1
|
Watkins OC, Yong HEJ, Sharma N, Chan SY. A review of the role of inositols in conditions of insulin dysregulation and in uncomplicated and pathological pregnancy. Crit Rev Food Sci Nutr 2020; 62:1626-1673. [PMID: 33280430 DOI: 10.1080/10408398.2020.1845604] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inositols, a group of 6-carbon polyols, are highly bioactive molecules derived from diet and endogenous synthesis. Inositols and their derivatives are involved in glucose and lipid metabolism and participate in insulin-signaling, with perturbations in inositol processing being associated with conditions involving insulin resistance, dysglycemia and dyslipidemia such as polycystic ovary syndrome and diabetes. Pregnancy is similarly characterized by substantial and complex changes in glycemic and lipidomic regulation as part of maternal adaptation and is also associated with physiological alterations in inositol processing. Disruptions in maternal adaptation are postulated to have a critical pathophysiological role in pregnancy complications such as gestational diabetes and pre-eclampsia. Inositol supplementation has shown promise as an intervention for the alleviation of symptoms in conditions of insulin resistance and for gestational diabetes prevention. However, the mechanisms behind these affects are not fully understood. In this review, we explore the role of inositols in conditions of insulin dysregulation and in pregnancy, and identify priority areas for research. We particularly examine the role and function of inositols within the maternal-placental-fetal axis in both uncomplicated and pathological pregnancies. We also discuss how inositols may mediate maternal-placental-fetal cross-talk, and regulate fetal growth and development, and suggest that inositols play a vital role in promoting healthy pregnancy.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
2
|
Sadre-Marandi F, Dahdoul T, Reed MC, Nijhout HF. Sex differences in hepatic one-carbon metabolism. BMC SYSTEMS BIOLOGY 2018; 12:89. [PMID: 30355281 PMCID: PMC6201565 DOI: 10.1186/s12918-018-0621-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Background There are large differences between men and women of child-bearing age in the expression level of 5 key enzymes in one-carbon metabolism almost certainly caused by the sex hormones. These male-female differences in one-carbon metabolism are greatly accentuated during pregnancy. Thus, understanding the origin and consequences of sex differences in one-carbon metabolism is important for precision medicine. Results We have created a mathematical model of hepatic one-carbon metabolism based on the underlying physiology and biochemistry. We use the model to investigate the consequences of sex differences in gene expression. We give a mechanistic understanding of observed concentration differences in one-carbon metabolism and explain why women have lower S-andenosylmethionine, lower homocysteine, and higher choline and betaine. We give a new explanation of the well known phenomenon that folate supplementation lowers homocysteine and we show how to use the model to investigate the effects of vitamin deficiencies, gene polymorphisms, and nutrient input changes. Conclusions Our model of hepatic one-carbon metabolism is a useful platform for investigating the mechanistic reasons that underlie known associations between metabolites. In particular, we explain how gene expression differences lead to metabolic differences between males and females. Electronic supplementary material The online version of this article (doi:10.1186/s12918-018-0621-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Farrah Sadre-Marandi
- Mathematical Biosciences Institute, The Ohio State University, Columbus, 43210, OH, USA
| | - Thabat Dahdoul
- Department of Mathematics, Cal-State Fullerton, Fullerton, 92831, CA, USA
| | - Michael C Reed
- Department of Mathematics, Duke University, 120 Science Drive, Box 90320, Durham, 27708, NC, USA.
| | | |
Collapse
|
3
|
Caudill MA. Pre- and postnatal health: evidence of increased choline needs. ACTA ACUST UNITED AC 2010; 110:1198-206. [PMID: 20656095 DOI: 10.1016/j.jada.2010.05.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 03/01/2010] [Indexed: 11/18/2022]
Abstract
Choline, a micronutrient found in food, serves as the starting material for several important metabolites that play key roles in fetal development, particularly the brain. Although human beings' requirement for choline is unknown, an Adequate Intake level of 425 mg/day was established for women with upward adjustments to 450 and 550 mg/day during pregnancy and lactation, respectively. The importance of choline in human development is supported by observations that a human fetus receives a large supply of choline during gestation; pregnancy causes depletion of hepatic choline pools in rats consuming a normal diet; human neonates are born with blood levels that are three times higher than maternal blood concentrations; and large amounts of choline are present in human milk. The development of the central nervous system is particularly sensitive to choline availability with evidence of effects on neural tube closure and cognition. Existing data show that the majority of pregnant (and presumably lactating) women are not achieving the target intake levels and that certain common genetic variants may increase requirements for choline beyond current recommendations. Because choline is not found in most varieties of prenatal vitamins (or regular multivitamins), increased consumption of choline-rich foods may be needed to meet the high pre- and postnatal demands for choline.
Collapse
Affiliation(s)
- Marie A Caudill
- Cornell University, Division of Nutritional Sciences, 228 Savage Hall, Ithaca, NY, USA.
| |
Collapse
|
4
|
Mansfeld J, Ulbrich-Hofmann R. Modulation of phospholipase D activity in vitro. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:913-26. [DOI: 10.1016/j.bbalip.2009.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 11/30/2022]
|
5
|
Divald A, Karl PI, Fisher SE. Regulation of phospholipase D in human placental trophoblasts by the P(2) purinergic receptor. Placenta 2002; 23:584-93. [PMID: 12361678 DOI: 10.1053/plac.2002.0844] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phospholipase D (PLD) is present in human placental tissue. Since purinergic receptor agonists activate PLD in many different cell types, we evaluated the purinergic activation of the enzyme in cultured trophoblasts from the placenta. We found that P(2) receptor agonists stimulate PLD. The preferred ligand for P(2X7) (P(2Z)) receptor subtype, BzBz-ATP (10(-3)M ), induced the enzyme more than ten times over basal (unstimulated) activity, while ATP caused a much smaller increase. ATPgammaS, ADP and UTP were even less effective, compared to BzBz-ATP or ATP. AMP and alpha,beta-methyl-ATP, a P(2X) agonist that is uniquely inactive on the P(2X7) subtype, had no effect. This represents the first suggestion of the presence of the P(2X7) type of receptor in human trophoblasts that was directly confirmed by immunoblot detection. The action of BzBz-ATP was dependent upon the presence of calcium in the culture medium and was inhibited by high (5m M ) Mg(++) concentration. P(2X7) receptor subtype specific antagonists, ATP-2',3'-dialdehyde (o-ATP), CBB and the broad specificity P(2) inhibitor PPADS inhibited the effect of BzBz-ATP. Pertussis toxin treatment did not inhibit the effect. Down-regulation of cPKC/nPKC isoforms by prolonged PMA treatment (36 h, 10(-7)M ) prevented the stimulation of PLD by P(2) agonists or the calcium ionophore A-23187. PLA(2) inhibitors did not block the effect of BzBz-ATP. The possibility for a calcium influx related interdependence of PLC and PLD was evaluated. For PLC activation, UTP and ATP surpassed BzBz-ATP, while ionophore did not elevate PLC (assessed by IP(3) measurements). This suggested the predominance of a P(2Y2) receptor in the whole cell in gross activation of PLC. PLD was affected with a reversed order of potency. These results and the dependence of PLD on PKC activity implies that a restricted, membrane localized calcium flux activates PKC and in turn, mediates the P(2X7) dependent stimulation of PLD. This may have implications for physiologic regulation of trophoblast function.
Collapse
Affiliation(s)
- A Divald
- Department of Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York, NY 11203, USA
| | | | | |
Collapse
|
6
|
Preuss I, Kaiser I, Gehring U. Molecular characterization of a phosphatidylcholine-hydrolyzing phospholipase C. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5081-91. [PMID: 11589699 DOI: 10.1046/j.0014-2956.2001.02440.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While searching for a phospholipase C (PLC) specific for phosphatidylcholine in mammalian tissues, we came across such an activity originating from a contamination of Pseudomonas fluorescens. This psychrophilic bacterium was found to contaminate placental extracts upon processing in the cold. The secreted phosphatidylcholine-hydrolyzing PLC was purified by a combination of chromatographic procedures. As substrates, the enzyme preferred dipalmitoyl-phosphatidylcholine and 1-palmitoyl-2-arachidonoyl-phosphatidylcholine over phosphatidylinositol. The active enzyme is a monomer of approximately 40 kDa. As for other bacterial PLCs, the enzyme requires Ca2+ and Zn2+ for activity; dithiothreitol affected the activity due to its chelation of Zn2+, but this inhibition could be compensated for by addition of ZnCl2. The compound D609, described to selectively inhibit phosphatidylcholine-specific PLCs, caused half-inhibition of the P. fluorescens enzyme at approximately 420 microM, while 50-fold lower concentrations similarly affected PLCs from Bacillus cereus and Clostridium perfringens. Partial peptide sequences obtained from the pure P. fluorescens enzyme after tryptic cleavage were used to clone a DNA fragment of 3.5 kb from a P. fluorescens gene library prepared from our laboratory isolate. It contains an ORF of 1155 nucleotides encoding the PLC. There is no significant sequence homology to other PLCs, suggesting that the P. fluorescens enzyme represents a distinct subclass of bacterial PLCs. The protein lacks cysteine residues and consequently contains no disulfide bonds. Interestingly, P. fluorescens reference strain DSMZ 50090 is devoid of the PLC activity described here as well as of the relevant coding sequence.
Collapse
Affiliation(s)
- I Preuss
- Ruprecht-Karls-Universität Heidelberg, Biochemie-Zentrum Heidelberg, Biologische Chemie, Heidelberg, Germany
| | | | | |
Collapse
|
7
|
Horn JM, Lehman JA, Alter G, Horwitz J, Gomez-Cambronero J. Presence of a phospholipase D (PLD) distinct from PLD1 or PLD2 in human neutrophils: immunobiochemical characterization and initial purification. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1530:97-110. [PMID: 11341962 DOI: 10.1016/s1388-1981(00)00172-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Utilizing the transphosphatidylation reaction catalyzed by phospholipase D (PLD) in the presence of a primary alcohol and the short-chain phospholipid PC8, we have characterized the enzyme from human neutrophils. A pH optimum of 7.8-8.0 was determined. PIP(2), EDTA/EGTA, and ATP were found to enhance basal PLD activity in vitro. Inhibitory elements were: oleate, Triton X-100, n-octyl-beta-glucopyranoside, divalent cations, GTPgammaS and H(2)O(2). The apparent K(m) for the butanol substrate was 0.1 mM and the V(max) was 6.0 nmol mg(-1) h(-1). Immunochemical analysis by anti-pan PLD antibodies revealed a neutrophil PLD of approximately 90 kDa and other bands recognized minimally by anti-PLD1 or anti-PLD2 antibodies. The 90-kDa protein is tyrosine-phosphorylated upon cell stimulation with GM-CSF and formyl-Met-Leu-Phe. Protein partial purification using column liquid chromatography was performed after cell subfractionation. Based on the enzyme's regulatory and inhibitory factors, and its molecular weight, these data indicate an enzyme isoform that might be different from the mammalian PLD1/2 forms described earlier. The present results lay the foundation for further purification of this granulocyte PLD isoform.
Collapse
Affiliation(s)
- J M Horn
- Department of Physiology and Biophysics, Wright State University School of Medicine, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
8
|
Blum JJ, Lehman JA, Horn JM, Gomez-Cambronero J. Phospholipase D (PLD) is present in Leishmania donovani and its activity increases in response to acute osmotic stress. J Eukaryot Microbiol 2001; 48:102-10. [PMID: 11249184 DOI: 10.1111/j.1550-7408.2001.tb00421.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here that the signaling molecule phospholipase D (PLD) is present in the parasitic protozoan Leishmania donovani. In vitro enzymatic activity is dependent on Ca2+ and Mg2+ ions, its basal activity is stimulated by phosphatidyl-inositol-4,5-bisphosphate (PIP2) and its pH optima are pH 8.0 and pH 6.0. PLD activity increases 3-fold about 5 min after an abrupt decrease in osmolality from 317 mOsm (isosmotic) to 155 mOsm and increases 1.5-fold in response to an abrupt increase in osmolality to 617 mOsM. Cells grown for > 24 h under the anisosmotic conditions showed only marginal changes in activity compared to the controls grown under isosmotic conditions, indicating an adaptation to long-term exposure to hypo- or hyper-osmolarity. Immunologically, two isoforms, PLD1 and PLD2, are present. An analysis of in vitro PLD activity in anti-PLD immunocomplexes revealed that either hypotonic (cell swelling) or hypertonic stress (cell shrinking) causes an increase in PLD1 activation but a reduction in PLD2 activity. The interplay between these two isoforms results in a predominance for PLD1 in the observed increase when measuring total PLD activity. Finally, the increase in enzymatic activity in acute hyposmotic shock is accompanied by tyrosyl phosphorylation of the PLD1 isoform, suggesting a role for protein tyrosine kinase in the control of PLD activity in response to osmotic stress.
Collapse
Affiliation(s)
- J J Blum
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
9
|
Höer A, Cetindag C, Oberdisse E. Influence of phosphatidylinositol 4,5-bisphosphate on human phospholipase D1 wild-type and deletion mutants: is there evidence for an interaction of phosphatidylinositol 4,5-bisphosphate with the putative pleckstrin homology domain? BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1481:189-201. [PMID: 10962106 DOI: 10.1016/s0167-4838(00)00108-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP(2)) is an essential cofactor of phospholipase D (PLD) enzymes. In order to further characterize its role in PLD activation, we have constructed N-terminal deletion mutants of the human PLD1 (hPLD1) and a mutant lacking the putative pleckstrin homology domain (delta PH), which has been proposed to be involved in PIP(2) binding. For the N-terminal deletion mutants (up to 303 amino acids) and the delta PH mutant we found no significant differences compared to the hPLD1 wild-type, except changes in the specific activities: the K(m) values were about 20 microM for the substrate phosphatidylcholine, and PIP(2) activated the PLD enzymes maximally between 5 and 10 microM. In contrast, preincubation of the PLD proteins with 5-10 microM PIP(2) or PIP(2)-containing lipid vesicles inhibited the PLD activity. This inhibition was neither abolished by n-octyl-beta-D-glucopyranoside or neomycin nor by the ADP-ribosylation factor, another activator of PLD enzymes. All tested PLD proteins were active without PIP(2) in the presence of 1 M ammonium sulfate. The 303 N-terminal amino acids of hPLD1 are not involved in substrate binding or the interaction with PIP(2). Our data indicate further that the putative PH domain of hPLD1 is not responsible for the essential effects of PIP(2) on PLD activity.
Collapse
Affiliation(s)
- A Höer
- Institut für Pharmakologie, Fachbereich Humanmedizin der Freien Universität Berlin, Thielallee 67-73, 14195 Berlin, Germany.
| | | | | |
Collapse
|
10
|
Liscovitch M, Czarny M, Fiucci G, Lavie Y, Tang X. Localization and possible functions of phospholipase D isozymes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1439:245-63. [PMID: 10425399 DOI: 10.1016/s1388-1981(99)00098-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The activation of PLD is believed to play an important role in the regulation of cell function and cell fate by extracellular signal molecules. Multiple PLD activities have been characterized in mammalian cells and, more recently, several PLD genes have been cloned. Current evidence indicates that diverse PLD activities are localized in most, if not all, cellular organelles, where they are likely to subserve different functions in signal transduction, membrane vesicle trafficking and cytoskeletal dynamics.
Collapse
Affiliation(s)
- M Liscovitch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
11
|
Strand AM, Lauritzen L, Vinggaard AM, Hansen HS. The subcellular localization of phospholipase D activities in rat Leydig cells. Mol Cell Endocrinol 1999; 152:99-110. [PMID: 10432228 DOI: 10.1016/s0303-7207(99)00057-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rat Leydig cells contain a phospholipase D (PLD), which can be activated by vasopressin and phorbol ester. In order to clarify which Leydig cell organelles that express PLD activity, the subcellular localization of two differently regulated PLD activities was investigated by subcellular fractionation on a 40% (v/v) self-generating Percoll gradient. PLD activities in broken cells were estimated using radiolabeled didecanoylphosphatidylcholine as a substrate. Initial experiments revealed the presence of an oleate Mg2+ -activated PLD and a phosphatidylinositol 4,5-bisphosphate-activated PLD (PIP2-PLD) in the microsomal fraction of Leydig cells. The latter activity could be further stimulated by recombinant nonmyristoylated ADP ribosylating factor 1 (ARF1) plus GTPgammaS. The peak of oleate Mg2+ -PLD activity colocalized with the plasma membrane marker, whereas the highest specific activity of the PIP2-PLD activity was found in fractions with a slightly lower density than those containing the plasma membrane and trans-Golgi marker enzymes. In order to localize phorbol ester-stimulated PLD activity in intact Leydig cells, the cells were prelabeled with [14C]-palmitate and then stimulated for 15 min with 100 nM 4-beta-phorbol-12-myristate-13-acetate (PMA) in the presence of ethanol or butanol. The PLD product [14C]-phosphatidylethanol, expressed as the percentage of total labeled phospholipids in the fraction, was slightly increased in all Percoll fractions and showed a prominent peak in the fractions containing plasma membrane, trans-Golgi, and fractions of slightly lower density. The PMA-induced formation of [14C]-phosphatidylbutanol could be inhibited dose-dependently with brefeldin A suggesting that the activation of PLD by the phorbol ester was mediated by ARF.
Collapse
Affiliation(s)
- A M Strand
- Department of Pharmacology, The Royal Danish School of Pharmacy, Copenhagen
| | | | | | | |
Collapse
|
12
|
Exton JH. Phospholipid‐Derived Second Messengers. Compr Physiol 1998. [DOI: 10.1002/cphy.cp070111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Abstract
The role of the mammalian phospholipase D (PLD) in the control of key cellular responses has been recognised for a long time, but only recently have there been the reagents to properly study this very important enzyme in the signalling pathways, linking cell agonists with intracellular targets. With the recent cloning of PLD isoenzymes, their association with low-molecular-weight G proteins, protein kinase C and tyrosine kinases, the availability of antibodies and an understanding of the role of PLD product, phosphatidic acid (PA), in cell physiology, the field is gaining momentum. In this review, we will explore the molecular properties of mammalian PLD and its gene(s), the complexity of this enzyme regulation and the myriad physiological roles for PLD and PA and related metabolic products, with particular emphasis on a role in the activation of NADPH oxidase, or respiratory burst, leading to the generation of oxygen radicals.
Collapse
Affiliation(s)
- J Gomez-Cambronero
- Department of Physiology and Biophysics, Wright State University School of Medicine, Dayton, OH 45435, USA
| | | |
Collapse
|
14
|
Vinggaard AM, Provost JJ, Exton JH, Hansen HS. Arf and RhoA regulate both the cytosolic and the membrane-bound phospholipase D from human placenta. Cell Signal 1997; 9:189-96. [PMID: 9113419 DOI: 10.1016/s0898-6568(96)00140-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this paper we demonstrate for the first time that human placenta contains a cytosolic phospholipase D (PLD) activity. This activity had a pH optimum of 7.0 and was stimulated by PIP2 and inhibited by oleate. Furthermore, cytosolic PLD was stimulated by 30 microM GTP gamma S (6-14-fold) and by the small G proteins 1 microM mArf3 (2-fold) and 0.37 nM RhoA (2-fold). This is the first report to show RhoA activation of a cytosolic PLD. The activation by mArf3 was maintained after partial purification on DEAE Sepharose of the enzyme. We have previously reported the existence of a membrane-bound PLD from human placenta, which is stimulated by PIP2, but not by oleate (Vinggaard, A. M. & Hansen, H. S. (1995) Biochim. Biophys. Acta 1258, 169-176). Here we show that oleic acid and alpha-linolenic acid both dose-dependently inhibited solubilized membrane PLD (65% inhibition at 4 mM), whereas stearic acid (4 mM) had no effect. Thus, the presence of double bonds in the fatty acid is important for the inhibitory effect. Furthermore, placental membrane PLD was activated by 30 microM GTP gamma S (4-fold) and by mArf3 (1 microM) and RhoA (0.37 nM) by a factor of 3 and 2, respectively. The solubilized membrane phospholipase D was partially purified to a basal specific activity of 25-37 nmol/min/mg. This preparation was devoid of endogenous RhoA and Arf and could not be stimulated by GTP gamma S. However, mArf3 (1 microM) still activated this partially purified membrane PLD, whereas RhoA (0.37 nM) was not able to activate this PLD fraction. In conclusion, our results suggest that the human placenta contains a PLD that is located both in the cytosol and the membranes, and that is activated by PIP2, mArf3 and RhoA but inhibited by oleate.
Collapse
Affiliation(s)
- A M Vinggaard
- Department of Biological Sciences, Royal Danish School of Pharmacy, Copenhagen, Denmark
| | | | | | | |
Collapse
|
15
|
Vinggaard AM, Jensen T, Morgan CP, Cockcroft S, Hansen HS. Didecanoyl phosphatidylcholine is a superior substrate for assaying mammalian phospholipase D. Biochem J 1996; 319 ( Pt 3):861-4. [PMID: 8920991 PMCID: PMC1217867 DOI: 10.1042/bj3190861] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phospholipase D (PLD) activity in crude or solubilized membranes from mammalian tissues is difficult to detect with the current assay techniques, unless a high radioactive concentration of substrate and/or long incubation times are employed. Generally, the enzyme has to be extracted and partially purified on one column before easy detection of activity. Furthermore, PLD activity in cultured cells can only be detected by the available assay techniques in the presence of guanosine 5'-[gamma-thio]-triphosphate (GTP[S]) and a cytosolic factor [usually ADP-ribosylation factor (Arf)]. In this paper we report that the use of didecanoyl phosphatidylcholine (C10-PC) in mammalian PLD assays considerably increases the detection limit. C10-PC was compared with the commonly used dipalmitoyl phosphatidylcholine (C16-PC) as a substrate for PLD activity from membranes of human neutrophils, human placenta and pig brain, and from placental cytosol. C10-PC was superior to C16-PC by a factor of 2-28 depending on assay conditions and tissue, and it allowed the detection of GTP[S]-and Arf-stimulated PLD activity without addition of phosphatidylinositol 4,5-bisphosphate.
Collapse
Affiliation(s)
- A M Vinggaard
- Department of Biological Sciences, Royal Danish School of Pharmacy, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
16
|
Ponting CP, Kerr ID. A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases: identification of duplicated repeats and potential active site residues. Protein Sci 1996; 5:914-22. [PMID: 8732763 PMCID: PMC2143407 DOI: 10.1002/pro.5560050513] [Citation(s) in RCA: 259] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phosphatidylcholine-specific phospholipase D (PLD) enzymes catalyze hydrolysis of phospholipid phosphodiester bonds, and also transphosphatidylation of phospholipids to acceptor alcohols. Bacterial and plant PLD enzymes have not been shown previously to be homologues or to be homologous to any other protein. Here we show, using sequence analysis methods, that bacterial and plant PLDs show significant sequence similarities both to each other, and to two other classes of phospholipid-specific enzymes, bacterial cardiolipin synthases, and eukaryotic and bacterial phosphatidylserine synthases, indicating that these enzymes form an homologous family. This family is suggested also to include two Poxviridae proteins of unknown function (p37K and protein K4), a bacterial endonuclease (nuc), an Escherichia coli putative protein (o338) containing an N-terminal domain showing similarities with helicase motifs V and VI, and a Synechocystis sp. putative protein with a C-terminal domain likely to possess a DNA-binding function. Surprisingly, four regions of sequence similarity that occur once in nuc and o338, appear twice in all other homologues, indicating that the latter molecules are bi-lobed, having evolved from an ancestor or ancestors that underwent a gene duplication and fusion event. It is suggested that, for each of these enzymes, conserved histidine, lysine, aspartic acid, and/or asparagine residues may be involved in a two-step ping pong mechanism involving an enzyme-substrate intermediate.
Collapse
Affiliation(s)
- C P Ponting
- Fibrinolysis Research Unit, University of Oxford, United Kingdom.
| | | |
Collapse
|