1
|
Yang X, Rapp CK, Li Y, Forstner M, Griese M. Quantifying Functional Impairment of ABCA3 Variants Associated with Interstitial Lung Disease. Int J Mol Sci 2023; 24:ijms24087554. [PMID: 37108718 PMCID: PMC10141231 DOI: 10.3390/ijms24087554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
ATP-binding cassette subfamily A member 3 (ABCA3) is a lipid transporter within alveolar type II cells. Patients with bi-allelic variants in ABCA3 may suffer from a variable severity of interstitial lung disease. We characterized and quantified ABCA3 variants' overall lipid transport function by assessing the in vitro impairment of its intracellular trafficking and pumping activity. We expressed the results relative to the wild type, integrated the quantitative readouts from eight different assays and used newly generated data combined with previous results to correlate the variants' function and clinical phenotype. We differentiated normal (within 1 normalized standard deviation (nSD) of the wild-type mean), impaired (within 1 to 3 nSD) and defective (beyond 3 nSD) variants. The transport of phosphatidylcholine from the recycling pathway into ABCA3+ vesicles proved sensitive to the variants' dysfunction. The sum of the quantitated trafficking and pumping predicted a clinical outcome. More than an approximately 50% loss of function was associated with considerable morbidity and mortality. The in vitro quantification of ABCA3 function enables detailed variant characterization, substantially improves the phenotype prediction of genetic variants and possibly supports future treatment decisions.
Collapse
Affiliation(s)
- Xiaohua Yang
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
| | - Christina K Rapp
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
| | - Yang Li
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
- Medical College, Chongqing University, Chongqing 400030, China
| | - Maria Forstner
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
| | - Matthias Griese
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
| |
Collapse
|
2
|
Bridges JP, Ikegami M, Brilli LL, Chen X, Mason RJ, Shannon JM. LPCAT1 regulates surfactant phospholipid synthesis and is required for transitioning to air breathing in mice. J Clin Invest 2010; 120:1736-48. [PMID: 20407208 DOI: 10.1172/jci38061] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 02/10/2010] [Indexed: 01/18/2023] Open
Abstract
Respiratory distress syndrome (RDS), which is the leading cause of death in premature infants, is caused by surfactant deficiency. The most critical and abundant phospholipid in pulmonary surfactant is saturated phosphatidylcholine (SatPC), which is synthesized in alveolar type II cells de novo or by the deacylation-reacylation of existing phosphatidylcholine species. We recently cloned and partially characterized a mouse enzyme with characteristics of a lung lysophosphatidylcholine acyltransferase (LPCAT1) that we predicted would be involved in surfactant synthesis. Here, we describe our studies investigating whether LPCAT1 is required for pulmonary surfactant homeostasis. To address this issue, we generated mice bearing a hypomorphic allele of Lpcat1 (referred to herein as Lpcat1GT/GT mice) using a genetrap strategy. Newborn Lpcat1GT/GT mice showed varying perinatal mortality from respiratory failure, with affected animals demonstrating hallmarks of respiratory distress such as atelectasis and hyaline membranes. Lpcat1 mRNA levels were reduced in newborn Lpcat1GT/GT mice and directly correlated with SatPC content, LPCAT1 activity, and survival. Surfactant isolated from dead Lpcat1GT/GT mice failed to reduce minimum surface tension to wild-type levels. Collectively, these data demonstrate that full LPCAT1 activity is required to achieve the levels of SatPC essential for the transition to air breathing.
Collapse
Affiliation(s)
- James P Bridges
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio45229, USA
| | | | | | | | | | | |
Collapse
|
3
|
Nakanishi H, Shindou H, Hishikawa D, Harayama T, Ogasawara R, Suwabe A, Taguchi R, Shimizu T. Cloning and characterization of mouse lung-type acyl-CoA:lysophosphatidylcholine acyltransferase 1 (LPCAT1). Expression in alveolar type II cells and possible involvement in surfactant production. J Biol Chem 2006; 281:20140-7. [PMID: 16704971 DOI: 10.1074/jbc.m600225200] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine, PC), is an important constituent of biological membranes. It is also the major component of serum lipoproteins and pulmonary surfactant. In the remodeling pathway of PC biosynthesis, 1-acyl-sn-glycero-3-phosphocholine (LPC) is converted to PC by acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT, EC 2.3.1.23). Whereas LPCAT activity has been detected in several tissues, the structure and detailed biochemical information on the enzyme have not yet been reported. Here, we present the cloning and characterization of a cDNA for mouse lung-type LPCAT (LPCAT1). The cDNA encodes an enzyme of 60 kDa, with three putative transmembrane domains. When expressed in Chinese hamster ovary cells, mouse LPCAT1 exhibited Ca(2+)-independent activity with a pH optimum between 7.4 and 10. LPCAT1 demonstrated a clear preference for saturated fatty acyl-CoAs, and 1-myristoyl- or 1-palmitoyl-LPC as acyl donors and acceptors, respectively. Furthermore, the enzyme was predominantly expressed in the lung, in particular in alveolar type II cells. Thus, the enzyme might synthesize phosphatidylcholine in pulmonary surfactant and play a pivotal role in respiratory physiology.
Collapse
Affiliation(s)
- Hiroki Nakanishi
- Department of Metabolome, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Batenburg JJ, Haagsman HP. The lipids of pulmonary surfactant: dynamics and interactions with proteins. Prog Lipid Res 1998; 37:235-76. [PMID: 10193527 DOI: 10.1016/s0163-7827(98)00011-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- J J Batenburg
- Laboratory of Veterinary Biochemistry, Graduate School of Animal Health, Utrecht University, The Netherlands.
| | | |
Collapse
|
5
|
Hundertmark S, Ragosch V, Schein B, Bühler H, Lorenz U, Fromm M, Weitzel HK. Gestational age dependence of 11 beta-hydroxysteroid dehydrogenase and its relationship to the enzymes of phosphatidylcholine synthesis in lung and liver of fetal rat. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1210:348-54. [PMID: 8305490 DOI: 10.1016/0005-2760(94)90239-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Increase in fetal surfactant synthesis and lung maturity is caused by the glucocorticoidal induction of enzymes required for phosphatidylcholine (PC) synthesis towards the end of gestation. The regulation of gestational age-dependent induction of PC synthesis by glucocorticoids is still unclear. Since 11-beta-hydroxysteroid dehydrogenase (11 beta-HSD) activity and its metabolising capacity for glucocorticoids have been suggested to play a central role in this regulation, we measured the gestational age-dependent changes in 11 beta-HSD and PC synthesizing enzymes in lung and liver of fetal rat. The activity of cholinephosphate cytidyltransferase (CCT; key enzyme in PC synthesis), choline phosphotransferase (CPT) and lysolecithin acyltransferase (LAT) were found to increase gradually in the lung towards the end of gestation, reached peak values at term followed by a decrease of activity reaching finally adult levels. Only CK activity exhibited constant levels until term followed by a slight increase after the birth. In comparison with the lung, the liver enzymes followed a similar pattern, but at a higher rate of activity except for CCT which was higher in the lung. The activity of 11 beta-HSD in fetal lung microsomes was detectable from day 20 and increased towards the end of gestation in the lung and liver of the rat. Oxidase activity was always found to exceed the reductase activity. The activity of 11 beta-HSD continued to increase after delivery and reached peak levels in adult animals in both organs. In order to test the hypothesis, whether 11 beta-HSD activity and PC synthesis are induced by increasing endogenous glucocorticoidal levels, we examined on day 19 of gestation the effect of dexamethasone (DEXA) on enzymatic activities (11 beta-HSD, CCT) and on [14C]choline incorporation in phosphatidylcholine in fetal lung organoid cultures. Additionally, changes in CCT activity in fetal lungs after maternal administration of DEXA were measured. DEXA accelerated 11 beta-HSD and CCT activities as well as [14C]choline incorporation. We conclude, that endogenous glucocorticoids induce PC synthesis as well as 11 beta-HSD activity in lung and liver of the fetal rat. Fetal PC synthesis is not altered by increasing 11 beta-HSD levels, because the increase of free serum corticosterone levels apparently exceeds the metabolising capacity of 11 beta-HSD towards term.
Collapse
Affiliation(s)
- S Hundertmark
- Department of Obstetrics and Gynaecology, Klinikum Steglitz, Freie Universität Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Snyder F, Lee TC, Blank ML. The role of transacylases in the metabolism of arachidonate and platelet activating factor. Prog Lipid Res 1992; 31:65-86. [PMID: 1641397 DOI: 10.1016/0163-7827(92)90016-c] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- F Snyder
- Oak Ridge Associated Universities, Medical Sciences Division, TN 37831-0117
| | | | | |
Collapse
|
7
|
Pérez-Gil J, Martín J, Acebal C, Arche R. Chemical mechanism of lysophosphatidylcholine: lysophosphatidylcholine acyltransferase from rabbit lung. pH-dependence of kinetic parameters. Biochem J 1990; 270:761-4. [PMID: 2241908 PMCID: PMC1131797 DOI: 10.1042/bj2700761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lysophosphatidylcholine: lysophosphatidylcholine acyltransferase is an enzyme that catalyses two reactions: hydrolysis of lysophosphatidylcholine and transacylation between two molecules of lysophosphatidylcholine to give disaturated phosphatidylcholine. Following the kinetic model previously proposed for this enzyme [Martín, Pérez-Gil, Acebal & Arche (1990) Biochem. J. 266, 47-53], the values of essential pK values in free enzyme and substrate-enzyme complexes have now been determined. The chemical mechanism of catalysis was dependent on the deprotonation of a histidine residue with pK about 5.7. This result was supported by the perturbation of pK values by addition of organic solvent. Very high and exothermic enthalpy of ionization was measured, indicating that a conformational re-arrangement in the enzyme accompanies the ionization of the essential histidine residue. These results, as well as the results from previous studies, enabled the proposal of a chemical mechanism for the enzymic reactions catalysed by lysophosphatidylcholine: lysophosphatidylcholine acyltransferase from rabbit lung.
Collapse
Affiliation(s)
- J Pérez-Gil
- Departamento de Bioquímica y Biología Molecular I, Facultad de Química, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
8
|
Martín J, Pérez-Gil J, Acebal C, Arche R. Theoretical approach to the steady-state kinetics of a bi-substrate acyl-transfer enzyme reaction that follows a hydrolysable-acyl-enzyme-based mechanism. Application to the study of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase from rabbit lung. Biochem J 1990; 266:47-53. [PMID: 2310381 PMCID: PMC1131094 DOI: 10.1042/bj2660047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A kinetic model is proposed for catalysis by an enzyme that has several special characteristics: (i) it catalyses an acyl-transfer bi-substrate reaction between two identical molecules of substrate, (ii) the substrate is an amphiphilic molecule that can be present in two physical forms, namely monomers and micelles, and (iii) the reaction progresses through an acyl-enzyme-based mechanism and the covalent intermediate can react also with water to yield a secondary hydrolytic reaction. The theoretical kinetic equations for both reactions were deduced according to steady-state assumptions and the theoretical plots were predicted. The experimental kinetics of lysophosphatidylcholine:lysophosphatidylcholine acyltransferase from rabbit lung fitted the proposed equations with great accuracy. Also, kinetics of inhibition by products behaved as expected. It was concluded that the competition between two nucleophiles for the covalent acyl-enzyme intermediate, and not a different enzyme action depending on the physical state of the substrate, is responsible for the differences in kinetic pattern for the two activities of the enzyme. This conclusion, together with the fact that the kinetic equation for the transacylation is quadratic, generates a 'hysteretic' pattern that can provide the basis of self-regulatory properties for enzymes to which this model could be applied.
Collapse
Affiliation(s)
- J Martín
- Departamento de Bioquímica y Biología Molecular I, Facultad de Química, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
9
|
Pérez-Gil J, Martín JJ, Acebal C, Arche R. Essential residues in lysolecithin:lysolecithin acyltransferase from rabbit lung: assessment by chemical modification. Arch Biochem Biophys 1990; 277:80-5. [PMID: 2306128 DOI: 10.1016/0003-9861(90)90553-b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The inhibition of lysolecithin:lysolecithin acyltransferase by several specific reagents was studied. Diisopropyl fluorophosphate (DFP) completely inhibited both activities at a concentration of 4 mM. Activity was not protected by substrate and the enzyme showed a change in circular dichroism spectrum upon treatment with inhibitor. Phenylmethanesulfonyl fluoride, another serine-specific reagent, did not inhibit either hydrolysis or transacylation. Therefore, we suggest that DFP does not modify an active serine in the catalytic site. p-Hydroxymercury benzoate and N-ethylmaleimide (NEM) abolished both activities of the enzyme. The presence of substrate partially protected against inactivation. Far-uv CD spectrum of NEM-modified enzyme revealed no changes in protein structure. The existence of two classes of essential cysteine residues was deduced from kinetics of NEM inactivation. Both classes differ in NEM reactivity and also in their participation in the catalytic mechanism. A tyrosine-specific reagent, tetranitromethane, also inhibited hydrolysis and transacylation, following first-order kinetics. The partial protection by substrate suggested the possible existence of essential tyrosines near the active site. At pH 5.0 N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline inactivated hydrolysis but not transacylation. However, both of them remained unchanged at pH 6.5. The substrate prevented the loss of hydrolytic ability. Therefore, a carboxyl residue participating just in the catalytic mechanism of hydrolysis is proposed.
Collapse
Affiliation(s)
- J Pérez-Gil
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
10
|
Vaswani KK, Ledeen RW. Purified rat brain myelin contains measurable acyl-CoA:lysophospholipid acyltransferase(s) but little, if any, glycerol-3-phosphate acyltransferase. J Neurochem 1989; 52:69-74. [PMID: 2908893 DOI: 10.1111/j.1471-4159.1989.tb10899.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Previous reports from several laboratories have demonstrated the presence of many lipid-metabolizing enzymes in myelin, including all the enzymes needed to convert diacylglycerol to phosphatidylcholine and phosphatidylethanolamine. Axonal transport studies had suggested the presence of additional enzymes which incorporate acyl chains into specific phospholipids of myelin. We report here evidence for one such group of enzymes, the acyl-CoA:lysophospholipid acyltransferases. At the same time, activity of acyl-CoA:sn-glycerol-3-phosphate acyltransferase was negligible in myelin. Oleoyl-CoA and arachidonoyl-CoA were both active substrates for transfer of acyl chains to lysophosphatidylcholine and lysophosphatidylinositol. Activity in myelin varied from 7 to 19% of microsomal activity, values well above the likely level of microsomal contamination as judged by microsomal markers. Additional evidence for a myelin locus came from assays at sequential stages of purification and from mixing experiments. Arachidonoyl-CoA was somewhat more reactive than oleoyl-CoA toward lysophosphatidylcholine; the myelin Km for these two CoA derivatives was 98 microM and 6.6 microM, respectively. Activity with lysophosphatidylinositol as substrate was approximately 40% of that with lysophosphatidylcholine in myelin, whereas activities with lysophosphatidylethanolamine and lysophosphatidylserine were considerably less.
Collapse
Affiliation(s)
- K K Vaswani
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
11
|
Ilium L, Farraj N, Critchley H, Davis S. Nasal administration of gentamicin using a novel microsphere delivery system. Int J Pharm 1988. [DOI: 10.1016/0378-5173(88)90087-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Kresch MJ, Smart DA, Wilson CM, Gross I, Rooney SA. Activities of enzymes of phospholipid and fatty acid synthesis in fetal and adult rat type II pneumocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 962:173-7. [PMID: 2844273 DOI: 10.1016/0005-2760(88)90156-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although differentiated fetal and adult type II pneumocytes are ultrastructurally similar, it is not known whether there are metabolic differences between them. We measured the activities of selected enzymes of phospholipid and fatty acid synthesis in fetal and adult rat type II cells, in late gestation fetal rat lung explants and in intact lung from rat fetuses of comparable gestational age. The activity of 1-acylglycerophosphocholine acyltransferase was significantly greater in adult type II cells than in fetal type II cells, fetal explants or intact fetal lung. The activity of CDP diacylglycerol:glycerol-3-phosphate 3-phosphatidyltransferase was similar in fetal and adult type II cells, but significantly lower in explants and intact fetal lung. There was a significant positive correlation between the percentage of alveolar epithelial cells in the cultures and tissue studied and CDP diacylglycerol:glycerol-3-phosphate 3-phosphatidyltransferase activity. This suggests that the previously reported correlation between phosphatidylglycerol synthesis and the percentage of alveolar epithelial cells in various lung culture systems may be related to the activity of this enzyme. Phosphatidylglycerol synthesis and CDP diacylglycerol:glycerol-3-phosphate 3-phosphatidyltransferase activity may be metabolic markers of type II cells, whereas the acyltransferase activity may be an indicator of type II cell maturation.
Collapse
Affiliation(s)
- M J Kresch
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510
| | | | | | | | | |
Collapse
|
13
|
Post M, van Golde LM. Metabolic and developmental aspects of the pulmonary surfactant system. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 947:249-86. [PMID: 3285891 DOI: 10.1016/0304-4157(88)90011-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- M Post
- Hospital for Sick Children, Division of Neonatology, Toronto, Ontario, Canada
| | | |
Collapse
|
14
|
Brasitus TA, Dudeja PK, Dahiya R, Halline A. Dexamethasone-induced alterations in lipid composition and fluidity of rat proximal-small-intestinal brush-border membranes. Biochem J 1987; 248:455-61. [PMID: 3435460 PMCID: PMC1148563 DOI: 10.1042/bj2480455] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A series of experiments were conducted to examine the possible effects of subcutaneous administration of the synthetic glucocorticoid dexamethasone (100 micrograms/day per 100 g body wt.) on the lipid fluidity and lipid composition of rat proximal-small-intestinal brush-border membranes. After 4 days of treatment, membranes and their liposomes prepared from treated animals possessed a greater fluidity than did their control (diluent, 0.9% NaCl) counterparts, as assessed by steady-state fluorescence-polarization techniques using several different fluorophores. Examination of the effects of temperature on the anisotropy values of 1,6-diphenylhexa-1,3,5-triene, using Arrhenius plots, moreover, revealed that the mean break-point temperatures of the treated preparations were approx. 3-4 degrees C lower than those of their control-preparation counterparts. Changes in the sphingomyelin/phosphatidylcholine (PC) molar ratio as well as in certain of the fatty acids of the PC fraction of treated membranes, secondary to alterations in membrane PC levels and in lysophosphatidylcholine acyltransferase activities respectively, were also noted after dexamethasone administration. These compositional alterations appeared to be responsible, at least in part, for the differences in fluidity noted between treated and control plasma membranes. These results therefore demonstrate that dexamethasone administration can modulate the lipid fluidity and lipid composition of rat proximal-small-intestinal brush-border membranes.
Collapse
Affiliation(s)
- T A Brasitus
- Department of Medicine, University of Chicago Hospitals and Clinics, IL 60637
| | | | | | | |
Collapse
|
15
|
Rice KL, Duane PG, Niewoehner DE. Lysophosphatidylcholine augments elastase-induced alveolar epithelial permeability and emphysema in the hamster. THE AMERICAN REVIEW OF RESPIRATORY DISEASE 1987; 136:941-6. [PMID: 3662244 DOI: 10.1164/ajrccm/136.4.941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We administered low dose porcine pancreatic elastase (PPE) with and without lysophosphatidylcholine (lysoPC), a naturally occurring constituent of lung lipids with known membrane-perturbing properties, to test the hypothesis that alveolar epithelial solute permeability is a determinant of the severity of elastase-induced emphysema in experimental animals. Four age- and weight-matched groups of hamsters received intratracheal injections of one of the following in a total volume of 0.5 ml TRIS buffered saline: (1) no additions, (2) 4 units PPE, (3) 135 micrograms lysoPC, or (4) 4 units PPE plus 135 micrograms lysoPC. Thirty minutes later the permeability surface area products (PS) of the alveolar epithelium to 14C-sucrose and 125I-dextran 70 were measured in excised, perfused lungs from some animals from each group. The remaining animals were killed at 6 wk, at which time pressure-volume relationships were measured in excised lungs, and the mean linear intercept was determined from sections of fixed lung tissue. Neither PPE nor lysoPC alone caused statistically significant increases in PS for either tracer. The PPE plus lysoPC caused statistically insignificant increases in sucrose PS but approximate tenfold increases in dextran 70 PS, which were highly significant (p less than 0.001). Although focal air-space enlargement was observed in some lungs 6 wk after exposure to PPE, pressure-volume relationships and mean linear intercepts were not significantly different from control values. Lungs previously exposed to lysoPC were indistinguishable from control lungs for all measurements. Severe emphysema was uniformly observed in animals that received PPE in combination with lysoPC; lysoPC had no demonstrable effect upon PPE-induced hydrolysis of native elastin in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K L Rice
- Pulmonary Section, Veterans Administration Medical Center, Minneapolis, MN 55417
| | | | | |
Collapse
|
16
|
Affiliation(s)
- J L Harwood
- Department of Biochemistry, University College, Cardiff, Wales, U.K
| |
Collapse
|
17
|
Batenburg JJ, den Breejen JN, Yost RW, Haagsman HP, van Golde LM. Glycerol 3-phosphate acylation in microsomes of type II cells isolated from adult rat lung. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 878:301-9. [PMID: 3756197 DOI: 10.1016/0005-2760(86)90237-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glycerol 3-phosphate acylation was studied in type II cells isolated from adult rat lung. The process was found to be largely microsomal. In the microsomes phosphatidic acid is the main product of glycerol 3-phosphate acylation. Glycerol-3-phosphate acyltransferase is rate limiting in the phosphatidic acid formation by the microsomes. Type II cell microsomes incorporate palmitoyl and oleoyl residues into phosphatidic acid at an equal rate if palmitoyl-CoA and oleoyl-CoA are added separately. However, if palmitoyl-CoA and oleoyl-CoA are added as an equimolar mixture the unsaturated fatty acyl moiety is incorporated much faster. Under the latter conditions monoenoic species constitute the most abundant products of glycerol 3-phosphate acylation. The microsomes incorporate both palmitoyl and oleoyl residues readily into both the 1- and 2-position of phosphatidic acid, even when palmitoyl-CoA and oleoyl-CoA are added together. Assuming that both phosphatidic acid phosphatase and cholinephosphotransferase do not discriminate against substrates with an unsaturated acyl moiety at the 1-position and a saturated acyl moiety at the 2-position, the last two observations indicate that a considerable percentage of phosphatidylcholine molecules synthesized de novo may have a saturated fatty acid at the 2-position and an unsaturated fatty acid at the 1-position, and that remodeling at the 1-position may be important for the formation of surfactant dipalmitoylphosphatidylcholine. They also indicate that type II cell microsomes are capable of synthesizing the dipalmitoyl species of phosphatidic acid. However, since there is a preference for the acylation of glycerol 3-phosphate with unsaturated fatty acyl residues, the percentage of dipalmitoyl species in the synthesized phosphatidic acid, and thereby the percentage of dipalmitoyl species in the phosphatidylcholine synthesized de novo, will probably depend on the relative availability of the various acyl-CoA species.
Collapse
|
18
|
Stymne S, Stobart AK. Involvement of acyl exchange between acyl-CoA and phosphatidylcholine in the remodelling of phosphatidylcholine in microsomal preparations of rat lung. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 837:239-50. [PMID: 2865978 DOI: 10.1016/0005-2760(85)90047-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Microsomal membrane preparations from rat lung catalyse the incorporation of radioactive linolenic acid from [14C]linolenoyl-CoA into position 2 of sn-phosphatidylcholine. The incorporation was stimulated by bovine serum albumin and free CoA. Free fatty acids in the incubation mixtures were not utilised in the incorporation into complex lipids. Fatty acids were transferred to the acyl-CoA pool during the incorporation of linolenic acid into phosphatidylcholine. An increase in lysophosphatidylcholine occurred in incubations containing both bovine serum albumin and free CoA and in the absence of acyl-CoA. The results were consistent with an acyl-CoA: lysophosphatidylcholine acyltransferase operating in both a forwards and backwards direction and thus catalysing the acyl exchange between acyl-CoA and position 2 of sn-phosphatidylcholine. In incubations with mixed species of acyl-CoAs, palmitic acid was the major fatty acid substrate transferred to phosphatidylcholine in acyl exchange, whereas this acid was completely selected against in the acylation of added lysophosphatidylcholine. The selectivity for palmitoyl-CoA was particularly enhanced when the mixed acyl-CoA substrate was presented to the microsomes in molar concentrations equivalent to the molar ratios of the fatty acids in position 2 of sn-phosphatidylcholine. During acyl exchange, the predominant fatty acid transferred to phosphatidylcholine from acyl-CoA was palmitic acid, whereas arachidonic acid was particularly selected for in the reverse reaction from phosphatidylcholine to acyl-CoA. A hypothesis is presented to explain the differential selectivity for acyl species between the forward and backward reactions of the acyltransferase that is based upon different affinities of the enzyme for substrates at high and low concentrations of acyl donor. Acyl exchange between acyl-CoA and phosphatidylcholine offers, therefore, a possible mechanism for the acyl-remodelling of phosphatidylcholine for the production of lung surfactant.
Collapse
|
19
|
|