1
|
de Caro A, Talmont F, Rols MP, Golzio M, Kolosnjaj-Tabi J. Therapeutic perspectives of high pulse repetition rate electroporation. Bioelectrochemistry 2024; 156:108629. [PMID: 38159429 DOI: 10.1016/j.bioelechem.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Electroporation, a technique that uses electrical pulses to temporarily or permanently destabilize cell membranes, is increasingly used in cancer treatment, gene therapy, and cardiac tissue ablation. Although the technique is efficient, patients report discomfort and pain. Current strategies that aim to minimize pain and muscle contraction rely on the use of pharmacological agents. Nevertheless, technical improvements might be a valuable tool to minimize adverse events, which occur during the application of standard electroporation protocols. One recent technological strategy involves the use of high pulse repetition rate. The emerging technique, also referred as "high frequency" electroporation, employs short (micro to nanosecond) mono or bipolar pulses at repetition rate ranging from a few kHz to a few MHz. This review provides an overview of the historical background of electric field use and its development in therapies over time. With the aim to understand the rationale for novel electroporation protocols development, we briefly describe the physiological background of neuromuscular stimulation and pain caused by exposure to pulsed electric fields. Then, we summarize the current knowledge on electroporation protocols based on high pulse repetition rates. The advantages and limitations of these protocols are described from the perspective of their therapeutic application.
Collapse
Affiliation(s)
- Alexia de Caro
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
2
|
Kisakov DN, Belyakov IM, Kisakova LA, Yakovlev VA, Tigeeva EV, Karpenko LI. The use of electroporation to deliver DNA-based vaccines. Expert Rev Vaccines 2024; 23:102-123. [PMID: 38063059 DOI: 10.1080/14760584.2023.2292772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Nucleic acids represent a promising platform for creating vaccines. One disadvantage of this approach is its relatively low immunogenicity. Electroporation (EP) is an effective way to increase the DNA vaccines immunogenicity. However, due to the different configurations of devices used for EP, EP protocols optimization is required not only to enhance immunogenicity, but also to ensure greater safety and tolerability of the EP procedure. AREA COVERED An data analysis for recent years on the DNA vaccines delivery against viral and parasitic infections using EP was carried out. The study of various EP physical characteristics, such as frequency, pulse duration, pulse interval, should be considered along with the immunogenic construct design and the site of delivery of the vaccine, through the study of the immunogenic and protective characteristics of the latter. EXPERT OPINION Future research should focus on regulating the humoral and cellular response required for protection against infectious agents by modifying the EP protocol. Significant efforts will be directed to establishing the possibility of redirecting the immune response toward the Th1 or Th2 response by changing the EP physical parameters. It will allow for an individual selective approach during EP, depending on the pathogen type of an infectious disease.
Collapse
Affiliation(s)
- Denis N Kisakov
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Igor M Belyakov
- Department of medico-biological disciplines, Moscow University for Industry and Finance "Synergy", Moscow, Russia
| | - Lubov A Kisakova
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Vladimir A Yakovlev
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Elena V Tigeeva
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Larisa I Karpenko
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| |
Collapse
|
3
|
Prabhakar P, Avudaiappan AP, Sandman M, Eldefrawy A, Caso J, Narayanan G, Manoharan M. Irreversible electroporation as a focal therapy for localized prostate cancer: A systematic review. Indian J Urol 2024; 40:6-16. [PMID: 38314081 PMCID: PMC10836445 DOI: 10.4103/iju.iju_370_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 12/04/2023] [Indexed: 02/06/2024] Open
Abstract
Introduction Irreversible electroporation (IRE) is a new and promising focal therapy for the treatment of localized prostate cancer. In this systematic review, we summarize the literature on IRE for prostate cancer published over the last decade. Methods PubMed and EMBASE were searched with the end date of May 2023 to find relevant publications on prostate cancer ablation using IRE. Original studies with focal IRE as the primary curative treatment which reported on functional or oncological outcomes were included. The bibliography of relevant studies was also scanned to identify suitable articles. Results A total of 14 studies reporting on 899 patients treated with IRE for localized prostate cancer were included. Of all the studies reviewed, 77% reported on recurrence within the zone of ablation, and it ranged from 0% to 38.9% for in-field and 3.6% to 28% for out-of-field recurrence. Although, a standardised follow-up protocol was not followed, all the studies employed serial prostate-specific antigen monitoring, a multiparametric magnetic resonance imaging, and a biopsy (6-12 months post-treatment). Across all the studies, 58% reported that the urinary continence returned to the pretreatment levels and 25% reported a minor decrease in the continence from the baseline at 12-months of follow-up. Erections sufficient for intercourse varied from 44% to 75% at the baseline to 55% to 100% at 12-months of follow-up across all the studies. Conclusion IRE, as a focal therapy, shows promising results with minimal complications and reasonably effective oncological control, but the data comparing it to the standard of care is still lacking. Future research should focus on randomized definitive comparisons between IRE, radical prostatectomy, and radiation therapy.
Collapse
Affiliation(s)
- Pushan Prabhakar
- Division of Urologic Oncologic Surgery, Miami Cancer Institute, Miami, Florida, USA
| | | | - Mayer Sandman
- Department of Urology, Herbert Wertheim College of Medicine, Miami, Florida, USA
| | - Ahmed Eldefrawy
- Division of Urologic Oncologic Surgery, Miami Cancer Institute, Miami, Florida, USA
- Department of Urology, Herbert Wertheim College of Medicine, Miami, Florida, USA
| | - Jorge Caso
- Division of Urologic Oncologic Surgery, Miami Cancer Institute, Miami, Florida, USA
- Department of Urology, Herbert Wertheim College of Medicine, Miami, Florida, USA
| | - Govindarajan Narayanan
- Division of Urologic Oncologic Surgery, Miami Cancer Institute, Miami, Florida, USA
- Department of Interventional Radiology, Miami Cardiac and Vascular Institute, Miami, Florida, USA
| | - Murugesan Manoharan
- Division of Urologic Oncologic Surgery, Miami Cancer Institute, Miami, Florida, USA
- Department of Urology, Herbert Wertheim College of Medicine, Miami, Florida, USA
| |
Collapse
|
4
|
Achayuthakan P, Wongsagonsup R, Sriprablom J, Suphantharika M, Intra P. Effect of Pulsed Electric Field Treatment on the Protein, Digestibility, and Physicochemical Properties of Starch Granules in Wheat Flour. Polymers (Basel) 2023; 15:4087. [PMID: 37896331 PMCID: PMC10610664 DOI: 10.3390/polym15204087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The effect of pulsed electric field (PEF) treatment depends mainly on the electric field strength and treatment time. In this study, wheat flour-water suspensions were treated with PEF at an electric field strength of 3 kV/cm for 0 to 1400 pulses to obtain a specific energy input of 0 to 656 kJ/kg. The effect of PEF on the removal or unfolding of proteins from the starch surface, digestibility, starch granule structure, and physicochemical properties of wheat flour was studied. The removal of proteins from the surface and the damage to the internal structure of wheat starch granules after PEF treatment was detected by confocal laser scanning microscopy (CLSM) and FTIR. The damage of the PEF-treated wheat starch granules was observed by scanning electron microscopy (SEM). From CLSM results, penetration of dextran (Mw 10,000 Da) into starch granules of wheat flour was dependent on the energy input of PEF. The high the energy input showed the intense penetration of the biopolymer. The benefits of the accessibility of biopolymer in starch granules are to increase enzyme digestion, especially rapidly digestible starch (RDS). The RDS of wheat flour treated with PEF at 656 kJ/kg was 41.72%, whereas the RDS of wheat flour control was 27.59%.
Collapse
Affiliation(s)
- Piyada Achayuthakan
- Food Industrial Microbiology and Bioinnovation Program, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Dusit, Bangkok 10300, Thailand
| | - Rungtiwa Wongsagonsup
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Jiratthitikan Sriprablom
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Manop Suphantharika
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Panich Intra
- Research Unit of Applied Electric Field in Engineering (RUEE), College of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50220, Thailand
| |
Collapse
|
5
|
Zare F, Ghasemi N, Bansal N, Hosano H. Advances in pulsed electric stimuli as a physical method for treating liquid foods. Phys Life Rev 2023; 44:207-266. [PMID: 36791571 DOI: 10.1016/j.plrev.2023.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
There is a need for alternative technologies that can deliver safe and nutritious foods at lower costs as compared to conventional processes. Pulsed electric field (PEF) technology has been utilised for a plethora of different applications in the life and physical sciences, such as gene/drug delivery in medicine and extraction of bioactive compounds in food science and technology. PEF technology for treating liquid foods involves engineering principles to develop the equipment, and quantitative biochemistry and microbiology techniques to validate the process. There are numerous challenges to address for its application in liquid foods such as the 5-log pathogen reduction target in food safety, maintaining the food quality, and scale up of this physical approach for industrial integration. Here, we present the engineering principles associated with pulsed electric fields, related inactivation models of microorganisms, electroporation and electropermeabilization theory, to increase the quality and safety of liquid foods; including water, milk, beer, wine, fruit juices, cider, and liquid eggs. Ultimately, we discuss the outlook of the field and emphasise research gaps.
Collapse
Affiliation(s)
- Farzan Zare
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia; School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Negareh Ghasemi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Hamid Hosano
- Biomaterials and Bioelectrics Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
6
|
Ueno T, Furukawa T, Sakugawa T. Vancomycin-Resistant Enterococcus faecium Sterilization and Conductivity Change by Impulse Voltage. Microorganisms 2023; 11:microorganisms11020517. [PMID: 36838482 PMCID: PMC9967602 DOI: 10.3390/microorganisms11020517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Owing to the increased use of antibiotics, drug-resistant strains, including those that are resistant to the antibiotic vancomycin, have emerged, which has become a major problem. In Japan, sewage treatments consist of sterilization with chlorine; however, this may not be sufficient to inactivate these bacteria. In this study, impulse voltage was employed instead of chlorine to inactivate drug-resistant bacteria. The results showed that sterilization above 105 CFU/mL is possible with longer application times of applied voltages above 4.5 kV. The effectiveness of impulse-voltage-mediated sterilization increased as the temperature of the bacterial suspension increased. The number of bacteria sterilized via impulse voltage was correlated with conductivity when the number of bacteria sterilized by impulse voltage exceeded 105 CFU/mL. The sterilization rate achieved by the use of impulse voltage could be estimated immediately by measuring the electrical conductivity and without the need for using the culture method.
Collapse
Affiliation(s)
- Takahisa Ueno
- Department of Electrical and Electronic Engineering, National Institute of Technology, Oita College, 1666 Maki, Oita-shi 870-0152, Oita, Japan
- Correspondence:
| | - Takashi Furukawa
- Department of Health Science, School of Allied Health Sciences, Kitasato University, A1-505, 1-15-1 Kitasato, Minami-Ku, Sagamihara-shi 252-0373, Kanagawa, Japan
| | - Takashi Sakugawa
- Institute of Industrial Nanomaterials, Kumamoto University, Kurokami 2-39-1, Chuo-Ku, Kumamoto-shi 860-8555, Kumamoto, Japan
| |
Collapse
|
7
|
Wubshet NH, Liu AP. Methods to mechanically perturb and characterize GUV-based minimal cell models. Comput Struct Biotechnol J 2022; 21:550-562. [PMID: 36659916 PMCID: PMC9816913 DOI: 10.1016/j.csbj.2022.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Cells shield organelles and the cytosol via an active boundary predominantly made of phospholipids and membrane proteins, yet allowing communication between the intracellular and extracellular environment. Micron-sized liposome compartments commonly known as giant unilamellar vesicles (GUVs) are used to model the cell membrane and encapsulate biological materials and processes in a cell-like confinement. In the field of bottom-up synthetic biology, many have utilized GUVs as substrates to study various biological processes such as protein-lipid interactions, cytoskeletal assembly, and dynamics of protein synthesis. Like cells, it is ideal that GUVs are also mechanically durable and able to stay intact when the inner and outer environment changes. As a result, studies have demonstrated approaches to tune the mechanical properties of GUVs by modulating membrane composition and lumenal material property. In this context, there have been many different methods developed to test the mechanical properties of GUVs. In this review, we will survey various perturbation techniques employed to mechanically characterize GUVs.
Collapse
Affiliation(s)
- Nadab H. Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Non-Thermal Processing of a Protein Functional Beverage Using Pulsed Electric Fields: Escherichia coli Inactivation and Effect on Proteins. BEVERAGES 2022. [DOI: 10.3390/beverages8040068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The application of pulsed electric fields (PEFs) for the inactivation of Escherichia coli, suspended in a protein shake beverage and diluted with sterilized distilled water was carried out. Square bipolar pulses in the range of 25–40 kV/cm electric field intensities were applied at different frequencies (400–900 Hz) to investigate the effect of different PEF conditions on the microbial population and proteins relevant to this functional beverage. The treatment temperature was kept below the lethal temperature of the microorganism under investigation. As power consumption plays an important role in the efficiency of the PEF application, the dissipated power was also estimated. Four log reductions in the E. coli population were obtained with 10 pulses at a 40 kV/cm field intensity and 25 pulses at a 25 kV/cm field intensity. PEF-treated whey-protein concentrates showed less denaturation in proteins than thermally treated concentrates, especially for lower electric field intensities (0% denaturation ± 0.007 at 25 kV/cm and 900 Hz, 4.41% denaturation ± 0.008 at 40 kV/cm and 400 Hz). Soy protein isolates manifested high sensitivity to PEF processing and resulted in denaturation and aggregation in the protein structure.
Collapse
|
9
|
Justesen TF, Orhan A, Raskov H, Nolsoe C, Gögenur I. Electroporation and Immunotherapy-Unleashing the Abscopal Effect. Cancers (Basel) 2022; 14:cancers14122876. [PMID: 35740542 PMCID: PMC9221311 DOI: 10.3390/cancers14122876] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Electrochemotherapy and irreversible electroporation are primarily used for treating patients with cutaneous and subcutaneous tumors and pancreatic cancer, respectively. Increasing numbers of studies have shown that the treatments may elicit an immune response in addition to eliminating the tumor cells. The purpose of this review is to give an in-depth introduction to the electroporation-induced immune response and the local and peripheral immune systems, and to describe the various studies investigating the combination of electroporation and immunotherapy. The review may help guide and inspire the design of future clinical trials investigating the potential synergy of electroporation and immunotherapy in cancer treatment. Abstract The discovery of electroporation in 1968 has led to the development of electrochemotherapy (ECT) and irreversible electroporation (IRE). ECT and IRE have been established as treatments of cutaneous and subcutaneous tumors and locally advanced pancreatic cancer, respectively. Interestingly, the treatment modalities have been shown to elicit immunogenic cell death, which in turn can induce an immune response towards the tumor cells. With the dawn of the immunotherapy era, the potential of combining ECT and IRE with immunotherapy has led to the launch of numerous studies. Data from the first clinical trials are promising, and new combination regimes might change the way we treat tumors characterized by low immunogenicity and high levels of immunosuppression, such as melanoma and pancreatic cancer. In this review we will give an introduction to ECT and IRE and discuss the impact on the immune system. Additionally, we will present the results of clinical and preclinical trials, investigating the combination of electroporation modalities and immunotherapy.
Collapse
Affiliation(s)
- Tobias Freyberg Justesen
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
- Correspondence:
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
| | - Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
| | - Christian Nolsoe
- Center for Surgical Ultrasound, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark;
- Copenhagen Academy for Medical Education and Simulation (CAMES), University of Copenhagen and the Capital Region of Denmark, Ryesgade 53B, 2100 Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
10
|
Hughes DC, Hardee JP, Waddell DS, Goodman CA. CORP: Gene delivery into murine skeletal muscle using in vivo electroporation. J Appl Physiol (1985) 2022; 133:41-59. [PMID: 35511722 DOI: 10.1152/japplphysiol.00088.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The strategy of gene delivery into skeletal muscles has provided exciting avenues in identifying new potential therapeutics towards muscular disorders and addressing basic research questions in muscle physiology through overexpression and knockdown studies. In vivo electroporation methodology offers a simple, rapidly effective technique for the delivery of plasmid DNA into post-mitotic skeletal muscle fibers and the ability to easily explore the molecular mechanisms of skeletal muscle plasticity. The purpose of this review is to describe how to robustly electroporate plasmid DNA into different hindlimb muscles of rodent models. Further, key parameters (e.g., voltage, hyaluronidase, plasmid concentration) which contribute to the successful introduction of plasmid DNA into skeletal muscle fibers will be discussed. In addition, details on processing tissue for immunohistochemistry and fiber cross-sectional area (CSA) analysis will be outlined. The overall goal of this review is to provide the basic and necessary information needed for successful implementation of in vivo electroporation of plasmid DNA and thus open new avenues of discovery research in skeletal muscle physiology.
Collapse
Affiliation(s)
- David C Hughes
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Justin P Hardee
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - David S Waddell
- Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Craig A Goodman
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Generation of nonlinearity in the electrical response of yeast suspensions. Sci Rep 2022; 12:3569. [PMID: 35246551 PMCID: PMC8897459 DOI: 10.1038/s41598-022-07308-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/16/2022] [Indexed: 11/12/2022] Open
Abstract
The mechanism through which nonlinearity is generated in the response waveform of the electric current obtained by applying alternating current voltage to yeast suspension has not yet been elucidated. In this paper, we showed that the response waveform depends on the applied voltage and frequency. The results showed that distortion (nonlinearity) in the waveform increases as the applied voltage increases and/or the frequency decreases. We suggest a model for the generation of nonlinearity based on the influx of potassium ions into the cell via potassium ion channels and transporters in the membrane due to the applied voltage. Furthermore, we validated this model by simulating an electrical circuit.
Collapse
|
12
|
Kurata K, Naito H, Takamatsu H. Feasibility of Concentric Electrodes in Contact Irreversible Electroporation for Superficial Lesion Treatment. IEEE Trans Biomed Eng 2022; 69:2480-2487. [PMID: 35226598 DOI: 10.1109/tbme.2022.3154788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
<i>Objective:</i> Contact irreversible electroporation (IRE) is a method for ablating cells by applying electric pulses via surface electrodes in contact with a target tissue. To facilitate the application of the contact IRE to superficial lesion treatment, this study further extended the ablation depth, which had been limited to a 400-m depth in our previous study, by using concentric electrodes. <i>Methods:</i> A prototype device of concentric electrodes was manufactured using a Teflon-coated copper wire inserted in a copper tube. The ablation area was experimentally determined using a tissue phantom comprising 3D cultured fibroblasts and compared with the electric field distribution obtained using numerical analyses. </i>Results:</i> Experiments showed that cells 540 m from the surface of the tissue phantom were necrotized by the application of 150 pulses at 100 V. The outline of the ablation area agreed well with the contour line of 0.4 kV/cm acquired by the analyses. The ablation depth predicted for the concentric electrode using this critical electric field was 1.4 times deeper than that for the parallel electrode. For the actual application of treatment, a multiple-electrode device that bundles several pairs of concentric electrodes was developed, and confirmed that to be effective for treating wide areas with a single treatment. <i>Conclusion:</i> The electric field estimated by the analyses with the experimentally determined threshold confirmed that concentric electrodes could attain a deeper ablation than parallel electrodes. <i>Significance:</i> Using the concentric electrodes, we were able to localize ablation to specific target cells with much less damage to neighboring cells.
Collapse
|
13
|
Reinsch N, Füting A, Höwel D, Neven K. [Pulsed field ablation : The ablation technique of the future?]. Herzschrittmacherther Elektrophysiol 2022; 33:12-18. [PMID: 34997292 DOI: 10.1007/s00399-021-00833-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022]
Abstract
The ablation of cardiac arrhythmias is now standard therapy in invasive electrophysiology with a focus on atrial fibrillation due to its high prevalence. Thermal energy sources such as radiofrequency or cryoablation are the most commonly used techniques to date. Due to limitations in terms of effectiveness and safety because of possible indiscriminate tissue destruction, ablation using pulsed field ablation (PFA) can be a safe and effective alternative to thermal ablation techniques. This is a nonthermal form of energy that creates effective myocardial lesions by means of irreversible electroporation by generating short, high-energy electrical impulses. Preliminary data show high effectiveness with a low complication rate. Myocardial tissue shows a high specificity while sparing surrounding structures such as the esophagus, the phrenic nerve and surrounding vascular structures. Therefore, irreversible electroporation is a very promising technique and has the potential to become the perfect form of energy for many catheter ablations and especially for pulmonary vein isolation. In this article we provide an overview of the current status of PFA as well as an outlook on future fields of treatment.
Collapse
Affiliation(s)
- Nico Reinsch
- Abteilung für Elektrophysiologie, Alfried Krupp Krankenhaus, Alfried-Krupp-Str. 21, 45131, Essen, Deutschland.
- Universität Witten/Herdecke, Witten, Deutschland.
| | - Anna Füting
- Abteilung für Elektrophysiologie, Alfried Krupp Krankenhaus, Alfried-Krupp-Str. 21, 45131, Essen, Deutschland
- Universität Witten/Herdecke, Witten, Deutschland
| | - Dennis Höwel
- Abteilung für Elektrophysiologie, Alfried Krupp Krankenhaus, Alfried-Krupp-Str. 21, 45131, Essen, Deutschland
| | - Kars Neven
- Abteilung für Elektrophysiologie, Alfried Krupp Krankenhaus, Alfried-Krupp-Str. 21, 45131, Essen, Deutschland
- Universität Witten/Herdecke, Witten, Deutschland
| |
Collapse
|
14
|
Woroszyło M, Ciecholewska-Juśko D, Junka A, Pruss A, Kwiatkowski P, Wardach M, Fijałkowski K. The Impact of Intraspecies Variability on Growth Rate and Cellular Metabolic Activity of Bacteria Exposed to Rotating Magnetic Field. Pathogens 2021; 10:1427. [PMID: 34832583 PMCID: PMC8624435 DOI: 10.3390/pathogens10111427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
Majority of research on the influence of magnetic fields on microorganisms has been carried out with the use of different species or different groups of microorganisms, but not with the use of different strains belonging to one species. The purpose of the present study was to assess the effect of rotating magnetic fields (RMF) of 5 and 50 Hz on the growth and cellular metabolic activity of eight species of bacteria: Staphylococcus aureus, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae, Enterococcus faecalis, Enterobacter cloacae, Moraxella catarrhalis, and Bacillus cereus. However, contrary to the research conducted so far, each species was represented by at least four different strains. Moreover, an additional group of S. aureus belonging to a single clonal type but representing different biotypes was also included in the experiment. The results showed a varied influence of RMF on growth dynamics and cellular metabolic activity, diversified to the greatest extent in dependence on the bacterial strain exposed to the RMF and to a lesser extent in dependence on the frequency of the generated magnetic field. It was found that, with regard to the exposed strain of the same species, the effect exerted by the RMF may be positive (i.e., manifests as the increase in the growth rate or/and cellular metabolic activity) or negative (i.e., manifests as a reduction of both aforementioned features) or none. Even when one clonal type of S. aureus was used, the results of RMF exposure also varied (although the degree of differentiation was lower than for strains representing different clones). Therefore, the research has proven that, apart from the previously described factors related primarily to the physical parameters of the magnetic field, one of the key parameters affecting the final result of its influence is the bacterial intraspecies variability.
Collapse
Affiliation(s)
- Marta Woroszyło
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.)
| | - Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Wroclaw, Borowska 211a, 50-534 Wrocław, Poland
- Laboratory of Microbiology, Łukasiewicz Research Network-PORT Polish Center for Technology Development, 54-066 Wrocław, Poland
| | - Agata Pruss
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Marcin Wardach
- Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin, Sikorskiego 37, 70-313 Szczecin, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.)
| |
Collapse
|
15
|
Rai ZL, Feakins R, Pallett LJ, Manas D, Davidson BR. Irreversible Electroporation (IRE) in Locally Advanced Pancreatic Cancer: A Review of Current Clinical Outcomes, Mechanism of Action and Opportunities for Synergistic Therapy. J Clin Med 2021; 10:1609. [PMID: 33920118 PMCID: PMC8068938 DOI: 10.3390/jcm10081609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Locally advanced pancreatic cancer (LAPC) accounts for 30% of patients with pancreatic cancer. Irreversible electroporation (IRE) is a novel cancer treatment that may improve survival and quality of life in LAPC. This narrative review will provide a perspective on the clinical experience of pancreas IRE therapy, explore the evidence for the mode of action, assess treatment complications, and propose strategies for augmenting IRE response. A systematic search was performed using PubMed regarding the clinical use and safety profile of IRE on pancreatic cancer, post-IRE sequential histological changes, associated immune response, and synergistic therapies. Animal data demonstrate that IRE induces both apoptosis and necrosis followed by fibrosis. Major complications may result from IRE; procedure related mortality is up to 2%, with an average morbidity as high as 36%. Nevertheless, prospective and retrospective studies suggest that IRE treatment may increase median overall survival of LAPC to as much as 30 months and provide preliminary data justifying the well-designed trials currently underway, comparing IRE to the standard of care treatment. The mechanism of action of IRE remains unknown, and there is a lack of data on treatment variables and efficiency in humans. There is emerging data suggesting that IRE can be augmented with synergistic therapies such as immunotherapy.
Collapse
Affiliation(s)
- Zainab L. Rai
- Centre of Surgical Innovation, Organ Regeneration and Transplantation, University College London (UCL), London NW3 2QG, UK;
- Wellcome/EPSRC Center for Interventional and Surgical Sciences (WEISS), London W1W 7TY, UK
- Royal Free NHS Foundation Trust, London NW3 2QG, UK;
| | - Roger Feakins
- Royal Free NHS Foundation Trust, London NW3 2QG, UK;
| | - Laura J. Pallett
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London WC1E 6BT, UK;
| | - Derek Manas
- Newcastle Upon Tyne NHS Foundation Trust, Newcastle-Upon-Tyne NE7 7DN, UK;
| | - Brian R. Davidson
- Centre of Surgical Innovation, Organ Regeneration and Transplantation, University College London (UCL), London NW3 2QG, UK;
- Royal Free NHS Foundation Trust, London NW3 2QG, UK;
| |
Collapse
|
16
|
Antibacterial activity and mechanism of high voltage electrostatic field (HVEF) against Staphylococcus aureus in medium plates and food systems. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107566] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Kido Y, Motomura H, Ikeda Y, Satoh S, Jinno M. Clarification of electrical current importance in plasma gene transfection by equivalent circuit analysis. PLoS One 2021; 16:e0245654. [PMID: 33508006 PMCID: PMC7842892 DOI: 10.1371/journal.pone.0245654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/06/2021] [Indexed: 11/19/2022] Open
Abstract
We have been developing a method of plasma gene transfection that uses microdischarge plasma (MDP) and is highly efficient, minimally invasive, and safe. Using this technique, electrical factors (such as the electrical current and electric field created through processing discharge plasma) and the chemical factors of active species and other substances focusing on radicals are supplied to the cells and then collectively work to introduce nucleic acids in the cell. In this paper, we focus on the electrical factors to identify whether the electric field or electrical current is the major factor acting on the cells. More specifically, we built a spatial distribution model that uses an electrical network to represent the buffer solution and cells separately, as a substitute for the previously reported uniform medium model (based on the finite element method), calculated the voltage and electrical current acting on cells, and examined their intensity. Although equivalent circuit models of single cells are widely used, this study was a novel attempt to build a model wherein adherent cells distributed in two dimensions were represented as a group of equivalent cell circuits and analyzed as an electrical network that included a buffer solution and a 96-well plate. Using this model, we could demonstrate the feasibility of applying equivalent circuit network analysis to calculate electrical factors using fewer components than those required for the finite element method, with regard to electrical processing systems targeting organisms. The results obtained through this equivalent circuit network analysis revealed for the first time that the distribution of voltage and current applied to a cellular membrane matched the spatial distribution of experimentally determined gene transfection efficiency and that the electrical current is the major factor contributing to introduction.
Collapse
Affiliation(s)
- Yugo Kido
- Department of Electrical and Electronic Engineering, Ehime University, Matsuyama, Japan
- Pearl Kogyo Co., Ltd., Suminoe, Osaka, Japan
| | - Hideki Motomura
- Department of Electrical and Electronic Engineering, Ehime University, Matsuyama, Japan
| | - Yoshihisa Ikeda
- Department of Electrical and Electronic Engineering, Ehime University, Matsuyama, Japan
| | - Susumu Satoh
- Department of Electrical and Electronic Engineering, Ehime University, Matsuyama, Japan
- Y’s Corp., Tama, Tokyo, Japan
| | - Masafumi Jinno
- Department of Electrical and Electronic Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
18
|
Kiełbik A, Szlasa W, Michel O, Szewczyk A, Tarek M, Saczko J, Kulbacka J. In Vitro Study of Calcium Microsecond Electroporation of Prostate Adenocarcinoma Cells. Molecules 2020; 25:E5406. [PMID: 33227916 PMCID: PMC7699241 DOI: 10.3390/molecules25225406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 02/08/2023] Open
Abstract
Electroporation, applied as a non-thermal ablation method has proven to be effective for focal prostate treatment. In this study, we performed pre-clinical research, which aims at exploring the specific impact of this so-called calcium electroporation on prostate cancer. First, in an in-vitro study of DU 145 cell lines, microsecond electroporation (μsEP) parameters were optimized. We determined hence the voltage that provides both high permeability and viability of these prostate cancer cells. Subsequently, we compared the effect of μsEP on cells' viability with and without calcium administration. For high-voltage pulses, the cell death's mechanism was evaluated using flow-cytometry and confocal laser microscopy. For lower-voltage pulses, the influence of electroporation on prostate cancer cell mobility was studied using scratch assays. Additionally, we applied calcium-binding fluorescence dye (Fluo-8) to observe the calcium uptake dynamic with the fluorescence microscopy. Moreover, the molecular dynamics simulation visualized the process of calcium ions inflow during μsEP. According to our results calcium electroporation significantly decreases the cells viability by promoting apoptosis. Furthermore, our data shows that the application of pulsed electric fields disassembles the actin cytoskeleton and influences the prostate cancer cells' mobility.
Collapse
Affiliation(s)
- Aleksander Kiełbik
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.K.); (W.S.)
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.K.); (W.S.)
| | - Olga Michel
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France;
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
| |
Collapse
|
19
|
Bussooa A, Hoare D, Kirimi MT, Mitra S, Mirzai N, Neale SL, Mercer JR. Impedimetric Detection and Electromediated Apoptosis of Vascular Smooth Muscle Using Microfabricated Biosensors for Diagnosis and Therapeutic Intervention in Cardiovascular Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902999. [PMID: 32999823 PMCID: PMC7509665 DOI: 10.1002/advs.201902999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/17/2020] [Indexed: 05/23/2023]
Abstract
Cardiovascular diseases remain a significant global burden with 1-in-3 of all deaths attributable to the consequences of the disease. The main cause is blocked arteries which often remain undetected. Implantable medical devices (IMDs) such as stents and grafts are often used to reopen vessels but over time these too will re-block. A vascular biosensor is developed that can report on cellularity and is amenable to being mounted on a stent or graft for remote reporting. Moreover, the device is designed to also receive currents that can induce a controlled form of cell death, apoptosis. A combined diagnostic and therapeutic biosensor would be transformational for the treatment of vascular diseases such as atherosclerosis and central line access. In this work, a cell sensing and cell apoptosing system based on the same interdigitated electrodes (IDEs) is developed. It is shown that the device is scalable and that by miniaturizing the IDEs, the detection sensitivity is increased. Apoptosis of vascular smooth muscle cells is monitored using continuous impedance measurements at a frequency of 10 kHz and rates of cell death are tracked using fluorescent dyes and live cell imaging.
Collapse
Affiliation(s)
- Anubhav Bussooa
- BHF Cardiovascular Research CentreUniversity of GlasgowGlasgowG12 8TAUK
| | - Daniel Hoare
- BHF Cardiovascular Research CentreUniversity of GlasgowGlasgowG12 8TAUK
| | - Mahmut T. Kirimi
- BHF Cardiovascular Research CentreUniversity of GlasgowGlasgowG12 8TAUK
| | - Srinjoy Mitra
- Scottish Microelectronics CentreKings Buildings CampusUniversity of EdinburghEdinburgh EH9 3FFScotland
| | - Nosrat Mirzai
- Bioelectronics UnitUniversity of GlasgowGlasgowG12 8TAUK
| | - Steve L. Neale
- James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - John R. Mercer
- BHF Cardiovascular Research CentreUniversity of GlasgowGlasgowG12 8TAUK
| |
Collapse
|
20
|
Abstract
Atrial fibrillation is the most common sustained cardiac arrhythmia and is associated with considerable morbidity and mortality. Electrically isolating the pulmonary veins from the left atrium by catheter ablation is superior to antiarrhythmic drug therapy for maintaining sinus rhythm, but its success varies depending on multiple factors, including arrhythmic burden. Although procedural outcomes have improved over the years, further gains are limited by a seemingly zero-sum relationship between effectiveness and safety, which is largely a product of the available technologies. Current energies used to create contiguous, transmural, and durable atrial lesions can result in serious complications if they reach the esophagus or phrenic nerve, for instance—structures that can be adjacent to the atrial myocardium, often within millimeters of the energy source. Consequently, high rates of pulmonary vein-left atrium reconnections are consistently seen in clinical studies and in clinical practice as operators appropriately forgo ablation effectiveness to protect patients from harm. However, as ablative technologies evolve to circumvent this stalemate, safer, and more effective pulmonary vein isolation seems increasingly realistic. Furthermore, the innovative nature of these technologies raises the prospect of markedly improved procedural efficiency, which could increase patient comfort, reduce operator occupational injuries, and enhance the use of health resources—all of which are increasingly important considerations particularly as the demand for catheter ablation for atrial fibrillation continues to rise. We herein review 3 promising candidate ablation technologies with the potential to revolutionize the management of patients with atrial fibrillation: electroporation (pulsed-field ablation), expandable lattice-tip radiofrequency ablation/electroporation, and ultra-low temperature cryoablation.
Collapse
Affiliation(s)
- F. Daniel Ramirez
- From the University of Bordeaux, CHU Bordeaux, Bordeaux-Pessac, France (F.D.R., M.H., P.J.)
- IHU LIRYC ANR-10-IAHU-04, Equipex MUSIC ANR-11-EQPX-0030 (F.D.R., M.H., P.J.)
| | - Vivek Y. Reddy
- Helmsley Electrophysiology Center, Icahn School of Medicine at Mount Sinai, New York, NY (V.Y.R.)
- Homolka Hospital, Prague, Czech Republic (V.Y.R.)
| | | | - Mélèze Hocini
- From the University of Bordeaux, CHU Bordeaux, Bordeaux-Pessac, France (F.D.R., M.H., P.J.)
- IHU LIRYC ANR-10-IAHU-04, Equipex MUSIC ANR-11-EQPX-0030 (F.D.R., M.H., P.J.)
| | - Pierre Jaïs
- From the University of Bordeaux, CHU Bordeaux, Bordeaux-Pessac, France (F.D.R., M.H., P.J.)
- IHU LIRYC ANR-10-IAHU-04, Equipex MUSIC ANR-11-EQPX-0030 (F.D.R., M.H., P.J.)
| |
Collapse
|
21
|
Abstract
Targeted electroporation by using glass microelectrodes is a popular and versatile tool allowing for easy manipulation of single cells and cell ensembles in living tissue. Because of the highly focal distribution of the electric field, however, the range of reversible electroporation without causing irreversible damage is tight-especially when aiming for larger electroporation volumes. In this chapter, we describe the production of nanoengineered electroporation microelectrodes (NEMs), a practicable way to prepare glass microelectrodes providing a more even distribution around the tip of a pipette by using nanotechnological methods.
Collapse
Affiliation(s)
- Daniel Schwarz
- Behavioural Neurophysiology, Max-Planck-Institute for Medical Research, Heidelberg, Germany
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Andreas T Schaefer
- Behavioural Neurophysiology, Max-Planck-Institute for Medical Research, Heidelberg, Germany.
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany.
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, London, UK.
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
22
|
Kumar M, Yadav S, Kumar A, Sharma NN, Akhtar J, Singh K. MEMS impedance flow cytometry designs for effective manipulation of micro entities in health care applications. Biosens Bioelectron 2019; 142:111526. [DOI: 10.1016/j.bios.2019.111526] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 11/26/2022]
|
23
|
Pulsed electric field inactivation of microorganisms: from fundamental biophysics to synergistic treatments. Appl Microbiol Biotechnol 2019; 103:7917-7929. [DOI: 10.1007/s00253-019-10067-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022]
|
24
|
Kurata K, Yoshimatsu S, Takamatsu H. Low-Voltage Irreversible Electroporation Using a Comb-Shaped Contact Electrode. IEEE Trans Biomed Eng 2019; 67:420-427. [PMID: 31059422 DOI: 10.1109/tbme.2019.2914689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Irreversible electroporation (IRE) is a less invasive therapy to ablate tumor cells by delivering short intensive electric pulses more than a few kV via needle-like electrodes. For reducing the required voltage for the IRE, a durable comb-shaped miniature electrode was designed to use in contact with the lesion surface for a new method named contact IRE. METHODS A miniature electrode was newly fabricated by a fine inkjet patterning and the subsequent etching of a copper-clad polyimide film. A train of 10-μs or 100-μs long electric pulses were applied 90 times at the interval of 1 s to a tissue phantom, and its cross section was observed to measure the necrotized area. RESULTS Cell experiments showed that the maximum ablation depth increased as a function of the applied voltage and reached 400 μm at 20 V. Furthermore, insulation of the lateral space between electrode teeth with a resin and administration of adjuvants to reduce the IRE threshold of the cell membrane did increase the ablation depth by 26% and the ablation area by 40%. CONCLUSION The miniature electrode developed in this study successfully necrotized cells in a tissue phantom 400 μm deep from the surface with the electric pulses of only 20 V. SIGNIFICANCE The contact IRE for the surface of skin and gastrointestinal tract will ablate cutaneous and subcutaneous tumors by applying only several tens of volts.
Collapse
|
25
|
Wei XY, Li JH, Wang L, Yang F. Low-voltage electrical cell lysis using a microfluidic device. Biomed Microdevices 2019; 21:22. [PMID: 30790126 DOI: 10.1007/s10544-019-0369-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell lysis, where cellular material is released, is the basis for the separation and purification of cell contents, biochemical analysis, and other related experiments. It is also a key step in molecular, real-time, and cancer diagnoses as well as in the drug screening of pathogens. The current methods of lysing cells have several limitations, such as damage to the activity of cellular components, the need for a large number of cell samples, time-consuming processes, and the danger of high voltage. Therefore, a simple, fast, and efficient method for the manipulation of micro-volume cells or for single cell lysis is significant for further scientific research and practical application. In this study, a new low-voltage controllable method for cell lysis was established, and a corresponding microfluidic chip was developed. Simple, efficient and rapid micro-volume cells and single cell lysis were successfully achieved under a low-voltage alternating current with a voltage of 16 Vp-p and frequency of 10 kHz. The lysis process was investigated in detail by separately labelling the whole cell, cytoplasm, and nucleus using fluorescent proteins, which indicated that the whole cell was completely lysed. Analysis of voltage and frequency effects revealed that a higher voltage and optimized frequency enhanced the cell lysis efficiency. The presented study provides a new strategy for the lysis of micro-volume cells or a single cell, which is valuable for on-chip real-time diagnostics and point of care (POC) applications.
Collapse
Affiliation(s)
- Xiao-Yu Wei
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.,Changchun Experimental School of the Affiliated High School of Jilin University, Jilin University, Changchun, 130021, China
| | - Jin-Hua Li
- Changchun Experimental School of the Affiliated High School of Jilin University, Jilin University, Changchun, 130021, China
| | - Lei Wang
- Changchun Experimental School of the Affiliated High School of Jilin University, Jilin University, Changchun, 130021, China
| | - Fang Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
26
|
Picart-Palmade L, Cunault C, Chevalier-Lucia D, Belleville MP, Marchesseau S. Potentialities and Limits of Some Non-thermal Technologies to Improve Sustainability of Food Processing. Front Nutr 2019; 5:130. [PMID: 30705883 PMCID: PMC6344468 DOI: 10.3389/fnut.2018.00130] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/06/2018] [Indexed: 12/26/2022] Open
Abstract
In the whole food production chain, from the farm to the fork, food manufacturing steps have a large environmental impact. Despite significant efforts made to optimize heat recovery or water consumption, conventional food processing remains poorly efficient in terms of energy requirements and waste management. Therefore, in the few last decades, much research has focused on the development of alternative non-thermal technologies. Some of them, such as membrane separation processes, hydrostatic or dynamic high pressure, dense phase or high-pressure carbon dioxide, and pulsed electric fields (PEFs) have been extensively studied for cold pasteurization, concentration, extraction, or food functionalization. However, it is still difficult to evaluate the actual advantages or limits of these innovative processing technologies to replace conventional processes. Thus, the overall aim of this paper is to present an overview of the most relevant studies dealing with the potentialities and limits of these non-thermal technologies to improve sustainability of food processing. After a brief presentation of the physical principles of these technologies, the paper illustrates how these technologies could play a decisive role for sustainable food preservation or valorization of raw materials and by-products.
Collapse
Affiliation(s)
| | - Charles Cunault
- IATE, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | | | | | - Sylvie Marchesseau
- IATE, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
27
|
Golestanirad L, Gale JT, Manzoor NF, Park HJ, Glait L, Haer F, Kaltenbach JA, Bonmassar G. Solenoidal Micromagnetic Stimulation Enables Activation of Axons With Specific Orientation. Front Physiol 2018; 9:724. [PMID: 30140230 PMCID: PMC6094965 DOI: 10.3389/fphys.2018.00724] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/24/2018] [Indexed: 01/28/2023] Open
Abstract
Electrical stimulation of the central and peripheral nervous systems - such as deep brain stimulation, spinal cord stimulation, and epidural cortical stimulation are common therapeutic options increasingly used to treat a large variety of neurological and psychiatric conditions. Despite their remarkable success, there are limitations which if overcome, could enhance outcomes and potentially reduce common side-effects. Micromagnetic stimulation (μMS) was introduced to address some of these limitations. One of the most remarkable properties is that μMS is theoretically capable of activating neurons with specific axonal orientations. Here, we used computational electromagnetic models of the μMS coils adjacent to neuronal tissue combined with axon cable models to investigate μMS orientation-specific properties. We found a 20-fold reduction in the stimulation threshold of the preferred axonal orientation compared to the orthogonal direction. We also studied the directional specificity of μMS coils by recording the responses evoked in the inferior colliculus of rodents when a pulsed magnetic stimulus was applied to the surface of the dorsal cochlear nucleus. The results confirmed that the neuronal responses were highly sensitive to changes in the μMS coil orientation. Accordingly, our results suggest that μMS has the potential of stimulating target nuclei in the brain without affecting the surrounding white matter tracts.
Collapse
Affiliation(s)
- Laleh Golestanirad
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - John T Gale
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| | - Nauman F Manzoor
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States.,Ear, Nose and Throat Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Hyun-Joo Park
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Lyall Glait
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States.,Ear, Nose and Throat Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | | | - James A Kaltenbach
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Vadlamani A, Detwiler DA, Dhanabal A, Garner AL. Synergistic bacterial inactivation by combining antibiotics with nanosecond electric pulses. Appl Microbiol Biotechnol 2018; 102:7589-7596. [PMID: 30019173 DOI: 10.1007/s00253-018-9215-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
Abstract
Antibiotic resistance mechanisms render current antibiotics ineffective, requiring higher concentrations of existing drugs or the development of more powerful drugs for infection treatment. This study demonstrates the synergistic inactivation of a gram-positive (Staphylococcus aureus) and a gram-negative (Escherichia coli) bacteria by combining either tobramycin or rifampicin with 300-ns electric pulses (EPs). For EPs depositing the same total energy density into the sample with no drug, higher electric fields induced greater inactivation, indicating a threshold for irreversible electroporation at these fields and membrane recovery in between lower intensity EPs. Synergistic inactivation generally increased with increasing drug concentration up to 20 μg/mL compared to strictly EP treatment. Combining even 1/20 of the clinical dose of tobramycin with a train of EPs induced between 2.5 and 3.5 log inactivation after only 10 min of exposure compared to hours to induce inactivation with a clinical dose with no EPs. Similarly, combining a train of EPs with a clinically relevant dose of rifampicin induced 7 to 9 log inactivation over the same time of exposure. These results indicate the promise of combining EPs with antibiotics to rapidly inactivate antibiotic-resistant bacteria in localized treatment areas.
Collapse
Affiliation(s)
- Anand Vadlamani
- School of Nuclear Engineering, Purdue University, West Lafayette, IN, USA
| | | | - Agni Dhanabal
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Allen L Garner
- School of Nuclear Engineering, Purdue University, West Lafayette, IN, USA. .,Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA. .,School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
29
|
Singh A, Dubey AK. Various Biomaterials and Techniques for Improving Antibacterial Response. ACS APPLIED BIO MATERIALS 2018. [DOI: 10.1021/acsabm.8b00033] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Angaraj Singh
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi-221005, Uttar Pradesh, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
30
|
Korem M, Goldberg NS, Cahan A, Cohen MJ, Nissenbaum I, Moses AE. Clinically applicable irreversible electroporation for eradication of micro-organisms. Lett Appl Microbiol 2018; 67:15-21. [PMID: 29679390 DOI: 10.1111/lam.12996] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022]
Abstract
Irreversible electroporation (IRE) damages cell membranes and is used in medicine for nonthermal ablation of malignant tumours. Our aim was to evaluate the antimicrobial effect of IRE. The pathogenic micro-organisms, Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa and Candida albicans were subjected to IRE. Survival was measured as a function of voltage and the number of pulses applied. Combined use of IRE and oxacillin for eradication of Staph. aureus was also tested. Log10 reduction in micro-organisms positively correlated with the number of applied pulses. The colony count of Strep. pyogenes and E. coli declined by 3·38 and 3·05 orders of magnitude, respectively, using an electric field of 2000 V and 100 pulses. Killing of Staph. aureus and P. aeruginosa was achieved with a double cycle of IRE (2000, 1500 V and repeated 1250 V respectively) of 50-100 IRE pulses. The addition of subclinical inhibitory concentrations of oxacillin to the Staph. aureus suspension prior to IRE led to total bacterial death, demonstrating synergism between oxacillin and IRE. Our results demonstrate that using IRE with clinically established parameters has a marked in vitro effect on pathogenic micro-organisms and highlights the potential of IRE as a treatment modality for deep-seated infections, particularly when combined with low doses of antibiotics. SIGNIFICANCE AND IMPACT OF THE STUDY Irreversible electroporation (IRE) is utilized in interventional radiology to treat cancer patients. In this study we evaluated in vitro the antimicrobial effect of IRE. We demonstrated that using IRE with clinically established parameters has a marked effect on pathogenic micro-organisms and is synergistic to antimicrobials when both are combined. Our results point to the potential of IRE as a treatment modality for deep-seated infections.
Collapse
Affiliation(s)
- M Korem
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - N S Goldberg
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - A Cahan
- IBM Research, Yorktown, NY, USA
| | - M J Cohen
- Clalit Health Services, Jerusalem, Israel
| | - I Nissenbaum
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - A E Moses
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
31
|
Yang Y, Moser MAJ, Zhang E, Zhang W, Zhang B. Development of a statistical model for cervical cancer cell death with irreversible electroporation in vitro. PLoS One 2018; 13:e0195561. [PMID: 29694357 PMCID: PMC5919048 DOI: 10.1371/journal.pone.0195561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The aim of this study was to develop a statistical model for cell death by irreversible electroporation (IRE) and to show that the statistic model is more accurate than the electric field threshold model in the literature using cervical cancer cells in vitro. METHODS HeLa cell line was cultured and treated with different IRE protocols in order to obtain data for modeling the statistical relationship between the cell death and pulse-setting parameters. In total, 340 in vitro experiments were performed with a commercial IRE pulse system, including a pulse generator and an electric cuvette. Trypan blue staining technique was used to evaluate cell death after 4 hours of incubation following IRE treatment. Peleg-Fermi model was used in the study to build the statistical relationship using the cell viability data obtained from the in vitro experiments. A finite element model of IRE for the electric field distribution was also built. Comparison of ablation zones between the statistical model and electric threshold model (drawn from the finite element model) was used to show the accuracy of the proposed statistical model in the description of the ablation zone and its applicability in different pulse-setting parameters. RESULTS The statistical models describing the relationships between HeLa cell death and pulse length and the number of pulses, respectively, were built. The values of the curve fitting parameters were obtained using the Peleg-Fermi model for the treatment of cervical cancer with IRE. The difference in the ablation zone between the statistical model and the electric threshold model was also illustrated to show the accuracy of the proposed statistical model in the representation of ablation zone in IRE. CONCLUSIONS This study concluded that: (1) the proposed statistical model accurately described the ablation zone of IRE with cervical cancer cells, and was more accurate compared with the electric field model; (2) the proposed statistical model was able to estimate the value of electric field threshold for the computer simulation of IRE in the treatment of cervical cancer; and (3) the proposed statistical model was able to express the change in ablation zone with the change in pulse-setting parameters.
Collapse
Affiliation(s)
- Yongji Yang
- Tumor Ablation Group, Complex and Intelligent Systems Research Center, East China University of Science and Technology, Shanghai, China
| | - Michael A. J. Moser
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Edwin Zhang
- Division of Vascular & Interventional Radiology, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Wenjun Zhang
- Tumor Ablation Group, Complex and Intelligent Systems Research Center, East China University of Science and Technology, Shanghai, China
| | - Bing Zhang
- Biomedical Science and Technology Research Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| |
Collapse
|
32
|
Hoshino T, Yoshioka M, Wagatsuma A, Miyazako H, Mabuchi K. Pinpoint Delivery of Molecules by Using Electron Beam Addressing Virtual Cathode Display. IEEE Trans Nanobioscience 2018; 17:62-69. [PMID: 29570076 DOI: 10.1109/tnb.2018.2798582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Electroporation, a physical transfection method to introduce genomic molecules in selective living cells, could be implemented by microelectrode devices. A local electric field generated by a finer electrode can induces cytomembrane poration in the electrode vicinity. To employ fine, high-speed scanning electrodes, we developed a fine virtual cathode pattern, which was generated on a cell adhesive surface of 100-nm-thick SiN membrane by inverted-electron beam lithography. The SiN membrane works as both a vacuum barrier and the display screen of the virtual cathode. The kinetic energy of the incident primary electrons to the SiN membrane was completely blocked, whereas negative charges and leaking electric current appeared on the surface of the dielectric SiN membrane within a region of 100 nm. Locally controlled transmembrane molecular delivery was demonstrated on adhered C2C12 myoblast cells in a culturing medium with fluorescent dye propidium iodide (PI). Increasing fluorescence of pre-diluted PI indicated local poration and transmembrane inflow at the virtual cathode position, as well as intracellular diffusion. The transmembrane inflows depended on beam duration time and acceleration voltage. At the post-molecular delivery, a slight decrease in intracellular PI fluorescence intensity indicates membrane recovery from the poration. Cell viability was confirmed by time-lapse cell imaging of post-exposure cell migration.
Collapse
|
33
|
Abstract
Micro and nano technologies are of increasing importance in microfluidics devices used for electroporation (electroporation - the permeabilization of the cell membrane with brief high electric field pulses). Electrochemical reactions of electrolysis occur whenever an electric current flows between an electrode and an ionic solution. It can have substantial detrimental effects, both on the cells and solutions during the electroporation. As electrolysis is a surface phenomenon, between electrodes and solution, the extent of electrolysis is increased in micro and nano electroporation over macro-electroporation, because the surface area of the electrodes in micro and nano electroporation is much larger. A possible way to eliminate the electrolytic effect is to develop non-electrolytic microelectroporation by coating the microelectroporation devices with a dielectric insulating layer. In this study, we examine the effect of a dielectric insulating layer on the performance of a singularity microelectroporation device that we have recently designed. Using numerical analysis, we study the effects of various design parameters including, input sinusoidal voltage amplitude and frequency, geometrical configuration and material electrical properties on the electroporation performance of the non-electrolytic microelectroporation device. In the simulation, we used properties of four real dielectric materials and four solutions of interest for microelectroporation. We characterized the effect of various design parameters of relevance to singularity based microelectroporation, on non-electrolytic microelectroporation. Interestingly, we found that the system behaves in some aspects as a filter and in many circumstances saturation of performance is reached. After saturation is reached, changes in parameters will not affect the performance of the device.
Collapse
|
34
|
Schwarz D, Kollo M, Bosch C, Feinauer C, Whiteley I, Margrie TW, Cutforth T, Schaefer AT. Architecture of a mammalian glomerular domain revealed by novel volume electroporation using nanoengineered microelectrodes. Nat Commun 2018; 9:183. [PMID: 29330458 PMCID: PMC5766516 DOI: 10.1038/s41467-017-02560-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 12/08/2017] [Indexed: 11/09/2022] Open
Abstract
Dense microcircuit reconstruction techniques have begun to provide ultrafine insight into the architecture of small-scale networks. However, identifying the totality of cells belonging to such neuronal modules, the "inputs" and "outputs," remains a major challenge. Here, we present the development of nanoengineered electroporation microelectrodes (NEMs) for comprehensive manipulation of a substantial volume of neuronal tissue. Combining finite element modeling and focused ion beam milling, NEMs permit substantially higher stimulation intensities compared to conventional glass capillaries, allowing for larger volumes configurable to the geometry of the target circuit. We apply NEMs to achieve near-complete labeling of the neuronal network associated with a genetically identified olfactory glomerulus. This allows us to detect sparse higher-order features of the wiring architecture that are inaccessible to statistical labeling approaches. Thus, NEM labeling provides crucial complementary information to dense circuit reconstruction techniques. Relying solely on targeting an electrode to the region of interest and passive biophysical properties largely common across cell types, this can easily be employed anywhere in the CNS.
Collapse
Affiliation(s)
- D Schwarz
- Behavioural Neurophysiology, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany.
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany.
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 307, Heidelberg, 69120, Germany.
| | - M Kollo
- Behavioural Neurophysiology, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - C Bosch
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - C Feinauer
- Behavioural Neurophysiology, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 307, Heidelberg, 69120, Germany
| | - I Whiteley
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - T W Margrie
- The Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London, W1T 4JG, UK
| | - T Cutforth
- Department of Neurology, Columbia University Medical Center, 650 West 168th Street, New York, 10032, NY, USA
| | - A T Schaefer
- Behavioural Neurophysiology, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany.
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 307, Heidelberg, 69120, Germany.
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
35
|
Hanna H, Denzi A, Liberti M, André FM, Mir LM. Electropermeabilization of Inner and Outer Cell Membranes with Microsecond Pulsed Electric Fields: Quantitative Study with Calcium Ions. Sci Rep 2017; 7:13079. [PMID: 29026094 PMCID: PMC5638809 DOI: 10.1038/s41598-017-12960-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/15/2017] [Indexed: 12/18/2022] Open
Abstract
Microsecond pulsed electric fields (μsPEF) permeabilize the plasma membrane (PM) and are widely used in research, medicine and biotechnology. For internal membranes permeabilization, nanosecond pulsed electric fields (nsPEF) are applied but this technology is complex to use. Here we report that the endoplasmic reticulum (ER) membrane can also be electropermeabilized by one 100 µs pulse without affecting the cell viability. Indeed, using Ca2+ as a permeabilization marker, we observed cytosolic Ca2+ peaks in two different cell types after one 100 µs pulse in a medium without Ca2+. Thapsigargin abolished these Ca2+ peaks demonstrating that the calcium is released from the ER. Moreover, IP3R and RyR inhibitors did not modify these peaks showing that they are due to the electropermeabilization of the ER membrane and not to ER Ca2+ channels activation. Finally, the comparison of the two cell types suggests that the PM and the ER permeabilization thresholds are affected by the sizes of the cell and the ER. In conclusion, this study demonstrates that µsPEF, which are easier to control than nsPEF, can permeabilize internal membranes. Besides, μsPEF interaction with either the PM or ER, can be an efficient tool to modulate the cytosolic calcium concentration and study Ca2+ roles in cell physiology.
Collapse
Affiliation(s)
- Hanna Hanna
- Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94 805, Villejuif, France
| | - Agnese Denzi
- Department of Information Engineering, Electronics and Telecommunication (DIET), University of Rome "La Sapienza", Rome, 00184, Italy
| | - Micaela Liberti
- Department of Information Engineering, Electronics and Telecommunication (DIET), University of Rome "La Sapienza", Rome, 00184, Italy
| | - Franck M André
- Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94 805, Villejuif, France
| | - Lluis M Mir
- Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94 805, Villejuif, France.
| |
Collapse
|
36
|
Klein N, Guenther E, Mikus P, Stehling MK, Rubinsky B. Single exponential decay waveform; a synergistic combination of electroporation and electrolysis (E2) for tissue ablation. PeerJ 2017; 5:e3190. [PMID: 28439465 PMCID: PMC5398292 DOI: 10.7717/peerj.3190] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
Background Electrolytic ablation and electroporation based ablation are minimally invasive, non-thermal surgical technologies that employ electrical currents and electric fields to ablate undesirable cells in a volume of tissue. In this study, we explore the attributes of a new tissue ablation technology that simultaneously delivers a synergistic combination of electroporation and electrolysis (E2). Method A new device that delivers a controlled dose of electroporation field and electrolysis currents in the form of a single exponential decay waveform (EDW) was applied to the pig liver, and the effect of various parameters on the extent of tissue ablation was examined with histology. Results Histological analysis shows that E2 delivered as EDW can produce tissue ablation in volumes of clinical significance, using electrical and temporal parameters which, if used in electroporation or electrolysis separately, cannot ablate the tissue. Discussion The E2 combination has advantages over the three basic technologies of non-thermal ablation: electrolytic ablation, electrochemical ablation (reversible electroporation with injection of drugs) and irreversible electroporation. E2 ablates clinically relevant volumes of tissue in a shorter period of time than electrolysis and electroporation, without the need to inject drugs as in reversible electroporation or use paralyzing anesthesia as in irreversible electroporation.
Collapse
Affiliation(s)
- Nina Klein
- Inter Science GmbH, Gisikon, Switzerland.,Prostata Center, Institut fur Bildgebende Diagnostik, Offenbach, Germany
| | - Enric Guenther
- Inter Science GmbH, Gisikon, Switzerland.,Prostata Center, Institut fur Bildgebende Diagnostik, Offenbach, Germany
| | - Paul Mikus
- Inter Science GmbH, Gisikon, Switzerland
| | - Michael K Stehling
- Inter Science GmbH, Gisikon, Switzerland.,Prostata Center, Institut fur Bildgebende Diagnostik, Offenbach, Germany
| | - Boris Rubinsky
- Inter Science GmbH, Gisikon, Switzerland.,Department of Mechanical Engineering, University of California, Berkeley, CA, United States
| |
Collapse
|
37
|
Niessen C, Thumann S, Beyer L, Pregler B, Kramer J, Lang S, Teufel A, Jung EM, Stroszczynski C, Wiggermann P. Percutaneous Irreversible Electroporation: Long-term survival analysis of 71 patients with inoperable malignant hepatic tumors. Sci Rep 2017; 7:43687. [PMID: 28266600 PMCID: PMC5339813 DOI: 10.1038/srep43687] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/30/2017] [Indexed: 12/18/2022] Open
Abstract
Aim of this retrospective analysis was to evaluate the survival times after percutaneous irreversible electroporation (IRE) in inoperable liver tumors not amenable to thermal ablation. 71 patients (14 females, 57 males, median age 63.5 ± 10.8 years) with 103 liver tumors were treated in 83 interventions using IRE (NanoKnife® system). The median tumor short-axis diameter was 1.9 cm (minimum 0.4 cm, maximum 4.5 cm). 35 patients had primary liver tumors and 36 patients had liver metastases. The Kaplan-Meier method was employed to calculate the survival rates, and the different groups were compared using multivariate log-rank and Wilcoxon tests. The overall median survival time was 26.3 months; the median survival of patients with primary land secondary liver cancer did not significantly differ (26.8 vs. 19.9 months; p = 0.41). Patients with a tumor diameter >3 cm (p < 0.001) or more than 2 lesions (p < 0.005) died significantly earlier than patients with smaller or fewer tumors. Patients with hepatocellular carcinoma and Child-Pugh class B or C cirrhosis died significantly earlier than patients with Child-Pugh class A (p < 0.05). Patients with very early stage HCC survived significantly longer than patients with early stage HCC with a median survival of 22.3 vs. 13.7 months (p < 0.05).
Collapse
Affiliation(s)
- C. Niessen
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - S. Thumann
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - L. Beyer
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - B. Pregler
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - J. Kramer
- Department of Anesthesiology, University Hospital Regensburg, Regensburg, Germany
| | - S. Lang
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - A. Teufel
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - E. M. Jung
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - C. Stroszczynski
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - P. Wiggermann
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
38
|
Abstract
Anti-tumor electrochemotherapy, which consists in increasing anti-cancer drug uptake by means of electroporation, is now implanted in about 140 cancer treatment centers in Europe. Its use is supported by the English National Institute for Health and Care Excellence for the palliative treatment of skin metastases, and about 13,000 cancer patients were treated by this technology by the end of 2015. Efforts are now focused on turning this local anti-tumor treatment into a systemic one. Electrogenetherapy, that is the electroporation-mediated transfer of therapeutic genes, is currently under clinical evaluation and has brought excitement to enlarge the anti-cancer armamentarium. Among the promising electrogenetherapy strategies, DNA vaccination and cytokine-based immunotherapy aim at stimulating anti-tumor immunity. We review here the interests and state of development of both electrochemotherapy and electrogenetherapy. We then emphasize the potent beneficial outcome of the combination of electrochemotherapy with immunotherapy, such as immune checkpoint inhibitors or strategies based on electrogenetherapy, to simultaneously achieve excellent local debulking anti-tumor responses and systemic anti-metastatic effects.
Collapse
|
39
|
Soni A, Oey I, Silcock P, Bremer P. Bacillus
Spores in the Food Industry: A Review on Resistance and Response to Novel Inactivation Technologies. Compr Rev Food Sci Food Saf 2016; 15:1139-1148. [DOI: 10.1111/1541-4337.12231] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/22/2016] [Accepted: 08/29/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Aswathi Soni
- Dept. of Food Science; Univ. of Otago; PO Box 56 Dunedin 9054 New Zealand
| | - Indrawati Oey
- Dept. of Food Science; Univ. of Otago; PO Box 56 Dunedin 9054 New Zealand
| | - Pat Silcock
- Dept. of Food Science; Univ. of Otago; PO Box 56 Dunedin 9054 New Zealand
| | - Phil Bremer
- Dept. of Food Science; Univ. of Otago; PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
40
|
Rubinsky L, Guenther E, Mikus P, Stehling M, Rubinsky B. Electrolytic Effects During Tissue Ablation by Electroporation. Technol Cancer Res Treat 2016; 15:NP95-NP103. [PMID: 26323571 DOI: 10.1177/1533034615601549] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/22/2015] [Indexed: 11/17/2022] Open
Abstract
Nonthermal irreversible electroporation is a new tissue ablation technique that consists of applying pulsed electric fields across cells to induce cell death by creating permanent defects in the cell membrane. Nonthermal irreversible electroporation is of interest because it allows treatment near sensitive tissue structures such as blood vessels and nerves. Two recent articles report that electrolytic reaction products at electrodes can be combined with electroporation pulses to augment and optimize tissue ablation. Those articles triggered a concern that the results of earlier studies on nonthermal irreversible electroporation may have been tainted by unaccounted for electrolytic effects. The goal of this study was to reexamine previous studies on nonthermal irreversible electroporation in the context of these articles. The study shows that the results from some of the earlier studies on nonthermal irreversible electroporation were affected by unaccounted for electrolysis, in particular the research with cells in cuvettes. It also shows that tissue ablation ascribed in the past to irreversible electroporation is actually caused by at least 3 different cytotoxic effects: irreversible electroporation without electrolysis, irreversible electroporation combined with electrolysis, and reversible electroporation combined with electrolysis. These different mechanisms may affect cell and tissue ablation in different ways, and the effects may depend on various clinical parameters such as the polarity of the electrodes, the charge delivered (voltage, number, and length of pulses), and the distance of the target tissue from the electrodes. Current clinical protocols employ ever-increasing numbers of electroporation pulses to values that are now an order of magnitude larger than those used in our first fundamental nonthermal irreversible electroporation studies in tissues. The different mechanisms of cell death, and the effect of the clinical parameters on the mechanisms may explain discrepancies between results of different clinical studies and should be taken into consideration in the design of optimal electroporation ablation protocols.
Collapse
Affiliation(s)
| | | | | | - Michael Stehling
- Interscience, Luzern, Switzerland
- Boston University School of Medicine, MA, USA
| | | |
Collapse
|
41
|
Dependence of Electroporation Detection Threshold on Cell Radius: An Explanation to Observations Non Compatible with Schwan's Equation Model. J Membr Biol 2016; 249:663-676. [PMID: 27170140 DOI: 10.1007/s00232-016-9907-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/02/2016] [Indexed: 01/19/2023]
Abstract
It is widely accepted that electroporation occurs when the cell transmembrane voltage induced by an external applied electric field reaches a threshold. Under this assumption, in order to trigger electroporation in a spherical cell, Schwan's equation leads to an inversely proportional relationship between the cell radius and the minimum magnitude of the applied electric field. And, indeed, several publications report experimental evidences of an inverse relationship between the cell size and the field required to achieve electroporation. However, this dependence is not always observed or is not as steep as predicted by Schwan's equation. The present numerical study attempts to explain these observations that do not fit Schwan's equation on the basis of the interplay between cell membrane conductivity, permeability, and transmembrane voltage. For that, a single cell in suspension was modeled and the electric field necessary to achieve electroporation with a single pulse was determined according to two effectiveness criteria: a specific permeabilization level, understood as the relative area occupied by the pores during the pulse, and a final intracellular concentration of a molecule due to uptake by diffusion after the pulse, during membrane resealing. The results indicate that plausible model parameters can lead to divergent dependencies of the electric field threshold on the cell radius. These divergent dependencies were obtained through both criteria and using two different permeabilization models. This suggests that the interplay between cell membrane conductivity, permeability, and transmembrane voltage might be the cause of results which are noncompatible with the Schwan's equation model.
Collapse
|
42
|
Sastry SK. Toward a Philosophy and Theory of Volumetric Nonthermal Processing. J Food Sci 2016; 81:E1431-46. [DOI: 10.1111/1750-3841.13324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/02/2016] [Accepted: 03/31/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Sudhir K. Sastry
- Dept. of Food; Agricultural and Biological Engineering, the Ohio State Univ; 590 Woody Hayes Drive Columbus OH 43210 U.S.A
| |
Collapse
|
43
|
Brambach B, Michels A, Kettler R, Franzke J. Charge dependent electroporation of Escherichia coli C600. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Synergistic Combination of Electrolysis and Electroporation for Tissue Ablation. PLoS One 2016; 11:e0148317. [PMID: 26866693 PMCID: PMC4750947 DOI: 10.1371/journal.pone.0148317] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/15/2016] [Indexed: 01/04/2023] Open
Abstract
Electrolysis, electrochemotherapy with reversible electroporation, nanosecond pulsed electric fields and irreversible electroporation are valuable non-thermal electricity based tissue ablation technologies. This paper reports results from the first large animal study of a new non-thermal tissue ablation technology that employs "Synergistic electrolysis and electroporation" (SEE). The goal of this pre-clinical study is to expand on earlier studies with small animals and use the pig liver to establish SEE treatment parameters of clinical utility. We examined two SEE methods. One of the methods employs multiple electrochemotherapy-type reversible electroporation magnitude pulses, designed in such a way that the charge delivered during the electroporation pulses generates the electrolytic products. The second SEE method combines the delivery of a small number of electrochemotherapy magnitude electroporation pulses with a low voltage electrolysis generating DC current in three different ways. We show that both methods can produce lesion with dimensions of clinical utility, without the need to inject drugs as in electrochemotherapy, faster than with conventional electrolysis and with lower electric fields than irreversible electroporation and nanosecond pulsed ablation.
Collapse
|
45
|
Tahmasbian I, Safari Sinegani AA. Improving the efficiency of phytoremediation using electrically charged plant and chelating agents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2479-2486. [PMID: 26423283 DOI: 10.1007/s11356-015-5467-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
The low efficiency of phytoremediation is a considerable problem that limits the application of this environmentally friendly method on heavy metal-polluted soils. The combination of chelate-assisted phytoextraction and electrokinetic remediation could offer new opportunities to improve the effectiveness of phytoextraction. The current experiment aims to investigate the effects of electrical fields and chelating agents on phytoremediation efficiency. In a pot experiment using mine soil, poultry manure extract (PME), cow manure extract (CME), and ethylenediaminetetraacetic acid (EDTA) were applied to soil as chelating agents (2 g kg(-1)) at the beginning of the flowering stage. A week later, Helianthus annuus (sunflower) was negatively charged by inserting a stainless steel needle with 10 and 30 V DC electricity in the lowest part of the stems for 1 h each day for a 14-day period. At the end of the experiment, the shoot and root dry weight, lead (Pb) concentration in plant organs, translocation factor (TF), metal uptake index (UI), and soil available Pb (diethylene triamine pentaacetic acid (DTPA) extractable) were detected. Results indicated that the application of electrical fields had no significant impact on the shoot and root dry weights, while Pb concentration and UI increased in the 10-V EDTA treatment by 500 % compared to control. There was no significant difference between UI in 30- and 10-V EDTA treatments. Soil available Pb significantly increased in the 30-V treated soil. A positive correlation was observed between the available Pb in soil near the root and Pb concentration in shoot, its TF, and UI. In conclusion, a negatively charged plant along with the application of EDTA significantly increased the phytoremediation efficiency.
Collapse
Affiliation(s)
- Iman Tahmasbian
- Environmental Future Research Institute, Griffith University, Nathan, QLD, 4111, Australia.
| | | |
Collapse
|
46
|
Kayalvizhi V, Pushpa AJS, Sangeetha G, Antony U. Effect of pulsed electric field (PEF) treatment on sugarcane juice. Journal of Food Science and Technology 2016; 53:1371-1379. [PMID: 30279610 DOI: 10.1007/s13197-016-2172-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/29/2015] [Accepted: 01/06/2016] [Indexed: 12/01/2022]
Abstract
This study was carried out to evaluate the effect of PEF process using static treatment chamber on fresh sugarcane juice with and without addition of lemon and ginger with respect to microbial content, chemical properties, nutrient content and shelf life extention of the product. The fresh sugar cane juice without addition of lemon and ginger treated at different field strengths (30 kV cm-1 and 50 kV cm-1) and different pulse numbers (150, 300) was initially investigated by storage at room temperature (31 °C) and refrigeration temperature (4 °C) for 30 days. The PEF effect on fresh sugar cane juice at room temperature and refrigerated temperature was compared with untreated sample (31 °C). At the end of the storage period samples treated at field strength 30 kV cm-1, 150 pulses were found to be stable compared with untreated sample. The second experimental study of PEF process was done on fresh sugarcane juice with the addition of lemon and ginger for fourteen days at different electric field intensities (10 kV cm-1, 20 kV cm-1 and 30 kV cm-1) with the same pulse number (150 pulses) and stored 4 °C. Even better reduction of microbes was achieved with PEF treatment condition of field strength 20 kV cm-1, 150 pulses in the presence of lemon and ginger. The sensory attributes of untreated fresh sugarcane juice were maintained up to only two days, but for the PEF treated sample, shelf life was extened up to seven days. Further, addition of lemon and ginger in the PEF treated sugarcane juice doubled the shelf life up to fourteen days.
Collapse
Affiliation(s)
- V Kayalvizhi
- Centre for Food Technology, Department of Biotechnology, Anna University, A. C. Tech Campus, Chennai, Tamil Nadu 600025 India
| | - A J S Pushpa
- Centre for Food Technology, Department of Biotechnology, Anna University, A. C. Tech Campus, Chennai, Tamil Nadu 600025 India
| | - G Sangeetha
- Centre for Food Technology, Department of Biotechnology, Anna University, A. C. Tech Campus, Chennai, Tamil Nadu 600025 India
| | - Usha Antony
- Centre for Food Technology, Department of Biotechnology, Anna University, A. C. Tech Campus, Chennai, Tamil Nadu 600025 India
| |
Collapse
|
47
|
Zhang YK, Liu XH, Liu XW, Zha YF, Xu XL, Ren ZG, Jiang HC, Wang HC. Research advances in deriving renewable energy from biomass in wastewater treatment plants. RSC Adv 2016. [DOI: 10.1039/c6ra06868e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Anaerobic digestion (AD) can be used to derive renewable energy from biomass in wastewater treatment plants, and the produced biogas represents a valuable end-product that can greatly offset operation costs.
Collapse
Affiliation(s)
- Yuan-kai Zhang
- School of Environment & Natural Resource
- Renmin University of China
- Beijing 100872
- China
| | - Xiu-hong Liu
- School of Environment & Natural Resource
- Renmin University of China
- Beijing 100872
- China
| | - Xiao-wei Liu
- School of Environment & Natural Resource
- Renmin University of China
- Beijing 100872
- China
| | - Yi-fei Zha
- School of Environment & Natural Resource
- Renmin University of China
- Beijing 100872
- China
| | - Xiang-long Xu
- School of Environment & Natural Resource
- Renmin University of China
- Beijing 100872
- China
| | - Zheng-guang Ren
- School of Environment & Natural Resource
- Renmin University of China
- Beijing 100872
- China
| | - Hang-cheng Jiang
- School of Environment & Natural Resource
- Renmin University of China
- Beijing 100872
- China
| | - Hong-chen Wang
- School of Environment & Natural Resource
- Renmin University of China
- Beijing 100872
- China
| |
Collapse
|
48
|
Brambach B, Michels A, Kettler R, Franzke J. Development of a calibration function for optimal transformation efficiencies of Escherichia coli C600 and Bacillus subtilis 168. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
González-Arenzana L, Portu J, López R, López N, Santamaría P, Garde-Cerdán T, López-Alfaro I. Inactivation of wine-associated microbiota by continuous pulsed electric field treatments. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Mahmood F, Hansen RH, Agerholm-Larsen B, Gissel H, Ibsen P, Gehl J. Detection of electroporation-induced membrane permeabilization states in the brain using diffusion-weighted MRI. Acta Oncol 2015; 54:289-97. [PMID: 25591820 PMCID: PMC4438348 DOI: 10.3109/0284186x.2014.991045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/16/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Tissue permeabilization by electroporation (EP) is a promising technique to treat certain cancers. Non-invasive methods for verification of induced permeabilization are important, especially in deep-seated cancers. In this study we evaluated diffusion-weighted magnetic resonance imaging (DW-MRI) as a quantitative method for detecting EP-induced membrane permeabilization of brain tissue using a rat brain model. MATERIAL AND METHODS Fifty-four anesthetized Sprague-Dawley male rats were electroporated in the right hemisphere, using different voltage levels to induce no permeabilization (NP), transient membrane permeabilization (TMP), and permanent membrane permeabilization (PMP), respectively. DW-MRI was acquired 5 minutes, 2 hours, 24 hours and 48 hours after EP. Histology was performed for validation of the permeabilization states. Tissue content of water, Na+, K+, Ca2+, and extracellular volume were determined. The Kruskal-Wallis test was used to compare the DW-MRI parameters, apparent diffusion coefficient (ADC) and kurtosis, at different voltage levels. The two-sample Mann- Whitney test with Holm's Bonferroni correction was used to identify pairs of significantly different groups. The study was approved by the Danish Animal Experiments Inspectorate. RESULTS AND CONCLUSION Results showed significant difference in the ADC between TMP and PMP at 2 hours (p<0.001) and 24 hours (p<0.05) after EP. Kurtosis was significantly increased both at TMP (p<0.05) and PMP (p<0.001) 5 minutes after EP, compared to NP. Kurtosis was also significantly higher at 24 hours (p<0.05) and 48 hours (p<0.05) at PMP compared to NP. Physiological parameters indicated correlation with the permeabilization states, supporting the DW-MRI findings. We conclude that DW-MRI is capable of detecting EP-induced permeabilization of brain tissue and to some extent of differentiating NP, TMP and PMP using appropriate scan timing.
Collapse
Affiliation(s)
- Faisal Mahmood
- Center for Experimental Drug and Gene Electrotransfer (CEDGE), Department of Oncology, University of Copenhagen, Herlev Hospital, Herlev, Denmark
- Radiotherapy Research Unit (RRU), Department of Oncology, University of Copenhagen, Herlev Hospital, Herlev, Denmark
| | - Rasmus H. Hansen
- Department of Radiology, University of Copenhagen, Herlev Hospital, Herlev, Denmark
| | - Birgit Agerholm-Larsen
- Center for Experimental Drug and Gene Electrotransfer (CEDGE), Department of Oncology, University of Copenhagen, Herlev Hospital, Herlev, Denmark
- Department of Neurology, University of Copenhagen, Glostrup Hospital, Glostrup, Denmark
| | - Hanne Gissel
- Institute of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Per Ibsen
- Department of Pathology, University of Copenhagen, Hvidovre Hospital, Hvidovre, Denmark
| | - Julie Gehl
- Center for Experimental Drug and Gene Electrotransfer (CEDGE), Department of Oncology, University of Copenhagen, Herlev Hospital, Herlev, Denmark
| |
Collapse
|