1
|
Sun Z, Du H, Zheng X, Zhang H, Hu H. Discovering the interactome, functions, and clinical relevance of enhancer RNAs in kidney renal clear cell carcinoma. BMC Med Genomics 2025; 18:3. [PMID: 39754187 PMCID: PMC11697625 DOI: 10.1186/s12920-024-02081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025] Open
Abstract
Enhancer RNA (eRNA) has emerged as a key player in cancer biology, influencing various aspects of tumor development and progression. In this study, we investigated the role of eRNAs in kidney renal clear cell carcinoma (KIRC), the most common subtype of renal cell carcinoma. Leveraging high-throughput sequencing data and bioinformatics analysis, we identified differentially expressed eRNAs in KIRC and constructed eRNA-centric regulatory networks. Our findings revealed that up-regulated eRNAs in KIRC potentially regulate immune response and hypoxia pathways, while down-regulated eRNAs may impact ion transport, cell cycle, and metabolism. Furthermore, we developed a diagnostic prediction model based on eRNA expression profiles, demonstrating its effectiveness in KIRC diagnosis. Finally, we elucidated the regulatory mechanism of an eRNA (ENSR00000305834) on the expression of SLC15A2, a potential prognostic biomarker in KIRC, through bioinformatics analysis and in vitro validation experiments. In summary, Our study highlights the clinical significance of eRNAs in KIRC and underscores their potential as therapeutic targets.
Collapse
Affiliation(s)
- Zhaohui Sun
- Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China
| | - Haojie Du
- Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China
| | - Xudong Zheng
- Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China
| | - Hepeng Zhang
- Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China
| | - Huajie Hu
- Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Boytsov D, Madej GM, Horn G, Blaha N, Köcher T, Sitte HH, Siekhaus D, Ziegler C, Sandtner W, Roblek M. Orphan lysosomal solute carrier MFSD1 facilitates highly selective dipeptide transport. Proc Natl Acad Sci U S A 2024; 121:e2319686121. [PMID: 38507452 PMCID: PMC10990142 DOI: 10.1073/pnas.2319686121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Orphan solute carrier (SLC) represents a group of membrane transporters whose exact functions and substrate specificities are not known. Elucidating the function and regulation of orphan SLC transporters is not only crucial for advancing our knowledge of cellular and molecular biology but can potentially lead to the development of new therapeutic strategies. Here, we provide evidence for the biological function of a ubiquitous orphan lysosomal SLC, the Major Facilitator Superfamily Domain-containing Protein 1 (MFSD1), which has remained phylogenetically unassigned. Targeted metabolomics revealed that dipeptides containing either lysine or arginine residues accumulate in lysosomes of cells lacking MFSD1. Whole-cell patch-clamp electrophysiological recordings of HEK293-cells expressing MFSD1 on the cell surface displayed transport affinities for positively charged dipeptides in the lower mM range, while dipeptides that carry a negative net charge were not transported. This was also true for single amino acids and tripeptides, which MFSD1 failed to transport. Our results identify MFSD1 as a highly selective lysosomal lysine/arginine/histidine-containing dipeptide exporter, which functions as a uniporter.
Collapse
Affiliation(s)
- Danila Boytsov
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, ViennaAT-1090, Austria
| | - Gregor M. Madej
- Department of Biophysics II/Structural Biology, University of Regensburg, RegensburgDE-93053, Germany
| | - Georg Horn
- Department of Biophysics II/Structural Biology, University of Regensburg, RegensburgDE-93053, Germany
| | - Nadine Blaha
- Vienna BioCenter Core Facilities, Metabolomics, Vienna BioCenter, ViennaAT-1030, Austria
| | - Thomas Köcher
- Vienna BioCenter Core Facilities, Metabolomics, Vienna BioCenter, ViennaAT-1030, Austria
| | - Harald H. Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, ViennaAT-1090, Austria
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, AmmanJO-19328, Jordan
- Center for Addiction Research and Science, Medical University of Vienna, ViennaAT-1090, Austria
| | - Daria Siekhaus
- Institute of Science and Technology Austria, KlosterneuburgAT-3400, Austria
| | - Christine Ziegler
- Department of Biophysics II/Structural Biology, University of Regensburg, RegensburgDE-93053, Germany
| | - Walter Sandtner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, ViennaAT-1090, Austria
| | - Marko Roblek
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, ViennaAT-1090, Austria
- Institute of Science and Technology Austria, KlosterneuburgAT-3400, Austria
| |
Collapse
|
3
|
Xiang J, Keep RF. Proton-Coupled Oligopeptide Transport (Slc15) in the Brain: Past and Future Research. Pharm Res 2023; 40:2533-2540. [PMID: 37308743 DOI: 10.1007/s11095-023-03550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
This mini-review describes the role of the solute carrier (SLC)15 family of proton-coupled oligopeptide transporters (POTs) and particularly Pept2 (Slc15A2) and PhT1 (Slc15A4) in the brain. That family transports endogenous di- and tripeptides and peptidomimetics but also a number of drugs. The review focuses on the pioneering work of David E. Smith in the field in identifying the impact of PepT2 at the choroid plexus (the blood-CSF barrier) as well as PepT2 and PhT1 in brain parenchymal cells. It also discusses recent findings and future directions in relation to brain POTs including cellular and subcellular localization, regulatory pathways, transporter structure, species differences and disease states.
Collapse
Affiliation(s)
- Jianming Xiang
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Chen X, Xie M, Zhang S, Monguió-Tortajada M, Yin J, Liu C, Zhang Y, Delacrétaz M, Song M, Wang Y, Dong L, Ding Q, Zhou B, Tian X, Deng H, Xu L, Liu X, Yang Z, Chang Q, Na J, Zeng W, Superti-Furga G, Rebsamen M, Yang M. Structural basis for recruitment of TASL by SLC15A4 in human endolysosomal TLR signaling. Nat Commun 2023; 14:6627. [PMID: 37863913 PMCID: PMC10589346 DOI: 10.1038/s41467-023-42210-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023] Open
Abstract
Toll-like receptors (TLRs) are a class of proteins that play critical roles in recognizing pathogens and initiating innate immune responses. TASL, a recently identified innate immune adaptor protein for endolysosomal TLR7/8/9 signaling, is recruited by the lysosomal proton-coupled amino-acid transporter SLC15A4, and then activates IRF5, which in turn triggers the transcription of type I interferons and cytokines. Here, we report three cryo-electron microscopy (cryo-EM) structures of human SLC15A4 in the apo monomeric and dimeric state and as a TASL-bound complex. The apo forms are in an outward-facing conformation, with the dimeric form showing an extensive interface involving four cholesterol molecules. The structure of the TASL-bound complex reveals an unprecedented interaction mode with solute carriers. During the recruitment of TASL, SLC15A4 undergoes a conformational change from an outward-facing, lysosomal lumen-exposed state to an inward-facing state to form a binding pocket, allowing the N-terminal helix of TASL to be inserted into. Our findings provide insights into the molecular basis of regulatory switch involving a human solute carrier and offers an important framework for structure-guided drug discovery targeting SLC15A4-TASL-related human autoimmune diseases.
Collapse
Affiliation(s)
- Xudong Chen
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Min Xie
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | | | - Jian Yin
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Chang Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Life Science Academy, 102209, Beijing, China
| | - Youqi Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, 100853, Beijing, China
| | - Maeva Delacrétaz
- Department of Immunobiology, University of Lausanne, 1066, Epalinges, Switzerland
| | - Mingyue Song
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yixue Wang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Lin Dong
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Boda Zhou
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218, Beijing, China
| | - Xiaolin Tian
- MOE Key laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Haiteng Deng
- MOE Key laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Lina Xu
- Metabolomics and Lipidomics Center at Tsinghua-National Protein Science Facility, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xiaohui Liu
- Metabolomics and Lipidomics Center at Tsinghua-National Protein Science Facility, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Zi Yang
- Beijing Advanced Innovation Center for Structural Biology, Technology for Protein Research, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qing Chang
- Beijing Advanced Innovation Center for Structural Biology, Technology for Protein Research, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Jie Na
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Wenwen Zeng
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manuele Rebsamen
- Department of Immunobiology, University of Lausanne, 1066, Epalinges, Switzerland
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Cryo-EM Facility Center, Southern University of Science & Technology, 518055, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
Nies AT, König J, Leuthold P, Damme K, Winter S, Haag M, Masuda S, Kruck S, Daniel H, Spanier B, Fromm MF, Bedke J, Inui KI, Schwab M, Schaeffeler E. Novel drug transporter substrates identification: An innovative approach based on metabolomic profiling, in silico ligand screening and biological validation. Pharmacol Res 2023; 196:106941. [PMID: 37775020 DOI: 10.1016/j.phrs.2023.106941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Solute carrier (SLC) transport proteins are fundamental for the translocation of endogenous compounds and drugs across membranes, thus playing a critical role in disease susceptibility and drug response. Because only a limited number of transporter substrates are currently known, the function of a large number of SLC transporters is elusive. Here, we describe the proof-of-concept of a novel strategy to identify SLC transporter substrates exemplarily for the proton-coupled peptide transporter (PEPT) 2 (SLC15A2) and multidrug and toxin extrusion (MATE) 1 transporter (SLC47A1), which are important renal transporters of drug reabsorption and excretion, respectively. By combining metabolomic profiling of mice with genetically-disrupted transporters, in silico ligand screening and in vitro transport studies for experimental validation, we identified nucleobases and nucleoside-derived anticancer and antiviral agents (flucytosine, cytarabine, gemcitabine, capecitabine) as novel drug substrates of the MATE1 transporter. Our data confirms the successful applicability of this new approach for the identification of transporter substrates in general, which may prove particularly relevant in drug research.
Collapse
Affiliation(s)
- Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Leuthold
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Germany
| | - Katja Damme
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Germany
| | - Satohiro Masuda
- Department of Clinical Pharmacology & Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Stephan Kruck
- Department of Urology, University Hospital Tuebingen, Germany
| | - Hannelore Daniel
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Britta Spanier
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jens Bedke
- Department of Urology, University Hospital Tuebingen, Germany
| | | | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Germany; Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Germany.
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Germany
| |
Collapse
|
6
|
Gharabli H, Rafiq M, Iqbal A, Yan R, Aduri NG, Sharma N, Prabhala BK, Mirza O. Functional Characterization of the Putative POT from Clostridium perfringens. BIOLOGY 2023; 12:biology12050651. [PMID: 37237465 DOI: 10.3390/biology12050651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Proton-coupled oligopeptide transporters (POTs) are a fundamental part of the cellular transport machinery that provides plants, bacteria, and mammals with nutrition in the form of short peptides. However, POTs are not restricted to peptide transport; mammalian POTs have especially been in focus due to their ability to transport several peptidomimetics in the small intestine. Herein, we studied a POT from Clostridium perfringens (CPEPOT), which unexpectedly exhibited atypical characteristics. First, very little uptake of a fluorescently labelled peptide β-Ala-Lys-AMCA, an otherwise good substrate of several other bacterial POTs, was observed. Secondly, in the presence of a competitor peptide, enhanced uptake of β-Ala-Lys-AMCA was observed due to trans-stimulation. This effect was also observed even in the absence of a proton electrochemical gradient, suggesting that β-Ala-Lys-AMCA uptake mediated by CPEPOT is likely through the substrate-concentration-driving exchange mechanism, unlike any other functionally characterized bacterial POTs.
Collapse
Affiliation(s)
- Hani Gharabli
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Maria Rafiq
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anna Iqbal
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Ruyu Yan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Nanda G Aduri
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Neha Sharma
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Bala K Prabhala
- Department of Physics, Chemistry and Pharmacy, Faculty of Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Gyimesi G, Hediger MA. Transporter-Mediated Drug Delivery. Molecules 2023; 28:molecules28031151. [PMID: 36770817 PMCID: PMC9919865 DOI: 10.3390/molecules28031151] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Transmembrane transport of small organic and inorganic molecules is one of the cornerstones of cellular metabolism. Among transmembrane transporters, solute carrier (SLC) proteins form the largest, albeit very diverse, superfamily with over 400 members. It was recognized early on that xenobiotics can directly interact with SLCs and that this interaction can fundamentally determine their efficacy, including bioavailability and intertissue distribution. Apart from the well-established prodrug strategy, the chemical ligation of transporter substrates to nanoparticles of various chemical compositions has recently been used as a means to enhance their targeting and absorption. In this review, we summarize efforts in drug design exploiting interactions with specific SLC transporters to optimize their therapeutic effects. Furthermore, we describe current and future challenges as well as new directions for the advanced development of therapeutics that target SLC transporters.
Collapse
|
8
|
Wang C, Chu C, Ji X, Luo G, Xu C, He H, Yao J, Wu J, Hu J, Jin Y. Biology of Peptide Transporter 2 in Mammals: New Insights into Its Function, Structure and Regulation. Cells 2022; 11:cells11182874. [PMID: 36139448 PMCID: PMC9497230 DOI: 10.3390/cells11182874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Peptide transporter 2 (PepT2) in mammals plays essential roles in the reabsorption and conservation of peptide-bound amino acids in the kidney and in maintaining neuropeptide homeostasis in the brain. It is also of significant medical and pharmacological significance in the absorption and disposing of peptide-like drugs, including angiotensin-converting enzyme inhibitors, β-lactam antibiotics and antiviral prodrugs. Understanding the structure, function and regulation of PepT2 is of emerging interest in nutrition, medical and pharmacological research. In this review, we provide a comprehensive overview of the structure, substrate preferences and localization of PepT2 in mammals. As PepT2 is expressed in various organs, its function in the liver, kidney, brain, heart, lung and mammary gland has also been addressed. Finally, the regulatory factors that affect the expression and function of PepT2, such as transcriptional activation and posttranslational modification, are also discussed.
Collapse
Affiliation(s)
- Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
| | - Chu Chu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiang Ji
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Guoliang Luo
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Chunling Xu
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Houhong He
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Jianbiao Yao
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Jian Wu
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Jiangning Hu
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
- Correspondence: (J.H.); (Y.J.)
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
- Correspondence: (J.H.); (Y.J.)
| |
Collapse
|
9
|
Konieczka P, Tykałowski B, Ognik K, Kinsner M, Szkopek D, Wójcik M, Mikulski D, Jankowski J. Increased arginine, lysine, and methionine levels can improve the performance, gut integrity and immune status of turkeys but the effect is interactive and depends on challenge conditions. Vet Res 2022; 53:59. [PMID: 35883183 PMCID: PMC9327309 DOI: 10.1186/s13567-022-01080-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Arginine (Arg), lysine (Lys), and methionine (Met) can be used to support the health status of turkeys. The present study investigated selected performance, gut integrity, and immunological parameters in turkeys reared in optimal or challenge conditions. The experiment lasted for 28 days, and it had a completely randomized 2 × 3 factorial design with two levels of dietary Arg, Lys and Met (high or low) and challenge with Clostridium perfringens (C. perfringens), Escherichia coli lipopolysaccharide (LPS) or no challenge (placebo). Increased dietary levels of Arg, Lys and Met had a beneficial effect on turkey performance and immunological parameters, and it improved selected indicators responsible for maintaining gut integrity in different challenge conditions. Under optimal conditions (with no challenge), high ArgLysMet diets did not compromise bird performance and they improved selected performance parameters in challenged birds. The immune system of turkeys was not excessively stimulated by high ArgLysMet diets, which did not disrupt the redox balance and had no negative effect on gut integrity. High ArgLysMet diets increased the expression levels of selected genes encoding nutrient transporters and tight junction proteins. However, the influence exerted by different dietary inclusion levels of Arg, Lys and Met on gut integrity was largely determined by the stressor (C. perfringens vs. LPS). Further studies are required to investigate the role of Arg, Lys and Met levels in the diet on the immune response, gut function and performance of turkeys in different challenge conditions.
Collapse
Affiliation(s)
- Paweł Konieczka
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland. .,Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland.
| | - Bartłomiej Tykałowski
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10‑719, Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, University of Life Sciences, 20-950, Lublin, Poland
| | - Misza Kinsner
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Dominika Szkopek
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Maciej Wójcik
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Dariusz Mikulski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| |
Collapse
|
10
|
Vacca F, Gomes AS, Murashita K, Cinquetti R, Roseti C, Barca A, Rønnestad I, Verri T, Bossi E. Functional characterization of Atlantic salmon (Salmo salar L.) PepT2 transporters. J Physiol 2022; 600:2377-2400. [PMID: 35413133 PMCID: PMC9321897 DOI: 10.1113/jp282781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Abstract The high‐affinity/low‐capacity system Slc15a2 (PepT2) is responsible for the reuptake of di/tripeptides from the renal proximal tubule, but it also operates in many other tissues and organs. Information regarding PepT2 in teleost fish is limited and, to date, functional data are available from the zebrafish (Danio rerio) only. Here, we report the identification of two slc15a2 genes in the Atlantic salmon (Salmo salar) genome, namely slc15a2a and slc15a2b. The two encoded PepT2 proteins share 87% identity and resemble both structurally and functionally the canonical vertebrate PepT2 system. The mRNA tissue distribution analyses reveal a widespread distribution of slc15a2a transcripts, being more abundant in the brain and gills, while slc15a2b transcripts are mainly expressed in the kidney and the distal part of the gastrointestinal tract. The function of the two transporters was investigated by heterologous expression in Xenopus laevis oocytes and two‐electrode voltage‐clamp recordings of transport and presteady‐state currents. Both PepT2a and PepT2b in the presence of Gly‐Gln elicit pH‐dependent and Na+ independent inward currents. The biophysical and kinetic analysis of the recorded currents defined the transport properties, confirming that the two Atlantic salmon PepT2 proteins behave as high‐affinity/low‐capacity transporters. The recent structures and the previous kinetic schemes of rat and human PepT2 qualitatively account for the characteristics of the two Atlantic salmon proteins. This study is the first to report on the functional expression of two PepT2‐type transporters that operate in the same vertebrate organism as a result of (a) gene duplication process(es). Key points Two slc15a2‐type genes, slc15a2a and slc15a2b coding for PepT2‐type peptide transporters were found in the Atlantic salmon. slc15a2a
transcripts, widely distributed in the fish tissues, are abundant in the brain and gills, while slc15a2b transcripts are mainly expressed in the kidney and distal gastrointestinal tract. Amino acids involved in vertebrate Slc15 transport function are conserved in PepT2a and PepT2b proteins. Detailed kinetic analysis indicates that both PepT2a and PepT2b operate as high‐affinity transporters. The kinetic schemes and structures proposed for the mammalian models of PepT2 are suitable to explain the function of the two Atlantic salmon transporters.
Collapse
Affiliation(s)
- Francesca Vacca
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, Varese, I-21100, Italy
| | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, Po. Box 7803, Bergen, NO-5020, Norway
| | - Koji Murashita
- Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Minami-ise, Mie, 516-0193, Japan
| | - Raffella Cinquetti
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, Varese, I-21100, Italy
| | - Cristina Roseti
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, Varese, I-21100, Italy
| | - Amilcare Barca
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, Lecce, I-73100, Italy
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Po. Box 7803, Bergen, NO-5020, Norway
| | - Tiziano Verri
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, Lecce, I-73100, Italy
| | - Elena Bossi
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, Varese, I-21100, Italy
| |
Collapse
|
11
|
Aroankins TS, Murali SK, Fenton RA, Wu Q. The Hydrogen-Coupled Oligopeptide Membrane Cotransporter Pept2 is SUMOylated in Kidney Distal Convoluted Tubule Cells. Front Mol Biosci 2021; 8:790606. [PMID: 34881291 PMCID: PMC8646034 DOI: 10.3389/fmolb.2021.790606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Protein post-translational modification by the Small Ubiquitin-like MOdifier (SUMO) on lysine residues is a reversible process highly important for transcription and protein stability. In the kidney, SUMOylation appears to be important for the cellular response to aldosterone. Therefore, in this study, we generated a SUMOylation profile of the aldosterone-sensitive kidney distal convoluted tubule (DCT) as a basis for understanding SUMOylation events in this cell type. Using mass spectrometry-based proteomics, 1037 SUMO1 and 552 SUMO2 sites, corresponding to 546 SUMO1 and 356 SUMO2 proteins, were identified from a modified mouse kidney DCT cell line (mpkDCT). SUMOylation of the renal hydrogen-coupled oligopeptide and drug co-transporter (Pept2) at one site (K139) was found to be highly regulated by aldosterone. Using immunolabelling of mouse kidney sections Pept2 was localized to DCT cells in vivo. Aldosterone stimulation of mpkDCT cell lines expressing wild-type Pept2 or mutant K139R-Pept2, post-transcriptionally increased Pept2 expression up to four-fold. Aldosterone decreased wild-type Pept2 abundance in the apical membrane domain of mpkDCT cells, but this response was absent in K139R-Pept2 expressing cells. In summary, we have generated a SUMOylation landscape of the mouse DCT and determined that SUMOylation plays an important role in the physiological regulation of Pept2 trafficking by aldosterone.
Collapse
Affiliation(s)
- Takwa S Aroankins
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Anesthesiology and Intensive Care, Sahlgrenska University Hospital, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Qi Wu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Zhou M, Liu G, Liu W, Zhu M, Wang C. Cloning, tissue distribution and functional characterization of the donkey (Equus asinus) oligopeptide transporter 2. J Anim Physiol Anim Nutr (Berl) 2021; 105:1165-1172. [PMID: 34314070 DOI: 10.1111/jpn.13615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/22/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
Oligopeptide transporter 2 (PepT2) is an important transporter of oligopeptides. In the present study, we describe the molecular cloning, tissue distribution and functional characterization of a donkey (Equus asinus) PepT2. The cloned cDNA sequence was 2202 bp at full length, encoding a 733 amino acid peptide with a molecular weight of 81.9 kDa and a theoretical pI of 8.92. Bioinformatics analysis showed that the deduced peptide sequence possessed all the characteristic features of PepT2. The expression of PepT2 in the kidney and lung was significantly higher than that observed in the ileum, duodenum, jejunum, spleen, liver, heart and stomach. Functional characterization by heterologous expression in Chinese hamster ovary cells showed that the uptake of β-Ala-Lys-N-7-amino-4-methylcoumarin-3-acetic acid (β-Ala-Lys-AMCA) by donkey PepT2-Chinese hamster ovary cells was dependent on time, pH and substrate concentration, with a low Km value of 91.51 ± 14.14 μM and a maximum velocity of 41.37 ± 2.193 pmol/min/mg protein. In the present study, for the first time, the expression and functional characteristics of donkey PepT2 were evaluated, the results of which provide new insights and a better understanding of its crucial role in oligopeptide transport in donkeys.
Collapse
Affiliation(s)
- Miaomiao Zhou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture, Liaocheng University, Liaocheng, China
| | - Guiqin Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture, Liaocheng University, Liaocheng, China
| | - Wenqiang Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture, Liaocheng University, Liaocheng, China
| | - Mingxia Zhu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture, Liaocheng University, Liaocheng, China
| |
Collapse
|
13
|
Sun A, Wang J. Choroid Plexus and Drug Removal Mechanisms. AAPS JOURNAL 2021; 23:61. [PMID: 33942198 DOI: 10.1208/s12248-021-00587-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023]
Abstract
Timely and efficient removal of xenobiotics and metabolites from the brain is crucial in maintaining the homeostasis and normal function of the brain. The choroid plexus (CP) forms the blood-cerebrospinal fluid barrier and vitally removes drugs and wastes from the brain through several co-existing clearance mechanisms. The CP epithelial (CPE) cells synthesize and secrete the cerebrospinal fluid (CSF). As the CSF passes through the ventricular and subarachnoid spaces and eventually drains into the general circulation, it collects and removes drugs, toxins, and metabolic wastes from the brain. This bulk flow of the CSF serves as a default and non-selective pathway for the removal of solutes and macromolecules from the brain interstitium. Besides clearance by CSF bulk flow, the CPE cells express several multispecific membrane transporters to actively transport substrates from the CSF side into the blood side. In addition, several phase I and II drug-metabolizing enzymes are expressed in the CPE cells, which enzymatically inactivate a broad spectrum of reactive or toxic substances. This review summarizes our current knowledge of the functional characteristics and key contributors to the various clearance pathways in the CP-CSF system, overviewing recent developments in our understanding of CSF flow dynamics and the functional roles of CP uptake and efflux transporters in influencing CSF drug concentrations.
Collapse
Affiliation(s)
- Austin Sun
- Department of Pharmaceutics, University of Washington, Health Science Building Room H-272J, Box 357610, Seattle, Washington, 98195-7610, USA
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Health Science Building Room H-272J, Box 357610, Seattle, Washington, 98195-7610, USA.
| |
Collapse
|
14
|
Khurana N, Pulsipher A, Ghandehari H, Alt JA. Meta-analysis of global and high throughput public gene array data for robust vascular gene expression discovery in chronic rhinosinusitis: Implications in controlled release. J Control Release 2021; 330:878-888. [PMID: 33144181 PMCID: PMC7906912 DOI: 10.1016/j.jconrel.2020.10.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Chronic inflammation is known to cause alterations in vascular homeostasis that directly affects blood vessel morphogenesis, angiogenesis, and tissue permeability. These phenomena have been investigated and exploited for targeted drug delivery applications in the context of cancers and other disease processes. Vascular pathophysiology and its associated genes and signaling pathways, however, have not been systematically investigated in patients with chronic rhinosinusitis (CRS). Understanding the interplay between key vascular signaling pathways and top biomarkers associated with CRS may facilitate the development of new targeted delivery strategies and treatment paradigms. Herein, we report findings from a gene meta-analysis to identify key vascular pathways and top genes involved in CRS. METHODS Proprietary software (Illumina BaseSpace Correlation Engine) and open-access data sets were used to perform a gene meta-analysis to systematically determine significant differences between key vascular biomarkers and vascular signaling pathways expressed in sinonasal tissue biopsies of controls and patients with CRS. RESULTS Thirteen studies were initially identified, and then reduced to five after applying exclusion principle algorithms. Genes associated with vasculature development and blood vessel morphogenesis signaling pathways were identified to be overexpressed among the top 15 signaling pathways. Out of many significantly upregulated genes, the levels of pro angiogenic genes such as early growth response (EGR3), platelet endothelial cell adhesion molecule (PECAM1) and L-selectin (SELL) were particularly significant in patients with CRS compared to controls. DISCUSSION Key vascular biomarkers and signaling pathways were significantly overexpressed in patients with CRS compared to controls, suggesting a contribution of vascular dysfunction in CRS pathophysiology. Vascular dysregulation and permeability may afford opportunities to develop drug delivery systems to improve efficacy and reduce toxicity of CRS treatment.
Collapse
Affiliation(s)
- Nitish Khurana
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA
| | - Abigail Pulsipher
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jeremiah A Alt
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
15
|
Wang G, Yu Y, Cai W, Batista TM, Suk S, Noh HL, Hirshman M, Nigro P, Li ME, Softic S, Goodyear L, Kim JK, Kahn CR. Muscle-Specific Insulin Receptor Overexpression Protects Mice From Diet-Induced Glucose Intolerance but Leads to Postreceptor Insulin Resistance. Diabetes 2020; 69:2294-2309. [PMID: 32868340 PMCID: PMC7576573 DOI: 10.2337/db20-0439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022]
Abstract
Skeletal muscle insulin resistance is a prominent early feature in the pathogenesis of type 2 diabetes. In attempt to overcome this defect, we generated mice overexpressing insulin receptors (IR) specifically in skeletal muscle (IRMOE). On normal chow, IRMOE mice have body weight similar to that of controls but an increase in lean mass and glycolytic muscle fibers and reduced fat mass. IRMOE mice also show higher basal phosphorylation of IR, IRS-1, and Akt in muscle and improved glucose tolerance compared with controls. When challenged with high-fat diet (HFD), IRMOE mice are protected from diet-induced obesity. This is associated with reduced inflammation in fat and liver, improved glucose tolerance, and improved systemic insulin sensitivity. Surprisingly, however, in both chow and HFD-fed mice, insulin-stimulated Akt phosphorylation is significantly reduced in muscle of IRMOE mice, indicating postreceptor insulin resistance. RNA sequencing reveals downregulation of several postreceptor signaling proteins that contribute to this resistance. Thus, enhancing early insulin signaling in muscle by overexpression of the IR protects mice from diet-induced obesity and its effects on glucose metabolism. However, chronic overstimulation of this pathway leads to postreceptor desensitization, indicating the critical balance between normal signaling and hyperstimulation of the insulin signaling pathway.
Collapse
Affiliation(s)
- Guoxiao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Yingying Yu
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Weikang Cai
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY
| | - Thiago M Batista
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Sujin Suk
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Hye Lim Noh
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Michael Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Mengyao Ella Li
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Samir Softic
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Divisions of Pediatric Gastroenterology and Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY
| | - Laurie Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Jason K Kim
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Yee SW, Buitrago D, Stecula A, Ngo HX, Chien HC, Zou L, Koleske ML, Giacomini KM. Deorphaning a solute carrier 22 family member, SLC22A15, through functional genomic studies. FASEB J 2020; 34:15734-15752. [PMID: 33124720 DOI: 10.1096/fj.202001497r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
The human solute carrier 22A (SLC22A) family consists of 23 members, representing one of the largest families in the human SLC superfamily. Despite their pharmacological and physiological importance in the absorption and disposition of a range of solutes, eight SLC22A family members remain classified as orphans. In this study, we used a multifaceted approach to identify ligands of orphan SLC22A15. Ligands of SLC22A15 were proposed based on phylogenetic analysis and comparative modeling. The putative ligands were then confirmed by metabolomic screening and uptake assays in SLC22A15 transfected HEK293 cells. Metabolomic studies and transporter assays revealed that SLC22A15 prefers zwitterionic compounds over cations and anions. We identified eight zwitterions, including ergothioneine, carnitine, carnosine, gabapentin, as well as four cations, including MPP+ , thiamine, and cimetidine, as substrates of SLC22A15. Carnosine was a specific substrate of SLC22A15 among the transporters in the SLC22A family. SLC22A15 transport of several substrates was sodium-dependent and exhibited a higher Km for ergothioneine, carnitine, and carnosine compared to previously identified transporters for these ligands. This is the first study to characterize the function of SLC22A15. Our studies demonstrate that SLC22A15 may play an important role in determining the systemic and tissue levels of ergothioneine, carnosine, and other zwitterions.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Dina Buitrago
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Adrian Stecula
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Huy X Ngo
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Ling Zou
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Megan L Koleske
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
17
|
Uptake Transporters of the SLC21, SLC22A, and SLC15A Families in Anticancer Therapy-Modulators of Cellular Entry or Pharmacokinetics? Cancers (Basel) 2020; 12:cancers12082263. [PMID: 32806706 PMCID: PMC7464370 DOI: 10.3390/cancers12082263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Solute carrier transporters comprise a large family of uptake transporters involved in the transmembrane transport of a wide array of endogenous substrates such as hormones, nutrients, and metabolites as well as of clinically important drugs. Several cancer therapeutics, ranging from chemotherapeutics such as topoisomerase inhibitors, DNA-intercalating drugs, and microtubule binders to targeted therapeutics such as tyrosine kinase inhibitors are substrates of solute carrier (SLC) transporters. Given that SLC transporters are expressed both in organs pivotal to drug absorption, distribution, metabolism, and elimination and in tumors, these transporters constitute determinants of cellular drug accumulation influencing intracellular drug concentration required for efficacy of the cancer treatment in tumor cells. In this review, we explore the current understanding of members of three SLC families, namely SLC21 (organic anion transporting polypeptides, OATPs), SLC22A (organic cation transporters, OCTs; organic cation/carnitine transporters, OCTNs; and organic anion transporters OATs), and SLC15A (peptide transporters, PEPTs) in the etiology of cancer, in transport of chemotherapeutic drugs, and their influence on efficacy or toxicity of pharmacotherapy. We further explore the idea to exploit the function of SLC transporters to enhance cancer cell accumulation of chemotherapeutics, which would be expected to reduce toxic side effects in healthy tissue and to improve efficacy.
Collapse
|
18
|
Shiraishi JI, Yanagita K, Tanizawa H, Bungo T. Glycyl-l-glutamine attenuates NPY-induced hyperphagia via the melanocortin system. Neurosci Lett 2020; 736:135303. [PMID: 32800923 DOI: 10.1016/j.neulet.2020.135303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022]
Abstract
This study aimed to determine whether glycyl-l-glutamine (Gly-Gln; β-endorphin (30-31)), a non-opioid peptide derived from β-endorphin processing, modulates neuropeptide Y (NPY)-induced feeding and hypothalamic mRNA expression of peptide hormones in male broiler chicks. Intracerebroventricular injection of NPY (235 pmol) generated a hyperphagic response in ad libitum chicks within 30 min. Co-administration of Gly-Gln (100 nmol) attenuated this response, inducing a 30 % decrease. This was not attributable to Gly-Gln hydrolysis because co-administration of glycine (Gly) and glutamine (Gln) had no effect on NPY-induced hyperphagia. Gly-Gln injected alone also showed no effect. The hypothalamic pro-opiomelanocortin mRNA expression in the co-injection group was significantly higher than that in the NPY alone group. These data indicate that endogenous Gly-Gln may contribute to regulate feeding behavior via the central melanocortin system in chicks and acts as a counter regulator of the neural activity in energy metabolism.
Collapse
Affiliation(s)
- Jun-Ichi Shiraishi
- Laboratory of Applied Animal Biochemistry, Graduate School of Applied Life Science, Nippon Veterinary and Life Science University, Tokyo, 180-8602, Japan.
| | - Kouichi Yanagita
- Laboratory of Animal Behavior and Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Hiroshi Tanizawa
- Laboratory of Animal Behavior and Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Takashi Bungo
- Laboratory of Animal Behavior and Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| |
Collapse
|
19
|
Recapitulation of prostate tissue cell type-specific transcriptomes by an in vivo primary prostate tissue xenograft model. PLoS One 2020; 15:e0233899. [PMID: 32584883 PMCID: PMC7316257 DOI: 10.1371/journal.pone.0233899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/14/2020] [Indexed: 11/19/2022] Open
Abstract
Studies of the normal functions and diseases of the prostate request in vivo models that maintain the tissue architecture and the multiple-cell type compartments of human origin in order to recapitulate reliably the interactions of different cell types. Cell type-specific transcriptomes are critical to reveal the roles of each cell type in the functions and diseases of the prostate. A primary prostate tissue xenograft model was developed using fresh human prostate tissue specimens transplanted onto male mice that were castrated surgically and implanted with a device to maintain circulating testosterone levels comparable to adult human males. Endothelial cells and epithelial cells were isolated from 7 fresh human prostate tissue specimens and from primary tissue xenografts established from 9 fresh human prostate tissue specimens, using antibody-conjugated magnetic beads specific to human CD31 and human EpCAM, respectively. Transcriptomes of endothelial, epithelial and stromal cell fractions were obtained using RNA-Seq. Global and function-specific gene expression profiles were compared in inter-cell type and inter-tissue type manners. Gene expression profiles in the individual cell types isolated from xenografts were similar to those of cells isolated from fresh tissue, demonstrating the value of the primary tissue xenograft model for studies of the inter-relationships between prostatic cell types and the role of such inter-relationships in organ development, disease progression, and response to drug treatments.
Collapse
|
20
|
Gilardoni E, Baron G, Altomare A, Carini M, Aldini G, Regazzoni L. The Disposal of Reactive Carbonyl Species through Carnosine Conjugation: What We Know Now. Curr Med Chem 2020; 27:1726-1743. [DOI: 10.2174/0929867326666190624094813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 05/15/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
:Reactive Carbonyl Species are electrophiles generated by the oxidative cleavage of lipids and sugars. Such compounds have been described as important molecules for cellular signaling, whilst their accumulation has been found to be cytotoxic as they may trigger aberrant modifications of proteins (a process often referred to as carbonylation).:A correlation between carbonylation of proteins and human disease progression has been shown in ageing, diabetes, obesity, chronic renal failure, neurodegeneration and cardiovascular disease. However, the fate of reactive carbonyl species is still far from being understood, especially concerning the mechanisms responsible for their disposal as well as the importance of this in disease progression.:In this context, some data have been published on phase I and phase II deactivation of reactive carbonyl species. In the case of phase II mechanisms, the route involving glutathione conjugation and subsequent disposal of the adducts has been extensively studied both in vitro and in vivo for some of the more representative compounds, e.g. 4-hydroxynonenal.:There is also emerging evidence of an involvement of carnosine as an endogenous alternative to glutathione for phase II conjugation. However, the fate of carnosine conjugates is still poorly investigated and, unlike glutathione, there is little evidence of the formation of carnosine adducts in vivo. The acquisition of such data could be of importance for the development of new drugs, since carnosine and its derivatives have been proposed as potential therapeutic agents for the mitigation of carbonylation associated with disease progression.:Herein, we wish to review our current knowledge of the binding of reactive carbonyl species with carnosine together with the disposal of carnosine conjugates, emphasizing those aspects still requiring investigation such as conjugation reversibility and enzyme assisted catalysis of the reactions.
Collapse
Affiliation(s)
- Ettore Gilardoni
- Department of Pharmaceutical Sciences, Universita degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences, Universita degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Universita degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences, Universita degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Universita degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, Universita degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
21
|
Wang C, Zhao FQ, Liu J, Liu H. Short communication: The essential role of N-glycosylation in the transport activity of bovine peptide transporter 2. J Dairy Sci 2020; 103:6679-6683. [PMID: 32331895 DOI: 10.3168/jds.2019-16858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022]
Abstract
Bovine peptide transporter 2 (bPepT2), which mediates the absorption of di- and tripeptides in the bovine mammary gland, was predicted to contain multiple putative N-glycosylation sites of asparagine residues. N-Linked glycosylation is proven to be essential for the folding, stability, localization, and substrate binding of nutrient transporters and could therefore potentially have an essential role in the function of bPepT2. This study investigated the effect of mutagenesis of N-glycosylation sites on the transport function of bPepT2 in Chinese hamster ovary (CHO) cells. The bPepT2 cDNA was cloned and sequenced. BioXM (http://202.195.246.60/BioXM/) and TMHMM (http://www.cbs.dtu.dk/services/TMHMM-2.0/) software were used to predict the AA composition and transmembrane domain of bPepT2, respectively. The AA sequence of bPepT2 was predicted to have 12 transmembrane domains, with a large extracellular loop between the ninth and tenth transmembrane domains. All 5 putative N-glycosylation sites in this loop were altered by site-directed mutagenesis, and the mutant construct was transfected into CHO cells for transport activity assay. Compared with the wild type, the bPepT2 mutant had significantly lower uptake activity of β-alanyl-l-lysyl-Nε-7-amino-4-methyl-coumarin-3-acetic acid (β-Ala-Lys-AMCA), a model dipeptide. Treatment with tunicamycin, an inhibitor of N-linked glycosylation, reduced the uptake of β-Ala-Lys-AMCA in CHO cells relative to the control group. Kinetic studies indicated that the Michaelis constant of bPepT2 was not affected by the mutation (98.03 ± 8.30 and 88.33 ± 4.23 µM for the wild type and the mutant, respectively), but the maximum transport activity was significantly reduced (40.29 ± 8.30 and 13.02 ± 2.95 pmol/min per milligram of protein for the wild type and the mutant, respectively). In summary, this study demonstrated that N-glycosylation is critical for the function of bPepT2.
Collapse
Affiliation(s)
- Caihong Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Feng-Qi Zhao
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; Department of Animal and Veterinary Sciences, University of Vermont, Burlington 05405
| | - Jianxin Liu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Liu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Everaert I, He J, Hanssens M, Stautemas J, Bakker K, Albrecht T, Zhang S, Van der Stede T, Vanhove K, Hoetker D, Howsam M, Tessier FJ, Yard B, Baba SP, Baelde HJ, Derave W. Carnosinase-1 overexpression, but not aerobic exercise training, affects the development of diabetic nephropathy in BTBR ob/ob mice. Am J Physiol Renal Physiol 2020; 318:F1030-F1040. [PMID: 32150446 DOI: 10.1152/ajprenal.00329.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Manipulation of circulating histidine-containing dipeptides (HCD) has been shown to affect the development of diabetes and early-stage diabetic nephropathy (DN). The aim of the present study was to investigate whether such interventions, which potentially alter levels of circulating HCD, also affect the development of advanced-stage DN. Two interventions, aerobic exercise training and overexpression of the human carnosinase-1 (hCN1) enzyme, were tested. BTBR ob/ob mice were either subjected to aerobic exercise training (20 wk) or genetically manipulated to overexpress hCN1, and different diabetes- and DN-related markers were compared with control ob/ob and healthy (wild-type) mice. An acute exercise study was performed to elucidate the effect of obesity, acute running, and hCN1 overexpression on plasma HCD levels. Chronic aerobic exercise training did not affect the development of diabetes or DN, but hCN1 overexpression accelerated hyperlipidemia and aggravated the development of albuminuria, mesangial matrix expansion, and glomerular hypertrophy of ob/ob mice. In line, plasma, kidney, and muscle HCD were markedly lower in ob/ob versus wild-type mice, and plasma and kidney HCD in particular were lower in ob/ob hCN1 versus ob/ob mice but were unaffected by aerobic exercise. In conclusion, advanced glomerular damage is accelerated in mice overexpressing the hCN1 enzyme but not protected by chronic exercise training. Interestingly, we showed, for the first time, that the development of DN is closely linked to renal HCD availability. Further research will have to elucidate whether the stimulation of renal HCD levels can be a therapeutic strategy to reduce the risk for developing DN.
Collapse
Affiliation(s)
- Inge Everaert
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Junling He
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maxime Hanssens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jan Stautemas
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Kim Bakker
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Albrecht
- Fifth Medical Department, Universitätsklinikum Mannheim, Mannheim, Germany
| | - Shiqi Zhang
- Fifth Medical Department, Universitätsklinikum Mannheim, Mannheim, Germany
| | | | - Kenneth Vanhove
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - David Hoetker
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Michael Howsam
- Inserm, CHU Lille, Pasteur Institute of Lille, University of Lille, Lille, France
| | - Frédéric J Tessier
- Inserm, CHU Lille, Pasteur Institute of Lille, University of Lille, Lille, France
| | - Benito Yard
- Fifth Medical Department, Universitätsklinikum Mannheim, Mannheim, Germany
| | - Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Hans J Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Karimian Pour N, Piquette-Miller M. Dysregulation of renal transporters in a rodent model of viral Infection. Int Immunopharmacol 2020; 80:106135. [PMID: 31951958 DOI: 10.1016/j.intimp.2019.106135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023]
Abstract
Inflammation elicited by viral mimetic poly I:C has been shown to impose changes in the expression of drug transporters in the placenta and maternal liver in rats at term pregnancy. This was associated with altered drug disposition in the mother and fetus. Renal transporters play an important role in the elimination of several drugs taken by pregnant women. We examined the impact of poly I:C on the expression of renal transporters in pregnant rats at term. Pregnant Sprague-Dawley rats received single intraperitoneal dose of either poly I:C (5 mg/kg) or saline at gestation day 18 (n = 8/group). Animals were euthanized 24 h after the injection. The mRNA and protein expression of pro-inflammatory cytokines and transporters were measured by qRT-PCR and western blot. Poly I:C caused a fourfold increase in the mRNA of IL-6 in the kidney. As compared to saline controls, the mRNA expression of Mrp2, Bcrp, Octn1, Oat1, Oat2, Oat3, Urat1, Oatp4c1, and Pept2 was downregulated, whereas the Ent1 mRNA was increased. Protein expression of Bcrp, Urat1 and Pept2 were significantly decreased. While there was a trend towards reduced Mrp2, Oat2 and Oat3 protein expression, this did not reach significance. Poly I:C did not impact mRNA levels of Mdr1a, Mdr1b, Mrp4, Oct1, Oct2, Oct3, Octn2, Mate1, Ent2 or Pept1. Viral-induced inflammation mediates significant changes in the expression of several key drug transporters in the kidney of pregnant rats. Many clinically important drugs are substrates for these transporters. Therefore, inflammation-mediated alterations in transporter expression could affect their maternal and fetal disposition.
Collapse
Affiliation(s)
- Navaz Karimian Pour
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
24
|
Batista MRB, Watts A, José Costa-Filho A. Exploring Conformational Transitions and Free-Energy Profiles of Proton-Coupled Oligopeptide Transporters. J Chem Theory Comput 2019; 15:6433-6443. [PMID: 31639304 DOI: 10.1021/acs.jctc.9b00524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins involved in peptide uptake and transport belong to the proton-coupled oligopeptide transporter (POT) family. Crystal structures of POT family members reveal a common fold consisting of two domains of six transmembrane α helices that come together to form a "V" shaped transporter with a central substrate binding site. Proton-coupled oligopeptide transporters operate through an alternate access mechanism, where the membrane transporter undergoes global conformational changes, alternating between inward-facing (IF), outward-facing (OF), and occluded (OC) states. Conformational transitions are promoted by proton and ligand binding; however, due to the absence of crystallographic models of the outward-open state, the role of H+ and ligands is still not fully understood. To provide a comprehensive picture of the POT conformational equilibrium, conventional and enhanced sampling molecular dynamics simulations of PepTst in the presence or absence of ligand and protonation were performed. Free-energy profiles of the conformational variability of PepTst were obtained from microseconds of adaptive biasing force (ABF) simulations. Our results reveal that both proton and ligand significantly change the conformational free-energy landscape. In the absence of ligand and protonation, only transitions involving IF and OC states are allowed. After protonation of the residue Glu300, the wider free-energy well for Glu300 protonated PepTst indicates a greater conformational variability relative to the apo system, and OF conformations became accessible. For the Glu300 protonated Holo-PepTst, the presence of a second free-energy minimum suggests that OF conformations are not only accessible, but also stable. The differences in the free-energy profiles demonstrate that transitions toward outward-facing conformation occur only after protonation, which is likely the first step in the mechanism of peptide transport. Our extensive ABF simulations provide a fully atomic description of all states of the transport process, offering a model for the alternating access mechanism and how protonation and ligand control the conformational changes.
Collapse
Affiliation(s)
- Mariana R B Batista
- Ribeirão Preto School of Philosophy, Sciences and Letters , University of São Paulo , Ribeirao Preto , São Paulo 14040901 , Brazil
| | - Anthony Watts
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 2JD , United Kingdom
| | - Antonio José Costa-Filho
- Ribeirão Preto School of Philosophy, Sciences and Letters , University of São Paulo , Ribeirao Preto , São Paulo 14040901 , Brazil
| |
Collapse
|
25
|
Identification of PEPT2 as an important candidate molecule in 5-ALA-mediated fluorescence-guided surgery in WHO grade II/III gliomas. J Neurooncol 2019; 143:197-206. [PMID: 30929128 DOI: 10.1007/s11060-019-03158-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE 5-aminolevulinic acid (5-ALA) fluorescence-guided surgery (FGS) appears to be a promising treatment for glioma. However, 5-ALA-mediated fluorescence cannot always be detected in grade II/III gliomas. We hypothesized that gene expression patterns in the Protoporphyrin IX (PpIX) synthesis pathway may be associated with intraoperative fluorescence status of grade II/III gliomas, and then attempted to identify the key molecule of 5-ALA-mediated fluorescence. METHODS Using 50 surgically obtained specimens, which were diagnosed as grade II and III gliomas, we analyzed gene expression within the PpIX synthesis pathway to identify candidate molecules according to intraoperative 5-ALA-mediated fluorescence status. The most likely candidate gene was selected and confirmed by protein expression analysis. To evaluate the biological function of the molecule in PpIX synthesis, functional analysis was performed using specific, small interference (si)RNA in the SW-1783 human grade III glioma cell line. RESULTS Among the genes involved in the porphyrin synthesis pathway, the mRNA expression of Peptide transporter 2 (PEPT2) in FGS fluorescence-positive gliomas was significantly higher than that in fluorescence-negative gliomas. Protein expression of PEPT2 was also significantly higher in the fluorescence-positive gliomas, which was confirmed by western blot analysis and immunofluorescence analysis. The siRNA-mediated downregulation of the mRNA and protein expression of PEPT2 led to decreased PpIX fluorescence intensity, as confirmed by fluorescence spectrum analysis. CONCLUSIONS The results suggest PEPT2 is an important candidate molecule in 5-ALA-mediated FGS in grade II/III gliomas. As the overexpression of PEPT2 was associated with higher PpIX fluorescence intensity, PEPT2 may improve fluorescence-guided resection in grade II/III gliomas.
Collapse
|
26
|
Shen H, Scialis RJ, Lehman-McKeeman L. Xenobiotic Transporters in the Kidney: Function and Role in Toxicity. Semin Nephrol 2019; 39:159-175. [DOI: 10.1016/j.semnephrol.2018.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Miyabe J, Ohgaki R, Saito K, Wei L, Quan L, Jin C, Liu X, Okuda S, Nagamori S, Ohki H, Yoshino K, Inohara H, Kanai Y. Boron delivery for boron neutron capture therapy targeting a cancer-upregulated oligopeptide transporter. J Pharmacol Sci 2019; 139:215-222. [PMID: 30833090 DOI: 10.1016/j.jphs.2019.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a radiotherapy utilizing the neutron capture and nuclear fission reaction of 10B taken up into tumor cells. The most commonly used boron agent in BNCT, p-borono-l-phenylalanine (BPA), is accumulated in tumors by amino acid transporters upregulated in tumor cells. Here, by using dipeptides of BPA and tyrosine (BPA-Tyr and Tyr-BPA), we propose a novel strategy of selective boron delivery into tumor cells via oligopeptide transporter PEPT1 upregulated in various cancers. Kinetic analyses indicated that BPA-Tyr and Tyr-BPA are transported by oligopeptide transporters, PEPT1 and PEPT2. The intrinsic oligopeptide transport activity in tumor cells clearly correlated with PEPT1 protein expression level but not with PEPT2, suggesting that PEPT1 is the predominant oligopeptide transporter at least in tumor cell lines. Furthermore, using BPA-Tyr and Tyr-BPA, boron was successfully delivered into PEPT1-expressing pancreatic cancer AsPC-1 cells via a PEPT1-mediated mechanism. Intravenous administration of BPA-Tyr into the mice bearing AsPC-1 xenograft tumors resulted in significant boron accumulation in the tumors. It is proposed that the oligopeptide transporters, especially PEPT1, are promising candidates for molecular targets of boron delivery in BNCT. The BPA-containing dipeptides would have a potential for the development of novel boron carriers targeting PEPT1.
Collapse
Affiliation(s)
- Junji Miyabe
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keijiro Saito
- Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Ling Wei
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Lili Quan
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chunhuan Jin
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Xingming Liu
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Suguru Okuda
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shushi Nagamori
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Ohki
- Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Kazuo Yoshino
- Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
28
|
Wang C, Sun Y, Zhao FQ, Liu J, Liu H. Functional Characterization of Peptide Transporters in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:213-219. [PMID: 30525553 DOI: 10.1021/acs.jafc.8b05637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The objective of this study was to characterize the expression profile, transport kinetics, and regulation of peptide transporters in bovine mammary epithelial cells (BMECs). Quantitative reverse-transcription real-time PCR, Western blotting, and immunofluorescence staining were used to investigate the expression of peptide transporters in bovine mammary tissues. The effects of time, pH, concentration, and specific inhibitors on β-alanyl-l-lysyl- Nε-7-amino-4-methyl-coumarin-3-acetic acid (β-Ala-Lys-AMCA) uptake in BMECs were also studied. The results showed that the peptide transporters PepT2 and PhT1 are both expressed in bovine mammary glands. The optimal pH for the uptake of β-Ala-Lys-AMCA in BMECs was 6.5. The transport-kinetics study suggested that the uptake of β-Ala-Lys-AMCA in BMECs is saturable over the tested concentration, with a Km value of 82 ± 18 μM and a Vmax of 124 ± 11 pmol/min per milligram of protein. Other dipeptides, including Gly-Sar, Met-Gly, and Met-Met, competitively inhibited β-Ala-Lys-AMCA uptake in BMECs. However, histidine had no effect on β-Ala-Lys-AMCA uptake. Furthermore, knocking down PepT2 could significantly reduce β-Ala-Lys-AMCA uptake, but PhT1 interference had no effect on peptide uptake in BMECs. The inhibition of PI3K and Akt decreased the uptake of β-Ala-Lys-AMCA. The above results revealed functional characteristics of peptide transporters and demonstrated that PepT2 may play a major role in β-Ala-Lys-AMCA uptake in BMECs. Moreover, the PI3K-Akt signaling pathway may regulate the uptake of β-Ala-Lys-AMCA in BMECs.
Collapse
Affiliation(s)
- Caihong Wang
- Institute of Dairy Science, College of Animal Science , Zhejiang University , Hangzhou 310058 , China
| | - Yalu Sun
- Institute of Dairy Science, College of Animal Science , Zhejiang University , Hangzhou 310058 , China
| | - Feng-Qi Zhao
- Institute of Dairy Science, College of Animal Science , Zhejiang University , Hangzhou 310058 , China
- Department of Animal and Veterinary Sciences , University of Vermont , Burlington , Vermont 05405 , United States
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Science , Zhejiang University , Hangzhou 310058 , China
| | - Hongyun Liu
- Institute of Dairy Science, College of Animal Science , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
29
|
Pivotal role of carnosine in the modulation of brain cells activity: Multimodal mechanism of action and therapeutic potential in neurodegenerative disorders. Prog Neurobiol 2018; 175:35-53. [PMID: 30593839 DOI: 10.1016/j.pneurobio.2018.12.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/13/2018] [Accepted: 12/23/2018] [Indexed: 12/24/2022]
Abstract
Carnosine (β-alanyl-l-histidine), a dipeptide, is an endogenous antioxidant widely distributed in excitable tissues like muscles and the brain. Although discovered more than a hundred years ago and having been extensively studied in the periphery, the role of carnosine in the brain remains mysterious. Carnosinemia, a rare metabolic disorder with increased levels of carnosine in urine and low levels or absence of carnosinase in the blood, is associated with severe neurological symptoms in humans. This review deals with the role of carnosine in the brain in both physiological and pathological conditions, with a focus on preclinical evidence suggesting a high therapeutic potential of carnosine in neurodegenerative disorders. We review carnosine and carnosinemia's discoveries and the extensive research on the role and benefits of carnosine in the periphery. We then turn to carnosine's biochemistry and distribution in the brain. Using an array of recent observations as a foundation, we draw a parallel with the role of carnosine in muscles and speculate on the role of carnosine in promoting the metabolic support of neurons by glial cells. Finally, carnosine has been shown to exert a multimodal activity including inhibition of protein cross-linking and aggregation of amyloid-β and related proteins, free radical generation, nitric oxide detoxification, and an anti-inflammatory activity. It could thus play an important role in the prevention and treatment of neurodegenerative diseases such as Alzheimer's disease. We discuss the potential of carnosine in this context and speculate on new preclinical research directions.
Collapse
|
30
|
Viennois E, Pujada A, Zen J, Merlin D. Function, Regulation, and Pathophysiological Relevance of the POT Superfamily, Specifically PepT1 in Inflammatory Bowel Disease. Compr Physiol 2018; 8:731-760. [PMID: 29687900 DOI: 10.1002/cphy.c170032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mammalian members of the proton-coupled oligopeptide transporter family are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs and couple substrate translocation to the movement of H+ , with the transmembrane electrochemical proton gradient providing the driving force. Peptide transporters are responsible for the (re)absorption of dietary and/or bacterial di- and tripeptides in the intestine and kidney and maintaining homeostasis of neuropeptides in the brain. These proteins additionally contribute to absorption of a number of pharmacologically important compounds. In this overview article, we have provided updated information on the structure, function, expression, localization, and activities of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4), and PhT2 (SLC15A3). Peptide transporters, in particular, PepT1 are discussed as drug-delivery systems in addition to their implications in health and disease. Particular emphasis has been placed on the involvement of PepT1 in the physiopathology of the gastrointestinal tract, specifically, its role in inflammatory bowel diseases. © 2018 American Physiological Society. Compr Physiol 8:731-760, 2018.
Collapse
Affiliation(s)
- Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Adani Pujada
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Jane Zen
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.,Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
31
|
Ding L, Wang L, Yu Z, Ma S, Du Z, Zhang T, Liu J. Importance of Terminal Amino Acid Residues to the Transport of Oligopeptides across the Caco-2 Cell Monolayer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7705-7712. [PMID: 28812357 DOI: 10.1021/acs.jafc.7b03450] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The objective of this paper was to investigate the effects of terminal amino acids on the transport of oligopeptides across the Caco-2 cell monolayer. Ala-based tetra- and pentapeptides were designed, and the N- or C-terminal amino acid residues were replaced by different amino acids. The results showed that the oligopeptides had a wide range of transport permeability across the Caco-2 cell monolayer and could be divided into four categories: non-/poor permeability, low permeability, intermediate permeability, and good permeability. Tetrapeptides with N-terminal Leu, Pro, Ile, Cys, Met, and Val or C-terminal Val showed the highest permeability, with apparent permeability coefficient (Papp) values over 10 × 10-6 cm/s (p < 0.05), suggesting that nonpolar hydrophobic aliphatic amino acids or polar sulfur-containing amino acids were the best for the transport of tetrapeptides. Pentapeptides with N- or C-terminal Tyr also showed high permeability levels, with Papp values of about 10 × 10-6 cm/s. The amino acids Glu, Asn, and Thr at the N terminus or Lys, Asp, and Arg at the C terminus were also beneficial for the transport of tetra- and pentapeptides, with Papp values ranging from 1 × 10-6 to 10 × 10-6 cm/s. In addition, peptides with amino acids replaced at the N terminus generally showed higher permeability than those with amino acids replaced at the C terminus (p < 0.05), suggesting that N-terminal amino acids were more important for the transport of oligopeptides across the Caco-2 cell monolayer.
Collapse
Affiliation(s)
- Long Ding
- College of Food Science and Engineering, Jilin University , Changchun, Jilin 130062, People's Republic of China
| | - Liying Wang
- College of Food Science and Engineering, Jilin University , Changchun, Jilin 130062, People's Republic of China
| | - Zhipeng Yu
- College of Food Science and Engineering, Bohai University , Jinzhou, Liaoning 121013, People's Republic of China
| | - Sitong Ma
- College of Food Science and Engineering, Jilin University , Changchun, Jilin 130062, People's Republic of China
| | - Zhiyang Du
- College of Food Science and Engineering, Jilin University , Changchun, Jilin 130062, People's Republic of China
| | - Ting Zhang
- College of Food Science and Engineering, Jilin University , Changchun, Jilin 130062, People's Republic of China
| | - Jingbo Liu
- College of Food Science and Engineering, Jilin University , Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
32
|
Quistgaard EM, Martinez Molledo M, Löw C. Structure determination of a major facilitator peptide transporter: Inward facing PepTSt from Streptococcus thermophilus crystallized in space group P3121. PLoS One 2017; 12:e0173126. [PMID: 28264013 PMCID: PMC5338821 DOI: 10.1371/journal.pone.0173126] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/15/2017] [Indexed: 12/03/2022] Open
Abstract
Major facilitator superfamily (MFS) peptide transporters (typically referred to as PepT, POT or PTR transporters) mediate the uptake of di- and tripeptides, and so play an important dietary role in many organisms. In recent years, a better understanding of the molecular basis for this process has emerged, which is in large part due to a steep increase in structural information. Yet, the conformational transitions underlying the transport mechanism are still not fully understood, and additional data is therefore needed. Here we report in detail the detergent screening, crystallization, experimental MIRAS phasing, and refinement of the peptide transporter PepTSt from Streptococcus thermophilus. The space group is P3121, and the protein is crystallized in a monomeric inward facing form. The binding site is likely to be somewhat occluded, as the lobe encompassing transmembrane helices 10 and 11 is markedly bent towards the central pore of the protein, but the extent of this potential occlusion could not be determined due to disorder at the apex of the lobe. Based on structural comparisons with the seven previously determined P212121 and C2221 structures of inward facing PepTSt, the structural flexibility as well as the conformational changes mediating transition between the inward open and inward facing occluded states are discussed. In conclusion, this report improves our understanding of the structure and conformational cycle of PepTSt, and can furthermore serve as a case study, which may aid in supporting future structure determinations of additional MFS transporters or other integral membrane proteins.
Collapse
Affiliation(s)
- Esben M. Quistgaard
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Maria Martinez Molledo
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
33
|
Chen X, Keep RF, Liang Y, Zhu HJ, Hammarlund-Udenaes M, Hu Y, Smith DE. Influence of peptide transporter 2 (PEPT2) on the distribution of cefadroxil in mouse brain: A microdialysis study. Biochem Pharmacol 2017; 131:89-97. [PMID: 28192085 DOI: 10.1016/j.bcp.2017.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
Abstract
Peptide transporter 2 (PEPT2) is a high-affinity low-capacity transporter belonging to the proton-coupled oligopeptide transporter family. Although many aspects of PEPT2 structure-function are known, including its localization in choroid plexus and neurons, its regional activity in brain, especially extracellular fluid (ECF), is uncertain. In this study, the pharmacokinetics and regional brain distribution of cefadroxil, a β-lactam antibiotic and PEPT2 substrate, were investigated in wildtype and Pept2 null mice using in vivo intracerebral microdialysis. Cefadroxil was infused intravenously over 4h at 0.15mg/min/kg, and samples obtained from plasma, brain ECF, cerebrospinal fluid (CSF) and brain tissue. A permeability-surface area experiment was also performed in which 0.15mg/min/kg cefadroxil was infused intravenously for 10min, and samples obtained from plasma and brain tissues. Our results showed that PEPT2 ablation significantly increased the brain ECF and CSF levels of cefadroxil (2- to 2.5-fold). In contrast, there were no significant differences between wildtype and Pept2 null mice in the amount of cefadroxil in brain cells. The unbound volume of distribution of cefadroxil in brain was 60% lower in Pept2 null mice indicating an uptake function for PEPT2 in brain cells. Finally, PEPT2 did not affect the influx clearance of cefadroxil, thereby, ruling out differences between the two genotypes in drug entry across the blood-brain barriers. These findings demonstrate, for the first time, the impact of PEPT2 on brain ECF as well as the known role of PEPT2 in removing peptide-like drugs, such as cefadroxil, from the CSF to blood.
Collapse
Affiliation(s)
- Xiaomei Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA.
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan Health System, Ann Arbor, MI, USA.
| | - Yan Liang
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA.
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA.
| | - Margareta Hammarlund-Udenaes
- Department of Pharmaceutical Biosciences, Translational PKPD Research Group, Uppsala University, Uppsala, Sweden.
| | - Yongjun Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA.
| | - David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Perazzo J, Castanho MARB, Sá Santos S. Pharmacological Potential of the Endogenous Dipeptide Kyotorphin and Selected Derivatives. Front Pharmacol 2017; 7:530. [PMID: 28127286 PMCID: PMC5226936 DOI: 10.3389/fphar.2016.00530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/20/2016] [Indexed: 12/27/2022] Open
Abstract
The endogenous peptide kyotorphin (KTP) has been extensively studied since it was discovered in 1979. The dipeptide is distributed unevenly over the brain but the majority is concentrated in the cerebral cortex. The putative KTP receptor has not been identified yet. As many other neuropeptides, KTP clearance is mediated by extracellular peptidases and peptide transporters. From the wide spectrum of biological activity of KTP, analgesia was by far the most studied. The mechanism of action is still unclear, but researchers agree that KTP induces Met-enkephalins release. More recently, KTP was proposed as biomarker of Alzheimer disease. Despite all that, KTP limited pharmacological value prompted researchers to develop derivatives more lipophilic and therefore more prone to cross the blood–brain barrier (BBB), and also more resistant to enzymatic degradation. Conjugation of KTP with functional molecules, such as ibuprofen, generated a new class of compounds with additional biological properties. Moreover, the safety profile of these derivatives compared to opioids and their efficacy as neuroprotective agents greatly increases their pharmacological value.
Collapse
Affiliation(s)
- Juliana Perazzo
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Lisboa, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Lisboa, Portugal
| | - Sónia Sá Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Lisboa, Portugal
| |
Collapse
|
35
|
Abstract
Transporters comprise the largest family of membrane proteins in human organism, including members of solute carrier transporter and ATP-binding cassette transporter families. They play pivotal roles in the absorption, distribution and excretion of xenobiotic and endogenous molecules. Transporters are widely expressed in various human tissues and are routinely evaluated during the process of drug development and approval. Over the past decade, increasing evidence shows that drug transporters are important in both normal physiology and disease. Currently, transporters are utilized as therapeutic targets to treat numerous diseases such as diabetes, major depression, hypertension and constipation. Despite the steady growth of the field of transporter biology, more than half of the members in transporter superfamily have little information available about their endogenous substrate(s) or physiological functions. This review outlines current research methods in transporter studies, and summarizes the drug-transporter interactions including drug-drug and drug-endogenous substrate interactions. In the end, we also discuss the therapeutic perspective of transporters based on their physiological and pathophysiological roles.
Collapse
|
36
|
Expression of xenobiotic transporters in the human renal proximal tubule cell line RPTEC/TERT1. Toxicol In Vitro 2014; 30:95-105. [PMID: 25500123 DOI: 10.1016/j.tiv.2014.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/17/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Abstract
The kidney is a major target for drug-induced injury, primarily due the fact that it transports a wide variety of chemical entities into and out of the tubular lumen. Here, we investigated the expression of the main xenobiotic transporters in the human renal proximal tubule cell line RPTEC/TERT1 at an mRNA and/or protein level. RPTEC/TERT1 cells expressed OCT2, OCT3, OCTN2, MATE1, MATE2, OAT1, OAT3 and OAT4. The functionality of the OCTs was demonstrated by directional transport of the fluorescent dye 4-Di-1-ASP. In addition, P-glycoprotein activity in RPTEC/TERT1 cells was verified by fluorescent dye retention in presence of various P-glycoprotein inhibitors. In comparison to proliferating cells, contact inhibited RPTEC/TERT1 cells expressed increased mRNA levels of several ABC transporter family members and were less sensitive to cyclosporine A. We conclude that differentiated RPTEC/TERT1 cells are well suited for utilisation in xenobiotic transport and pharmacokinetic studies.
Collapse
|
37
|
Shibuya S, Ozawa Y, Toda T, Watanabe K, Tometsuka C, Ogura T, Koyama YI, Shimizu T. Collagen peptide and vitamin C additively attenuate age-related skin atrophy in Sod1-deficient mice. Biosci Biotechnol Biochem 2014; 78:1212-20. [PMID: 25229861 DOI: 10.1080/09168451.2014.915728] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Age-related skin thinning is correlated with a decrease in the content of collagen in the skin. Accumulating evidence suggests that collagen peptide (CP) and vitamin C (VC) transcriptionally upregulate type I collagen in vivo. However, the additive effects of CP and VC on age-related skin changes remain unclear. We herein demonstrate that CP and a VC derivative additively corrected age-related skin thinning via reduced oxidative damage in superoxide dismutase 1 (Sod1)-deficient mice. Co-treatment with these compounds significantly normalized the altered gene expression of Col1a1, Has2, and Ci1, a proton-coupled oligopeptide transporter, in Sod1(-/-) skin. The in vitro analyses further revealed that collagen oligopeptide, a digestive product of ingested CP, significantly promoted the bioactivity of the VC derivative with respect to the migration and proliferation of Sod1(-/-) fibroblasts. These findings suggest that combined treatment with CP and VC is effective in cases of age-related skin pathology.
Collapse
Affiliation(s)
- Shuichi Shibuya
- a Department of Advanced Aging Medicine , Chiba University Graduate School of Medicine , Chiba , Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Analysing the substrate multispecificity of a proton-coupled oligopeptide transporter using a dipeptide library. Nat Commun 2014; 4:2502. [PMID: 24060756 PMCID: PMC3791473 DOI: 10.1038/ncomms3502] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 08/23/2013] [Indexed: 01/26/2023] Open
Abstract
Peptide uptake systems that involve members of the proton-coupled oligopeptide transporter (POT) family are conserved across all organisms. POT proteins have characteristic substrate multispecificity, with which one transporter can recognize as many as 8,400 types of di/tripeptides and certain peptide-like drugs. Here we characterize the substrate multispecificity of Ptr2p, a major peptide transporter of Saccharomyces cerevisiae, using a dipeptide library. The affinities (Ki) of di/tripeptides toward Ptr2p show a wide distribution range from 48 mM to 0.020 mM. This substrate multispecificity indicates that POT family members have an important role in the preferential uptake of vital amino acids. In addition, we successfully establish high performance ligand affinity prediction models (97% accuracy) using our comprehensive dipeptide screening data in conjunction with simple property indices for describing ligand molecules. Our results provide an important clue to the development of highly absorbable peptides and their derivatives including peptide-like drugs. Proton-coupled oligopeptide transporters (POTs) can recognize and mediate the uptake of up to 8,400 di/tripeptides or peptide-like drugs. Ito et al. comprehensively map the substrate specificity of the yeast POT Ptr2p, and use this information to construct models for the prediction of ligand affinity.
Collapse
|
39
|
|
40
|
Kottra G, Spanier B, Verri T, Daniel H. Peptide transporter isoforms are discriminated by the fluorophore-conjugated dipeptides β-Ala- and d-Ala-Lys-N-7-amino-4-methylcoumarin-3-acetic acid. Physiol Rep 2013; 1:e00165. [PMID: 24744852 PMCID: PMC3970736 DOI: 10.1002/phy2.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/16/2013] [Accepted: 10/26/2013] [Indexed: 02/06/2023] Open
Abstract
Peptide transporters of the SLC15 family are classified by structure and function into PEPT1 (low‐affinity/high‐capacity) and PEPT2 (high‐affinity/low‐capacity) isoforms. Despite the differences in kinetics, both transporter isoforms are reckoned to transport essentially all possible di‐ and tripeptides. We here report that the fluorophore‐conjugated dipeptide derivatives β‐Ala‐Lys‐N‐7‐amino‐4‐methylcoumarin‐3‐acetic acid (β‐AK‐AMCA) and d‐Ala‐Lys‐N‐7‐amino‐4‐methylcoumarin‐3‐acetic acid (d‐AK‐AMCA) are transported by distinct PEPT isoforms in a species‐specific manner. Transport of the fluorophore peptides was studied (1) in vitro after heterologous expression in Xenopus oocytes of PEPT1 and PEPT2 isoforms from different vertebrate species and of PEPT1 and PEPT2 transporters from Caenorhabditis elegans by using electrophysiological and fluorescence methods and (2) in vivo in C. elegans by using fluorescence methods. Our results indicate that both substrates are transported by the vertebrate “renal‐type” and the C. elegans “intestinal‐type” peptide transporter only. A systematic analysis among species finds four predicted amino acid residues along the sequence that may account for the substrate uptake differences observed between the vertebrate PEPT1/nematode PEPT2 and the vertebrate PEPT2/nematode PEPT1 subtype. This selectivity on basis of isoforms and species may be helpful in better defining the structure–function determinants of the proteins of the SLC15 family. Peptide transporters of the SLC15 family can be classified by structure and function into the PEPT1 (low‐affinity/high‐capacity) and PEPT2 (high‐affinity/low‐capacity) phenotype. We found that the fluorophore‐conjugated dipeptide derivatives β‐Ala‐Lys‐N‐7‐amino‐4‐methylcoumarin‐3‐acetic acid (β‐AK‐AMCA) and d‐Ala‐Lys‐N‐7‐amino‐4‐methylcoumarin‐3‐acetic acid (d‐AK‐AMCA) are transported only by distinct PEPT isoforms in a species‐specific manner. This selectivity on basis of isoforms and species should be helpful in further defining the substrate‐binding domain of peptide transporters.
Collapse
Affiliation(s)
- Gabor Kottra
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Gregor-Mendel-Str. 2, Freising, D-85350, Germany
| | - Britta Spanier
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Gregor-Mendel-Str. 2, Freising, D-85350, Germany
| | - Tiziano Verri
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, Lecce, I-73100, Italy
| | - Hannelore Daniel
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Gregor-Mendel-Str. 2, Freising, D-85350, Germany
| |
Collapse
|
41
|
Pellagatti A, Fidler C, Wainscoat JS, Boultwood J. Gene expression profiling in the myelodysplastic syndromes. Hematology 2013; 10:281-7. [PMID: 16085540 DOI: 10.1080/10245330500065680] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The myelodysplastic syndromes (MDS) are a heterogeneous group of haematopoietic malignancies, characterized by blood cytopenias, ineffective hematopoiesis and hypercellular bone marrow. Several genetic alterations have been reported in MDS but these are not MDS-specific and the underlying molecular causes of the disease remain poorly understood. Gene expression microarray technology allows the simultaneous parallel analysis of many thousands of genes and has already provided novel insights into cancer pathogenesis. In this review we discuss the results of several recent studies which utilize the enormous power of microarray technology for the study of MDS. Several exciting findings have emerged from these early studies that highlight the potential of this technology to further our understanding of the molecular pathogenesis of this disorder. It is clear, however, that these findings should be confirmed in larger sets of MDS patients.
Collapse
Affiliation(s)
- Andrea Pellagatti
- Leukaemia Research Fund Molecular Haematology Unit, Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | | | |
Collapse
|
42
|
Zwarycz B, Wong EA. Expression of the peptide transporters PepT1, PepT2, and PHT1 in the embryonic and posthatch chick. Poult Sci 2013; 92:1314-21. [PMID: 23571341 DOI: 10.3382/ps.2012-02826] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Peptide transporters 1 and 2 (PepT1 and PepT2) and peptide/histidine transporter 1 (PHT1) are all members of the proton-coupled oligopeptide transporter family, which are important for the transport of amino acids in peptide form. The PepT1 acts as a low-affinity/high-capacity transporter and PepT2 as a high-affinity/low-capacity transporter for di- and tri-peptides. The PHT1 transports di- and tri-peptides as well as histidine. The objective of this study was to profile PepT1, PepT2, and PHT1 mRNA expression in the proventriculus, duodenum, jejunum, ileum, ceca, large intestine, brain, heart, bursa of Fabricius, lung, kidney, and liver in layer chicks on embryonic d 18 and 20 and d 1, 3, 7, 10, and 14 posthatch. Absolute quantification real-time PCR was used to measure gene expression. Expression of PepT1 was greatest in the duodenum, jejunum, and ileum. Expression of PepT1 increased in the duodenum, jejunum, and ileum from late embryonic stages to posthatch and in the large intestine from late embryonic stages to d 10 posthatch. In the ceca, PepT1 expression increased from embryonic d 20 to d 1 posthatch and then decreased. Expression of PepT2 was greatest in the brain and kidney. Expression of PepT2 increased from d 10 to 14 in the bursa of Fabricius and decreased in the proventriculus, duodenum, jejunum, and liver from late embryonic stages to posthatch. In the small intestine and liver, PepT2 may function to transport di- and tri-peptides during embryogenesis. The PHT1 was expressed in all tissues analyzed. Expression of PHT1 increased in the jejunum, large intestine, brain, and liver posthatch and decreased in the proventriculus from embryonic stages to posthatch. A tissue × age interaction was observed for all genes. The uptake of peptides in the developing chick is regulated by peptide transporters that are expressed in a tissue- and development-specific manner.
Collapse
Affiliation(s)
- B Zwarycz
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg 24061, USA
| | | |
Collapse
|
43
|
Marin JJG. Plasma membrane transporters in modern liver pharmacology. SCIENTIFICA 2012; 2012:428139. [PMID: 24278693 PMCID: PMC3820525 DOI: 10.6064/2012/428139] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/26/2012] [Indexed: 06/02/2023]
Abstract
The liver plays a crucial role in the detoxification of drugs used in the treatment of many diseases. The liver itself is the target for drugs aimed to modify its function or to treat infections and tumours affecting this organ. Both detoxification and pharmacological processes occurring in the liver require the uptake of the drug by hepatic cells and, in some cases, the elimination into bile. These steps have been classified as detoxification phase 0 and phase III, respectively. Since most drugs cannot cross the plasma membrane by simple diffusion, the involvement of transporters is mandatory. Several members of the superfamilies of solute carriers (SLC) and ATP-binding cassette (ABC) proteins, with a minor participation of other families of transporters, account for the uptake and efflux, respectively, of endobiotic and xenobiotic compounds across the basolateral and apical membranes of hepatocytes and cholangiocytes. These transporters are also involved in the sensitivity and refractoriness to the pharmacological treatment of liver tumours. An additional interesting aspect of the role of plasma membrane transporters in liver pharmacology regards the promiscuity of many of these carriers, which accounts for a variety of drug-drug, endogenous substances-drug and food components-drug interactions with clinical relevance.
Collapse
Affiliation(s)
- Jose J. G. Marin
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca and CIBERehd, Spain
- Department of Physiology and Pharmacology, Campus Miguel de Unamuno E.D. S09, 37007 Salamanca, Spain
| |
Collapse
|
44
|
Lepist EI, Ray AS. Renal drug–drug interactions: what we have learned and where we are going. Expert Opin Drug Metab Toxicol 2012; 8:433-48. [DOI: 10.1517/17425255.2012.667401] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
45
|
Terada T, Inui KI. Recent Advances in Structural Biology of Peptide Transporters. CURRENT TOPICS IN MEMBRANES 2012. [DOI: 10.1016/b978-0-12-394316-3.00008-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
46
|
Nakanishi T, Tamai I. Solute Carrier Transporters as Targets for Drug Delivery and Pharmacological Intervention for Chemotherapy. J Pharm Sci 2011; 100:3731-50. [DOI: 10.1002/jps.22576] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 01/11/2023]
|
47
|
Inoue N, Nagao K, Sakata K, Yamano N, Gunawardena PER, Han SY, Matsui T, Nakamori T, Furuta H, Takamatsu K, Yanagita T. Screening of soy protein-derived hypotriglyceridemic di-peptides in vitro and in vivo. Lipids Health Dis 2011; 10:85. [PMID: 21600040 PMCID: PMC3116501 DOI: 10.1186/1476-511x-10-85] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/22/2011] [Indexed: 11/17/2022] Open
Abstract
Background Soy protein and soy peptides have attracted considerable attention because of their potentially beneficial biological properties, including antihypertensive, anticarcinogenic, and hypolipidemic effects. Although soy protein isolate contains several bioactive peptides that have distinct physiological activities in lipid metabolism, it is not clear which peptide sequences are responsible for the triglyceride (TG)-lowering effects. In the present study, we investigated the effects of soy protein-derived peptides on lipid metabolism, especially TG metabolism, in HepG2 cells and obese Otsuka Long-Evans Tokushima fatty (OLETF) rats. Results In the first experiment, we found that soy crude peptide (SCP)-LD3, which was prepared by hydrolyze of soy protein isolate with endo-type protease, showed hypolipidemic effects in HepG2 cells and OLETF rats. In the second experiment, we found that hydrophilic fraction, separated from SCP-LD3 with hydrophobic synthetic absorbent, revealed lipid-lowering effects in HepG2 cells and OLETF rats. In the third experiment, we found that Fraction-C (Frc-C) peptides, fractionated from hydrophilic peptides by gel permeation chromatography-high performance liquid chromatography, significantly reduced TG synthesis and apolipoprotein B (apoB) secretion in HepG2 cells. In the fourth experiment, we found that the fraction with 0.1% trifluoroacetic acid, isolated from Frc-C peptides by octadecylsilyl column chromatography, showed hypolipidemic effects in HepG2 cells. In the final experiment, we found that 3 di-peptides, Lys-Ala, Val-Lys, and Ser-Tyr, reduced TG synthesis, and Ser-Tyr additionally reduced apoB secretion in HepG2 cells. Conclusion Novel active peptides with TG-lowering effects from soy protein have been isolated.
Collapse
Affiliation(s)
- Nao Inoue
- Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Anderson CMH, Thwaites DT. Hijacking solute carriers for proton-coupled drug transport. Physiology (Bethesda) 2011; 25:364-77. [PMID: 21186281 DOI: 10.1152/physiol.00027.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The physiological role of mammalian solute carrier (SLC) proteins is to mediate transmembrane movement of electrolytes, nutrients, micronutrients, vitamins, and endogenous metabolites from one cellular compartment to another. Many transporters in the small intestine, kidney, and solid tumors are H(+)-coupled, driven by local H(+)-electrochemical gradients, and transport numerous drugs. These transporters include PepT1 and PepT2 (SLC15A1/2), PCFT (SLC46A1), PAT1 (SLC36A1), OAT10 (SLC22A13), OATP2B1 (SLCO2B1), MCT1 (SLC16A1), and MATE1 and MATE2-K (SLC47A1/2).
Collapse
Affiliation(s)
- Catriona M H Anderson
- Epithelial Research Group, Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
49
|
Warren MS, Rautio J. Prodrugs Designed to Target Transporters for Oral Drug Delivery. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/9783527633166.ch6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
50
|
Liu R, Tang AMY, Tan YL, Limenta LMG, Lee EJD. Effects of Sodium Bicarbonate and Ammonium Chloride Pre-treatments on PEPT2 (SLC15A2) Mediated Renal Clearance of Cephalexin in Healthy Subjects. Drug Metab Pharmacokinet 2011; 26:87-93. [DOI: 10.2133/dmpk.dmpk-10-rg-039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|