1
|
Lismont C, Koster J, Provost S, Baes M, Van Veldhoven PP, Waterham HR, Fransen M. Deciphering the potential involvement of PXMP2 and PEX11B in hydrogen peroxide permeation across the peroxisomal membrane reveals a role for PEX11B in protein sorting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182991. [DOI: 10.1016/j.bbamem.2019.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
|
2
|
Islinger M, Manner A, Völkl A. The Craft of Peroxisome Purification-A Technical Survey Through the Decades. Subcell Biochem 2018; 89:85-122. [PMID: 30378020 DOI: 10.1007/978-981-13-2233-4_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Purification technologies are one of the working horses in organelle proteomics studies as they guarantee the separation of organelle-specific proteins from the background contamination by other subcellular compartments. The development of methods for the separation of organelles was a major prerequisite for the initial detection and characterization of peroxisome as a discrete entity of the cell. Since then, isolated peroxisomes fractions have been used in numerous studies in order to characterize organelle-specific enzyme functions, to allocate the peroxisome-specific proteome or to unravel the organellar membrane composition. This review will give an overview of the fractionation methods used for the isolation of peroxisomes from animals, plants and fungi. In addition to "classic" centrifugation-based isolation methods, relying on the different densities of individual organelles, the review will also summarize work on alternative technologies like free-flow-electrophoresis or flow field fractionation which are based on distinct physicochemical parameters. A final chapter will further describe how different separation methods and quantitative mass spectrometry have been used in proteomics studies to assign the proteome of PO.
Collapse
Affiliation(s)
- Markus Islinger
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Andreas Manner
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Alfred Völkl
- Department of Medical Cell Biology, Institute of Anatomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Peroxisomal protein import pores. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:821-7. [DOI: 10.1016/j.bbamcr.2015.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023]
|
4
|
Pieuchot L, Jedd G. Peroxisome Assembly and Functional Diversity in Eukaryotic Microorganisms. Annu Rev Microbiol 2012; 66:237-63. [DOI: 10.1146/annurev-micro-092611-150126] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laurent Pieuchot
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 117604 Singapore; ,
| | - Gregory Jedd
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 117604 Singapore; ,
| |
Collapse
|
5
|
Antonenkov VD, Hiltunen JK. Transfer of metabolites across the peroxisomal membrane. Biochim Biophys Acta Mol Basis Dis 2011; 1822:1374-86. [PMID: 22206997 DOI: 10.1016/j.bbadis.2011.12.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/08/2011] [Accepted: 12/15/2011] [Indexed: 02/08/2023]
Abstract
Peroxisomes perform a large variety of metabolic functions that require a constant flow of metabolites across the membranes of these organelles. Over the last few years it has become clear that the transport machinery of the peroxisomal membrane is a unique biological entity since it includes nonselective channels conducting small solutes side by side with transporters for 'bulky' solutes such as ATP. Electrophysiological experiments revealed several channel-forming activities in preparations of plant, mammalian, and yeast peroxisomes and in glycosomes of Trypanosoma brucei. The properties of the first discovered peroxisomal membrane channel - mammalian Pxmp2 protein - have also been characterized. The channels are apparently involved in the formation of peroxisomal shuttle systems and in the transmembrane transfer of various water-soluble metabolites including products of peroxisomal β-oxidation. These products are processed by a large set of peroxisomal enzymes including carnitine acyltransferases, enzymes involved in the synthesis of ketone bodies, thioesterases, and others. This review discusses recent data pertaining to solute permeability and metabolite transport systems in peroxisomal membranes and also addresses mechanisms responsible for the transfer of ATP and cofactors such as an ATP transporter and nudix hydrolases.
Collapse
Affiliation(s)
- Vasily D Antonenkov
- Department of Biochemistry and Biocenter, University of Oulu, Oulu, Finland.
| | | |
Collapse
|
6
|
Wanders RJA, Komen J, Ferdinandusse S. Phytanic acid metabolism in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:498-507. [PMID: 21683154 DOI: 10.1016/j.bbalip.2011.06.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/25/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid which cannot be beta-oxidized due to the presence of the first methyl group at the 3-position. Instead, phytanic acid undergoes alpha-oxidation to produce pristanic acid (2,6,10,14-tetramethylpentadecanoic acid) plus CO(2). Pristanic acid is a 2-methyl branched-chain fatty acid which can undergo beta-oxidation via sequential cycles of beta-oxidation in peroxisomes and mitochondria. The mechanism of alpha-oxidation has been resolved in recent years as reviewed in this paper, although some of the individual enzymatic steps remain to be identified. Furthermore, much has been learned in recent years about the permeability properties of the peroxisomal membrane with important consequences for the alpha-oxidation process. Finally, we present new data on the omega-oxidation of phytanic acid making use of a recently generated mouse model for Refsum disease in which the gene encoding phytanoyl-CoA 2-hydroxylase has been disrupted.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
7
|
Rucktäschel R, Girzalsky W, Erdmann R. Protein import machineries of peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:892-900. [PMID: 20659419 DOI: 10.1016/j.bbamem.2010.07.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
Abstract
Peroxisomes are a class of structurally and functionally related organelles present in almost all eukaryotic cells. The importance of peroxisomes for human life is highlighted by severe inherited diseases which are caused by defects of peroxins, encoded by PEX genes. To date 32 peroxins are known to be involved in different aspects of peroxisome biogenesis. This review addresses two of these aspects, the translocation of soluble proteins into the peroxisomal matrix and the biogenesis of the peroxisomal membrane. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Robert Rucktäschel
- Abteilung für Systembiochemie, Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | |
Collapse
|
8
|
The peroxisomal importomer constitutes a large and highly dynamic pore. Nat Cell Biol 2010; 12:273-7. [PMID: 20154681 DOI: 10.1038/ncb2027] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 01/25/2010] [Indexed: 11/08/2022]
Abstract
The peroxisomal protein import machinery differs fundamentally from known translocons (endoplasmic reticulum, mitochondria, chloroplasts, bacteria) as it allows membrane passage of folded, even oligomerized proteins. However, the mechanistic principles of protein translocation across the peroxisomal membrane remain unknown. There are various models that consider membrane invagination events, vesicle fusion or the existence of large import pores. Current data show that a proteinaceous peroxisomal importomer enables docking of the cytosolic cargo-loaded receptors, cargo translocation and receptor recycling. Remarkably, the cycling import receptor Pex5p changes its topology from a soluble cytosolic form to an integral membrane-bound form. According to the transient pore hypothesis, the membrane-bound receptor is proposed to form the core component of the peroxisomal import pore. Here, we demonstrate that the membrane-associated import receptor Pex5p together with its docking partner Pex14p forms a gated ion-conducting channel which can be opened to a diameter of about 9 nm by the cytosolic receptor-cargo complex. The newly identified pore shows striking dynamics, as expected for an import machinery translocating proteins of variable sizes.
Collapse
|
9
|
Visser WF, van Roermund CWT, Ijlst L, Waterham HR, Wanders RJA. Metabolite transport across the peroxisomal membrane. Biochem J 2007; 401:365-75. [PMID: 17173541 PMCID: PMC1820816 DOI: 10.1042/bj20061352] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 09/28/2006] [Indexed: 10/23/2022]
Abstract
In recent years, much progress has been made with respect to the unravelling of the functions of peroxisomes in metabolism, and it is now well established that peroxisomes are indispensable organelles, especially in higher eukaryotes. Peroxisomes catalyse a number of essential metabolic functions including fatty acid beta-oxidation, ether phospholipid biosynthesis, fatty acid alpha-oxidation and glyoxylate detoxification. The involvement of peroxisomes in these metabolic pathways necessitates the transport of metabolites in and out of peroxisomes. Recently, considerable progress has been made in the characterization of metabolite transport across the peroxisomal membrane. Peroxisomes posses several specialized transport systems to transport metabolites. This is exemplified by the identification of a specific transporter for adenine nucleotides and several half-ABC (ATP-binding cassette) transporters which may be present as hetero- and homo-dimers. The nature of the substrates handled by the different ABC transporters is less clear. In this review we will describe the current state of knowledge of the permeability properties of the peroxisomal membrane.
Collapse
Key Words
- fatty acid
- genetic disease
- metabolite
- peroxisome
- transport
- zellweger syndrome
- abc, atp-binding cassette
- cpt, carnitine palmitoyltransferase
- dhas, dihydroxyacetone synthetase
- dhca, dihydroxycholestanoic acid
- dnp, 2,4-dinitrophenol
- g3pdh, glycerol-3-phosphate dehydrogenase
- got, glutamate:aspartate aminotransferase
- lacs, long-chain acyl-coa synthetase
- mcf, mitochondrial carrier family
- mcfa, medium-chain fatty acid
- mct, monocarboxylate transporter
- mdh, malate dehydrogenase
- m-lp, mpv17-like protein
- pmp, peroxisomal membrane protein
- ros, reactive oxygen species
- scamc, short calcium-binding mitochondrial carrier
- thca, trihydroxycholestanoic acid
- xald, x-linked adrenoleukodystrophy
Collapse
Affiliation(s)
- Wouter F Visser
- University of Amsterdam, Academic Medical Centre, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, F0-224, Meibergdreef 9, Amsterdam, 1105 AZ The Netherlands.
| | | | | | | | | |
Collapse
|
10
|
Antonenkov VD, Hiltunen JK. Peroxisomal membrane permeability and solute transfer. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1763:1697-706. [PMID: 17045662 DOI: 10.1016/j.bbamcr.2006.08.044] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 08/16/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
The review is dedicated to recent progress in the study of peroxisomal membrane permeability to solutes which has been a matter of debate for more than 40 years. Apparently, the mammalian peroxisomal membrane is freely permeable to small solute molecules owing to the presence of pore-forming channels. However, the membrane forms a permeability barrier for 'bulky' solutes including cofactors (NAD/H, NADP/H, CoA, and acetyl/acyl-CoA esters) and ATP. Therefore, peroxisomes need specific protein transporters to transfer these compounds across the membrane. Recent electrophysiological studies have revealed channel-forming activities in the mammalian peroxisomal membrane. The possible involvement of the channels in the transfer of small metabolites and in the formation of peroxisomal shuttle systems is described.
Collapse
Affiliation(s)
- Vasily D Antonenkov
- Department of Biochemistry and Biocenter Oulu, University of Oulu, P.O. Box 3000, FIN-90014 Oulu, Finland.
| | | |
Collapse
|
11
|
Visser WF, van Roermund CWT, Ijlst L, Hellingwerf KJ, Waterham HR, Wanders RJA. First identification of a 2-ketoglutarate/isocitrate transport system in mammalian peroxisomes and its characterization. Biochem Biophys Res Commun 2006; 348:1224-31. [PMID: 16919238 DOI: 10.1016/j.bbrc.2006.07.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 07/12/2006] [Indexed: 11/19/2022]
Abstract
Peroxisomes contain specific transporter proteins required for the translocation of various metabolites across its membrane. The presence of several members of the ATP-binding cassette (ABC) transporter family is well established, and the characterization of transporters for adenine nucleotides and (pyro)phosphate in the peroxisomal membrane has been described recently. Previously published data strongly suggest the presence of additional transporters that facilitate the translocation of reducing equivalents and acetyl-units across the peroxisomal membrane. In this paper, we demonstrate the presence of transporter activity for 2-ketoglutarate and isocitrate in the peroxisomal membrane, by functional reconstitution of bovine kidney peroxisomal membrane protein in proteoliposomes. This transporter activity is assumed to be required to sustain the activity of intraperoxisomal isocitrate-dehydrogenase, which is involved in the regeneration of NADPH in the peroxisomal matrix.
Collapse
Affiliation(s)
- Wouter F Visser
- University of Amsterdam, Academic Medical Centre, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Antonenkov VD, Sormunen RT, Hiltunen JK. The rat liver peroxisomal membrane forms a permeability barrier for cofactors but not for small metabolites in vitro. J Cell Sci 2005; 117:5633-42. [PMID: 15509867 DOI: 10.1242/jcs.01485] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The functional role of the peroxisomal membrane as a permeability barrier to metabolites has been a matter of controversy for more than four decades. The initial conception, claiming free permeability of the membrane to small solute molecules, has recently been challenged by several observations suggesting that the peroxisomal membrane forms a closed compartment. We have characterized in vitro the permeability of rat liver peroxisomal membrane. Our results indicate that the membrane allows free access into peroxisomes for small hydrophilic molecules, such as substrates for peroxisomal enzymes (glycolate, urate), but not to more bulky cofactors (NAD/H, NADP/H, CoA). Although access for cofactors is not prevented completely by the membrane, the membrane barrier severely restricts their rate of entry into peroxisomes. The data lead to conclusion that, in vivo, peroxisomes may possess their own pool of cofactors, while they share a common pool of small metabolites with the cytoplasm. The results also indicate that molecular size plays an important role in in vivo distinction between cofactors and metabolic intermediates.
Collapse
Affiliation(s)
- Vasily D Antonenkov
- Department of Biochemistry and Biocenter Oulu, University of Oulu, PO Box 3000, FI-90014, Oulu, Finland
| | | | | |
Collapse
|
13
|
Quiñones W, Urbina JA, Dubourdieu M, Luis Concepción J. The glycosome membrane of Trypanosoma cruzi epimastigotes: protein and lipid composition. Exp Parasitol 2004; 106:135-49. [PMID: 15172221 DOI: 10.1016/j.exppara.2004.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 11/26/2003] [Accepted: 03/19/2004] [Indexed: 11/18/2022]
Abstract
Highly purified glycosomes from Trypanosoma cruzi epimastigotes were obtained by differential centrifugation and isopycnic ultracentrifugation. Glycosomal membranes, produced by carbonate treatment of purified glycosomes, exhibited about eight main protein bands and eight minor ones. Essentially the same protein pattern was observed in the detergent-rich fraction of a Triton X-114 fractionation of whole glycosomes, indicating that most of the membrane-bound polypeptides were highly hydrophobic. The orientation of these proteins was studied by in situ labelling followed by limited pronase hydrolysis of intact glycosomes. Three glycosome membrane proteins were characterized as peripheral by comparing the protein bands patterns of membrane fractions obtained by different treatments. Noteworthy membrane polypeptides were: (1) a peripheral 75k Da membrane protein, oriented towards the cytosol, which was the most abundant glycosomal membrane protein in exponentially growing epimastigotes but was essentially absent in stationary phase cells; (2) a pair of integral membrane proteins with molecular masses in the range of 85-100 kDa, which were only present in stationary phase cells; (3) a heme-containing 36k Da protein, strongly associated to the membrane, present in both growth phases; (4) a very immunogenic 41k Da integral membrane polypeptide, oriented towards the cytosol. The lipid composition of the glycosomal membranes was also investigated. The distribution of phospholipid species in glycosomes and glycosomal membranes was very similar to that of whole cells, with phosphatidyl-ethanolamine, phosphatidyl-choline, and phosphatidyl-serine as main components and smaller proportions of sphingomyelin and with phosphatidyl-inositol. On the other hand, glycosomes were enriched in endogenous sterols (ergosterol, 24-ethyl-5,7,22-cholesta-trien-3beta-ol), and precursors, when compared with whole cells, a finding consistent with the proposal that these organelles are involved in the de novo biosynthesis of sterols in trypanosomatids.
Collapse
Affiliation(s)
- Wilfredo Quiñones
- Unidad de Bioquímica de Parásitos, Centro de Ingeniería Genética, Facultad de Ciencias, Universidad de Los Andes, Apartado 38, Mérida, Venezuela
| | | | | | | |
Collapse
|
14
|
Kouri K, Lemmens M, Lemmens-Gruber R. Beauvericin-induced channels in ventricular myocytes and liposomes. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1609:203-10. [PMID: 12543382 DOI: 10.1016/s0005-2736(02)00689-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The antibiotic Beauvericin (BEA) was previously shown to express ionophoric properties under simple experimental systems. Its channel-forming activity was examined in inside-out patches of ventricular myocytes and synthetic membranes with the patch clamp and fluorescence imaging techniques. Current transitions to several open state levels were evident after wash-in. The BEA channel is cation-selective. Conductance and kinetics are presented for K(+) and Na(+) substates and main states. The pore was blocked by La(3+). In myocytes, the [K(+)](i) was reduced, while [Na(+)](i) and [Ca(2+)](i) increased, leading to cytolysis. These results indicate that BEA forms cation-selective channels in lipid membranes, which can affect the ionic homeostasis.
Collapse
Affiliation(s)
- K Kouri
- Institute of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | | | | |
Collapse
|
15
|
Palmieri L, Rottensteiner H, Girzalsky W, Scarcia P, Palmieri F, Erdmann R. Identification and functional reconstitution of the yeast peroxisomal adenine nucleotide transporter. EMBO J 2001; 20:5049-59. [PMID: 11566870 PMCID: PMC125274 DOI: 10.1093/emboj/20.18.5049] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The requirement for small molecule transport systems across the peroxisomal membrane has previously been postulated, but not directly proven. Here we report the identification and functional reconstitution of Ant1p (Ypr128cp), a peroxisomal transporter in the yeast Saccharomyces cerevisiae, which has the characteristic sequence features of the mitochondrial carrier family. Ant1p was found to be an integral protein of the peroxisomal membrane and expression of ANT1 was oleic acid inducible. Targeting of Ant1p to peroxisomes was dependent on Pex3p and Pex19p, two peroxins specifically required for peroxisomal membrane protein insertion. Ant1p was essential for growth on medium-chain fatty acids as the sole carbon source. Upon reconstitution of the overexpressed and purified protein into liposomes, specific transport of adenine nucleotides could be demonstrated. Remarkably, both the substrate and inhibitor specificity differed from those of the mitochondrial ADP/ATP transporter. The physiological role of Ant1p in S.cerevisiae is probably to transport cytoplasmic ATP into the peroxisomal lumen in exchange for AMP generated in the activation of fatty acids.
Collapse
Affiliation(s)
| | - Hanspeter Rottensteiner
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via E. Orabona 4, 70125 Bari, Italy and
Institute of Chemistry/Biochemistry, Free University of Berlin, Thielallee 63, 14195 Berlin, Germany Present address: Institute of Physiological Chemistry, Ruhr-University Bochum, 44780 Bochum, Germany Corresponding author e-mail:
L.Palmieri and H.Rottensteiner contributed equally to this work
| | - Wolfgang Girzalsky
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via E. Orabona 4, 70125 Bari, Italy and
Institute of Chemistry/Biochemistry, Free University of Berlin, Thielallee 63, 14195 Berlin, Germany Present address: Institute of Physiological Chemistry, Ruhr-University Bochum, 44780 Bochum, Germany Corresponding author e-mail:
L.Palmieri and H.Rottensteiner contributed equally to this work
| | | | | | - Ralf Erdmann
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via E. Orabona 4, 70125 Bari, Italy and
Institute of Chemistry/Biochemistry, Free University of Berlin, Thielallee 63, 14195 Berlin, Germany Present address: Institute of Physiological Chemistry, Ruhr-University Bochum, 44780 Bochum, Germany Corresponding author e-mail:
L.Palmieri and H.Rottensteiner contributed equally to this work
| |
Collapse
|
16
|
Corpas FJ, Sandalio LM, Brown MJ, del Río LA, Trelease RN. Identification of porin-like polypeptide(s) in the boundary membrane of oilseed glyoxysomes. PLANT & CELL PHYSIOLOGY 2000; 41:1218-28. [PMID: 11092906 DOI: 10.1093/pcp/pcd054] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A 36-kDa polypeptide of unknown function was identified by us in the boundary membrane fraction of cucumber seedling glyoxysomes. Evidence is presented in this study that this 36-kDa polypeptide is a glyoxysomal membrane porin. A sequence of 24 amino acid residues derived from a CNBr-cleaved fragment of the 36-kDa polypeptide revealed 72% to 95% identities with sequences in mitochondrial or non-green plastid porins of several different plant species. Immunological evidence indicated that the 36-kDa (and possibly a 34-kDa polypeptide) was a porin(s). Antiserum raised against a potato tuber mitochondrial porin recognized on immunoblots 34-kDa and 36-kDa polypeptides in detergent-solubilized membrane fractions of cucumber seedling glyoxysomes and mitochondria, and in similar glyoxysomal fractions of cotton, castor bean, and sunflower seedlings. The 36-kDa polypeptide seems to be a constitutive component because it was detected also in membrane protein fractions derived from cucumber leaf-type peroxisomes. Compelling evidence that one or both of these polypeptides were authentic glyoxysomal membrane porins was obtained from electron microscopic immunogold analyses. Antiporin IgGs recognized antigen(s) in outer membranes of glyoxysomes and mitochondria. Taken together, the data indicate that membranes of cucumber (and other oilseed) glyoxysomes, leaf-type peroxisomes, and mitochondria possess similar molecular mass porin polypeptide(s) (34 and 36 kDa) with overlapping immunological and amino acid sequence similarities.
Collapse
Affiliation(s)
- F J Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Apdo. 419, E-18080 Granada, Spain
| | | | | | | | | |
Collapse
|
17
|
Abstract
Plant peroxisomes can be isolated by Percoll density gradient centrifugation at high purity and metabolic competence as well as in relatively large quantities. According to biochemical and electrophysiological analyses, plant peroxisomes have recently been shown to differ from other cell organelles in essential structural properties. Unlike mitochondria or plastids, compartmentalization of plant peroxisomal metabolism is in major parts not caused by a boundary function of the membrane but is primarily due to the specific structure of the protein matrix. The enzymes of the photorespiratory C2 cycle of leaf peroxisomes are arranged as multienzyme complexes that allow efficient metabolic channelling with high flux rates and minimum leakage of reactive oxygen species from the organelle. Transfer of metabolites, such as carboxylates, proceeds across the peroxisomal membrane via a porin-like channel, which represents a relatively unspecific but highly efficient transport system. Because all variants of peroxisomes, which all contain only a single boundary membrane, are confronted with the task of transporting a large group of metabolites while preventing the escape of reactive intermediates, it is reasonable to speculate that the unique compartmentalization feature of leaf peroxisomes also applies to peroxisomes from fungi and mammals.
Collapse
Affiliation(s)
- S Reumann
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Abteilung für Biochemie der Pflanze, Göttingen, Germany.
| |
Collapse
|
18
|
Abstract
The Golgi complex is present in every eukaryotic cell and functions in posttranslational modifications and sorting of proteins and lipids to post-Golgi destinations. Both functions require an acidic lumenal pH and transport of substrates into and by-products out of the Golgi lumen. Endogenous ion channels are expected to be important for these features, but none has been described. Ion channels from an enriched Golgi fraction cleared of transiting proteins were incorporated into planar lipid bilayers. Eighty percent of the single-channel recordings revealed the same anion channel. This channel has novel properties and has been named GOLAC (Golgi anion channel). The channel has six subconductance states with a maximum conductance of 130 pS, is open over 95% of the time, and is not voltage-gated. Significant for Golgi function, the channel conductance is increased by reduction of pH on the lumenal surface. This channel may serve two nonexclusive functions: providing counterions for the acidification of the Golgi lumen by the H(+)-ATPase and removal of inorganic phosphate generated by glycosylation and sulfation of proteins and lipids in the Golgi.
Collapse
Affiliation(s)
- M H Nordeen
- Department of Cellular and Structural Biology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Peroxisomes were long believed to play only a minor role in cellular metabolism but it is now clear that they catalyze a number of important functions. The importance of peroxisomes in humans is stressed by the existence of a group of genetic diseases in man in which one or more peroxisomal functions are impaired. Most of the functions known to take place in peroxisomes have to do with lipids. Indeed, peroxisomes are capable of 1. fatty acid beta-oxidation 2. fatty acid alpha-oxidation 3. synthesis of cholesterol and other isoprenoids 4. ether-phospholipid synthesis and 5. biosynthesis of polyunsaturated fatty acids. In Chapters 2-6 we will discuss the functional organization and enzymology of these pathways in detail. Furthermore, attention is paid to the permeability properties of peroxisomes with special emphasis on recent studies which suggest that peroxisomes are closed structures containing specific membrane proteins for transport of metabolites. Finally, the disorders of peroxisomal lipid metabolism will be discussed.
Collapse
Affiliation(s)
- R J Wanders
- Department of Clinical Chemistry, University of Amsterdam, The Netherlands
| | | |
Collapse
|
20
|
Abstract
By virtue of their synthesis in the cytoplasm, proteins destined for import into peroxisomes are obliged to traverse the single membrane of this organelle. Because the targeting signal for most peroxisomal matrix proteins is a carboxy-terminal tripeptide sequence (SKL or its variants), these proteins must remain import-competent until their translation is complete. Although the conformational requirements for translocation across other cellular membranes are known in some detail, they are presently unknown for the peroxisomal membrane. Prefolded proteins stabilized with disulfide bonds and chemical cross-linkers were shown to be substrates for peroxisomal import, as were mature folded and disulfide-bonded IgG molecules containing the peroxisomal targeting signal. In addition, colloidal gold particles conjugated to proteins bearing the peroxisomal targeting signal were translocated into the peroxisomal matrix. These results support the concept that proteins may fold in the cytosol prior to their import into the peroxisome, and that protein unfolding is not a prerequisite for peroxisomal import.
Collapse
Affiliation(s)
- P A Walton
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| |
Collapse
|
21
|
Affiliation(s)
- G P Mannaerts
- Department of Molecular Cell Biology, Faculty of Medicine, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
22
|
Reumann S, Maier E, Benz R, Heldt HW. The membrane of leaf peroxisomes contains a porin-like channel. J Biol Chem 1995; 270:17559-65. [PMID: 7542242 DOI: 10.1074/jbc.270.29.17559] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Spinach leaf peroxisomes were purified by Percoll density gradient centrifugation. After several freeze-thaw cycles, the peroxisomal membranes were separated from the matrix enzymes by sucrose density gradient centrifugation. The purity of the peroxisomal membranes was checked by measuring the activities of marker enzymes and by using antibodies. Lipid bilayer membrane experiments with the purified peroxisomal membranes, solubilized with a detergent, demonstrated that the membranes contain a channel-forming component, which may represent the major permeability pathway of these membranes. Control experiments with membranes of other cell organelles showed that the peroxisomal channel was not caused by the contamination of the peroxisomes with mitochondria or chloroplasts. The peroxisomal channel had a comparatively small single channel conductance of 350 pS in 1 M KCl as compared with channels from other cell organelles. The channel is slightly anion selective, which is in accordance with its physiological function. The single channel conductance was found to be only moderately dependent on the salt concentration in the aqueous phase. This may be explained by the presence of positive point net charges in or near the channel or by the presence of a saturable binding site inside the channel. The possible role of the channel in peroxisomal metabolism is discussed.
Collapse
Affiliation(s)
- S Reumann
- Institut für Biochemie der Pflanze, Universität Göttingen, Federal Republic of Germany
| | | | | | | |
Collapse
|
23
|
Abstract
By virtue of their synthesis in the cytoplasm, proteins destined for import into peroxisomes are obliged to traverse the single membrane of this organelle. Because the targeting signal for most peroxisomal matrix proteins is a carboxy-terminal tripeptide sequence (SKL or its variants), these proteins must remain import competent until their translation is complete. We sought to determine whether stably folded proteins were substrates for peroxisomal import. Prefolded proteins stabilized with disulfide bonds and chemical cross-linkers were shown to be substrates for peroxisomal import, as were mature folded and disulfide-bonded IgG molecules containing the peroxisomal targeting signal. In addition, colloidal gold particles conjugated to proteins bearing the peroxisomal targeting signal were translocated into the peroxisomal matrix. These results support the concept that proteins may fold in the mammalian cytosol, before their import into the peroxisome, and that protein unfolding is not a prerequisite for peroxisomal import.
Collapse
Affiliation(s)
- P A Walton
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | | | | |
Collapse
|
24
|
|
25
|
|
26
|
Verleur N, Wanders RJ. Permeability properties of peroxisomes in digitonin-permeabilized rat hepatocytes. Evidence for free permeability towards a variety of substrates. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:75-82. [PMID: 7902278 DOI: 10.1111/j.1432-1033.1993.tb18353.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In order to investigate the permeability properties of rat-liver peroxisomes in situ, we selectively permeabilized hepatocytes with digitonin in a medium mimicking the cytosol. This system permitted us to study the latency of peroxisomal oxidases by means of measurement of their activities in permeabilized compared to disrupted hepatocytes. The activity of peroxisomal oxidases was studied using three different methods: (1) measurement of the oxidase-mediated production of H2O2 in a system containing homovanillic acid, horseradish peroxidase and azide; (2) measurement of the rate of substrate utilization or product formation; (3) measurement of the production of H2O2 via the peroxidative action of catalase in the presence of an excess of methanol. The results obtained depended on which system was used to measure the activity of the different oxidases. Our observations lead us to conclude that method 1 cannot be used for latency studies, whereas methods 2 and 3 are suitable under defined circumstances. Based on the results of methods 2 and 3, we conclude that urate oxidase, L-alpha-hydroxyacid oxidase A and D-amino acid oxidase show no structure-linked latency in digitonin-permeabilized hepatocytes, suggesting that the substrates for these enzymes permeate freely through the peroxisomal membrane.
Collapse
Affiliation(s)
- N Verleur
- Department of Clinical Biochemistry, University Hospital Amsterdam, The Netherlands
| | | |
Collapse
|
27
|
Sulter GJ, Verheyden K, Mannaerts G, Harder W, Veenhuis M. The in vitro permeability of yeast peroxisomal membranes is caused by a 31 kDa integral membrane protein. Yeast 1993; 9:733-42. [PMID: 8368007 DOI: 10.1002/yea.320090707] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A major 31 kDa integral peroxisomal membrane protein (PMP31) of Hansenula polymorpha was purified to homogeneity from isolated peroxisomal membranes by FPLC after solubilization by Triton X-100. Biochemical analysis indicated that this protein, which showed cross-reactivity with antibodies against the 31 kDa porin of the mitochondrial outer membrane of Saccharomyces cerevisiae, had pore-forming properties. Firstly, proteoliposomes composed of asolectin and purified PMP31 showed selective permeability, determined as the [14C]sucrose/[3H]dextran leakage ratios. Furthermore, the generation of a delta psi by potassium diffusion gradients was negatively affected by the presence of PMP31 in asolectin liposomes. A similar effect was observed in proteoliposomes containing purified cytochrome c oxidase as a delta psi generating system. Control experiments confirmed that the observed leakage is significant and introduced by the incorporation of PMP31 protein. Selective sucrose leakage was abolished in samples pretreated with glutaraldehyde; an identical effect of glutaraldehyde was, however, not observed for the membrane potential measurements.
Collapse
Affiliation(s)
- G J Sulter
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Kaldi K, Diestelkötter P, Stenbeck G, Auerbach S, Jäkle U, Mägert HJ, Wieland FT, Just WW. Membrane topology of the 22 kDa integral peroxisomal membrane protein. FEBS Lett 1993; 315:217-22. [PMID: 8422909 DOI: 10.1016/0014-5793(93)81167-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In order to study the membrane topology and the possible function of the rat liver 22 kDa integral peroxisomal membrane protein (PMP 22) at a molecular level, we have cloned PMP 22 from a lambda gt11 expression library and sequenced its cDNA. Hydropathy analysis of the deduced primary structure indicates 4 putative transmembrane segments. The accessibility to exogenous aminopeptidase of PMP 22 in intact peroxisomes suggests that the N-terminus faces the cytosol. A model of the topology of PMP 22 in the peroxisomal membrane is discussed. Homology studies revealed a striking similarity with the Mpv 17 gene product. Lack of this membrane protein causes nephrotic syndrome in mice.
Collapse
Affiliation(s)
- K Kaldi
- Institut für Biochemie I, Universität Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sorgato MC, Moran O. Channels in mitochondrial membranes: knowns, unknowns, and prospects for the future. Crit Rev Biochem Mol Biol 1993; 28:127-71. [PMID: 7683593 DOI: 10.3109/10409239309086793] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rapid diffusion of hydrophilic molecules across the outer membrane of mitochondria has been related to the presence of a protein of 29 to 37 kDa, called voltage-dependent anion channel (VDAC), able to generate large aqueous pores when integrated in planar lipid bilayers. Functional properties of VDAC from different origins appear highly conserved in artificial membranes: at low transmembrane potentials, the channel is in a highly conducting state, but a raise of the potential (both positive and negative) reduces drastically the current and changes the ionic selectivity from slightly anionic to cationic. It has thus been suggested that VDAC is not a mere molecular sieve but that it may control mitochondrial physiology by restricting the access of metabolites of different valence in response to voltage and/or by interacting with a soluble protein of the intermembrane space. The latest application of the patch clamp and tip-dip techniques, however, has indicated both a different electric behavior of the outer membrane and that other proteins may play a role in the permeation of molecules. Biochemical studies, use of site-directed mutants, and electron microscopy of two-dimensional crystal arrays of VDAC have contributed to propose a monomeric beta barrel as the structural model of the channel. An important insight into the physiology of the inner membrane of mammalian mitochondria has come from the direct observation of the membrane with the patch clamp. A slightly anionic, voltage-dependent conductance of 107 pS and one of 9.7 pS, K(+)-selective and ATP-sensitive, are the best characterized at the single channel level. Under certain conditions, however, the inner membrane can also show unselective nS peak transitions, possibly arising from a cooperative assembly of multiple substrates.
Collapse
Affiliation(s)
- M C Sorgato
- Dipartimento di Chimica Biologica, Università di Padova, Italy
| | | |
Collapse
|
30
|
Abstract
This article summarizes our current knowledge of the metabolic pathways present in mammalian peroxisomes. Emphasis is placed on those aspects that are not covered by other articles in this issue: peroxisomal enzyme content and topology; the peroxisomal beta-oxidation system; substrates of peroxisomal beta-oxidation such as very-long-chain fatty acids, branched fatty acids, dicarboxylic fatty acids, prostaglandins and xenobiotics; the role of peroxisomes in the metabolism of purines, polyamines, amino acids, glyoxylate and reactive oxygen products such as hydrogen peroxide, superoxide anions and epoxides.
Collapse
Affiliation(s)
- G P Mannaerts
- Afdeling Farmacologie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
31
|
Affiliation(s)
- G P Mannaerts
- Department of Pharmacology, Faculty of Medicine, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
32
|
Affiliation(s)
- W W Just
- Institut für Biochemie I, Universität Heidelberg, Germany
| | | |
Collapse
|
33
|
Verheyden K, Fransen M, Van Veldhoven PP, Mannaerts GP. Presence of small GTP-binding proteins in the peroxisomal membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1109:48-54. [PMID: 1504080 DOI: 10.1016/0005-2736(92)90185-o] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Highly purified peroxisomal membranes stripped from their peripheral membrane proteins and only minimally contaminated with other membranes, contained three GTP-binding proteins of 29, 27 and 25 kDa, respectively. Bound radioactive GTP was displaced by unlabelled GTP, GTP analogs and GDP but not by GMP or other nucleotides. GTP binding was markedly decreased by trypsin treatment of intact purified peroxisomes; it increased 2-3-fold after pretreatment of the animals with a peroxisome proliferator. We conclude that the peroxisomal membrane contains small GTP-binding proteins that are exposed to the cytosol and that are firmly anchored in the membrane. We speculate that these proteins are involved in peroxisome multiplication by fission or budding during peroxisome biogenesis and proliferation.
Collapse
Affiliation(s)
- K Verheyden
- Katholieke Universiteit Leuven, Afdeling Farmacologie, Belgium
| | | | | | | |
Collapse
|
34
|
Wolvetang EJ, Tager JM, Wanders RJ. Factors influencing the latency of the peroxisomal enzyme dihydroxyacetone-phosphate acyltransferase (DHAP-AT) in permeabilized human skin fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1095:122-6. [PMID: 1657193 DOI: 10.1016/0167-4889(91)90074-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In selectively permeabilized fibroblasts suspended in a medium mimicking the composition of the cytosol the peroxisomal enzyme dihydroxyacetone-phosphate acyltransferase (DHAP-AT) was found to exhibit about 80% latency (Wolvetang, E.J., Tager, J.M. and Wanders, R.J.A. (1990) Biochem. Biophys. Res. Commun. 1035, 6-11). We investigated which components of the cytosol mimicking medium are important for latency of DHAP-AT and unmasking of latent DHAP-AT activity by ATP. We show that the latency of DHAP-AT is critically dependent upon the presence of reduced glutathione in the medium and that the in vivo prevailing GSH/GSSG ratio is sufficient to maintain DHAP-AT latency. Although thiol-groups in the peroxisomal membrane seem to be essential for the integrity of peroxisomes in selectively permeabilized fibroblasts no latency of DHAP-AT is observed in buffered sucrose media or in cell homogenates, irrespective of the presence of GSH in the medium used. We suggest that during homogenization irreversible damage is inflicted upon the peroxisomal membrane and/or that more factors than at present investigated are involved in maintaining peroxisomal integrity. Furthermore, we demonstrate that cations play a role in the stimulatory effect of ATP on latent DHAP-AT activity while a proton gradient is not directly involved in the stimulatory effect of ATP on latent DHAP-AT activity.
Collapse
Affiliation(s)
- E J Wolvetang
- Department of Pediatrics, University Hospital Amsterdam, The Netherlands
| | | | | |
Collapse
|
35
|
McCammon MT, Veenhuis M, Trapp SB, Goodman JM. Association of glyoxylate and beta-oxidation enzymes with peroxisomes of Saccharomyces cerevisiae. J Bacteriol 1990; 172:5816-27. [PMID: 2211514 PMCID: PMC526899 DOI: 10.1128/jb.172.10.5816-5827.1990] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although peroxisomes are difficult to identify in Saccharomyces cerevisiae under ordinary growth conditions, they proliferate when cells are cultured on oleic acid. We used this finding to study the protein composition of these organelles in detail. Peroxisomes from oleic acid-grown cells were purified on a discontinuous sucrose gradient; they migrated to the 46 to 50% (wt/wt) sucrose interface. The peroxisomal fraction was identified morphologically and by the presence of all of the enzymes of the peroxisomal beta-oxidation pathway. These organelles also contained a significant but minor fraction of two enzymes of the glyoxylate pathway, malate synthase and malate dehydrogenase-2. The localization of malate synthase in peroxisomes was confirmed by immunoelectron microscopy. It is postulated that glyoxylate pathway enzymes are readily and preferentially released from peroxisomes upon cell lysis, accounting for their incomplete recovery from isolated organelles. Small uninduced peroxisomes from glycerol-grown cultures were detected on sucrose gradients by marker enzymes. Under these conditions, catalase, acyl-coenzyme A oxidase, and malate synthase cofractionated at equilibrium close to the mitochondrial peak, indicating smaller, less dense organelles than those from cells grown on oleic acid. Peroxisomal membranes from oleate cultures were purified by buoyant density centrifugation. Three abundant proteins of 24, 31, and 32 kilodaltons were observed.
Collapse
Affiliation(s)
- M T McCammon
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | | | |
Collapse
|
36
|
Wolvetang EJ, Tager JM, Wanders RJ. Latency of the peroxisomal enzyme acyl-CoA:dihydroxyacetonephosphate acyltransferase in digitonin-permeabilized fibroblasts: the effect of ATP and ATPase inhibitors. Biochem Biophys Res Commun 1990; 170:1135-43. [PMID: 2143898 DOI: 10.1016/0006-291x(90)90511-k] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have studied the activity of acyl-CoA:dihydroxyacetonephosphate acyltransferase (DHAP-AT) in fibroblasts treated with low concentrations of digitonin so that the cytoplasmic compartment was freely accessible to the substrates of DHAP-AT while intracellular membranes remained intact. DHAP-AT activity exhibited 70% latency under these conditions. This latency could be overcome by addition of ATP, resulting in a four-fold stimulation of DHAP-AT activity. Virtually no stimulatory effect of ATP on DHAP-AT activity was observed in sonicated fibroblasts or when a non-hydrolyzable ATP analogue was used. Furthermore the stimulatory effect of ATP was prevented in part by DCCD. N-ethylmaleimide and high concentrations of oligomycin; bafilomycin had no effect. This pattern of inhibitor sensitivity is similar to that of the ATPase activity in peroxisomal fractions from rat liver. We conclude that peroxisomes in situ exhibit structure linked latency and that ATP is required for the transport of at least one of the substrates of DHAP-AT.
Collapse
Affiliation(s)
- E J Wolvetang
- Department of Pediatrics, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | |
Collapse
|
37
|
Waterham HR, Keizer-Gunnink I, Goodman JM, Harder W, Veenhuis M. Immunocytochemical evidence for the acidic nature of peroxisomes in methylotrophic yeasts. FEBS Lett 1990; 262:17-9. [PMID: 2156731 DOI: 10.1016/0014-5793(90)80142-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The possible acidic nature of the peroxisomal matrix present in intact yeast cells was studied immunocytochemically, using the weak base DAMP as a probe. Spheroplasts of methanol-grown Candida boidinii and Hansenula polymorpha were regenerated and incubated with DAMP. After immunogold labelling, using antibodies against DAMP, a specific accumulation of gold particles was observed on the peroxisomal profiles. This labelling was absent in controls, performed in the presence of ionophores or chloroquine. These results support earlier observations, that in intact cells a pH-gradient exists across the peroxisomal membrane. Experiments, carried out on osmotically swollen spheroplasts indicated that maintenance of this pH-gradient is strongly related to the cell's integrity.
Collapse
Affiliation(s)
- H R Waterham
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|