1
|
Evaluation of Antibacterial and Cytotoxic Properties of a Fluorinated Diamond-Like Carbon Coating for the Development of Antibacterial Medical Implants. Antibiotics (Basel) 2020; 9:antibiotics9080495. [PMID: 32784861 PMCID: PMC7459999 DOI: 10.3390/antibiotics9080495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
Peri-implant infection is a serious complication in surgical procedures involving implants. We conducted an in vitro study to determine whether the use of a fluorinated diamond-like carbon (F-DLC) coating on a titanium alloy surface can prevent peri-implant infection. After applying the F-DLC, we evaluated its antibacterial and cytotoxic properties. The coating groups, containing controlled fluorine concentrations of 5.44%, 17.43%, 24.09%, and 30%, were examined for the presence of Staphylococcus aureus and Escherichia coli according to ISO 22196 for the measurement of antibacterial activity on plastics and other nonporous surfaces. Biological toxicity was evaluated using Chinese hamster V79 cells according to ISO 10993-5 for the biological evaluation of medical devices. In the control group, populations of S. aureus and E. coli substantially increased from 2.4 × 104 to (1.45 ± 1.11) × 106 colony-forming units (CFUs) and from 2.54 × 104 to (4.04 ± 0.44) × 106 CFUs, respectively. However, no bacteria colonies were detected in any F-DLC group with a fluorine concentration of ≥ 17.43%. In the biological toxicity study, an F-DLC coating with a fluorine concentration of 30% showed a colony formation rate of 105.8 ± 24.1%, which did not differ significantly from the colony formation rate of 107.5 ± 31.1% in the nontoxic control group. An F-DLC coating on titanium alloy discs showed excellent in vitro antibacterial activity with no biological toxicity.
Collapse
|
2
|
Saito K, Kinoshita Y, Yumura Y, Iwasaki A, Hosaka M. Effects of extracellular ions on the reactivation of human spermatozoa preserved in electrolyte-free solution. Andrologia 1999; 31:211-5. [PMID: 10470411 DOI: 10.1046/j.1439-0272.1999.00271.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has previously been reported that human spermatozoa preserved in an electrolyte-free solution can survive for several weeks at 4 degrees C. However, the motility of spermatozoa after preservation cannot be restored when incubated at 37 degrees C, unless reactivated by extracellular alkalisation. Under weak acidic conditions, the reactivation is induced by > or = 10 mmol l-1 Na+ and inhibited by a Na(+)-H+ antiporter inhibitor. The addition of > or = 0.1 mmol l-1 K+ also induces the reactivation. In the present study, the reactivation was induced by > or = 0.1 mmol l-1 Rb+ or > or = 1 mmol l-1 Cs+ at an acidic pH. The maximum motility rate with K+, Rb+ or Cs+ was obtained at 10-20 mmol l-1 and inhibited by 10(-5)-10(-2) mol l-1 ouabain in a dose-dependent manner, while ouabain had no effect on the Na(+)-induced reactivation. The addition of K+ further increased sperm motility reactivated by Na+, which was also inhibited by ouabain. The addition of Ca2+ did not induce the reactivation or increase sperm motility reactivated by Na+ or K+. It was concluded that activation of the ouabain-sensitive Na(+)-K(+)-ATPase and Na(+)-H+ exchange mechanism has an important role in sperm motility.
Collapse
Affiliation(s)
- K Saito
- Department of Urology, Yokohama City University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
3
|
Schuurmans Stekhoven FM. E31-K352, the minimal cation binding moiety of Na+,K(+)-ATPase. Biochem Biophys Res Commun 1998; 245:366-9. [PMID: 9571156 DOI: 10.1006/bbrc.1998.8439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Upon limited tryptic fragmentation of Na+,K(+)-ATPase a 35 kDa fragment (E31-K352) was formed that bound 204Tl+ on blot. Further fragmentation led to loss of binding, pointing to the conclusion that E31-K352 is the minimal cation binding unit in Na+,K(+)-ATPase.
Collapse
|
4
|
Hermans AN, Glitsch HG, Verdonck F. Activation of the Na+/K+ pump current by intra- and extracellular Li ions in single guinea-pig cardiac cells. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1330:83-93. [PMID: 9375815 DOI: 10.1016/s0005-2736(97)00143-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Li+ is the only ion that can replace the physiological intra- and extracellular activator cations of the Na+/K+ pump. In order to study this singular property of Li+ in some detail, the activation of the Na+/K+ pump current (Ip) by intra- and extracellular Li+ (Li+; Li[o]+) was measured in isolated guinea-pig ventricular myocytes by means of whole cell recording at 34 degrees C and a holding potential of -20 mV. Ip was identified as current blocked by dihydro-ouabain. Half-maximal Ip activation occurred at 23 mM Li(o)+ (K0.5 value) in cells containing Na+ (50 or 100 mM) and at 73 mM Li(o)+ in myocytes containing Li+ (100 mM). The K0.5 value of Ip activation by Li(o)+ increased with depolarisation, suggesting the transfer of 0.2 of an elementary charge across the electric field of the sacrolemma during Li(o)+-binding. An intracellular Li+ concentration of 36 mM caused half-maximal Ip activation in cells superfused with Na+- and Li+-free media containing 1 mM K+. In Na+-free solutions. the Ip-V curve displayed a positive slope at negative membrane potentials. A negative slope at positive potentials was observed in Li+-containing media. It is concluded that Li+ is less efficacious and potent than the physiological pump activator cations. The shape of the Ip-V curves in Na+-free solutions supports the view that the cardiac Na+/K+ pump contains a channel-like structure and suggests that there are voltage-sensitive steps in the pump cycle, apart from the binding of external cations.
Collapse
Affiliation(s)
- A N Hermans
- Interdisciplinary Research Centre, Catholic University of Leuven, Campus Kortrijk, Belgium
| | | | | |
Collapse
|
5
|
Specht SC, Lopez-Rosado R, Santos-Berrios C, Figueroa-Nieves R. An ouabain-sensitive Na+,K(+)-ATPase in tentacles of the sea anemone Stichodactyla helianthus. Comp Biochem Physiol B Biochem Mol Biol 1995; 110:555-63. [PMID: 7584831 DOI: 10.1016/0305-0491(94)00172-q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tentacles of Stichodactyla helianthus contain an ouabain-inhibitable, (Na+,K+)-stimulated ATPase. The K0.5 for Na+ was 24 mM and for K+, 3.2 mM. The apparent affinity for ouabain was low, I50 = 10(-4) M. The order of cation affinities was Rb+ > K+ > NH4+ = Cs+. The catalytic subunit of the enzyme comprised a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, M(r) = 105 kDa, that was phosphorylated by [32P]ATP in the presence of NaCl and dephosphorylated by the addition of KCl. The alpha subunit was weakly reactive with antibodies directed against the rat alpha subunit.
Collapse
Affiliation(s)
- S C Specht
- Department of Pharmacology, University of Puerto Rico, San Juan 00901
| | | | | | | |
Collapse
|
6
|
Adipudi V, Reddy VK. Effect of chronic lithium chloride on membrane adenosine triphosphatases in certain postural muscles of rats. Eur J Pharmacol 1994; 259:7-13. [PMID: 7957596 DOI: 10.1016/0014-2999(94)90150-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lithium has been extensively used as an antidepressant in the treatment of manic depressive disorders requiring chronic administration. Here, we report a study of the effect of long-term lithium treatment on the activities of membrane adenosine triphosphatases (ATPases) in certain postural muscles of rat. Specifically, Ca(2+)-ATPase, Na+,K(+)-ATPase and Mg(2+)-ATPase activities were measured in the soleus, extensor digitorum longus and plantaris muscles following 6 weeks of treatment with LiCl. Increases were observed in the Na+,K(+)-ATPase activity whereas the Mg(2+)-ATPase activity decreased with prolonged LiCl treatment. The most pronounced effect was a highly significant (P < 0.001) increase in the mitochondrial Ca(2+)-ATPase and Na+,K(+)-ATPase activity to almost 50-100% above the control. The increases in the mitochondrial Ca(2+)-ATPase activity of extensor digitorum longus and plantaris were 70% and 100%, respectively. The corresponding increases in the Na+,K(+)-ATPase activity were 127%, 99% and 87% for soleus, extensor digitorum longus and plantaris, respectively. Irrespective of the differences in the fiber pattern and physiological function, all three muscles responded in a similar way to Li+. The changes in the membrane ATPases reflect a deranged ATP turnover, thus affecting the overall energy state of the animal. Based on these results, we hypothesize that Li+ produces its effects by interfering with cation transport processes. Since Li+ affects the neural excitability of the cell it is suggested that the stimulation of the ATPases may be important in the psychotropic properties of the ion.
Collapse
Affiliation(s)
- V Adipudi
- Department of Zoology, Osmania University, Hyderabad, India
| | | |
Collapse
|
7
|
Guerra Marichal M, Rodríguez del Castillo A, Martín Vasallo P, Battaner Arias E. Characterization of K(+)-dependent and K(+)-independent p-nitrophenylphosphatase activity of synaptosomes. Neurochem Res 1993; 18:751-8. [PMID: 8396213 DOI: 10.1007/bf00966769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
These experiments examined effects of several ligands on the K+ p-nitrophenylphosphatase activity of the (Na+,K+)-ATPase in membranes of a rat brain cortex synaptosomal preparation. K(+)-independent hydrolysis of this substrate by the synaptosomal preparation was studied in parallel; the rate of hydrolysis in the absence of K+ was approximately 75% less than that observed when K+ was included in the incubation medium. The response to the H+ concentrations was different: K(+)-independent activity showed a pH optimum around 6.5-7.0, while the K(+)-dependent activity was relatively low at this pH range. Ouabain (0.1 mM) inhibited K(+)-dependent activity 50%; a concentration 10 times higher did not produce any appreciable effect on the K(+)-independent activity. Na+ did not affect K(+)-independent activity at all, while the same ligand concentration inhibited sharply the K(+)-dependent activity; this inhibition was not competitive with the substrate, p-nitrophenyl phosphate. K(+)-dependent activity was stimulated by Mg2+ with low affinity (millimolar range), and 3 mM Mg2+ produced a slight stimulation of the activity in absence of K+, which could be interpreted as Mg2+ occupying the K+ sites. Ca2+ had no appreciable effect on the activity in the absence of K+. However, in the presence of K+ a sharp inhibition was found with all Ca2+ concentrations studied. ATP (0.5 mM) did not affect the K(+)-independent activity, but this nucleotide behaved as a competitive inhibitor to p-nitrophenylphosphate. Pi inhibited activity in the presence of K+, competitively to the substrate, so it could be considered as the second product of the reaction sequence.
Collapse
Affiliation(s)
- M Guerra Marichal
- Dpto. de Bioquímica y B. Molecular, Facultad Biología, Universidad La Laguna, Canary Islands, Spain
| | | | | | | |
Collapse
|
8
|
Smirnova IN, Faller LD. Role of Mg2+ ions in the conformational change reported by fluorescein 5'-isothiocyanate modification of Na+,K(+)-ATPase. Biochemistry 1993; 32:5967-77. [PMID: 8389584 DOI: 10.1021/bi00074a007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The role of Mg2+ in the conformational change reported by fluorescein 5'-isothiocyanate modification of Na,K-ATPase has been studied by stopped-flow fluorometry. K+ causes a fluorescence quench that is reversed by Na+. The principal experimental observations are as follows: (1) Mg2+ decreases the apparent affinity of the enzyme for K+ but does not affect the maximum rate of the K+ quench. (2) The amplitude of the K+ quench depends hyperbolically on the K+ concentration, and the maximum amplitude is unaffected by the Mg2+ concentration. (3) The rate at which Na+ reverses the K+ quench depends inversely on the Mg2+ concentration. (4) The amplitude of the Na+ reversal also decreases with increasing Mg2+ concentration. The data are quantitatively explained by a model that assumes only two enzyme conformations, detectable by their fluorescence emission. Mg2+ increases Kd for K+ from 14 to 223 mM. At 22 degrees C, Kd = 0.16 mM for Mg2+ dissociation from E1, and the heat of Mg2+ binding, delta H degrees, is 11.4 kcal mol-1. Kd is more than an order of magnitude larger for Mg2+ dissociation from E2K. Mg2+ binding does not affect the forward (E1K-->E2K) rate constant (kf), but decreases the reverse rate constant (kr) thus increasing the equilibrium constant for the reaction (Kc = kf/kr) 6-fold. Therefore, Mg2+ is not directly involved in the conformational transition, but the study supports proposals that Mg2+ binding and release may help to regulate the transport cycle by shifting the distribution of enzyme between E1 and E2 conformers.
Collapse
Affiliation(s)
- I N Smirnova
- Department of Medicine, University of California, Los Angeles School of Medicine
| | | |
Collapse
|
9
|
Robinson JD, Pratap PR. Indicators of conformational changes in the Na+/K(+)-ATPase and their interpretation. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1154:83-104. [PMID: 8389590 DOI: 10.1016/0304-4157(93)90018-j] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- J D Robinson
- Department of Pharmacology State University of New York Health Science Center, Syracuse 13210
| | | |
Collapse
|
10
|
Takada J, Fukushima Y. Rapid inhibition of the K(+)-sensitive phosphoenzyme of Na+/K(+)-ATPase by (Z)-5-methyl-2-[2-(1-naphthyl)ethenyl]-4-piperidinopyridine. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1065:153-9. [PMID: 1647819 DOI: 10.1016/0005-2736(91)90225-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Membrane-bound Na+,K(+)-ATPase (0.1 mg/ml) was incubated with the K(+)-site-directed probe (Z)-5-methyl-2-[2-(1-naphthyl)ethenyl]-4-piperidinopyridine (AU-1421) (Takada, J. et al. (1990) Biochim. Biophys. Acta 1037, 373-379) at 37 degrees C for 30 min in the absence of ligands, then the Na(+)-dependent phosphorylation level was examined in the presence of 10 microM [32P]ATP at 0 degrees C. The level was decreased to 50% and 0% by about 50 microM and 100 microM AU-1421, respectively. Addition of 1 mM K+ during the treatment with AU-1421 resulted in complete maintenance of the phosphorylation level. When the preincubation was performed at 0 degrees C for 10 s, even 100 microM AU-1421 did not impair the phosphorylation. In contrast to the non-phospho form of the enzyme, the K(+)-sensitive phosphoenzyme formed from ATP was immediately inhibited by the addition of AU-1421 at 0 degrees C. The reactivity of the inhibited phosphoenzyme was restored by the addition of K+. About 1 mM K+ gave the same maximal reactivity in the presence of various fixed concentrations (8-41 microM) of AU-1421, but the apparent affinity for K+ decreased simply with the increase of AU-1421 concentration. From this simple competitive relationship, the apparent Ki value of AU-1421 for the phosphoenzyme was calculated to be 7.2 microM. Compared to the non-phospho form of the enzyme, the phospho form appears to be rather susceptible to AU-1421, probably because the K(+)-site of the phosphoenzyme is exposed to the extracellular aqueous phase.
Collapse
Affiliation(s)
- J Takada
- Central Research Laboratories, Banyu Pharmaceutical Co., Ltd., Tokyo, Japan
| | | |
Collapse
|
11
|
Robinson JD, Pratap PR. Na+/K(+)-ATPase: modes of inhibition by Mg2+. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1061:267-78. [PMID: 1847828 DOI: 10.1016/0005-2736(91)90292-g] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adding 15 mM free Mg2+ decreased Vmax of the Na+/K(+)-ATPase reaction. Mg2+ also decreased the K0.5 for K+ activation, as a mixed inhibitor, but the increased inhibition at higher K+ concentrations diminished as the Na+ concentration was raised. Inhibition was greater with Rb+ but less with Li+ when these cations substituted for K+ at pH 7.5, while at pH 8.5 inhibition was generally less and essentially the same with all three cations: implying an association between inhibition and ion occlusion. On the other hand, Mg2+ increased the K0.5 for Na(+)-activation of the Na+/K(+)-ATPase and Na(+)-ATPase reactions, as a mixed inhibitor. Changing incubation pH or temperature, or adding dimethylsulfoxide affected inhibition by Mg2+ and K0.5 for Na+ diversely. Presteady-state kinetic studies on enzyme phosphorylation, however, showed competition between Mg2+ and Na+. In the K(+)-phosphatase reaction catalyzed by this enzyme Mg2+ was a (near) competitor toward K+. Adding Na+ with K+ inhibited phosphatase activity, but under these conditions 15 mM Mg2+ stimulated rather than inhibited; still higher Mg2+ concentrations then inhibited with K+ plus Na+. Similar stimulation and inhibition occurred when Mn2+ was substituted for Mg2+, although the concentrations required were an order of magnitude less. In all these experiments no ionic substitutions were made to maintain ionic strength, since alternative cations, such as choline, produced various specific effects themselves. Kinetic analyses, in terms of product inhibition by Mg2+, require Mg2+ release at multiple steps. The data are accommodated by a scheme for the Na+/K(+)-ATPase with three alternative points for release: before MgATP binding, before K+ release and before Na+ binding. The latter alternatives necessitate two Mg2+ ions bound simultaneously to the enzyme, presumably to divalent cation-sites associated with the phosphate and the nucleotide domains of the active site.
Collapse
Affiliation(s)
- J D Robinson
- Department of Pharmacology, State University of New York, Syracuse 13210
| | | |
Collapse
|
12
|
Robinson JD. Modification of ligand binding to the Na+/K+-activated ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 997:41-8. [PMID: 2546608 DOI: 10.1016/0167-4838(89)90133-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interactions between the ligands Mg2+, K+, and substrate and the Na+/K+-activated ATPase were examined in terms of a rapid-equilibrium, random-order, terreactant kinetic scheme for the K+-nitrophenyl phosphatase reaction that is catalyzed by this enzyme. At 37 degrees C and pH 7.5 the derived values for the dissociation constants from the free enzyme were 0.2, 0.08, and 1.4 mM for Mg2+, K+, and substrate, respectively. For Mg2+ interactions, the presence of 20% (v/v) dimethyl sulfoxide (Me2SO) increased the calculated affinity 25-fold; higher concentrations increased affinity still further. Neither reducing the temperature to 20 degrees C nor altering the pH from 6.5 to 8.3 appreciably changed the affinity for Mg2+ in the absence or presence of Me2SO. The Mg2+ sites are thus characterized by an absence of functional groups ionizable in the pH range 6.5-8.3, with binding driven by entropy changes, and with Me2SO, probably through solvation effects on the protein, increasing affinity for Mg2+ close to that for Ca2+ and Mn2+. By contrast, for K+ interactions, the presence of 20% Me2SO increased the calculated affinity only by half; moreover, reducing the temperature to 20 degrees C and the pH to 6.5 both increased affinity and diminished the response to Me2SO. The K+ sites are thus characterized by a marked sensitivity to pH and temperature, presumably through alterations in enzyme conformational equilibria that in turn are modifiable by Me2SO. Inhibition by higher concentrations of Mg2+, which varies inversely with the K+ concentration, was decreased by Me2SO. Finally, for substrate interactions, the presence of 20% Me2SO increased the calculated affinity 4-fold, and, as for Mg2+-binding, neither reducing the temperature nor varying the pH over the range 6.5-8.3 appreciably altered the affinity in the absence or presence of Me2SO. Thus, the substrate sites, like the Mg2+ sites, are characterized by an absence of functional groups ionizable in this range, with binding driven by entropy changes, and with Me2SO increasing affinity for substrate, in this case probably through favoring the partitioning of substrate from the medium into the hydrophobic active site.
Collapse
Affiliation(s)
- J D Robinson
- Department of Pharmacology, State University of New York, Syracuse 13210
| |
Collapse
|
13
|
Matsuda T, Iwata H. Difference between neuronal and nonneuronal (Na+ + K+)-ATPases in their conformational equilibrium. Arch Biochem Biophys 1988; 263:323-33. [PMID: 2837150 DOI: 10.1016/0003-9861(88)90643-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Several experiments were carried out to study the difference between two isozymes (alpha(+) and alpha) of (Na+ + K+)-ATPase in the conformational equilibrium. Rat brain (Na+ + K+)-ATPase was much more thermolabile than the kidney enzyme. Both enzymes were protected from heat inactivation not only by Na+ and K+, but also by choline in varying degrees, though there was a difference between the two enzymes in the protection by the ligands. The brain enzyme was partially protected from N-ethylmaleimide (NEM) inactivation by both Na+ and K+, but the effects of the ligands on NEM inactivation of the kidney enzyme were more complex. Though ligands differentially affected the thermostability and NEM sensitivity of the two enzymes, the effects were not simply related to the conformational states. The sensitivity of phosphoenzyme (EP) formed in the presence of ATP, Na+, and Mg2+ to ADP or K+ and K+-p-nitrophenyl phosphatase (pNPPase) was then studied as a probe of the differences in the conformational equilibrium between the two isozymes. The EP of the brain enzyme was partially sensitive to ADP, while those of the heart and kidney enzymes were not. At physiological Na+ concentrations the percentages of E1P formed by the brain and kidney enzymes were determined to be about 40-50 and 10-20% of the total EP, respectively. The hydrolytic activity of pNPP in the presence of Li+, a selective activator at catalytic sites of the reaction, was much higher in the kidney enzyme than in the brain enzyme. The inhibition of K+-stimulated pNPPase by ATP and Na+ was greater in the latter enzyme than in the former. These results suggest that neuronal and nonneuronal (Na+ + K+)-ATPases differ in their conformational equilibrium: the E1 or E1P may be more stable in the alpha(+) than in the alpha during the turnover, and conversely the E2 or E2P may be more stable in the latter than in the former.
Collapse
Affiliation(s)
- T Matsuda
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Osaka University, Japan
| | | |
Collapse
|
14
|
Robinson JD. Estimating affinities for physiological ligands and inhibitors by kinetic studies on Na+,K+-ATPase and its partial activities. Methods Enzymol 1988; 156:236-51. [PMID: 2835608 DOI: 10.1016/0076-6879(88)56025-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Adam-Vizi V, Banay-Schwartz M, Wajda I, Lajtha A. Depolarization of brain cortex slices and synaptosomes by lithium. Determination of K+-equilibrium potential in cortex slices. Brain Res 1987; 410:257-63. [PMID: 3594238 DOI: 10.1016/0006-8993(87)90322-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
K+-equilibrium potential was determined in brain cortex slices of rat by measuring 86Rb+ distribution between the extra- and intracellular space. The ratio of internal to external Rb+ concentration was 39 +/- 1.8, corresponding to a resting membrane potential of 93.8 mV. Li+ (1-126 mM) decreased the membrane potential in both cortex slices and synaptosomes in a concentration-dependent manner. The presence of 1 mM Li+ was enough to cause a slight but distinct depolarization. During incubation in Li+-containing medium slices took up K+; however, for depolarization the presence of extracellular Li+ seemed to be necessary.
Collapse
|
16
|
Robinson JD, Davis RL, Steinberg M. Fluoride and beryllium interact with the (Na + K)-dependent ATPase as analogs of phosphate. J Bioenerg Biomembr 1986; 18:521-31. [PMID: 3025194 DOI: 10.1007/bf00743148] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fluoride irreversibly inhibits the (Na + K)-ATPase, and this inactivation requires divalent cations (Mg2+, Mn2+, or Ca2+), is augmented by K+, but is diminished by Na+ and by ATP. Prior incubation with the aluminum chelator deferoxamine markedly slows inactivation, whereas adding 1 microM AlCl3 speeds it, consistent with AlF-4 being the active species. Prior incubation of the enzyme with vanadate also blocks inactivation by fluoride added subsequently. Fluoride stimulates ouabain binding to the enzyme, and thus the analogy between AlF-4 and both orthophosphate and orthovanadate is reflected not only in the similar dependence on specific ligands for their enzyme interactions and their apparent competition for the same sites, but also in their common ability to promote ouabain binding. Beryllium also irreversibly inhibits the enzyme, and this inactivation again requires divalent cations, is augmented by K+, but is diminished by Na+ and by ATP. Similarly, prior incubation of the enzyme with vanadate blocks inactivation by beryllium added subsequently. Inactivation by beryllium, however, does not require a halide, and, unlike inactivation by fluoride, increases at basic pHs. These observations suggest that beryllium, as beryllium hydroxide complexes, acts as a phosphate analog, similar to AlF-4 and vanadate.
Collapse
|
17
|
Apell HJ, Marcus MM. (Na+ + K+)-ATPase in artificial lipid vesicles: influence of the concentration of mono- and divalent cations on the pumping rate. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 862:254-64. [PMID: 3022809 DOI: 10.1016/0005-2736(86)90226-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
(Na+ + K+)-ATPase from kidney outer medulla was incorporated into artificial dioleoylphosphatidylcholine vesicles. Transport activity was induced by adding ATP to the external medium. A voltage-sensitive dye was used to detect the ATP-driven potassium extrusion in the presence of valinomycin. The observed substrate-protein interactions of the reconstituted (Na+ + K+)-ATPase largely agree with that from native tissues. An agreement between ATP hydrolysis and transport activity is given for concentration dependences of sodium, potassium, magnesium and calcium ions. The only significant deviations were observed in the influence of pH. Protons were found to have different influence on transport, enzymatic activity and phosphorylation of the enzyme. The transport studies showed a twofold interaction of protons with the protein: competition with sodium at the cytoplasmic ion binding sites, a non competitive inhibition of transport which is not correlated with protein phosphorylation.
Collapse
|
18
|
Senear DF, Betts G, Bernhard SA. Multiple ion-dependent and substrate-dependent Na+/K+-ATPase conformational states. Transient and steady-state kinetic studies. Biochemistry 1985; 24:6789-98. [PMID: 3000437 DOI: 10.1021/bi00345a010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The hydrolysis of beta-(2-furyl)acryloyl phosphate (FAP), catalyzed by the Na+/K+-ATPase, is faster than the catalyzed hydrolysis of ATP. This is due to catalyzed hydrolysis of the pseudosubstrate by K+-dependent states of the enzyme, thus bypassing the Na+-dependent enzyme states that are required and are rate limiting in ATP hydrolysis. Unlike ATP, FAP is a positive effector of the E2 state. A study of FAP hydrolysis permits a detailed analysis of later steps in the overall ion translocation-ATP hydrolysis pathway. During the steady state of FAP hydrolysis in the presence of K+, substantial phosphoryl-enzyme is formed, as is indicated by the covalent incorporation of 32P from [32P]FAP. A comparison of the phosphoryl-enzyme yield with the rate of overall hydrolysis reveals that at 25 degrees C the phosphoryl-enzyme formed is all kinetically competent. Both the yield of phosphoryl-enzyme and the rate of overall hydrolysis of FAP are [K+] dependent. The transition E1 in equilibrium E2 is also [K+] dependent, but the rate of transition is differently affected by [K+] than are the above-mentioned two processes. Two distinct roles for K+ are indicated, as an effector of the E1-E2 equilibrium and as a "catalyst" in the hydrolysis of the E2-P. In contrast to the results at 25 degrees C, a virtually stoichiometric yield of phosphoryl-enzyme occurs at 0 degree C in the presence of Na+ and the absence of K+. At lower concentrations of K+ and in the presence of Na+, the hydrolysis of FAP at 0 degree C proceeds substantially through the E1-E2 pathway characteristic of ATP hydrolysis. The selectivity of FAP for the E2-K+-dependent pathway is due to the thermal inactivation of E1 at 25 degrees C in the absence of ATP or ATP analogues, even at high concentrations of Na+. These results emphasize the existence of multiple functional "E1" and "E2" states in the overall ATPase-ion translocation pathway.
Collapse
|
19
|
Divalent cations and the phosphatase activity of the (Na + K)-dependent ATPase. J Bioenerg Biomembr 1985; 17:183-200. [PMID: 2989260 DOI: 10.1007/bf00751061] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Phosphatase activity of a kidney (Na + K)-ATPase preparation was optimally active with Mg2+ plus K+. Mn2+ was less effective and Ca2+ could not substitute for Mg2+. However, adding Ca2+ with Mg2+ or substituting Mn2+ for Mg2+ activated it appreciably in the absence of added K+, and all three divalent cations decreased apparent affinity for K+. Inhibition by Na+ decreased with higher Mg2+ concentrations, when Ca2+ was added, and when Mn2+ was substituted for Mg2+. Dimethyl sulfoxide, which favors E2 conformations of the enzyme, increased apparent affinity for K+, whereas oligomycin, which favors E1 conformations, decreased it. These observations are interpretable in terms of activation through two cases of cation sites. (i) At divalent cation sites, Mg2+ and Mn2+, favoring (under these conditions) E2 conformations, are effective, whereas Ca2+, favoring E1, is not, and monovalent cations complete. (ii) At monovalent cation sites divalent cations compete with K+, while Na+ at these sites favors E1 conformations. K+ increases the Km for substrate, but both Ca2+ and Mn2+ decrease it, perhaps by competing with K+. On the other hand, phosphatase activity in the presence of Na+ plus K+ is stimulated by dimethyl sulfoxide, by higher concentrations of Mg2+ and Mn2+, but not by adding Ca2+; this is consistent with stimulation occurring through facilitation of an E1 to E2 transition, perhaps an E1-P to E2-P step like that in the (Na + K)-ATPase reaction sequence. However, oligomycin stimulates phosphatase activity with Mg2+ plus Na+ alone or Mg2+ plus low K+: this effect of oligomycin may reflect acceleration, in the absence of adequate K+, of an alternative E2-P to E1 pathway bypassing the monovalent cation-activated steps in the hydrolytic sequence.
Collapse
|
20
|
Schenk DB, Hubert JJ, Leffert HL. Use of a monoclonal antibody to quantify (Na+,K+)-ATPase activity and sites in normal and regenerating rat liver. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42695-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Schuurmans Stekhoven FM, Swarts HG, Fu YF, Kuijpers GA, De Pont JJ, Bonting SL. Thiophosphorylation of (Na + K+)-ATPase yields an ADP-sensitive phosphointermediate. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 774:277-87. [PMID: 6331507 DOI: 10.1016/0005-2736(84)90302-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1) Treatment of (Na+ + K+)-ATPase from rabbit kidney outer medulla with the gamma-35S labeled thio-analogue of ATP in the presence of Na+ + Mg2+ and the absence of K+ leads to thiophosphorylation of the enzyme. The Km value for [gamma-S]ATP is 2.2 microM and for Na+ 4.2 mM at 22 degrees C. Thiophosphorylation is a sigmoidal function of the Na+ concentration, yielding a Hill coefficient nH = 2.6. (2) The thio-analogue (Km = 35 microM) can also support overall (Na+ + K+)-ATPase activity, but Vmax at 37 degrees C is only 1.13 mumol X (mg protein)-1 X h-1 or 0.09% of the specific activity for ATP (Km = 0.43 mM). (3) The thiophosphoenzyme intermediate, like the natural phosphoenzyme, is sensitive to hydroxylamine, indicating that it also is an acylphosphate. However, the thiophosphoenzyme, unlike the phosphoenzyme, is acid labile at temperatures as low as 0 degree C. The acid-denatured thiophosphoenzyme has optimal stability at pH 5-6. (4) The thiophosphorylation capacity of the enzyme is equal to its phosphorylation capacity, indicating the same number of sites. Phosphorylation by ATP excludes thiophosphorylation, suggesting that the two substrates compete for the same phosphorylation site. (5) The (apparent) rate constants of thiophosphorylation (0.4 s-1 vs. 180 s-1), spontaneous dethiophosphorylation (0.04 s-1 vs. 0.5 s-1) and K+-stimulated dethiophosphorylation (0.54 s-1 vs. 230 s-1) are much lower than those for the corresponding reactions based on ATP. (6) In contrast to the phosphoenzyme, the thiophosphoenzyme is ADP-sensitive (with an apparent rate constant in ADP-induced dethiophosphorylation of 0.35 s-1, Km ADP = 48 microM at 0.1 mM ATP) and is relatively K+-insensitive. The Km for K+ in dethiophosphorylation is 0.9 mM and in dephosphorylation 0.09 mM. The thiophosphoenzyme appears to be for 75-90% in the ADP-sensitive E1-conformation.
Collapse
|
22
|
Swann AC. Brain (Na+,K+)-ATPase. Opposite effects of ethanol and dimethyl sulfoxide on temperature dependence of enzyme conformation and univalent cation binding. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44298-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Chipman DM, Lev A. Modification of the conformational equilibria in the sodium and potassium dependent adenosinetriphosphatase with glutaraldehyde. Biochemistry 1983; 22:4450-9. [PMID: 6313040 DOI: 10.1021/bi00288a016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Glutaraldehyde treatment of electroplax membrane preparations of Na,K-ATPase leads to irreversible changes in the enzymic behavior of the protein, which are not due to modification of the active site. When the glutaraldehyde treatment is carried out in a medium containing K+ and without Na+, the "K+-modified enzyme" so produced shows the following changes in enzymic properties: The steady-state phosphorylation by ATP and the rate of ATP-ADP exchange are decreased to approximately 40% of control, while Na,K-ATPase activity decreases to approximately 15% of control. Phosphatase activity is decreased very little, but the potassium activation parameters of the reaction are changed, from K0.5 approximately equal to 5 mM and nH = 1.9 in control to K0.5 approximately equal to 0.5 mM and nH = 1 in K+-modified enzyme. KI(app) for nucleotide inhibition of phosphatase activity is increased significantly. Changes in the cation dependence of the ATPase reaction are also observed. All of these effects can be explained by assuming that the cross-linking of surface groups in protein subunits when they are in conformation E2 shifts the intrinsic conformational equilibrium of the enzyme toward E2. We considered the simplest mathematical model for the coupling between K+ binding and the conformational equilibrium, with equivalent potassium sites that must be simultaneously in the same state. If one assumes that the potassium activation of phosphatase activity in the K+-modified enzyme reflects the affinity for K+ of E2, the behavior of the phosphatase activity in the native enzyme can be fit if there are only two potassium sites, whose affinity is 80-fold higher in E2 than in E1, and the equilibrium constant for E2 in equilibrium E1 is about 250. The same sites can explain the activation of dephosphorylation during ATP hydrolysis. Independent of the model chosen, potassium ions must be required for the catalytic action of form E2 and cannot be merely "allosteric activators". The enzyme modified with glutaraldehyde in a medium containing Na+ also has interesting properties, but their rationalization is less straightforward. The Na,K-ATPase activity is inhibited more than the "partial reactions", as in the K+-modified enzyme. We suggest that this is a generally expected result of modifications of the enzyme.
Collapse
|
24
|
Swann AC. (Na+,K+)-ATPase of mammalian brain: effects of temperatures on cation and ATP interactions regulating phosphatase activity. Arch Biochem Biophys 1983; 221:148-57. [PMID: 6299201 DOI: 10.1016/0003-9861(83)90131-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effects of temperature on interactions between univalent cations or ATP and the p-nitrophenylphosphatase activity associated with brain (Na+,K+)-ATPase were examined. The apparent affinity for K+ activation under conditions favoring the moderate affinity site was temperature dependent, increasing with decreasing temperature. A comparison of univalent cations showed that the negative apparent delta H and delta S for cation binding increased with increasing apparent cation affinity. In contrast to the case with the moderate affinity sites, apparent affinity for the high affinity K+ site was independent of temperature. As temperature decreased, properties of moderate affinity site binding approached those of the high affinity site. The temperature dependence of ATP inhibition was opposite to that for K+ activation, with positive apparent delta H and delta S. The apparent delta H and delta S for cation binding approached those for the overall conformational change to K+-sensitive enzyme as cation affinity increased. These data suggest that E2, the K+-sensitive form of (Na+,K+)-ATPase, is stabilized by forces that require a decrease in entropy, explaining the predominant existence of E1 at physiologic temperatures. A conformational change leading to stabilization of E2 at higher temperatures can be produced by binding of univalent cations to a moderate affinity, presumably intracellular, site. This effect is counteracted by ATP. ATP also appears to alter the selectivity of this site to favor Na+ over K+ binding.
Collapse
|
25
|
Sen PC, Pfeiffer DR. Characterization of partially purified (Na+ + K+)-ATPase from porcine lens. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 693:34-44. [PMID: 6295483 DOI: 10.1016/0005-2736(82)90468-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The partial purification of (Na+ + K+)-ATPase from pig lens has been achieved by treatment with deoxycholate followed by density gradient centrifugation. The specific activity of the final preparation, ranging from 300 to 500 nmol/h per mg protein, is increased approx. 100-fold compared to the homogenate. A parallel increase in rho-nitrophenylphosphatase activity is also observed. Sodium dodecyl sulfate (SDS) gel electrophoresis reveals six major protein bands, one of which is the 93 kDa alpha subunit of (Na+ + K+)-ATPase which can be phosphorylated by reaction with [gamma-32P]ATP. A second band contains a glycoprotein which displays an apparent molecular weight of 51000 and thus appears to be the beta subunit of the enzyme. The enzyme is sensitive to ouabain with the I50 for (Na+ + K+)-ATPase and rho-nitrophenylphosphatase inhibition being 1.2 and 1.3 microM, respectively. Several agents which inhibit (Na+ + K+)-ATPase from other tissues such as oligomycin, Ca2+, vanadate, N-ethylmaleimide, rho-chloromercuribenzenesulfonic acid (PCMBS) and 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) also inhibit the lens enzyme. Monovalent cations other than K+ are partially effective in activating the (Na+ + K+)-ATPase and rho-nitrophenylphosphatase activities. The K+ congeners were relatively more effective in supporting (Na+ + K+)-ATPase compared to rho-nitrophenylphosphatase activity. Other kinetic properties of the lens enzyme are also comparable to those of the enzyme from other tissues. Utilizing the partially purified membrane bound enzyme, discontinuities in Arrhenius plots of (Na+ + K+)-ATPase activity, rho-nitrophenylphosphatase activity and fluorescence polarization of the fluidity probe, 1,6-diphenyl-1,3,5-hexatriene (DPH), are observed near the physiological temperature of lens. The possible significance of these observations for the mechanism of cataract formation are discussed.
Collapse
|
26
|
Schwartz A, Whitmer K, Grupp G, Grupp I, Adams RJ, Lee SW. Mechanism of action of digitalis: is the Na,K-ATPase the pharmacological receptor? Ann N Y Acad Sci 1982; 402:253-71. [PMID: 6301334 DOI: 10.1111/j.1749-6632.1982.tb25746.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Robinson JD. Tryptic digestion of the (Na + K)-ATPase is both sensitive to and modifies K+ interactions with the enzyme. J Bioenerg Biomembr 1982; 14:319-33. [PMID: 6298194 DOI: 10.1007/bf00743061] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tryptic digestion of the (Na + K)-ATPase in the presence of choline chloride or NaCl ("Na-type") and in the presence of KCl ("K-type") produced distinct patterns of peptide fragments and losses of catalytic activity. The K0.5 for K+ to shift digestion from the Na-type, and its sensitivity to dimethyl sulfoxide and Triton X-100, were consistent with K+ acting at sites on the cytoplasmic face of the enzyme through which the K-phosphatase reaction also is activated. Reagents favoring the E1 conformational states, oligomycin, Triton, and ATP, shifted the pattern toward the Na-type, whereas those favoring E2 states, dimethyl sulfoxide, MgCl2, and MnCl2, shifted the pattern toward the K-type. Na-type digestion caused a greater loss of K-phosphatase than (Na + K)-ATPase activity, and the residual K-phosphatase activity was more sensitive to inhibition by Triton and ATP but stimulated more by dimethyl sulfoxide and inhibited less by Pi and MnCl2; all these effects are consistent with such digestion shifting equilibria toward E1 enzyme states. Accordingly, the K0.5 for K+ to activate the (Na + K)-ATPase was increased. However, the K0.5 for the K-phosphatase was unchanged; this observation requires revision of previous formulations, and bears on additional aspects of enzyme activity as well.
Collapse
|
28
|
Suketa Y, Ujiie M, Okada S. Alteration of sodium and potassium mobilization and of adrenal function by long-term ingestion of lead. Biochem Pharmacol 1982; 31:2913-9. [PMID: 6291551 DOI: 10.1016/0006-2952(82)90263-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Serum sodium concentration was markedly decreased by long-term (12 weeks) ingestion of lead above 5 mg Pb . kg-1 . day-1, whereas serum potassium concentration was notably decreased by the long-term (12 weeks) ingestion of lead above 2 mg Pb . kg-1. Urinary sodium and potassium in fasted rats were increased markedly 24 hr after a single lead dose (200 mg Pb/kg, o.p.) [Y. Suketa, S. Hasegawa and T. Yamamoto, Toxic. appl. Pharmac. 47, 203 (1979)]. In contrast, urinary excretion of sodium or potassium in non-fasted rats was not changed significantly by 2 weeks of lead ingestion at 200 mg Pb . kg-1 . day-1. Renal activities of Na+, K+-ATPase and K+-dependent phosphatase were decreased to 50-70% of control values by long-term (12 weeks) ingestion of lead (above 5 mg Pb . kg-1 . day-1).
Collapse
|
29
|
Abstract
Brain (Na+,K+)-adenosine triphosphatase (EC 3.6.1.3) has both high and low affinity ouabain binding sites. It has been proposed that the high affinity ouabain binding sites characterize a nerve-specific form of the enzyme. Erythrosin B has been reported to inhibit high affinity ouabain binding selectively. The experiments in this paper were carried out in order to characterize the interactions of erythrosin B with (Na+,K+)-ATPase and to examine the specificity of erythrosin B for enzyme with high affinity for ouabain. Inhibition by erythrosin B was biphasic, with a rapid and a slow phase. The rapid phase appeared to be relatively specific for enzyme with high affinity for ouabain, while the slow phase was not. Inhibition by erythrosin B was accelerated by Mg2+ and was retarded by ATP, K+, or Na+ and ATP. Erythrosin B increased apparent affinity of the enzyme for K+ and decreased apparent affinity for Na+ and for ATP. These results indicate that erythrosin B interacts with an ATP site and has effects on cation affinities opposite to those of ATP. Erythrosin B inhibition is proportional to high affinity ouabain binding if brief incubation times and moderate concentrations are used.
Collapse
|
30
|
|
31
|
Abstract
A particulate (Na + K)-ATPase preparation from dog kidney bound [48V]-ortho-vanadate rapidly at 37 degrees C through a divalent cation-dependent process. In the presence of 3 mM MgCl2 the Kd was 96 nM; substituting MnCl2 decreased the Kd to 12 nM but the maximal binding remained the same, 2.8 nmol per mg protein, consistent with 1 mol vanadate per functional enzyme complex. Adding KCl in the presence of MgCl2 increased binding, with a K0.5 for KCl near 0.5 mM; the increased binding was associated with a drop in Kd for vanadate to 11 nM but with no change in maximal binding. Adding NaCl in the presence of MgCl2 decreased binding markedly, with an I50 for NaCl of 7 mM. However, in the presence of MnCl2 neither KCl nor NaCl affected vanadate binding appreciably. Both the nonhydrolyzable, beta, gamma-imido analog of ATP and nitrophenyl phosphate, a substrate for the K-phosphatase reaction that this enzyme also catalyzes, decreased vanadate binding at concentrations consistent with their acting at the low-affinity substrate site of the enzyme, the presence of KCl increased the concentration of each required to decrease vanadate binding. Oligomycin decreased vanadate binding in the presence of MgCl2, whereas dimethyl sulfoxide and ouabain increased it. With inside-out membrane vesicles from red blood cells vanadate inhibited both the K-phosphatase and (Na + K)-ATPase reactions; however, with the K-phosphatase reaction extravesicular K+ (corresponding to intracellular K+) both stimulated catalysis and augmented vanadate inhibition, whereas with the (Na + K)-ATPase reaction intravesicular K+ (corresponding to extracellular K+) both stimulated catalysis and augmented vanadate binding.
Collapse
|
32
|
Maxild J, Møller JV, Iqbal Sheikh M. Involvement of Na+-K+-ATPase in p-aminohippurate transport by rabbit kidney tissue. J Physiol 1981; 315:189-201. [PMID: 6273539 PMCID: PMC1249376 DOI: 10.1113/jphysiol.1981.sp013741] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
1. The relation between renal accumulation of p-aminohippurate (PAH), Na+-K+-ATPase activity, and the transmembranal Na+ gradient has been investigated by the use of cortex slices of rabbit kidney. 2. A moderate stimulation of PAH uptake rate was observed under anaerobic conditions in the presence of an extracellular-to-intracellular directed gradient of Na+. 3. Inhibition of aerobic accumulation of PAH by ouabain was related to a decrease in Na+-K+-ATPase activity, as evidenced by changes in tissue concentrations of Na+ and K+ and by measurements of high-affinity binding of ouabain to the slices. 4. Accumulation of PAH in media with various concentrations of Na+ and K+ resembled the effect of the cations on the ATPase activity of an isolated preparation of Na+-K+-ATPase. 5. Counteraction of the inhibitory effect of ouabain on PAH accumulation by a high concentration of K+ in the medium was related to retention of Na+-K+-ATPase activity, as evidenced by preservation of tissue--medium gradients of Na+ and K+. 6. The present data provide strong evidence for the involvement of Na+-K+-ATPase in the energization of renal PAH accumulation. However, it appears probable that a metabolic (Na+-gradient-independent) component, in addition to a Na+ gradient, is essential for the attainment of high accumulation ratios of PAH by intact renal cells.
Collapse
|
33
|
Robinson JD. Substituting manganese for magnesium alters certain reaction properties of the (Na+ + K+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 642:405-17. [PMID: 6269615 DOI: 10.1016/0005-2736(81)90456-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
MnCl2 was partially effective as a substitute for MgCl2 in activating the K+- dependent phosphatase reaction catalyzed by a purified (Na+ + K+)-ATPase enzyme preparation from canine kidney medulla, the maximal velocity attainable being one-fourth that with MgCl2. Estimates of the concentration of free Mn2+ available when the reaction was half-maximally stimulated lie in the range of the single high-affinity divalent cation site previously identified (Grisham, C.M. and Mildvan, A.S. (1974) J. Biol. Chem. 249, 3187--3197). MnCl2 competed with MgCl2 as activator of the phosphatase reaction, again consistent with action through a single site. However, with MnCl2 appreciable ouabain-inhibitable phosphatase activity occurred in the absence of added KCl, and the apparent affinities for K+ as activator of the reaction and for Na+ as inhibitor were both decreased. For the (Na+ + K+)-ATPase reaction substituting MnCl2 for MgCl2 was also partially effective, but no stimulation in the absence of added KCl, in either the absence or presence of NaCl, was detectable. Moreover, the apparent affinity for K+ was increased by the substitution, although that for Na+ was decreased as in the phosphatase reaction. Substituting MnCl2 also altered the sensitivity to inhibitors. For both reactions the inhibition by ouabain and by vanadate was increased, as was binding of [48V] -vanadate to the enzyme; furthermore, binding in the presence of MnCl2 was, unlike that with MgCl2, insensitive to KCl and NaCl. Inhibition of the phosphatase reaction by ATP was decreased with 1 mM but not 10 mM KCl. Finally, inhibition of the (Na+ + K+)-ATPase reaction by Triton X-100 was increased, but that by dimethylsulfoxide decreased after such substitution. These findings are considered in terms of Mn2+ at the divalent cation site being a better selector than Mg2+ of the E2 conformational states of the enzyme, states also selected by K+ and by dimethylsulfoxide and reactive with ouabain and vanadate; the E1 conformational states, by contrast, are those selected by Na+ and ATP, and also by Triton X-100.
Collapse
|
34
|
Kalant H, Rangaraj N. Interaction of catecholamines and ethanol on the kinetics of rat brain (Na+ + K+)-ATPase. Eur J Pharmacol 1981; 70:157-66. [PMID: 6266841 DOI: 10.1016/0014-2999(81)90210-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effects of catecholamines (CA) and ethanol (EtOH), singly and in combination, on the kinetics of rat brain (Na+ + K+)-ATPase were studied. Addition of 0.05 M EtOH alone did not change Vmax or Km for K+, Na+, Mg2+ and ATP. Addition of 0.1 mM dopamine (DA) or noradrenaline (NA) alone stimulated the enzyme activity in presence of vanadium-containing ATP as substrate, but not with vanadium-free ATP except in the presence of high Mg2+ : ATP ratios. CA alone decreased the Km slightly for K+ and by about 50% for ATP, increased it for Mg2+ and did not change it for Na+. However, the combination of DA or NA + EtOH produced a marked inhibition which was competitive for K+, and uncompetitive or mixed for Mg2+, Na+ and ATP. The inhibitory effect of NA + EtOH was abolished in 20 mM K+. These findings suggest that NA sensitizes the enzyme to EtOH inhibition at physiological K+ concentrations, by conformational change away from the outwardly facing K+-binding E2P for to the inwardly facing Na+-binding E1P form.
Collapse
|
35
|
Trachtenberg MC, Packey DJ, Sweeney T. In vivo functioning of the Na+, K+-activated ATPase. CURRENT TOPICS IN CELLULAR REGULATION 1981; 19:159-217. [PMID: 6277572 DOI: 10.1016/b978-0-12-152819-5.50022-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Schoot BM, van Emst-de Vries SE, van Haard PM, de Pont JJ, Bonting SL. Studies on (Na+ + K+)-activated ATPase. XLVI. Effect of cation-induced conformational changes on sulfhydryl group modification. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 602:144-54. [PMID: 6251884 DOI: 10.1016/0005-2736(80)90297-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
(1) (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.1.6.3) contains 34 sulfhydryl groups on the catalytic subunit, and two on the glycoprotein subunit. Under native conditions, only sulfhydryl groups on the catalytic subunit are accessible to modifying reagents. (2) The degree of inhibition of (Na+ + K+)-ATPase activity by N-ethylmaleimide and 5,5'-dithiobis(2-nitrobenzoic acid) depends on the cations present in the reaction medium. Mg2+ strongly enchances the inhibitory effects of both sulfhydryl reagents. The effects of Mg2+ on the inhibition by 5,5'-dithiobis(2-nitrobenzoic acid) are counteracted by the addition of Na+ or K+. Na+ has no more effect than choline on the inhibition by 5,5'-dithiobis(2-nitrobenzoic acid), but it enhances the inhibitory effect of N-ethylmaleimide at low Na+ concentrations (less than 10 mM). Low concentrations of K+ (less than 10 mM) slightly protect the enzyme against modification. (3) Titration of residual sulfhydryl groups reveals that these ions do not only influence modification of essential sulfhydryl groups, but also that of sulfhydryl groups which are not essential for the enzyme activity. (4) These results indicate that Na+, K+ and Mg2+ have marked effects on the conformation of the catalytic subunit of (Na+ + K+)-ATPase. Various enzyme conformations can be induced, depending on the concentration and the kind of cation added. The largest effects are observed after addition of Mg2+.
Collapse
|
37
|
Swann AC, Marini JL, Sheard MH, Maas JW. Effects of chronic dietary lithium on activity and regulation of (Na+,K+)-adenosine triphosphatase in rat brain. Biochem Pharmacol 1980; 29:2819-23. [PMID: 6254539 DOI: 10.1016/0006-2952(80)90017-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Abstract
We report on the interactions of Li+, a congener of K+ with the (Na+ + K+)-ATPase from E Electricus as measured by their effects on the rate of [3H]-ouabain binding to this enzyme. Like K+, Li+ slows ouabain binding under both Type I (Na+ + ATP) and Type II (P1) conditions, but with lower affinity. In contrast to K+, the Li+ inhibition curve is hyperbolic, suggesting interaction at an uncoupled site. Also differing from the complete inhibition by high K+, a residual ouabain-binding rate persists at high Li+. The interactions of Li+ and K+ are synergistic: the apparent K+ affinity increases 3 to 4-fold in presence of Li+. These results are consistent with the conclusion that Li+ interacts with only one of the two K+ sites and may be of interest in interpreting lithium pharmacology.
Collapse
|
39
|
Interactions of K+ with (Na,K)-ATPase orientation of K+-phosphatase sites studied with inside-out red cell membrane vesicles. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)43907-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Robinson JD. Enzyme modifications that alter interactions of K+ and cardioactive steroids with (Na+ + K+)-dependent ATPase. Biochem Pharmacol 1980; 29:1995-2000. [PMID: 6250547 DOI: 10.1016/0006-2952(80)90483-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
41
|
Robinson JD. Sensitivity of the (Na+ + k+)-atpase to state-dependent inhibitors. Effects of digitonin and Triton X-100. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 598:543-53. [PMID: 6248111 DOI: 10.1016/0005-2736(80)90034-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Treatment of a purified (NA+ + 5+)-ATPase preparation from dog kidney with digitonin reduced enzymatic activity, with the (Na+ + k+)-atpase reaction inhibited more than the K+-phosphatase reaction that is also catalyzed by this enzyme. Under the usual assay conditions oligomycin inhibits the (Na+ + k+)-atpase reaction but not the K+-phosphatase reaction; however, treatment with digitonin made the K+-phosphatase reaction almost as sensitive to oligomycin as the (Na+ + k+)-atpase reaction. The non-ionic detergents, Triton X-100, Lubrol WX and Tween 20, also conferred sensitivity to oligomycin on the K+-phosphatase reaction (in the absence of oligomycin all these detergents, unlike digitonin, inhibited the K+-phosphatase reaction more than the (Na+ + k+)-atpase reaction). Both digitonin and Triton markedly increased the K0.5 for K+ as activator of the K+-phosphatase reaction, with little effect on the K0.5 for K+ as activator of the (Na+ + k+)-ATpase reaction. In contrast, increasing the K0.5 for K+ in the K+-phosphatase reaction by treatment of the enxyme with acetic anhydride did not confer sensitivity to oligomycin. Both digitonin and Triton also increased the inhibition of the K+-phosphatase reaction by ATP and increased the inhibition by inorganic phosphate and vanadate. These observations are interpreted as digitonin and Triton favoring the E1 conformational state of the enzyme (manifested by sensitivity to oligomycin and a greater affinity for ATP at the low-affinity substrate sites), as opposed to the E2 state (manifested by insensitivity to oligomycin, greater sensitivity to phosphate and vanadate, and a lower K0.5 for K+ in the K+-phosphatase reaction). In addition, digitonin blocked activation of the phosphatase reaction by Na+ plus CTP. This effect is consistent with digitonin dissociating the catalytic subunits of the enzyme, the interaction of which may be essential for activation by Na+ plus nucleotide.
Collapse
|
42
|
Siegel G, Iyengar S, Fogt S. Electrophorus electricus (Na+ + K+)-ATPase. Evidence for simultaneous Na+ and K+ binding in the presence of Pb2+. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)85616-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Rangaraj N, Kalant H. Acute and chronic catecholamine-ethanol interactions on rat brain (Na+ + K+)-ATPase. Pharmacol Biochem Behav 1980; 13 Suppl 1:183-9. [PMID: 6264496 DOI: 10.1016/s0091-3057(80)80029-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Noradrenaline (N) sensitizes rat brain (Na+ + K+)-ATPase to inhibition by low concentrations of ethanol (E). Only 1-N and not d-N was effective. The sensitization is also produced by other alpha-adrenergic agonists (adrenaline, phenylephrine), but not by isoproterenol, and is prevented by phentolamine but not by propranolol. The sensitization is greater with partially purified enzyme than with crude homogenates. N + E, like much higher concentrations of E alone, produced competitive inhibition with respect to K+ but uncompetitive or mixed inhibition with respect to Na+, Mg++ and ATP, and a reduced "physiological efficiency" of ATP utilization. All these changes were abolished by increasing K+ to 20 mM. After 3-week E treatment, with or without withdrawal, the N + E interaction was markedly reduced, though basal ATPase activity was increased only after withdrawal. Temperature-dependence studies (Arrhenius plots) indicated that sensitization occurs by alteration of activation energy only above the transition temperature. These findings suggest that alpha-agonists fluidize membrane lipids and thus facilitate conformational change of the enzyme by E, resulting in inhibition.
Collapse
|
44
|
Robinson JD, Flashner MS. Modification of the (Na+ + K+)-dependent ATPase by acetic anhydride and trinitrobenzene sulfonate: specific changes in enzymatic properties. Arch Biochem Biophys 1979; 196:350-62. [PMID: 225994 DOI: 10.1016/0003-9861(79)90587-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
(Na+ + K+)-adenosine triphosphatase of mammalian brain. Catalytic and regulatory K+ sites distinguishable by selectivity for Li+. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(17)30045-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
46
|
Grisar T, Frere JM, Franck G. Effect of K+ ions on kinetic properties of the (Na+, K+)-ATPase (EC 3.6.1.3) of bulk isolated glial cells, perikarya and synaptosomes from rabbit brain cortex. Brain Res 1979; 165:87-103. [PMID: 218691 DOI: 10.1016/0006-8993(79)90047-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Progress curves of the enzymatic reactions show that ATPases of bulk isolated glial cells, perikarya and synaptosomes exhibit hysteretic change. Initial velocities of enzyme activities were therefore obtained according to the equation valid for the hysteretic model. The (Na+, K+)-ATPase activities of the same brain fractions were measured before or after NaI treatment. Only glial and synaptosomal enzyme could be adequately extracted by using this procedure. Attempts to purify the (Na+, K+)-ATPase from brain perikarya by NaI extraction were unsuccessful. In order to determine the effect of the K+ ions on enzymic physiological efficiency (phys. eff.; i.e., the ratio Vmax/Kmapp) the variation of (Na+, K+)-ATPase activities from each brain fraction was measured as a function of Mg.ATP2- concentration in the presence of 5 and 20 mM K+ ions. High K+ ion concentrations (20 mM) increased the physiological efficiency of glial enzyme and decreased the same kinetic parameter in neuronal (perikaryal as well as synaptosomal) enzyme preparations. Results are discussed in relation to a possible distribution of distinct enzyme in different brain cell populations as well as a possible role of glial cells in an active regulation of K+ ion extracellular fluid in the CNS.
Collapse
|
47
|
Flashner MS, Robinson JD. Effects of Mg(2+) on activation of the (Na(+) + K(+)-dependent ATPase by Na(+1). Arch Biochem Biophys 1979; 192:584-91. [PMID: 219783 DOI: 10.1016/0003-9861(79)90129-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Robinson JD, Flashner MS, Marin GK. Inhibition of the (Na+ + K+)-dependent ATPase by inorganic phosphate. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 509:419-28. [PMID: 148911 DOI: 10.1016/0005-2736(78)90236-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Rossi B, Gache C, Lazdunski M. Specificity and interactions at the cationic sites of the axonal (Na+, K+)-activated adenosinetriphosphatase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1978; 85:561-70. [PMID: 148358 DOI: 10.1111/j.1432-1033.1978.tb12271.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Swann AC, Albers RW. Sodium and potassium ion-dependent adenosine triphosphatase of mammalian brain. Interactions of magnesium ions with the phosphatase site. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 523:215-27. [PMID: 147107 DOI: 10.1016/0005-2744(78)90024-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Kinetic parameters are reported for Mg2+, Na+ and K+ as activators of the p-nitrophenylphosphatase activity associated with (Na+ + K+)-ATPase (ATP-phosphohydrolase, EC 3.6.1.3) of beef brain. In each case the phosphatase reaction is activated at low concentrations of the cation and inhibited by higher concentrations. The concentrations of cation that produced half-maximal activation and half-maximal inhibition are increased as the concentration of either of the other two cations is increased. These second ligand effects are all saturable functions. The apparent binding constant that characterizes the effect on activation is closely similar to that acting upon the inhibitory phase in each case.
Collapse
|