1
|
Amin A, Ando T, Saijo S, Yamato I. Role of Asp187 and Gln190 in the Na+/proline symporter (PutP) of Escherichia coli. J Biochem 2011; 150:395-402. [PMID: 21586535 DOI: 10.1093/jb/mvr062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Asp187 and Gln190 were predicted as conserved and closely located at the Na(+) binding site in a topology and homology model structure of Na(+)/proline symporter (PutP) of Escherichia coli. The replacement of Asp187 with Ala or Leu did not affect proline transport activity; whereas, change to Gln abolished the active transport. The binding affinity for Na(+) or proline of these mutants was similar to that of wild-type (WT) PutP. This result indicates Asp187 to be responsible for active transport of proline without affecting the binding. Replacement of Gln190 with Ala, Asn, Asp, Leu and Glu had no effect on transport or binding, suggesting that it may not have a role in the transport. However, in the negative D187Q mutant, a second mutation, of Gln190 to Glu or Leu, restored 46 or 7% of the transport activity of WT, respectively, while mutation to Ala, Asn or Asp had no effect. Thus, side chain at position 190 has a crucial role in suppressing the functional defect of the D187Q mutant. We conclude that Asp187 is responsible for transport activity instead of coupling-ion binding by constituting the translocation pathway of the ion and Gln190 provides a suppressing mutation site to regain PutP functional activity.
Collapse
Affiliation(s)
- Anowarul Amin
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | | | | | | |
Collapse
|
2
|
Olkhova E, Raba M, Bracher S, Hilger D, Jung H. Homology model of the Na+/proline transporter PutP of Escherichia coli and its functional implications. J Mol Biol 2010; 406:59-74. [PMID: 21130773 DOI: 10.1016/j.jmb.2010.11.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 01/08/2023]
Abstract
Na(+)/solute symporters are essential membrane integrated proteins that couple the flow of Na(+) ions driven by electrochemical Na(+) gradients to the transport of solutes across biological membranes. Here, we used a combination of molecular modeling techniques and evolutionary conservation analysis to construct and validate a first model of the Na(+)/proline symporter PutP of Escherichia coli based on the crystal structure of the bacterial Na(+)/galactose symporter vSGLT. Ligand docking experiments were employed to gain information about residues involved in proline binding. The proposed model is consistent with the available experimental data and was further validated by amino acid substitutions and kinetic and protein chemical analyses. Combination of the results of molecular modeling and functional studies predicts the location and organization of the Na(+) and proline binding sites. Remarkably, as proposed computationally and discovered here experimentally, residues Y140, W244, and Y248 of transmembrane segments 4 and 7 are found to be particularly important for PutP function and suggested to participate in proline binding and/or gating.
Collapse
Affiliation(s)
- Elena Olkhova
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, D-60438 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
3
|
Reith MEA, Zhen J, Chen N. The importance of company: Na+ and Cl- influence substrate interaction with SLC6 transporters and other proteins. Handb Exp Pharmacol 2007:75-93. [PMID: 16722231 DOI: 10.1007/3-540-29784-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
SLC6 transporters, which include transporters for gamma-aminobutyric acid (GABA), norepinephrine, dopamine, serotonin, glycine, taurine, L-proline, creatine, betaine, and neutral cationic amino acids, require Na+ and Cl- for their function, and this review covers the interaction between transporters of this family with Na+ and Cl- from a structure-function standpoint. Because detailed structure-function information regarding ion interactions with SLC6 transporters is limited, we cover other proteins cotransporting Na+ or Cl- with substrate (SLClA2, PutP, SLC5A1, melB), or ion binding to proteins in general (rhodanese, ATPase, LacY, thermolysine, angiotensin-converting enzyme, halorhodopsin, CFTR). Residues can be involved in directly binding Na+ or Cl-, in coupling ion binding to conformational changes in transporter, in coupling Na+ or Cl- movement to transport, or in conferring ion selectivity. Coordination of ions can involve a number of residues, and portions of the substrate and coupling ion binding sites can be distal in space in the tertiary structure of the transporter, with other portions that are close in space thought to be crucial for the coupling process. The reactivity with methanethiosulfonate reagents of cysteines placed in strategic positions in the transporter provides a readout for conformational changes upon ion or substrate binding. More work is needed to establish the relationships between ion interactions and oligomerization of SLC6 transporters.
Collapse
Affiliation(s)
- M E A Reith
- Department of Biological Sciences, Illinois State University, Normal, IL 61656, USA.
| | | | | |
Collapse
|
4
|
Jung H. Towards the molecular mechanism of Na(+)/solute symport in prokaryotes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1505:131-43. [PMID: 11248195 DOI: 10.1016/s0005-2728(00)00283-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Na(+)/solute symporter family (SSF, TC No. 2.A.21) contains more than 40 members of pro- and eukaryotic origin. Besides their sequence similarity, the transporters share the capability to utilize the free energy stored in electrochemical Na(+) gradients for the accumulation of solutes. As part of catabolic pathways most of the transporters are most probably involved in the acquisition of nutrients. Some transporters play a role in osmoadaptation. With a high resolution structure still missing, a combination of genetic, protein chemical and spectroscopic methods has been used to gain new insights into the structure and molecular mechanism of action of the transport proteins. The studies suggest a common 13-helix motif for all members of the SSF according to which the N-terminus is located in the periplasm and the C-terminus is directed into the cytoplasm (except for proteins containing a N- or C-terminal extension). Furthermore, an amino acid substitution analysis of the Na(+)/proline transporter (PutP) of Escherichia coli, a member of the SSF, has identified regions of particular functional importance. For example, amino acids of TM II of PutP proved to be critical for high affinity binding of Na(+) and proline. In addition, it was shown that ligand binding induces widespread conformational alterations in the transport protein. Taken together, the studies substantiate the common idea that Na(+)/solute symport is the result of a series of ligand-induced structural changes.
Collapse
Affiliation(s)
- H Jung
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, D-49069, Osnabrück, Germany.
| |
Collapse
|
5
|
Abstract
A variety of sodium-substrate cotransport systems are known in bacteria. Sodium enters the cell down an electrochemical concentration gradient. There is obligatory coupling between the entry of the ion and the entry of substrate with a stoichiometry (in the cases studied) of 1:1. Thus, the downhill movement of sodium ion into the cell leads to the accumulation of substrate within the cell. The melibiose carrier of Escherichia coli is perhaps the most carefully studied of the sodium cotransport systems in bacteria. This carrier is of special interest because it can also use protons or lithium ions for cotransport. Other sodium cotransport carriers that have been studied recently are for proline, glutamate, serine-threonine, citrate and branched chain amino acids.
Collapse
Affiliation(s)
- T H Wilson
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
6
|
Jung H. Topology and function of the Na+/proline transporter of Escherichia coli, a member of the Na+/solute cotransporter family. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:60-4. [PMID: 9693722 DOI: 10.1016/s0005-2728(98)00044-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Na+/proline transporter of Escherichia coli (PutP) is a member of the Na+/solute contransporter family (SCF) and catalyzes the uptake of proline by a Na+ dependent transport mechanism. Hydropathy profile analysis suggests that the protein consists of 12 transmembrane domains (TMs) that traverse the membrane in zigzag fashion connected by hydrophilic loops. However, analysis of a series of putP-phoA (PutP-alkaline phosphatase) and putP-lacZ (PutP-beta-galactosidase) fusions and site-directed labeling of the transporter indicate a 13-helix motif with the N-terminus on the outside and the C-terminus facing the cytoplasm. The findings are discussed with respect to a common topological motif for all members of the SCF. Furthermore, amino acid substitution analysis indicates that the N-terminal part of PutP is important for ion binding. Thus, Asp55 (putative TM II) is essential for transport and proposed to interact directly with Na+. The functional importance of TM II is further confirmed by the observation that replacement of Arg40, Ser50, Ala53, or Ser57 alters transport kinetics dramatically.
Collapse
Affiliation(s)
- H Jung
- Universität Osnabrück, Fachbereich Biologie/Chemie, Osnabrück, Germany.
| |
Collapse
|
7
|
Jethwaney D, H Fer M, Khaware RK, Prasad R. Functional reconstitution of a purified proline permease from Candida albicans: interaction with the antifungal cispentacin. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 2):397-404. [PMID: 9043117 DOI: 10.1099/00221287-143-2-397] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have purified proline permease to homogeneity from Candida albicans using an L-proline-linked agarose matrix as an affinity column. The eluted protein produced two bands of 64 and 67 kDa by SDS-PAGE, whereas it produced a single band of 67 kDa by native PAGE and Western blotting. The apparent Km for L-proline binding to the purified protein was 153 microM. The purified permease was reconstituted into proteoliposomes and its functionality was tested by imposing a valinomycin-induced membrane potential. The main features of L-proline transport in reconstituted systems, viz. specificity and sensitivity to N-ethylmaleimide, were very similar to those of intact cells, The antifungal cispentacin, which enters C. albicans cells via an inducible proline permease, competitively inhibited the L-proline binding and translocation in reconstituted proteoliposomes. However, the uptake of L-proline in proteoliposomes reconstituted with the purified protein displayed monophasic kinetics with an apparent Km of 40 microM.
Collapse
Affiliation(s)
- Deepa Jethwaney
- School of Life Sciences, Jawaharlal Nehru University,New Delhi-110067,India
| | - Milan H Fer
- Botanisches Institut, Universit�t Bonn,Kirschallee 1, D-53115 Bonn,Germany
| | - Raj K Khaware
- School of Life Sciences, Jawaharlal Nehru University,New Delhi-110067,India
| | - Rajendra Prasad
- School of Life Sciences, Jawaharlal Nehru University,New Delhi-110067,India
| |
Collapse
|
8
|
Quick M, Tebbe S, Jung H. Ser57 in the Na+/proline permease of Escherichia coli is critical for high-affinity proline uptake. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:732-6. [PMID: 8774720 DOI: 10.1111/j.1432-1033.1996.0732u.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ser57 in the Na+/proline permease of Escherichia coli has been replaced with alanine, cysteine, glycine, or threonine, and properties of the corresponding putP mutants have been analyzed. Although Ser57 is not essential for activity, the amino acid side chain at this position is critical for proline uptake. Thus, alanine, cysteine, glycine, or threonine in place of Ser57 reduces the initial rate of proline transport under standard conditions to less than 10% of the wild-type value. In addition, substitution of Ser57 in the Na+/proline permease reduces the sensitivity of E. coli cells to the toxic proline analogs L-azetidine-2-carboxylate and 3.4-dehydro-D.L-proline. Replacement of Ser57 with alanine or cysteine results in apparent affinities for proline that are reduced by more than two orders of magnitude, and permeases with threonine and glycine in place of Ser57 yield apparent affinities reduced by a factor of 60 and 18 respectively, relative to wild-type. In contrast, all of the Ser57 replacements analyzed cause only small changes in Vmax values. All permease molecules containing Ser57 substitutions are inserted into the membrane in amounts comparable to the wild-type protein as shown by immunoblot analysis. These results indicate that alterations of proline transport and sensitivity to toxic proline analogs have to be attributed primarily to defects in substrate binding. It is suggested that the serine residue at position 57 of the permease is located within the substrate-binding domain of the protein.
Collapse
Affiliation(s)
- M Quick
- Universität Osnabrück, Fachberecich Biologie/Chemie, Arbeitsgruppe Mikrobiologie, Germany
| | | | | |
Collapse
|
9
|
Turner JR, Lencer WI, Carlson S, Madara JL. Carboxy-terminal vesicular stomatitis virus G protein-tagged intestinal Na+-dependent glucose cotransporter (SGLT1): maintenance of surface expression and global transport function with selective perturbation of transport kinetics and polarized expression. J Biol Chem 1996; 271:7738-44. [PMID: 8631815 DOI: 10.1074/jbc.271.13.7738] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Na+-dependent glucose transporter (SGLT1) mediates absorption of luminal glucose by the intestine. However, available intestinal cell lines that recapitulate a monolayer phenotype only express SGLT1 at low levels. Thus, to facilitate studies of the biology of SGLT1 function in epithelial monolayers, we engineered an epitope-tagged construct containing the YTDIEMNRLGK sequence (from the vesicular stomatitis virus G protein). The tag was placed at the carboxyl terminus since this is the least conserved portion of SGLT1. Transiently transfected COS-1 cells demonstrated surface expression of the immunoreactive protein and enhanced Na+-dependent glucose uptake that was phloridzin-sensitive (a specific competitive inhibitor of SGLT1). However, subsequent detailed analyses of epitope-tagged SGLT1 using stably transfected clones derived from the Caco-2 human intestinal epithelial cell line revealed substantial effects of the epitope on critical functions of SGLT1. When compared with native SGLT1 transfectants, the apparent Km for sugar transport was increased 23-fold (313 microM to 7.37 mM for native versus epitope-tagged SGLT1). In contrast, the apparent KNa for epitope-tagged SGLT1 was similar to that for native SGLT1. Permeabilization studies indicated that the C-terminal epitope tag was intracellular and thus could not directly disrupt extracellular ligand-binding sites. Immunolocalization and functional assays designed to detect polarized surface expression indicated that epitope tagging resulted in loss of apical targeting and enrichment of basolateral expression. Functional isolation of the small apical pool of epitope-tagged SGLT1 (by selective inhibition of basolateral epitope-tagged SGLT1) revealed that, despite the documented kinetic alterations in sugar transport, epitope-tagged SGLT1 could promote absorptive Na+ currents. These data show that 1) the C terminus of SGLT1 is intracellular; 2) disruption of protein structure by addition of a C-terminal tag leads to selective modifications of SGLT1 function; 3) the kinetics of sugar transport can be altered independently of influences on the Na+-binding site of SGLT1; and 4) the weak basolateral targeting sequence present within the epitope tag is dominant over endogenous SGLT1 apical targeting information and can direct polytopic membrane protein localization. The data also caution that subtle effects of foreign sequences must be considered when epitope tagging polytopic membrane proteins.
Collapse
Affiliation(s)
- J R Turner
- Division of Gastrointestinal Pathology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
10
|
Wengender PA, Miller KJ. Identification of a PutP proline permease gene homolog from Staphylococcus aureus by expression cloning of the high-affinity proline transport system in Escherichia coli. Appl Environ Microbiol 1995; 61:252-9. [PMID: 7887605 PMCID: PMC167280 DOI: 10.1128/aem.61.1.252-259.1995] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The important food-borne pathogen Staphylococcus aureus is distinguished by its ability to grow at low water activity values. Previous work in our laboratory and by others has revealed that proline accumulation via transport is an important osmoregulatory strategy employed by this bacterium. Furthermore, proline uptake by this bacterium has been shown to be mediated by two distinct transport systems: a high-affinity system and a low-affinity system (J.-H. Bae, and K. J. Miller, Appl. Environ. Microbiol. 58:471-475, 1992; D. E. Townsend and B. J. Wilkinson, J. Bacteriol. 174:2702-2710, 1992). In the present study, we report the cloning of the high-affinity proline transport system of S. aureus by functional expression in an Escherichia coli host. The sequence of the staphylococcal proline permease gene was predicted to encode a protein of 497 amino acids which shares 49% identity with the PutP high-affinity proline permease of E. coli. Analysis of hydropathy also indicated a common overall structure for these proteins.
Collapse
Affiliation(s)
- P A Wengender
- Department of Food Science, Pennsylvania State University, University Park 16802
| | | |
Collapse
|
11
|
Reizer J, Reizer A, Saier MH. A functional superfamily of sodium/solute symporters. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1197:133-66. [PMID: 8031825 DOI: 10.1016/0304-4157(94)90003-5] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Eleven families of sodium/solute symporters are defined based on their degrees of sequence similarities, and the protein members of these families are characterized in terms of their solute and cation specificities, their sizes, their topological features, their evolutionary relationships, and their relative degrees and regions of sequence conservation. In some cases, particularly where site-specific mutagenesis analyses have provided functional information about specific proteins, multiple alignments of members of the relevant families are presented, and the degrees of conservation of the mutated residues are evaluated. Signature sequences for several of the eleven families are presented to facilitate identification of new members of these families as they become sequenced. Phylogenetic tree construction reveals the evolutionary relationships between members of each family. One of these families is shown to belong to the previously defined major facilitator superfamily. The other ten families do not show sufficient sequence similarity with each other or with other identified transport protein families to establish homology between them. This study serves to clarify structural, functional and evolutionary relationships among eleven distinct families of functionally related transport proteins.
Collapse
Affiliation(s)
- J Reizer
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | | | |
Collapse
|
12
|
Site-specific alteration of arginine 376, the unique positively charged amino acid residue in the mid-membrane-spanning regions of the proline carrier of Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37520-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Abstract
In primary and secondary active transport, the mobility and specificity of the carrier are controlled, over the course of the transport reaction, in accordance with a set of 'rules'. The rules are shown to depend on two mechanisms: a substrate--either the driving substrate (a transported ion or ATP) or the driven substrate--may shift a conformational equilibrium or accelerate a rate-limiting conformational change. From an analysis of coupling mechanisms the following conclusions emerge. (i) The ratio of coupled to uncoupled flux, which should be large, cannot be greater than the ratio of substrate dissociation constants in an initial complex and a conformationally altered state. A minimum value for the increased binding force can be estimated from steady-state constants. (ii) In an ordered mechanism, slippage is expected at high concentrations of the substrate adding to the carrier second, while slippage of the first substrate should remain low. (iii) Slippage in coupled transport is minimized if the driven substrate is last on in loading the carrier and last off in unloading, while the reverse order makes the affinity high in loading and low in unloading, as required for efficient transfer from one compartment to another; hence the preferred mechanism may depend on prevailing physiological conditions. (iv) A coupled transport system can be transformed into a facilitated system for one substrate or both if the control of carrier mobility is undermined through modification of the carrier.
Collapse
Affiliation(s)
- R M Krupka
- London Research Centre, Agriculture Canada, Canada
| |
Collapse
|
14
|
Abstract
From the hydropathic profiles of their amino acid sequences many transport proteins are conceived to comprise 12-transmembrane alpha-helices. In only a few examples, however, is there genetical and/or biochemical evidence to support the 12-helix structure or illuminate the molecular mechanism of the transport process. A number of these transport proteins occur in evolutionarily related families, and sometimes superfamilies, indicating divergent evolution of the 12-helix structure. Other individual members or families of transport proteins are sufficiently different in amino acid sequence for their evolution to have taken place by convergence from independent ancestral origins.
Collapse
Affiliation(s)
- P J Henderson
- Department of Biochemistry and Molecular Biology, University of Leeds, UK
| |
Collapse
|