammalian cytochrome c oxidase catalytic intermediates. J Biol Chem 2021; 297:100967. [PMID: 34274318 PMCID: PMC8390519 DOI: 10.1016/j.jbc.2021.100967] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/15/2022] Open
Abstract
Mammalian cytochrome c oxidase (CcO) reduces O2 to water in a bimetallic site including Fea3 and CuB giving intermediate molecules, termed A-, P-, F-, O-, E-, and R-forms. From the P-form on, each reaction step is driven by single-electron donations from cytochrome c coupled with the pumping of a single proton through the H-pathway, a proton-conducting pathway composed of a hydrogen-bond network and a water channel. The proton-gradient formed is utilized for ATP production by F-ATPase. For elucidation of the proton pumping mechanism, crystal structural determination of these intermediate forms is necessary. Here we report X-ray crystallographic analysis at ∼1.8 Å resolution of fully reduced CcO crystals treated with O2 for three different time periods. Our disentanglement of intermediate forms from crystals that were composed of multiple forms determined that these three crystallographic data sets contained ∼45% of the O-form structure, ∼45% of the E-form structure, and ∼20% of an oxymyoglobin-type structure consistent with the A-form, respectively. The O- and E-forms exhibit an unusually long CuB2+-OH- distance and CuB1+-H2O structure keeping Fea33+-OH- state, respectively, suggesting that the O- and E-forms have high electron affinities that cause the O→E and E→R transitions to be essentially irreversible and thus enable tightly coupled proton pumping. The water channel of the H-pathway is closed in the O- and E-forms and partially open in the R-form. These structures, together with those of the recently reported P- and F-forms, indicate that closure of the H-pathway water channel avoids back-leaking of protons for facilitating the effective proton pumping.
Collapse
Affiliation(s)
- Atsuhiro Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan
| | - Fumiyoshi Hara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan; Department of Life Science, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan
| | - Nobuko Kanehisa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kazumasa Muramoto
- Department of Life Science, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan.
| | - Tomitake Tsukihara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan; Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| | - Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan; Department of Life Science, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan.
| |
Collapse
|
6
|
Kruse F, Nguyen AD, Dragelj J, Heberle J, Hildebrandt P, Mroginski MA, Weidinger IM. A Resonance Raman Marker Band Characterizes the Slow and Fast Form of Cytochrome c Oxidase. J Am Chem Soc 2021; 143:2769-2776. [PMID: 33560128 DOI: 10.1021/jacs.0c10767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytochrome c oxidase (CcO) in its as-isolated form is known to exist in a slow and fast form, which differ drastically in their ability to bind oxygen and other ligands. While preparation methods have been established that yield either the fast or the slow form of the protein, the underlying structural differences have not been identified yet. Here, we have performed surface enhanced resonance Raman (SERR) spectroscopy of CcO immobilized on electrodes in both forms. SERR spectra obtained in resonance with the heme a3 metal-to-ligand charge transfer (MLCT) transition at 650 nm displayed a sharp vibrational band at 748 or 750 cm-1 when the protein was in its slow or fast form, respectively. DFT calculations identified the band as a mode of the His-419 ligand that is sensitive to the oxygen ligand and the protonation state of Tyr-288 within the binuclear complex. Potential-dependent SERR spectroscopy showed a redox-induced change of this band around 525 mV versus Ag/AgCl exclusively for the fast form, which coincides with the redox potential of the Tyr-O/Tyr-O- transition. Our data points to a peroxide ligand in the resting state of CcO for both forms. The observed frequencies and redox sensitivities of the Raman marker band suggest that a radical Tyr-288 is present in the fast form and a protonated Tyr-288 in the slow form.
Collapse
Affiliation(s)
- Fabian Kruse
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Anh Duc Nguyen
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Jovan Dragelj
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Joachim Heberle
- Freie Universität Berlin, Department of Physics, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Inez M Weidinger
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
7
|
Oleynikov IP, Azarkina NV, Vygodina TV, Konstantinov AA. Mechanism of Inhibition of Cytochrome c Oxidase by Triton X-100. BIOCHEMISTRY (MOSCOW) 2021; 86:44-58. [DOI: 10.1134/s0006297921010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Melin F, Hellwig P. Redox Properties of the Membrane Proteins from the Respiratory Chain. Chem Rev 2020; 120:10244-10297. [DOI: 10.1021/acs.chemrev.0c00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frederic Melin
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
9
|
Han Du WG, McRee D, Götz AW, Noodleman L. A Water Molecule Residing in the Fe a33+···Cu B2+ Dinuclear Center of the Resting Oxidized as-Isolated Cytochrome c Oxidase: A Density Functional Study. Inorg Chem 2020; 59:8906-8915. [PMID: 32525689 PMCID: PMC8114904 DOI: 10.1021/acs.inorgchem.0c00724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 11/30/2022]
Abstract
Although the dinuclear center (DNC) of the resting oxidized "as-isolated" cytochrome c oxidase (CcO) is not a catalytically active state, its detailed structure, especially the nature of the bridging species between the Fea33+ and CuB2+ metal sites, is still both relevant and unsolved. Recent crystallographic work has shown an extended electron density for a peroxide type dioxygen species (O1-O2) bridging the Fea3 and CuB centers. In this paper, our density functional theory (DFT) calculations show that the observed peroxide type electron density between the two metal centers is most likely a mistaken analysis due to overlap of the electron density of a water molecule located at different positions between apparent O1 and O2 sites in DNCs of different CcO molecules with almost the same energy. Because the diffraction pattern and the resulting electron density map represent the effective long-range order averaged over many molecules and unit cells in the X-ray structure, this averaging can lead to an apparent observed superposition of different water positions between the Fea33+ and CuB2+ metal sites.
Collapse
Affiliation(s)
- Wen-Ge Han Du
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Duncan McRee
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Andreas W. Götz
- San
Diego Supercomputer Center, University of
California San Diego, 9500 Gilman Drive MC0505, La Jolla, California 92093, United States
| | - Louis Noodleman
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Gorbikova E, Kalendar R. Comparison Between O and OH Intermediates of Cytochrome c Oxidase Studied by FTIR Spectroscopy. Front Chem 2020; 8:387. [PMID: 32432087 PMCID: PMC7215072 DOI: 10.3389/fchem.2020.00387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022] Open
Abstract
Cytochrome c oxidase is terminal enzyme in the respiratory chain of mitochondria and many aerobic bacteria. It catalyzes reduction of oxygen to water. During its catalysis, CcO proceeds through several quite stable intermediates (R, A, PR/M, O/OH, E/EH). This work is concentrated on the elucidation of the differences between structures of oxidized intermediates O and O H in different CcO variants and at different pH values. Oxidized intermediates of wild type and mutated CcO from Paracoccus denitrificans were studied by means of static and time-resolved Fourier-transform infrared spectroscopy in acidic and alkaline conditions in the infrared region 1800-1000 cm-1. No reasonable differences were found between all variants in these conditions, and in this spectral region. This finding means that the binuclear center of oxygen reduction keeps a very similar structure and holds the same ligands in the studied conditions. The further investigation in search of differences should be performed in the 4000-2000 cm-1 IR region where water ligands absorb.
Collapse
Affiliation(s)
- Elena Gorbikova
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ruslan Kalendar
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- National Center for Biotechnology, Nur-Sultan, Kazakhstan
| |
Collapse
|
11
|
Kruse F, Nguyen AD, Dragelj J, Schlesinger R, Heberle J, Mroginski MA, Weidinger IM. Characterisation of the Cyanate Inhibited State of Cytochrome c Oxidase. Sci Rep 2020; 10:3863. [PMID: 32123230 PMCID: PMC7052191 DOI: 10.1038/s41598-020-60801-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
Heme-copper oxygen reductases are terminal respiratory enzymes, catalyzing the reduction of dioxygen to water and the translocation of protons across the membrane. Oxygen consumption is inhibited by various substances. Here we tested the relatively unknown inhibition of cytochrome c oxidase (CcO) with isocyanate. In contrast to other more common inhibitors like cyanide, inhibition with cyanate was accompanied with the rise of a metal to ligand charge transfer (MLCT) band around 638 nm. Increasing the cyanate concentration furthermore caused selective reduction of heme a. The presence of the CT band allowed for the first time to directly monitor the nature of the ligand via surface-enhanced resonance Raman (SERR) spectroscopy. Analysis of isotope sensitive SERR spectra in comparison with Density Functional Theory (DFT) calculations identified not only the cyanate monomer as an inhibiting ligand but suggested also presence of an uretdion ligand formed upon dimerization of two cyanate ions. It is therefore proposed that under high cyanate concentrations the catalytic site of CcO promotes cyanate dimerization. The two excess electrons that are supplied from the uretdion ligand lead to the observed physiologically inverse electron transfer from heme a3 to heme a.
Collapse
Affiliation(s)
- Fabian Kruse
- Technische Universität Dresden, Department of Chemistry and Food Chemistry, 01069, Dresden, Germany
| | - Anh Duc Nguyen
- Technische Universität Berlin, Department of Chemistry, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Jovan Dragelj
- Technische Universität Berlin, Department of Chemistry, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Ramona Schlesinger
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Joachim Heberle
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Department of Chemistry, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Inez M Weidinger
- Technische Universität Dresden, Department of Chemistry and Food Chemistry, 01069, Dresden, Germany.
| |
Collapse
|
12
|
Mitochondrial cytochrome c oxidase: catalysis, coupling and controversies. Biochem Soc Trans 2017; 45:813-829. [PMID: 28620043 DOI: 10.1042/bst20160139] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/04/2023]
Abstract
Mitochondrial cytochrome c oxidase is a member of a diverse superfamily of haem-copper oxidases. Its mechanism of oxygen reduction is reviewed in terms of the cycle of catalytic intermediates and their likely chemical structures. This reaction cycle is coupled to the translocation of protons across the inner mitochondrial membrane in which it is located. The likely mechanism by which this occurs, derived in significant part from studies of bacterial homologues, is presented. These mechanisms of catalysis and coupling, together with current alternative proposals of underlying mechanisms, are critically reviewed.
Collapse
|
13
|
Affiliation(s)
- Shinya Yoshikawa
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| | - Atsuhiro Shimada
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| |
Collapse
|
14
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1170] [Impact Index Per Article: 106.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
15
|
Abstract
Hydrogen sulfide (H2S), a classic cytochrome c oxidase inhibitor, is also an in vitro oxidase substrate and an in vivo candidate hormonal ('gasotransmitter') species affecting sleep and hibernation. H2S, nitric oxide (NO) and carbon monoxide (CO) share some common features. All are low-molecular-mass physiological effectors and also oxidase inhibitors, capable of binding more than one enzyme site, and each is an oxidizable 'substrate'. The oxidase oxidizes CO to CO2, NO to nitrite and sulfide to probable persulfide species. Mitochondrial cytochrome c oxidase in an aerobic steady state with ascorbate and cytochrome c is rapidly inhibited by sulfide in a biphasic manner. At least two successive inhibited species are involved, probably partially reduced. The oxidized enzyme, in the absence of turnover, occurs in at least two forms: the 'pulsed' and 'resting' states. The pulsed form reacts aerobically with sulfide to form two intermediates, 'P' and 'F', otherwise involved in the reaction of oxygen with reduced enzyme. Sulfide can directly reduce the oxygen-reactive a3CuB binuclear centre in the pulsed state. The resting enzyme does not undergo such a step, but only a very slow one-electron reduction of the electron-transferring haem a. In final reactivation phases, both the steady-state inhibition of catalysis and the accumulation of P and F states are reversed by slow sulfide oxidation. A model for this complex reaction pattern is presented.
Collapse
|
16
|
Vygodina TV, Kirichenko A, Konstantinov AA. Cation binding site of cytochrome c oxidase: progress report. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1188-95. [PMID: 24607866 DOI: 10.1016/j.bbabio.2014.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/18/2014] [Accepted: 02/24/2014] [Indexed: 12/15/2022]
Abstract
Cytochrome c oxidase from bovine heart binds Ca(2+) reversibly at a specific Cation Binding Site located near the outer face of the mitochondrial membrane. Ca(2+) shifts the absorption spectrum of heme a, which allowed earlier the determination of the kinetic and equilibrium characteristics of the binding, and, as shown recently, the binding of calcium to the site inhibits cytochrome oxidase activity at low turnover rates of the enzyme [Vygodina, Т., Kirichenko, A., Konstantinov, A.A (2013). Direct Regulation of Cytochrome c Oxidase by Calcium Ions. PloS ONE 8, e74436]. This paper summarizes further progress in the studies of the Cation Binding Site in this group presenting the results to be reported at 18th EBEC Meeting in Lisbon, 2014. The paper revises specificity of the bovine oxidase Cation Binding Site for different cations, describes dependence of the Ca(2+)-induced inhibition on turnover rate of the enzyme and reports very high affinity binding of calcium with the "slow" form of cytochrome oxidase. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.
Collapse
Affiliation(s)
- Tatiana V Vygodina
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Russia
| | - Anna Kirichenko
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Russia
| | - Alexander A Konstantinov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Russia.
| |
Collapse
|
17
|
Maréchal A, Iwaki M, Rich PR. Structural Changes in Cytochrome c Oxidase Induced by Binding of Sodium and Calcium Ions: An ATR-FTIR Study. J Am Chem Soc 2013; 135:5802-7. [DOI: 10.1021/ja4005706] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amandine Maréchal
- Glynn Laboratory of
Bioenergetics,
Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United
Kingdom
| | - Masayo Iwaki
- Glynn Laboratory of
Bioenergetics,
Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United
Kingdom
| | - Peter R. Rich
- Glynn Laboratory of
Bioenergetics,
Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United
Kingdom
| |
Collapse
|
18
|
Siletsky SA, Belevich I, Soulimane T, Verkhovsky MI, Wikström M. The fifth electron in the fully reduced caa3 from Thermus thermophilus is competent in proton pumping. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1-9. [DOI: 10.1016/j.bbabio.2012.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 11/26/2022]
|
19
|
Kreslavski VD, Fomina IR, Los DA, Carpentier R, Kuznetsov VV, Allakhverdiev SI. Red and near infra-red signaling: Hypothesis and perspectives. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2012. [DOI: 10.1016/j.jphotochemrev.2012.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Vygodina TV, Dyuba AV, Konstantinov AA. Effect of calcium ions on electron transfer between hemes a and a 3 in cytochrome c oxidase. BIOCHEMISTRY (MOSCOW) 2012; 77:901-9. [DOI: 10.1134/s0006297912080111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Siletsky SA, Konstantinov AA. Cytochrome c oxidase: Charge translocation coupled to single-electron partial steps of the catalytic cycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:476-88. [DOI: 10.1016/j.bbabio.2011.08.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 11/28/2022]
|
22
|
Abstract
Cytochrome c oxidase (CcO), as the terminal oxidase of cellular respiration, coupled with a proton-pumping process, reduces molecular oxygen (O(2)) to water. This intriguing and highly organized chemical process represents one of the most critical aspects of cellular respiration. It employs transition metals (Fe and Cu) at the O(2) reduction site and has been considered one of the most challenging research subjects in life science. Extensive X-ray structural and mutational analyses have provided two different proposals with regard to the mechanism of proton pumping. One mechanism is based on bovine CcO and includes an independent pathway for the pumped protons. The second mechanistic proposal includes a common pathway for the pumped and chemical protons and is based upon bacterial CcO. Here, recent progress in experimental evaluations of these proposals is reviewed and strategies for improving our understanding of the mechanism of this physiologically important process are discussed.
Collapse
|
23
|
Cytochrome c
oxidase: Intermediates of the catalytic cycle and their energy-coupled interconversion. FEBS Lett 2011; 586:630-9. [DOI: 10.1016/j.febslet.2011.08.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 11/20/2022]
|
24
|
Dyuba AV, Arutyunyan AM, Vygodina TV, Azarkina NV, Kalinovich AV, Sharonov YA, Konstantinov AA. Circular dichroism spectra of cytochrome c oxidase. Metallomics 2011; 3:417-32. [DOI: 10.1039/c0mt00099j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Lee J, Keuter KA, Kim J, Tran A, Uppal A, Mukai D, Mahon SB, Cancio LC, Batchinsky A, Tromberg BJ, Brenner M. Noninvasive in vivo monitoring of cyanide toxicity and treatment using diffuse optical spectroscopy in a rabbit model. Mil Med 2010; 174:615-21. [PMID: 19585775 DOI: 10.7205/milmed-d-02-7408] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Currently, no reliable noninvasive methods exist for monitoring the severity of in vivo cyanide (CN) toxicity, treatment, and resulting physiological changes. We developed a broadband diffuse optical spectroscopy (DOS) system to measure bulk tissue absorption and scattering. DOS was used to optically monitor CN toxicity and treatment with sodium nitrite (NaNO2). To perform experiments, the DOS probe was placed on the hind leg of rabbits. A sodium CN solution was infused intravenously. DOS and concurrent physiologic measurements were obtained. After completion of CN infusion, NaNO2 was infused to induce methemoglobinemia (MetHb). During infusion of CN, blood gas measurements showed an increase in venous partial pressure of oxygen (pO2), and following reversal, venous pO2 values decreased. DOS measurements demonstrated corresponding changes in hemoglobin oxygenation states and redox states of cytochrome-c oxidase (CcO) during CN infusion and NaNO2 treatment. Therefore, DOS enables detection and monitoring of CN toxicity and treatment with NaNO2.
Collapse
Affiliation(s)
- Jangwoen Lee
- Laser Microbeam and Medical Program, Beckman Laser Institute, University of California, 1002 Health Sciences Road East, Irvine, CA 92612-1475, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Siletsky SA, Zhu J, Gennis RB, Konstantinov AA. Partial steps of charge translocation in the nonpumping N139L mutant of Rhodobacter sphaeroides cytochrome c oxidase with a blocked D-channel. Biochemistry 2010; 49:3060-73. [PMID: 20192226 DOI: 10.1021/bi901719e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The N139L substitution in the D-channel of cytochrome oxidase from Rhodobacter sphaeroides results in an approximately 15-fold decrease in the turnover number and a loss of proton pumping. Time-resolved absorption and electrometric assays of the F --> O transition in the N139L mutant oxidase result in three major findings. (1) Oxidation of the reduced enzyme by O(2) shows approximately 200-fold inhibition of the F --> O step (k approximately 2 s(-1) at pH 8) which is not compatible with enzyme turnover ( approximately 30 s(-1)). Presumably, an abnormal intermediate F(deprotonated) is formed under these conditions, one proton-deficient relative to a normal F state. In contrast, the F --> O transition in N139L oxidase induced by single-electron photoreduction of intermediate F, generated by reaction of the oxidized enzyme with H(2)O(2), decelerates to an extent compatible with enzyme turnover. (2) In the N139L mutant, the protonic phase of Deltapsi generation coupled to the flash-induced F --> O transition greatly decreases in rate and magnitude and can be assigned to the movement of a proton from E286 to the binuclear site, required for reduction of heme a(3) from the Fe(4+) horizontal lineO(2-) state to the Fe(3+)-OH(-) state. Electrogenic reprotonation of E286 from the inner aqueous phase is missing from the F --> O step in the mutant. (3) In the N139L mutant, the KCN-insensitive rapid electrogenic phase may be composed of two components with lifetimes of approximately 10 and approximately 40 mus and a magnitude ratio of approximately 3:2. The 10 mus phase matches vectorial electron transfer from Cu(A) to heme a, whereas the 40 mus component is assigned to intraprotein proton displacement across approximately 20% of the membrane dielectric thickness. This proton displacement might be triggered by rotation of the charged K362 side chain coupled to heme a reduction. The two components of the rapid electrogenic phase have been resolved subsequently with other D-channel mutants as well as with cyanide-inhibited wild-type oxidase. The finding helps to reconcile the unusually high relative contribution of the microsecond electrogenic phase in the bacterial enzyme ( approximately 30%) with the net electrogenicity of the F --> O transition coupled to transmembrane transfer of two charges per electron.
Collapse
Affiliation(s)
- Sergey A Siletsky
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia
| | | | | | | |
Collapse
|
27
|
The steady-state mechanism of cytochrome c oxidase: redox interactions between metal centres. Biochem J 2009; 422:237-46. [DOI: 10.1042/bj20082220] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The steady-state behaviour of isolated mammalian cytochrome c oxidase was examined by increasing the rate of reduction of cytochrome c. Under these conditions the enzyme's 605 (haem a), 655 (haem a3/CuB) and 830 (CuA) nm spectral features behaved as if they were at near equilibrium with cytochrome c (550 nm). This has implications for non-invasive tissue measurements using visible (550, 605 and 655 nm) and near-IR (830 nm) light. The oxidized species represented by the 655 nm band is bleached by the presence of oxygen intermediates P and F (where P is characterized by an absorbance spectrum at 607 nm relative to the oxidized enzyme and F is characterized by an absorbance spectrum at 580 nm relative to the oxidized enzyme) or by reduction of haem a3 or CuB. However, at these ambient oxygen levels (far above the enzyme Km), the populations of reduced haem a3 and the oxygen intermediates were very low (<10%). We therefore interpret 655 nm changes as reduction of the otherwise spectrally invisible CuB centre. We present a model where small anti-cooperative redox interactions occur between haem a–CuA–CuB (steady-state potential ranges: CuA, 212–258 mV; haem a, 254–281 mV; CuB, 227–272 mV). Contrary to static equilibrium measurements, in the catalytic steady state there are no high potential redox centres (>300 mV). We find that the overall reaction is correctly described by the classical model in which the Michaelis intermediate is a ferrocytochrome c–enzyme complex. However, the oxidation of ferrocytochrome c in this complex is not the sole rate-determining step. Turnover is instead dependent upon electron transfer from haem a to haem a3, but the haem a potential closely matches cytochrome c at all times.
Collapse
|
28
|
Abstract
The two-subunit cytochrome bc complex (NorBC) isolated from membranes of the model denitrifying soil bacterium Paracoccus denitrificans is the best-characterized example of the bacterial respiratory nitric oxide reductases. These are members of the super-family of haem-copper oxidases and are characterized by the elemental composition of their active site, which contains non-haem iron rather than copper, at which the reductive coupling of two molecules of nitric oxide to form nitrous oxide is catalysed. The reaction requires the presence of two substrate molecules at the active site along with the controlled input of two electrons and two protons from the same side of the membrane. In the present paper, we consider progress towards understanding the pathways of electron and proton transfer in NOR and how this information can be integrated with evidence for the likely modes of substrate binding at the active site to propose a revised and experimentally testable reaction mechanism.
Collapse
|
29
|
Koepke J, Olkhova E, Angerer H, Müller H, Peng G, Michel H. High resolution crystal structure of Paracoccus denitrificans cytochrome c oxidase: new insights into the active site and the proton transfer pathways. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:635-45. [PMID: 19374884 DOI: 10.1016/j.bbabio.2009.04.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/03/2009] [Accepted: 04/08/2009] [Indexed: 11/19/2022]
Abstract
The structure of the two-subunit cytochrome c oxidase from Paracoccus denitrificans has been refined using X-ray cryodata to 2.25 A resolution in order to gain further insights into its mechanism of action. The refined structural model shows a number of new features including many additional solvent and detergent molecules. The electron density bridging the heme a(3) iron and Cu(B) of the active site is fitted best by a peroxo-group or a chloride ion. Two waters or OH(-) groups do not fit, one water (or OH(-)) does not provide sufficient electron density. The analysis of crystals of cytochrome c oxidase isolated in the presence of bromide instead of chloride appears to exclude chloride as the bridging ligand. In the D-pathway a hydrogen bonded chain of six water molecules connects Asn131 and Glu278, but the access for protons to this water chain is blocked by Asn113, Asn131 and Asn199. The K-pathway contains two firmly bound water molecules, an additional water chain seems to form its entrance. Above the hemes a cluster of 13 water molecules is observed which potentially form multiple exit pathways for pumped protons. The hydrogen bond pattern excludes that the Cu(B) ligand His326 is present in the imidazolate form.
Collapse
Affiliation(s)
- Juergen Koepke
- Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, Max-von-Laue-Str.3, D-60438 Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
30
|
A peroxide bridge between Fe and Cu ions in the O2 reduction site of fully oxidized cytochrome c oxidase could suppress the proton pump. Proc Natl Acad Sci U S A 2009; 106:2165-9. [PMID: 19164527 DOI: 10.1073/pnas.0806391106] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fully oxidized form of cytochrome c oxidase, immediately after complete oxidation of the fully reduced form, pumps protons upon each of the initial 2 single-electron reduction steps, whereas protons are not pumped during single-electron reduction of the fully oxidized "as-isolated" form (the fully oxidized form without any reduction/oxidation treatment) [Bloch D, et al. (2004) The catalytic cycle of cytochrome c oxidase is not the sum of its two halves. Proc Natl Acad Sci USA 101:529-533]. For identification of structural differences causing the remarkable functional difference between these 2 distinct fully oxidized forms, the X-ray structure of the fully oxidized as-isolated bovine heart cytochrome c oxidase was determined at 1.95-A resolution by limiting the X-ray dose for each shot and by using many (approximately 400) single crystals. This minimizes the effects of hydrated electrons induced by the X-ray irradiation. The X-ray structure showed a peroxide group bridging the 2 metal sites in the O(2) reduction site (Fe(3+)-O(-)-O(-)-Cu(2+)), in contrast to a ferric hydroxide (Fe(3+)-OH(-)) in the fully oxidized form immediately after complete oxidation from the fully reduced form, as has been revealed by resonance Raman analyses. The peroxide-bridged structure is consistent with the reductive titration results showing that 6 electron equivalents are required for complete reduction of the fully oxidized as-isolated form. The structural difference between the 2 fully oxidized forms suggests that the bound peroxide in the O(2) reduction site suppresses the proton pumping function.
Collapse
|
31
|
Geren L, Durham B, Millett F. Chapter 28 Use of ruthenium photoreduction techniques to study electron transfer in cytochrome oxidase. Methods Enzymol 2009; 456:507-20. [PMID: 19348907 PMCID: PMC2761077 DOI: 10.1016/s0076-6879(08)04428-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ruthenium photoreduction methods are described to study electron transfer from cytochrome c to cytochrome c oxidase and within cytochrome oxidase. Methods are described to prepare a ruthenium cytochrome c derivative Ru-39-Cc, by labeling the single sulfhydryl group on horse K39C with (4-bromomethyl-4'methylbipyridine) (bis-bipyridine)ruthenium(II). The ruthenium complex attached to Cys-39 on the opposite side of the heme crevice does not interfere with the interaction with cytochrome oxidase. Laser flash photolysis of a 1:1 complex between Ru-39-Cc and bovine cytochrome oxidase results in photoreduction of heme c within 1 microsec, followed by electron transfer from heme c to Cu(A) in cytochrome oxidase with a rate constant of 60,000 s(-1) and from Cu(A) to heme a with a rate constant of 20,000 s(-1). A new ruthenium dimer, Ru(2)Z, has been developed to reduce Cu(A) within 1 microsec with a yield of 60%, followed by electron transfer from Cu(A) to heme a and then to the heme a(3)/Cu(B) binuclear center. Methods are described to measure the single-electron reduction of each of the intermediates involved in reduction of oxygen to water by cytochrome oxidase, including P(m), F, O(H), and E.
Collapse
|
32
|
Cooper CE, Brown GC. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr 2008; 40:533-9. [PMID: 18839291 DOI: 10.1007/s10863-008-9166-6] [Citation(s) in RCA: 484] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 08/01/2008] [Indexed: 12/21/2022]
Abstract
The four gases, nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H(2)S) and hydrogen cyanide (HCN) all readily inhibit oxygen consumption by mitochondrial cytochrome oxidase. This inhibition is responsible for much of their toxicity when they are applied externally to the body. However, recently these gases have all been implicated, to greater or lesser extents, in normal cellular signalling events. In this review we analyse the chemistry of this inhibition, comparing and contrasting mechanism and discussing physiological consequences. The inhibition by NO and CO is dependent on oxygen concentration, but that of HCN and H(2)S is not. NO and H(2)S are readily metabolised by oxidative processes within cytochrome oxidase. In these cases the enzyme may act as a physiological detoxifier of these gases. CO oxidation is much slower and unlikely to be as physiologically important. The evidence for normal physiological levels of these gases interacting with cytochrome oxidase is equivocal, in part because there is little robust data about their steady state concentrations. A reasonable case can be made for NO, and perhaps CO and H(2)S, inhibiting cytochrome oxidase in vivo, but endogenous levels of HCN seem unlikely to be high enough.
Collapse
Affiliation(s)
- Chris E Cooper
- Department of Biological Sciences, University of Essex, Colchester, UK.
| | | |
Collapse
|
33
|
Collman JP, Decréau RA. Functional biomimetic models for the active site in the respiratory enzyme cytochrome c oxidase. Chem Commun (Camb) 2008:5065-76. [PMID: 18956030 DOI: 10.1039/b808070b] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A functional analog of the active site in the respiratory enzyme, cytochrome c oxidase (CcO) reproduces every feature in CcO's active site: a myoglobin-like heme (heme a3), a distal tridentate imidazole copper complex (Cu(B)), a phenol (Tyr244), and a proximal imidazole. When covalently attached to a liquid-crystalline SAM film on an Au electrode, this functional model continuously catalyzes the selective four-electron reduction of dioxygen at physiological potential and pH, under rate-limiting electron flux (as occurs in CcO).
Collapse
Affiliation(s)
- James P Collman
- Stanford University, Chemistry Department, Stanford, CA-94305-5080, USA.
| | | |
Collapse
|
34
|
Comparative genomics of the oxidative phosphorylation system in fungi. Fungal Genet Biol 2008; 45:1248-56. [DOI: 10.1016/j.fgb.2008.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/29/2008] [Accepted: 06/18/2008] [Indexed: 11/22/2022]
|
35
|
Moënne-Loccoz P. Spectroscopic characterization of heme iron-nitrosyl species and their role in NO reductase mechanisms in diiron proteins. Nat Prod Rep 2007; 24:610-20. [PMID: 17534533 PMCID: PMC3028592 DOI: 10.1039/b604194a] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nitric oxide (NO) plays an important role in cell signalling and in the mammalian immune response to infection. On its own, NO is a relatively inert radical, and when it is used as a signalling molecule, its concentration remains within the picomolar range. However, at infection sites, the NO concentration can reach the micromolar range, and reactions with other radical species and transition metals lead to a broad toxicity. Under aerobic conditions, microorganisms cope with this nitrosative stress by oxidizing NO to nitrate (NO3−). Microbial hemoglobins play an essential role in this NO-detoxifying process. Under anaerobic conditions, detoxification occurs via a 2-electron reduction of two NO molecules to N2O. In many bacteria and archaea, this NO-reductase reaction is catalyzed by diiron proteins. Despite the importance of this reaction in providing microorganisms with a resistance to the mammalian immune response, its mechanism remains ill-defined. Because NO is an obligatory intermediate of the denitrification pathway, respiratory NO reductases also provide resistance to toxic concentrations of NO. This family of enzymes is the focus of this review. Respiratory NO reductases are integral membrane protein complexes that contain a norB subunit evolutionarily related to subunit I of cytochrome c oxidase (Cc O). NorB anchors one high-spin heme b3 and one non-heme iron known as FeB, i.e ., analogous to CuB in Cc O. A second group of diiron proteins with NO-reductase activity is comprised of the large family of soluble flavoprotein A found in strict and facultative anaerobic bacteria and archaea. These soluble detoxifying NO reductases contain a non-heme diiron cluster with a Fe–Fe distance of 3.4 Å and are only briefly mentioned here as a promising field of research. This article describes possible mechanisms of NO reduction to N2O in denitrifying NO-reductase (NOR) proteins and critically reviews recent experimental results. Relevant theoretical model calculations and spectroscopic studies of the NO-reductase reaction in heme/copper terminal oxidases are also overviewed.
Collapse
Affiliation(s)
- Pierre Moënne-Loccoz
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, 20,000 NW Walker Road, Beaverton, Oregon 97006-8921, USA.
| |
Collapse
|
36
|
Sharpley MS, Hirst J. The inhibition of mitochondrial complex I (NADH:ubiquinone oxidoreductase) by Zn2+. J Biol Chem 2006; 281:34803-9. [PMID: 16980308 DOI: 10.1074/jbc.m607389200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria is a highly complicated, membrane-bound enzyme. It is central to energy transduction, an important source of cellular reactive oxygen species, and its dysfunction is implicated in neurodegenerative and muscular diseases and in aging. Here, we describe the effects of Zn2+ on complex I to define whether complex I may contribute to mediating the pathological effects of zinc in states such as ischemia and to determine how Zn2+ can be used to probe the mechanism of complex I. Zn2+ inhibits complex I more strongly than Mg2+, Ca2+, Ba2+, and Mn2+ to Cu2+ or Cd2+. It does not inhibit NADH oxidation or intramolecular electron transfer, so it probably inhibits either proton transfer to bound quinone or proton translocation. Thus, zinc represents a new class of complex I inhibitor clearly distinct from the many ubiquinone site inhibitors. No evidence for increased superoxide production by zinc-inhibited complex I was detected. Zinc binding to complex I is mechanistically complicated. During catalysis, zinc binds slowly and progressively, but it binds rapidly and tightly to the resting state(s) of the enzyme. Reactivation of the inhibited enzyme upon the addition of EDTA is slow, and inhibition is only partially reversible. The IC50 value for the Zn2+ inhibition of complex I is high (10-50 microm, depending on the enzyme state); therefore, complex I is unlikely to be a major site for zinc inhibition of the electron transport chain. However, the slow response of complex I to a change in Zn2+ concentration may enhance any physiological consequences.
Collapse
Affiliation(s)
- Mark S Sharpley
- Medical Research Council (MRC) Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 2XY, United Kingdom
| | | |
Collapse
|
37
|
Jancura D, Berka V, Antalik M, Bagelova J, Gennis RB, Palmer G, Fabian M. Spectral and kinetic equivalence of oxidized cytochrome C oxidase as isolated and "activated" by reoxidation. J Biol Chem 2006; 281:30319-25. [PMID: 16905536 DOI: 10.1074/jbc.m605955200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spectral and kinetic characteristics of two oxidized states of bovine heart cytochrome c oxidase (CcO) have been compared. The first is the oxidized state of enzyme isolated in the fast form (O) and the second is the form that is obtained immediately after oxidation of fully reduced CcO with O2 (OH). No observable differences were found between O and OH states in: (i) the rate of anaerobic reduction of heme a3 for both the detergent-solubilized enzyme and for enzyme embedded in its natural membraneous environment, (ii) the one-electron distribution between heme a3 and CuB in the course of the full anaerobic reduction, (iii) the optical and (iv) EPR spectra. Within experimental error of these characteristics both forms are identical. Based on these observations it is concluded that the reduction potentials and the ligation states of heme a3 and CuB are the same for CcO in the O and OH states.
Collapse
Affiliation(s)
- Daniel Jancura
- Department of Biophysics, Safarik University, Jesenna 5, 04154 Kosice, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The photoreduction of oxidized bovine heart cytochrome c oxidase (CcO) by visible and UV radiation was investigated in the absence and presence of external reagents. In the former case, the quantum yields for direct photoreduction of heme A (heme a + heme a(3)) were 2.6 +/- 0.5 x 10(-3), 4 +/- 1 x 10(-4), and 4 +/- 2 x 10(-6) with pulsed laser irradiation at 266, 355 and 532 nm, respectively. Within experimental uncertainty, the quantum yields did not depend on pulse energy, implying that the mechanism is monophotonic. Irradiation with 355 nm light resulted in spectral changes similar to those produced independently by reduction with dithionite, whereby the low-spin heme a and Cu(A) are reduced first. Extended illumination at 355 and 532 nm yielded substantial amounts of reduced heme a(3). Heme decomposition was noted with 266 nm light. In the presence of formate and cyanide ions, which bind at the binuclear heme a(3)/copper center in CcO, irradiation at 355 nm caused selective reduction of only the low-spin heme a and Cu(A). The addition of ferrioxalate ion dramatically increased the efficiency of cytochrome c oxidase photoreduction. The quantum efficiency for heme A reduction was found to be near unity, significantly greater than for other known methods of photoreduction. The active reductant is most likely ferrous iron, and its reduction of the enzyme is thermodynamically driven by the reformation of ferrioxalate in the presence of excess oxalate ion. Other metalloenzymes with redox potentials similar to those of cytochrome c oxidase should be amenable to indirect photoreduction by this method.
Collapse
Affiliation(s)
- John S Winterle
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, USA
| | | |
Collapse
|
39
|
Brändén G, Gennis RB, Brzezinski P. Transmembrane proton translocation by cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1052-63. [PMID: 16824482 DOI: 10.1016/j.bbabio.2006.05.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 05/11/2006] [Accepted: 05/12/2006] [Indexed: 10/24/2022]
Abstract
Respiratory heme-copper oxidases are integral membrane proteins that catalyze the reduction of molecular oxygen to water using electrons donated by either quinol (quinol oxidases) or cytochrome c (cytochrome c oxidases, CcOs). Even though the X-ray crystal structures of several heme-copper oxidases and results from functional studies have provided significant insights into the mechanisms of O2 -reduction and, electron and proton transfer, the design of the proton-pumping machinery is not known. Here, we summarize the current knowledge on the identity of the structural elements involved in proton transfer in CcO. Furthermore, we discuss the order and timing of electron-transfer reactions in CcO during O2 reduction and how these reactions might be energetically coupled to proton pumping across the membrane.
Collapse
Affiliation(s)
- Gisela Brändén
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | | | | |
Collapse
|
40
|
Jancura D, Antalik M, Berka V, Palmer G, Fabian M. Filling the catalytic site of cytochrome c oxidase with electrons. Reduced CuB facilitates internal electron transfer to heme a3. J Biol Chem 2006; 281:20003-10. [PMID: 16704969 DOI: 10.1074/jbc.m602066200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the reductive phase of its catalytic cycle, cytochrome c oxidase receives electrons from external electron donors. Two electrons have to be transferred into the catalytic center, composed of heme a(3) and Cu(B), before reaction with oxygen takes place. In addition, this phase of catalysis appears to be involved in proton translocation. Here, we report for the first time the kinetics of electron transfer to both heme a(3) and Cu(B) during the transition from the oxidized to the fully reduced state. The state of reduction of both heme a(3) and Cu(B) was monitored by a combination of EPR spectroscopy, the rapid freeze procedure, and the stopped-flow method. The kinetics of cytochrome c oxidase reduction by hexaamineruthenium under anaerobic conditions revealed that the rate-limiting step is the initial electron transfer to the catalytic site that proceeds with apparently identical rates to both heme a(3) and Cu(B). After Cu(B) is reduced, electron transfer to oxidized heme a(3) is enhanced relative to the rate of entry of the first electron.
Collapse
Affiliation(s)
- Daniel Jancura
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | | | | | |
Collapse
|
41
|
Brunori M, Forte E, Arese M, Mastronicola D, Giuffrè A, Sarti P. Nitric oxide and the respiratory enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1144-54. [PMID: 16792997 DOI: 10.1016/j.bbabio.2006.05.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/13/2006] [Accepted: 05/03/2006] [Indexed: 11/29/2022]
Abstract
Available information on the molecular mechanisms by which nitric oxide (NO) controls the activity of the respiratory enzyme (cytochrome-c-oxidase) is reviewed. We report that, depending on absolute electron flux, NO at physiological concentrations reversibly inhibits cytochrome-c-oxidase by two alternative reaction pathways, yielding either a nitrosyl- or a nitrite-heme a3 derivative. We address a number of hypotheses, envisaging physiological and/or pathological effects of the reactions between NO and cytochrome-c-oxidase.
Collapse
Affiliation(s)
- Maurizio Brunori
- Department of Biochemical Sciences and CNR Institute of Molecular Biology and Pathology, University of Rome La Sapienza, I-00185 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Su L, Kelly JB, Hawkridge FM, Rhoten MC, Baskin SI. Characterization of cyanide binding to cytochrome c oxidase immobilized in electrode-supported lipid bilayer membranes. J Electroanal Chem (Lausanne) 2005. [DOI: 10.1016/j.jelechem.2005.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
De Grassi A, Caggese C, D'Elia D, Lanave C, Pesole G, Saccone C. Evolution of nuclearly encoded mitochondrial genes in Metazoa. Gene 2005; 354:181-8. [PMID: 15975737 DOI: 10.1016/j.gene.2005.03.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 02/25/2005] [Accepted: 03/24/2005] [Indexed: 10/25/2022]
Abstract
All Metazoan nuclear genomes underwent a continuous process of both complete and partial genetic material gain and loss. The forces modulating these events are also subject to the strict interaction between nuclear and mitochondrial (mt) genome. In this context we investigate the evolution of nuclear genes encoding proteins which target the mitochondrion, with a particular attention to genes involved in oxidative phosphorylation (OXPHOS), one of the most ancient and conserved functions. To examine thoroughly the evolutionary strategies that preserve OXPHOS and coordinate the two cellular genomes, a comparative analysis has been carried out for 78 OXPHOS gene families in several Metazoa (insects, tunicates, fishes and mammals). We demonstrate that the duplication rate of OXPHOS genes increases passing from invertebrates to vertebrates consistently with the total increase in genome size, but all species are prone to negatively select OXPHOS duplicates compared to the general trend of nuclear gene families. These results are consistent with the 'balance hypothesis' and, at least in insects, the expression of duplicate genes is low and strongly testis-biased.
Collapse
Affiliation(s)
- Anna De Grassi
- Istituto di Tecnologie Biomediche, Sezione di Bari, CNR, Bari, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Pitcher RS, Watmough NJ. The bacterial cytochrome cbb3 oxidases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:388-99. [PMID: 15100055 DOI: 10.1016/j.bbabio.2003.09.017] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Revised: 09/11/2003] [Accepted: 09/11/2003] [Indexed: 11/19/2022]
Abstract
Cytochrome cbb(3) oxidases are found almost exclusively in Proteobacteria, and represent a distinctive class of proton-pumping respiratory heme-copper oxidases (HCO) that lack many of the key structural features that contribute to the reaction cycle of the intensely studied mitochondrial cytochrome c oxidase (CcO). Expression of cytochrome cbb(3) oxidase allows human pathogens to colonise anoxic tissues and agronomically important diazotrophs to sustain N(2) fixation. We review recent progress in the biochemical characterisation of these distinctive oxidases that lays the foundation for understanding the basis of their proposed high affinity for oxygen, an apparent degeneracy in their electron input pathways and whether or not they acquired the ability to pump protons independently of other HCOs.
Collapse
Affiliation(s)
- Robert S Pitcher
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | |
Collapse
|
45
|
Grönberg KLC, Watmough NJ, Thomson AJ, Richardson DJ, Field SJ. Redox-dependent open and closed forms of the active site of the bacterial respiratory nitric-oxide reductase revealed by cyanide binding studies. J Biol Chem 2004; 279:17120-5. [PMID: 14766741 DOI: 10.1074/jbc.m400824200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial respiratory nitric-oxide reductase (NOR) catalyzes the respiratory detoxification of nitric oxide in bacteria and Archaea. It is a member of the well known super-family of heme-copper oxidases but has a [heme Fe-non-heme Fe] active site rather than the [heme Fe-Cu(B)] active site normally associated with oxygen reduction. Paracoccus denitrificans NOR is spectrally characterized by a ligand-to-metal charge transfer absorption band at 595 nm, which arises from the high spin ferric heme iron of a micro-oxo-bridged [heme Fe(III)-O-Fe(III)] active site. On reduction of the nonheme iron, the micro-oxo bridge is broken, and the ferric heme iron is hydroxylated or hydrated, depending on the pH. At present, the catalytic cycle of NOR is a matter of much debate, and it is not known to which redox state(s) of the enzyme nitric oxide can bind. This study has used cyanide to probe the nature of the active site in a number of different redox states. Our observations suggest that the micro-oxo-bridged [heme Fe(III)-O-Fe(III)] active site represents a closed or resting state of NOR that can be opened by reduction of the non-heme iron.
Collapse
Affiliation(s)
- Karin L C Grönberg
- School of Biological Sciences and School of Chemical Sciences and Pharmacy, Centre for Metalloprotein Spectroscopy and Biology, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | | | | | | | |
Collapse
|
46
|
Pfeiffer K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML, Schägger H. Cardiolipin Stabilizes Respiratory Chain Supercomplexes. J Biol Chem 2003; 278:52873-80. [PMID: 14561769 DOI: 10.1074/jbc.m308366200] [Citation(s) in RCA: 630] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiolipin stabilized supercomplexes of Saccharomyces cerevisiae respiratory chain complexes III and IV (ubiquinol:cytochrome c oxidoreductase and cytochrome c oxidase, respectively), but was not essential for their formation in the inner mitochondrial membrane because they were found also in a cardiolipin-deficient strain. Reconstitution with cardiolipin largely restored wild-type stability. The putative interface of complexes III and IV comprises transmembrane helices of cytochromes b and c1 and tightly bound cardiolipin. Subunits Rip1p, Qcr6p, Qcr9p, Qcr10p, Cox8p, Cox12p, and Cox13p and cytochrome c were not essential for the assembly of supercomplexes; and in the absence of Qcr6p, the formation of supercomplexes was even promoted. An additional marked effect of cardiolipin concerns cytochrome c oxidase. We show that a cardiolipin-deficient strain harbored almost inactive resting cytochrome c oxidase in the membrane. Transition to the fully active pulsed state occurred on a minute time scale.
Collapse
Affiliation(s)
- Kathy Pfeiffer
- Zentrum der Biologischen Chemie, Universitätsklinikum Frankfurt, D-60590 Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Shinya Yoshikawa
- Department of Life Science, Himeji Institute of Technology, and CREST, Japan Science and Technology Corporation (JST), Kamigohri Akoh, Hyogo 678-1297, Japan
| |
Collapse
|
48
|
Iwaki M, Breton J, Rich PR. ATR-FTIR difference spectroscopy of the P(M) intermediate of bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1555:116-21. [PMID: 12206902 DOI: 10.1016/s0005-2728(02)00265-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Perfusion-induced attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was used to investigate changes induced in protein and cofactors of bovine cytochrome c oxidase when it was converted from the oxidised state to the catalytic P(M) intermediate. The transition was induced in a film of detergent-depleted 'fast' oxidase with a buffer containing CO and O(2). The extent of formation of the P(M) state was quantitated simultaneously by monitoring formation of its characteristic 607-nm band with a scanned visible beam reflected off the top surface of the prism. The P(M) minus O FTIR difference spectrum is distinctly different from the redox spectra reported to date and includes features that can be assigned to changes of haem a(3) and surrounding protein. Tentative assignments are made based on vibrational data of related proteins and model compounds.
Collapse
Affiliation(s)
- Masayo Iwaki
- The Glynn Laboratory of Bioenergetics, Department of Biology, University College London, UK
| | | | | |
Collapse
|
49
|
Pitcher RS, Cheesman MR, Watmough NJ. Molecular and spectroscopic analysis of the cytochrome cbb(3) oxidase from Pseudomonas stutzeri. J Biol Chem 2002; 277:31474-83. [PMID: 12070166 DOI: 10.1074/jbc.m204103200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome cbb(3) oxidase, a member of the heme-copper oxidase superfamily, is characterized by its high affinity for oxygen while retaining the ability to pump protons. These attributes are central to its proposed role in the microaerobic metabolism of proteobacteria. We have completed the first detailed spectroscopic characterization of a cytochrome cbb(3) oxidase, the enzyme purified from Pseudomonas stutzeri. A combination of UV-visible and magnetic CD spectroscopies clearly identified four low-spin hemes and the high-spin heme of the active site. This heme complement is in good agreement with our analysis of the primary sequence of the ccoNOPQ operon and biochemical analysis of the complex. Near-IR magnetic CD spectroscopy revealed the unexpected presence of a low-spin bishistidine-coordinated c-type heme in the complex. This was shown to be one of two c-type hemes in the CcoP subunit by separately expressing the subunit in Escherichia coli. Separate expression of CcoP also allowed us to unambiguously assign each of the signals associated with low-spin ferric hemes present in the X-band EPR spectrum of the oxidized enzyme. This work both underpins future mechanistic studies on this distinctive class of bacterial oxidases and raises questions concerning the role of CcoP in electron delivery to the catalytic subunit.
Collapse
Affiliation(s)
- Robert S Pitcher
- Centre for Metalloprotein Spectroscopy and Biology and the School of Biological Sciences, University of East Anglia, Norfolk NR4 7TJ, United Kingdom
| | | | | |
Collapse
|
50
|
Rich PR, Rigby SEJ, Heathcote P. Radicals associated with the catalytic intermediates of bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1554:137-46. [PMID: 12160986 DOI: 10.1016/s0005-2728(02)00228-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two radicals have been detected previously by electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopies in bovine cytochrome oxidase after reaction with hydrogen peroxide, but no correlation could be made with predicted levels of optically detectable intermediates (P(M), F and F(z.rad;)) that are formed. This work has been extended by optical quantitation of intermediates in the EPR/ENDOR sample tubes, and by comparison with an analysis of intermediates formed by reaction with carbon monoxide in the presence of oxygen. The narrow radical, attributed previously to a porphyrin cation, is detectable at low levels even in untreated oxidase and increases with hydrogen peroxide treatments generally. It is presumed to arise from a side-reaction unrelated to the catalytic intermediates. The broad radical, attributed previously to a tryptophan radical, is observed only in samples with a significant level of F(z.rad;) but when F(z.rad;) is generated with hydrogen peroxide, is always accompanied by the narrow radical. When P(M) is produced at high pH with CO/O(2), no EPR-detectable radicals are formed. Conversion of the CO/O(2)-generated P(M) into F(z.rad;) when pH is lowered is accompanied by the appearance of a broad radical whose ENDOR spectrum corresponds to a tryptophan cation. Quantitation of its EPR intensity indicates that it is around 3% of the level of F(z.rad;) determined optically. It is concluded that low pH causes a change of protonation pattern in P(M) which induces partial electron redistribution and tryptophan cation radical formation in F(z.rad;). These protonation changes may mimic a key step of the proton translocation process.
Collapse
Affiliation(s)
- Peter R Rich
- The Glynn Laboratory of Bioenergetics, Department of Biology, University College London, Gower Street, WC1E 6BT, London, UK.
| | | | | |
Collapse
|