1
|
Zhu Q, Jin S, Gang DD, Yang F. A review in analytical progress for house dust mite allergens. REVIEWS ON ENVIRONMENTAL HEALTH 2025:reveh-2024-0177. [PMID: 40074681 DOI: 10.1515/reveh-2024-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
House dust mite (HDM) allergens are one of the most important causes of allergenic diseases in the indoor environment. The World Health Organization (WHO) has defined risk thresholds for Group I HDM allergens as a concentration of 2 and 10 μg/mL in dust for producing asthma risk and polar asthma attacks, respectively. Continuing exposure to high concentrations of HDM allergens greatly increases the risk of developing allergic diseases. Therefore, it's necessary to determine the exposure levels of HDM allergens to estimate the risk. So, various approaches have been developed to directly or indirectly detect HDM allergens in the environment. This paper overviews the developmental progress of HDM allergen detection and introduces the principle of HDM allergen detection methods, including semi-quantitative radioallergosorbent test (RAST), ACAREX test, dot immunobinding assay (DIBA), radioimmunoassay (RIA) which combines the high sensitivity and accuracy, enzyme-linked immunosorbent assay (ELISA) with high accuracy, fluorescent multiple arrays which can simultaneously detect multiple HDM allergens, polymerase chain reaction (PCR), and liquid chromatograph-mass spectrometer (LC-MS) with high sensitivity and accuracy. The paper provides an overall understanding of the development of HDM allergen detection methods and guidance for choosing an appropriate method to detect HDM allergens.
Collapse
Affiliation(s)
- Qiling Zhu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, 12404 South-Central Minzu University , Wuhan, China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, 12404 South-Central Minzu University , Wuhan, China
| | - Daniel D Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| |
Collapse
|
2
|
Kim RM, Lee SM, Han JH, Cho SH, Lv J, Im SW, Ha IH, Lee YH, Lim D, Kim H, Cho NH, Lee HE, Namgung SD, Nam KT. Helicoid Grating-Coupled Surface Plasmon Resonance Sensor. NANO LETTERS 2024; 24:15668-15675. [PMID: 39498830 DOI: 10.1021/acs.nanolett.4c04212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Ultrasensitive, rapid, and reliable biomolecular sensing is essential for biomedical diagnostics, requiring real-time monitoring and detection of trace samples. Optical sensing, particularly plasmonic biosensing, meets these demands through noninvasive, high-sensitivity detection based on the interaction between light and molecules. Here, we present novel plasmonic metamaterial-based sensing strategy, utilizing the circular dichroism (CD) response of grating-coupled surface plasmon resonance (SPR) from chiral nanoparticle grating structure (i.e., 2D helicoid crystal) on gold substrate. Strong chiroptic response of helicoids has been effectively expanded to produce a remarkable CD/greflection response in the SPR mode, achieved by spectral coupling of SPR with localized surface plasmon resonance (LSPR) in helicoids. This CD response, derived from the differential of left and right circularly polarized light, corrects optical fluctuations, enhancing sensitivity and reliability. Our SPR-CD-based approach achieves a sensitivity of 379.2 nm/RIU and detection limit of a few mM for d-glucose, offering a new paradigm for high-performance optical biosensors.
Collapse
Affiliation(s)
- Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Min Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Hyun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Hoon Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiawei Lv
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - In Han Ha
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon Ho Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Daeyoon Lim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Heon Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seok Daniel Namgung
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Mahdy A, Mostafa OMS, Aboueldahab MM, Nigm AH. Antiparasitic activity of Cerastes cerastes venom on Schistosoma mansoni infected mice. Exp Parasitol 2024; 268:108866. [PMID: 39617195 DOI: 10.1016/j.exppara.2024.108866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
This study investigates whether Cerastes cerastes venom (CCV) administrated at different doses (3 and 6μg/mouse) and times (a week pre-infection, the first week post-infection, and the fifth week post-infection) possesses antischistosomal activity on Schistosoma mansoni infected mice. The results showed that treatment with half lethal dose (6 μg/mouse) of CCV, at various time schedules, led to a significant decrease in the total worm burden. However, quarter lethal dose (3μg/mouse) of CCV showed a significant decrease in the total worm burden only when administered a week pre-infection. The total number of deposited eggs by females of S. mansoni was significantly decreased in the liver and the intestine of mice treated with 3μg/mouse or 6μg/mouse CCV, associated with significant alterations in the oogram pattern with significant elevation in dead eggs levels and significant decrease in the number of mature eggs. Histological examinations illustrated a significant decrease in the number and diameter of hepatic granulomas in high dose (6μg/mouse) CCV-treated groups, while it was significant only a week pre-infection in low dose (3μg/mouse) CCV-treated groups. CCV also caused several tegumental changes in treated female and male worms, including loss of the normal surface architecture, tubercular destruction, loss of tubercles' spines, oedema, erosion, membrane blebbing, and swelling. S. mansoni-infected mice groups treated with CCV (6μg/mouse) a week before infection and at fifth week post-infection had, in all individuals up to a dilution of 1:1600, higher levels of antibodies against adult worm antigen. The current investigation found that C. cerastes venom has potential antischistosomal action in a time and dose-dependent manner (more enhanced antischistosomal effects at a dose of 6 μg and in the group treated in a week before infection), in addition to its potential immunomodulatory effect against schistosomiasis infection. More studies will be required to identify the venom's active ingredients that affect the host's immunology. This information could be used in the future to develop novel antischistosomal therapies.
Collapse
Affiliation(s)
- Asmaa Mahdy
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Osama M S Mostafa
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Marwa M Aboueldahab
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Ahmed H Nigm
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
4
|
Chen Y, Danchana K, Kaneta T. Comparison of protein immobilization methods with covalent bonding on paper for paper-based enzyme-linked immunosorbent assay. Anal Bioanal Chem 2024; 416:6679-6686. [PMID: 39375210 PMCID: PMC11541255 DOI: 10.1007/s00216-024-05575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
In this study, two methods were examined to optimize the immobilization of antibodies on paper when conducting a paper-based enzyme-linked immunosorbent assay (P-ELISA). Human IgG, as a test-capture protein, was immobilized on paper via the formation of Schiff bases. Aldehyde groups were introduced onto the surface of the paper via two methods: NaIO4 and 3-aminopropyltriethoxysilane (APTS) with glutaraldehyde (APTS-glutaraldehyde). In the assay, horseradish peroxidase-conjugated anti-human IgG (HRP-anti-IgG) binds to the immobilized human IgG, and the colorimetric reaction of 3,3',5,5'-tetramethylbenzyzine (TMB) produces a blue color in the presence of H2O2 and HRP-anti-IgG as a model analyte. The immobilization of human IgG, the enzymatic reaction conditions, and the reduction of the chemical bond between the paper surface and immobilized human IgG all were optimized in order to improve both the analytical performance and the stability. In addition, the thickness of the paper was examined to stabilize the analytical signal. Consequently, the APTS-glutaraldehyde method was superior to the NaIO4 method in terms of sensitivity and reproducibility. Conversely, the reduction of imine to amine with NaBH4 proved to exert only minimal influence on sensitivity and stability, although it tended to degrade reproducibility. We also found that thick paper was preferential when using P-ELISA because a rigid paper substrate prevents distortion of the paper surface that is often caused by repeated washing processes.
Collapse
Affiliation(s)
- Yang Chen
- Department of Chemistry, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Kaewta Danchana
- Department of Chemistry, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Takashi Kaneta
- Department of Chemistry, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
5
|
Liu Y, Wu D, Zhang K, Ren R, Liu Y, Zhang S, Zhang X, Cheng J, Chen L, Huang J. Detection technology and clinical applications of serum viral products of hepatitis B virus infection. Front Cell Infect Microbiol 2024; 14:1402001. [PMID: 39035352 PMCID: PMC11257880 DOI: 10.3389/fcimb.2024.1402001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
Viral hepatitis, caused by its etiology, hepatitis virus, is a public health problem globally. Among all infections caused by hepatitis-associated viruses, hepatitis B virus (HBV) infection remains the most serious medical concern. HBV infection particularly affects people in East Asia and Africa, the Mediterranean region, and Eastern Europe, with a prevalence rate of > 2%. Currently, approximately 1 billion people worldwide are infected with HBV, and nearly 30% of them experience chronic infection. Chronic HBV infection can lead to chronic hepatitis B (CHB), liver cirrhosis, and hepatocellular carcinoma (HCC), resulting in the related death of approximately 1 million people annually. Although preventative vaccines and antiviral therapies are currently available, there is no cure for this infection. Clinical testing is not only the gateway for diagnosis of HBV infection, but also crucial for judging the timing of medication, evaluating the effect of antiviral therapy, and predicting the risk of relapse after drug withdrawal in the whole follow-up management of hepatitis B infected persons. With advances in detection technology, it is now possible to measure various viral components in the blood to assess the clinical status of HBV infection. Serum viral products of HBV infection, such as HBV DNA, HBV RNA, hepatitis B surface antigen, hepatitis B e-antigen, and hepatitis B core-related antigen, are non-invasive indicators that are critical for the rapid diagnosis and management of related diseases. Improving the sensitivity of monitoring of these products is essential, and the development of corresponding detection technologies is pivotal in achieving this goal. This review aims to offer valuable insights into CHB infection and references for its effective treatment. We provide a comprehensive and systematic overview of classical and novel methods for detecting HBV serum viral products and discusses their clinical applications, along with the latest research progress in this field.
Collapse
Affiliation(s)
- Ying Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Di Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Kui Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Rongrong Ren
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yuxuan Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuya Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xuanyu Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jilin Cheng
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liping Chen
- Department of Gastroenterology, Shanghai Geriatric Medical Center, Shanghai, China
| | - Jun Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Meissner S, Rees S, Nguyen L, Connor B, Barker D, Harland B, Raos B, Svirskis D. Encapsulation of the growth factor neurotrophin-3 in heparinised poloxamer hydrogel stabilises bioactivity and provides sustained release. BIOMATERIALS ADVANCES 2024; 159:213837. [PMID: 38522310 DOI: 10.1016/j.bioadv.2024.213837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Poloxamer-based hydrogels show promise to stabilise and sustain the delivery of growth factors in tissue engineering applications, such as following spinal cord injury. Typically, growth factors such as neurotrophin-3 (NT-3) degrade rapidly in solution. Similarly, poloxamer hydrogels also degrade readily and are, therefore, only capable of sustaining the release of a payload over a small number of days. In this study, we focused on optimising a hydrogel formulation, incorporating both poloxamer 188 and 407, for the sustained delivery of bioactive NT-3. Hyaluronic acid blended into the hydrogels significantly reduced the degradation of the gel. We identified an optimal hydrogel composition consisting of 20 % w/w poloxamer 407, 5 % w/w poloxamer 188, 0.6 % w/w NaCl, and 1.5 % w/w hyaluronic acid. Heparin was chemically bound to the poloxamer chains to enhance interactions between the hydrogel and the growth factor. The unmodified and heparin-modified hydrogels exhibited sustained release of NT-3 for 28 days while preserving the bioactivity of NT-3. Moreover, these hydrogels demonstrated excellent cytocompatibility and had properties suitable for injection into the intrathecal space, underscoring their suitability as a growth factor delivery system. The findings presented here contribute valuable insights to the development of effective delivery strategies for therapeutic growth factors for tissue engineering approaches, including the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Svenja Meissner
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland 1023, New Zealand
| | - Shaun Rees
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Linh Nguyen
- Department of Pharmacology & Clinical Pharmacology, Centre of Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland 1023, New Zealand
| | - Bronwen Connor
- Department of Pharmacology & Clinical Pharmacology, Centre of Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland 1023, New Zealand
| | - David Barker
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Bruce Harland
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland 1023, New Zealand
| | - Brad Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland 1023, New Zealand.
| |
Collapse
|
7
|
Duan H, Tang SY, Goda K, Li M. Enhancing the sensitivity and stability of electrochemical aptamer-based sensors by AuNPs@MXene nanocomposite for continuous monitoring of biomarkers. Biosens Bioelectron 2024; 246:115918. [PMID: 38086309 DOI: 10.1016/j.bios.2023.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
Electrochemical aptamer-based (E-AB) sensors offer exciting potential for real-time tracking of various biomarkers, such as proteins and small molecules, due to their exceptional selectivity and adaptability. However, most E-AB sensors rely on planar gold structures, which inherently limit their sensitivity and operational stability for continuous monitoring of biomarkers. Although gold nanostructures have recently enhanced E-AB sensor performance, no studies have explored the combination of gold nanostructure with other types of nanomaterials for continuous molecular monitoring. To fill this gap, we employed gold nanoparticles and MXene Ti3C2 (AuNPs@MXene), a versatile nanocomposite, in designing an E-AB sensor targeted at vascular endothelial growth factor (VEGF), a crucial human signaling protein. Remarkably, the AuNPs@MXene nanocomposite achieved over thirty-fold and half-fold increases in active surface area compared to bare and AuNPs-modified gold electrodes, respectively, significantly elevating the analytical capabilities of E-AB sensors during continuous operation. After a systematic optimization and characterization process, the newly developed E-AB sensor, powered by AuNPs@MXene nanocomposite, demonstrated both enhanced stability and heightened sensitivity. Overall, our findings open new avenues for the incorporation of nanocomposites in E-AB sensor design, enabling the creation of more sensitive and durable real-time monitoring systems.
Collapse
Affiliation(s)
- Haowei Duan
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shi-Yang Tang
- School of Electronics and Computer Science, University of Southampton, Southampton, SO16 1BJ, UK
| | - Keisuke Goda
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan; Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA; Institute of Technological Sciences, Wuhan University, Hubei, 430072, China
| | - Ming Li
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia; School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
8
|
Soikkeli M, Murros A, Rantala A, Txoperena O, Kilpi OP, Kainlauri M, Sovanto K, Maestre A, Centeno A, Tukkiniemi K, Gomes Martins D, Zurutuza A, Arpiainen S, Prunnila M. Wafer-Scale Graphene Field-Effect Transistor Biosensor Arrays with Monolithic CMOS Readout. ACS APPLIED ELECTRONIC MATERIALS 2023; 5:4925-4932. [PMID: 37779890 PMCID: PMC10536967 DOI: 10.1021/acsaelm.3c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023]
Abstract
The reliability of analysis is becoming increasingly important as point-of-care diagnostics are transitioning from single-analyte detection toward multiplexed multianalyte detection. Multianalyte detection benefits greatly from complementary metal-oxide semiconductor (CMOS) integrated sensing solutions, offering miniaturized multiplexed sensing arrays with integrated readout electronics and extremely large sensor counts. The development of CMOS back end of line integration compatible graphene field-effect transistor (GFET)-based biosensing has been rapid during the past few years, in terms of both the fabrication scale-up and functionalization toward biorecognition from real sample matrices. The next steps in industrialization relate to improving reliability and require increased statistics. Regarding functionalization toward truly quantitative sensors, on-chip bioassays with improved statistics require sensor arrays with reduced variability in functionalization. Such multiplexed bioassays, whether based on graphene or on other sensitive nanomaterials, are among the most promising technologies for label-free electrical biosensing. As an important step toward that, we report wafer-scale fabrication of CMOS-integrated GFET arrays with high yield and uniformity, designed especially for biosensing applications. We demonstrate the operation of the sensing platform array with 512 GFETs in simultaneous detection for the sodium chloride concentration series. This platform offers a truly statistical approach on GFET-based biosensing and further to quantitative and multianalyte sensing. The reported techniques can also be applied to other fields relying on functionalized GFETs, such as gas or chemical sensing or infrared imaging.
Collapse
Affiliation(s)
- Miika Soikkeli
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Anton Murros
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Arto Rantala
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Oihana Txoperena
- Graphenea
Semiconductor SLU, Paseo Mikeletegi 83, 20009-San Sebastian, Spain
| | - Olli-Pekka Kilpi
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Markku Kainlauri
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Kuura Sovanto
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Arantxa Maestre
- Graphenea
Semiconductor SLU, Paseo Mikeletegi 83, 20009-San Sebastian, Spain
| | - Alba Centeno
- Graphenea
Semiconductor SLU, Paseo Mikeletegi 83, 20009-San Sebastian, Spain
| | - Kari Tukkiniemi
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - David Gomes Martins
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Amaia Zurutuza
- Graphenea
Semiconductor SLU, Paseo Mikeletegi 83, 20009-San Sebastian, Spain
| | - Sanna Arpiainen
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Mika Prunnila
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|
9
|
Kour S, Sharma N, N B, Kumar P, Soodan JS, Santos MVD, Son YO. Advances in Diagnostic Approaches and Therapeutic Management in Bovine Mastitis. Vet Sci 2023; 10:449. [PMID: 37505854 PMCID: PMC10384116 DOI: 10.3390/vetsci10070449] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Mastitis causes huge economic losses to dairy farmers worldwide, which largely negatively affects the quality and quantity of milk. Mastitis decreases overall milk production, degrades milk quality, increases milk losses because of milk being discarded, and increases overall production costs due to higher treatment and labour costs and premature culling. This review article discusses mastitis with respect to its clinical epidemiology, the pathogens involved, economic losses, and basic and advanced diagnostic tools that have been used in recent times to diagnose mastitis effectively. There is an increasing focus on the application of novel therapeutic approaches as an alternative to conventional antibiotic therapy because of the decreasing effectiveness of antibiotics, emergence of antibiotic-resistant bacteria, issue of antibiotic residues in the food chain, food safety issues, and environmental impacts. This article also discussed nanoparticles'/chitosan's roles in antibiotic-resistant strains and ethno-veterinary practices for mastitis treatment in dairy cattle.
Collapse
Affiliation(s)
- Savleen Kour
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Balaji N
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Pavan Kumar
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Jasvinder Singh Soodan
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Marcos Veiga Dos Santos
- Department of Animal Sciences, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 690756, Republic of Korea
| |
Collapse
|
10
|
Schneider MM, Scheidt T, Priddey AJ, Xu CK, Hu M, Meisl G, Devenish SRA, Dobson CM, Kosmoliaptsis V, Knowles TPJ. Microfluidic antibody affinity profiling of alloantibody-HLA interactions in human serum. Biosens Bioelectron 2023; 228:115196. [PMID: 36921387 DOI: 10.1016/j.bios.2023.115196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Antibody profiling is a fundamental component of understanding the humoral response in a wide range of disease areas. Most currently used approaches operate by capturing antibodies onto functionalised surfaces. Such measurements of surface binding are governed by an overall antibody titre, while the two fundamental molecular parameters, antibody affinity and antibody concentration, are challenging to determine individually from such approaches. Here, by applying microfluidic diffusional sizing (MDS), we show how we can overcome this challenge and demonstrate reliable quantification of alloantibody binding affinity and concentration of alloantibodies binding to Human Leukocyte Antigens (HLA), an extensively used clinical biomarker in organ transplantation, both in buffer and in crude human serum. Capitalising on the ability to vary both serum and HLA concentrations during MDS, we show that both affinity and concentration of HLA-specific antibodies can be determined directly in serum when neither of these parameters is known. Finally, we provide proof of principle in clinical transplant patient sera that our assay enables differentiation of alloantibody reactivity against HLA proteins of highly similar structure, providing information not attainable through currently available techniques. These results outline a path towards detection and in-depth profiling of humoral immunity and may enable further insights into the clinical relevance of antibody reactivity in clinical transplantation and beyond.
Collapse
Affiliation(s)
- Matthias M Schneider
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tom Scheidt
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ashley J Priddey
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Catherine K Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Mengsha Hu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Sean R A Devenish
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Rd, Cambridge, CB1 8DH, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK; NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK; NIHR Cambridge Biomedical Research Centre, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, UK.
| |
Collapse
|
11
|
Levy S, Abd Alhadi M, Azulay A, Kahana A, Bujanover N, Gazit R, McGargill MA, Friedman LM, Hertz T. FLU-LISA (fluorescence-linked immunosorbent assay): high-throughput antibody profiling using antigen microarrays. Immunol Cell Biol 2023; 101:231-248. [PMID: 36567516 DOI: 10.1111/imcb.12618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
Vaccination and natural infection both elicit potent humoral responses that provide protection from subsequent infections. The immune history of an individual following such exposures is in part encoded by antibodies. While there are multiple immunoassays for measuring antibody responses, the majority of these methods measure responses to a single antigen. A commonly used method for measuring antibody responses is ELISA-a semiquantitative assay that is simple to perform in research and clinical settings. Here, we present FLU-LISA (fluorescence-linked immunosorbent assay)-a novel antigen microarray-based assay for rapid high-throughput antibody profiling. The assay can be used for profiling immunoglobulin (Ig) G, IgA and IgM responses to multiple antigens simultaneously, requiring minimal amounts of sample and antigens. Using several influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen microarrays, we demonstrated the specificity and sensitivity of our novel assay and compared it with the traditional ELISA, using samples from mice, chickens and humans. We also showed that our assay can be readily used with dried blood spots, which can be collected from humans and wild birds. FLU-LISA can be readily used to profile hundreds of samples against dozens of antigens in a single day, and therefore offers an attractive alternative to the traditional ELISA.
Collapse
Affiliation(s)
- Shlomia Levy
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Marwa Abd Alhadi
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Asaf Azulay
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Amit Kahana
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Nir Bujanover
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Roi Gazit
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lilach M Friedman
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Tomer Hertz
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute of Biotechnology in the Negev, Beer-Sheva, Israel.,Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
12
|
Jo A, Green A, Medina JE, Iyer S, Ohman AW, McCarthy ET, Reinhardt F, Gerton T, Demehin D, Mishra R, Kolin DL, Zheng H, Crum CP, Weinberg RA, Rueda BR, Castro CM, Dinulescu DM, Lee H. Profiling extracellular vesicles in circulation enables the early detection of ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524549. [PMID: 36711872 PMCID: PMC9882285 DOI: 10.1101/2023.01.19.524549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ovarian cancer is a heterogeneous group of tumors in both cell type and natural history. While outcomes are generally favorable when detected early, the most common subtype, high-grade serous carcinoma (HGSOC), typically presents at an advanced stage and portends less favorable prognoses. Its aggressive nature has thwarted early detection efforts through conventional detection methods such as serum CA125 and ultrasound screening and thus inspired the investigation of novel biomarkers. Here, we report the systematic development of an extracellular-vesicle (EV)-based test to detect early-stage HGSOC. Our study is based on emerging insights into HGSOC biology, notably that it arises from precursor lesions within the fallopian tube before traveling to ovarian and/or peritoneal surfaces. To identify HGSOC marker candidates, we established murine fallopian tube (mFT) cells with oncogenic mutations in Brca1/2, Tp53 , and Pten genes, and performed proteomic analyses on mFT EVs. The identified markers were then evaluated with an orthotopic HGSOC animal model. In serially-drawn blood samples of tumor-bearing mice, mFT-EV markers increased with tumor initiation, supporting their potential use in early cancer detection. A pilot human clinical study ( n = 51) further narrowed EV markers to five candidates, EpCAM, CD24, VCAN, HE4, and TNC. Combined expression of these markers achieved high OvCa diagnostic accuracy (cancer vs. non-cancer) with a sensitivity of 0.89 and specificity of 0.93. The same five markers were also effective in a three-group classification: non-cancer, early-stage (I & II) HGSOC, and late-stage (III & IV) HGSOC. In particular, they differentiated early-stage HGSOC from the rest with a specificity of 0.91. Minimally invasive and repeatable, this EV-based testing could be a versatile and serial tool for informing patient care and monitoring women at high risk for ovarian cancer.
Collapse
|
13
|
Meissner S, Raos B, Svirskis D. Hydrogels can control the presentation of growth factors and thereby improve their efficacy in tissue engineering. Eur J Pharm Biopharm 2022. [DOI: 10.1016/j.ejpb.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Ausserwöger H, Schneider MM, Herling TW, Arosio P, Invernizzi G, Knowles TPJ, Lorenzen N. Non-specificity as the sticky problem in therapeutic antibody development. Nat Rev Chem 2022; 6:844-861. [PMID: 37117703 DOI: 10.1038/s41570-022-00438-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Abstract
Antibodies are highly potent therapeutic scaffolds with more than a hundred different products approved on the market. Successful development of antibody-based drugs requires a trade-off between high target specificity and target binding affinity. In order to better understand this problem, we here review non-specific interactions and explore their fundamental physicochemical origins. We discuss the role of surface patches - clusters of surface-exposed amino acid residues with similar physicochemical properties - as inducers of non-specific interactions. These patches collectively drive interactions including dipole-dipole, π-stacking and hydrophobic interactions to complementary moieties. We elucidate links between these supramolecular assembly processes and macroscopic development issues, such as decreased physical stability and poor in vivo half-life. Finally, we highlight challenges and opportunities for optimizing protein binding specificity and minimizing non-specificity for future generations of therapeutics.
Collapse
|
15
|
Ghassemi Nejad J, Ghaffari MH, Ataallahi M, Jo JH, Lee HG. Stress Concepts and Applications in Various Matrices with a Focus on Hair Cortisol and Analytical Methods. Animals (Basel) 2022; 12:ani12223096. [PMID: 36428324 PMCID: PMC9686725 DOI: 10.3390/ani12223096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
When studying stress in animals, it is important to understand the types of stress and their classification, and how to assess the stress levels in different animal species using different matrices accurately and precisely. The classification of stress types helps to distinguish between good stress (eustress) and bad stress (distress). Hence, first, it is crucial to assess the animal's level of stress in a non-intrusive manner and second to identify the type of stress that is best suited to its environment. Third, it is also important to analyze the obtained samples using a suitable method to increase the validity of stress hormone measurements. Therefore, in this review, we aim to: (1) explain the classification of stress, (2) discuss the wide range of body matrices (e.g., saliva, milk, hair, urine, feces, sweat, fins, etc.) that can be used as samples to evaluate stress levels, as well as their comparisons and limitations, and present the reliable matrices for measuring stress hormones with special emphasis on hair, (3) compare the analytical methods for measuring stress hormones after sample preparation. Despite some literature that does not include hair as a reliable matrix for evaluating stress levels, hair is one of the matrices for measuring long-term stress hormone accumulations. This review discusses some factors that influence the level of stress hormones in the hair. By understanding these issues, the scientific community will not only be able to improve the understanding of stress and biomarker evaluation but also suggest how to deal with the consequences of stress in future research.
Collapse
Affiliation(s)
| | | | - Mohammad Ataallahi
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Jang-Hoon Jo
- Department of Animal Science, Konkuk University, Seoul 05029, Korea
| | - Hong-Gu Lee
- Department of Animal Science, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-0523
| |
Collapse
|
16
|
Levy S, Abd Alhadi M, Azulay A, Kahana A, Bujanover N, Gazit R, Mcgargill MA, Friedman LM, Hertz T. ELISA–on-Chip: High throughput antibody profiling using antigen microarrays.. [DOI: 10.1101/2022.07.05.22277251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractVaccination and natural infection both elicit potent humoral responses that provide protection from subsequent infections. The immune-history of an individual following such exposures is in part encoded by antibodies. While there are multiple immunoassays for measuring antibody responses, the majority of these methods measure responses to a single antigen. A commonly used method for measuring antibody responses is the enzyme-linked immunosorbent assay (ELISA) assay - a semi-quantitative assay that is simple to perform in research and clinical settings. Here we present the ELISA-on-Chip assay - a novel antigen microarray based assay for rapid high-throughput antibody profiling. The assay can be used for profiling IgG, IgA and IgM responses to multiple antigens simultaneously, requiring minimal amounts of sample and antigens. Using three different types of influenza antigen microarrays, we demonstrated the specificity and sensitivity of our novel assay and compared it to the traditional ELISA assay, using samples from mice, chickens and humans. We also showed that our assay can be readily used with dried blood spots, which can be collected from wild birds, as well as from newborns and children. The ELISA-on-Chip assay can be readily used to profile hundreds of samples against dozens of antigens in a single day, and therefore offers an attractive alternative to the traditional ELISA assay.
Collapse
|
17
|
Enzyme-Mimetic nano-immunosensors for amplified detection of food hazards: Recent advances and future trends. Biosens Bioelectron 2022; 217:114577. [DOI: 10.1016/j.bios.2022.114577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 01/15/2023]
|
18
|
Onishi T, Mihara K, Matsuda S, Sakamoto S, Kuwahata A, Sekino M, Kusakabe M, Handa H, Kitagawa Y. Application of Magnetic Nanoparticles for Rapid Detection and In Situ Diagnosis in Clinical Oncology. Cancers (Basel) 2022; 14:cancers14020364. [PMID: 35053527 PMCID: PMC8774179 DOI: 10.3390/cancers14020364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Screening, monitoring, and diagnosis are critical in oncology treatment. However, there are limitations with the current clinical methods, notably the time, cost, and special facilities required for radioisotope-based methods. An alternative approach, which uses magnetic beads, offers faster analyses with safer materials over a wide range of oncological applications. Magnetic beads have been used to detect extracellular vesicles (EVs) in the serum of pancreatic cancer patients with statistically different EV levels in preoperative, postoperative, and negative control samples. By incorporating fluorescence, magnetic beads have been used to quantitatively measure prostate-specific antigen (PSA), a prostate cancer biomarker, which is sensitive enough even at levels found in healthy patients. Immunostaining has also been incorporated with magnetic beads and compared with conventional immunohistochemical methods to detect lesions; the results suggest that immunostained magnetic beads could be used for pathological diagnosis during surgery. Furthermore, magnetic nanoparticles, such as superparamagnetic iron oxide nanoparticles (SPIONs), can detect sentinel lymph nodes in breast cancer in a clinical setting, as well as those in gallbladder cancer in animal models, in a surgery-applicable timeframe. Ultimately, recent research into the applications of magnetic beads in oncology suggests that the screening, monitoring, and diagnosis of cancers could be improved and made more accessible through the adoption of this technology.
Collapse
Affiliation(s)
- Tatsuya Onishi
- Department of Breast Surgery, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa 277-8577, Chiba, Japan;
| | - Kisyo Mihara
- Department of Surgery, Kawasaki Municipal Kawasaki Hospital, Kawasaki-ku, Kawasaki 210-0013, Kanagawa, Japan;
| | - Sachiko Matsuda
- Department of Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Correspondence: ; Tel.: +81-3-3353-1211
| | - Satoshi Sakamoto
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Kanagawa, Japan;
| | - Akihiro Kuwahata
- Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aramaki-aza, Aoba-ku, Sendai 980-8579, Miyagi, Japan;
| | - Masaki Sekino
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| | - Moriaki Kusakabe
- Graduate School of Agricultural and Life Sciences, Research Center for Food Safety, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
- Matrix Cell Research Institute Inc., 1-35-3 Kamikashiwada, Ushiku 300-1232, Ibaraki, Japan
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan;
| | - Yuko Kitagawa
- Department of Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| |
Collapse
|
19
|
Zhou E, Song N, Xiao Q, Farooq Z, Jia Z, Wen J, Dai C, Ma C, Tu J, Shen J, Fu T, Yi B. Construction of transgenic detection system of Brassica napus L. based on single nucleotide polymorphism chip. 3 Biotech 2022; 12:11. [PMID: 34966634 PMCID: PMC8655060 DOI: 10.1007/s13205-021-03062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023] Open
Abstract
Brassica napus L. is a vital oil crop in China. As auxiliary tools for rapeseed breeding, transgenic technologies play a considerable role in heterosis, variety improvement, and pest resistance. Research on transgenic detection technologies is of great significance for the introduction, supervision, and development of transgenic rapeseed in China. However, the transgenic detection methods currently in use are complex and time-consuming, with low output. A single nucleotide polymorphism (SNP) chip can effectively overcome such limitations. In the present study, we collected 40 transgenic elements and designed 291 probes. The probe sequences were submitted to Illumina Company, and the Infinium chip technology was used to prepare SNP chips. In the present Brassica napus transgenic detection experiment, 84 high-quality probes of 17 transgenic elements were preliminarily screened, and genotyping effect was optimised for the probe signal value. Ultimately, a transgenic detection system for B. napus was developed. The developed system has the advantages of simple operation, minimal technical errors, and stable detection outcomes. A transgenic detection sensitivity test revealed that the probe designed could accurately detect 1% of transgenic samples and had high detection sensitivity. In addition, in repeatability tests, the CaMV35S promoter coefficient of variation was approximately 3.58%. Therefore, the SNP chip had suitable repeatability in transgene detection. The SNP chip developed could be used to construct transgenic detection systems for B. napus. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03062-6.
Collapse
Affiliation(s)
- Enqiang Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Nuan Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Qing Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Zunaira Farooq
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Zhibo Jia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| |
Collapse
|
20
|
Wang X, Du Y, Wu C, Xu M, Liu Y, Di X. UHPLC-MS/MS analysis of cAMP and cGMP in rat plasma as potential biomarkers of Yin-Yang disharmony in traditional Chinese medicine. J Pharm Anal 2021; 11:458-464. [PMID: 34513121 PMCID: PMC8424358 DOI: 10.1016/j.jpha.2020.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/10/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022] Open
Abstract
Cyclic 3',5'-adenosine monophosphate (cAMP) and cyclic 3',5'-guanosine monophosphate (cGMP) are considered as potential biomarkers for Yin-Yang disharmony in traditional Chinese medicine. However, phosphodiesterase-mediated ex vivo degradation of these molecules in biological samples may result in their underestimation. In the present study, a ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed for determination of cAMP and cGMP in rat plasma, with special consideration of their stability ex vivo. Following precipitation of proteins from plasma samples with 0.4 M perchloric acid, the analytes were chromatographed on a Shimadzu Shim-pack-XR-ODS II column with 2.5 mM ammonium acetate and methanol in gradient mode. The MS/MS detection was performed using multiple reaction monitoring in the positive electrospray ionization mode. The lower limit of quantification was 0.27 ng/mL for cAMP and 0.37 ng/mL for cGMP. The method was used to determine the plasma cAMP and cGMP levels in normal and Yin deficiency diabetic rats treated with or without Rehmannia glutinosa. The developed method may be useful for evaluating the regulatory effects of Chinese herbal medicine on the levels of cAMP and cGMP in the body.
Collapse
Affiliation(s)
- Xin Wang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Yue Du
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Cuiting Wu
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Ming Xu
- Shenyang Analytical Application Center, Shimadzu (China) Co. Ltd., Shenyang, 167 Qingnian Street, Shenyang, 110016, PR China
| | - Youping Liu
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xin Di
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
- Corresponding author.
| |
Collapse
|
21
|
David P, Hansen FJ, Bhat A, Weber GF. An overview of proteomic methods for the study of 'cytokine storms'. Expert Rev Proteomics 2021; 18:83-91. [PMID: 33849358 DOI: 10.1080/14789450.2021.1911652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: The cytokine storm is a form of excessive systemic inflammatory reaction triggered by a myriad of factors that may lead to multi-organ failure, and finally to death. The cytokine storm can occur in a number of infectious and noninfectious diseases including COVID-19, sepsis, ebola, avian influenza, and graft versus host disease, or during the severe inflammatory response syndrome.Area covered: This review mainly focuses on the most common and well-known methods of protein studies (PAGE, SDS-PAGE, and high- performance liquid chromatography). It also discusses other modern technologies in proteomics like mass spectrometry, soft ionization techniques, cytometric bead assays, and the next generation of microarrays that have been used to get an in-depth understanding of the pathomechanisms involved during the cytokine storm.Expert opinion: Overactivation of leukocytes drives the production and secretion of inflammatory cytokines fueling the cytokine storm. These events lead to a systemic hyper-inflammation, circulatory collapse and shock, and finally to multiorgan failure. Therefore, monitoring the patient's systemic cytokine levels with proteomic technologies that are redundant, economical, and require minimal sample volume for real-time assessment might help in a better clinical evaluation and management of critically ill patients.
Collapse
Affiliation(s)
- Paul David
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Frederik J Hansen
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Adil Bhat
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Georg F Weber
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
22
|
Fegan JE, Yu RH, Islam EA, Schryvers AB. Development of a non-biased, high-throughput ELISA for the rapid evaluation of immunogenicity and cross-reactivity. J Immunol Methods 2021; 493:113037. [PMID: 33722512 DOI: 10.1016/j.jim.2021.113037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 11/26/2022]
Abstract
Traditional ELISA-based protein analysis has been predicated on the assumption that proteins bind randomly to the solid surface of the ELISA plate polymer (polystyrene or polyvinyl chloride). Random adherence to the plate ensures equal access to all faces of the protein, an important consideration when evaluating immunogenicity of polyclonal serum samples as well as when examining the cross-reactivity of immune serum against different antigenic variants of a protein. In this study we demonstrate that the soluble form of the surface lipoprotein transferrin binding protein B (TbpB) from three different bacterial pathogens (Neisseria meningitidis, Actinobacillus pleuropneumoniae, and Mannheimia haemolytica) bind the ELISA plate in a manner that consistently obscures the transferrin binding face of the proteins' N-lobe. In order to develop a non-biased ELISA where all faces of the protein are accessible, the strong interaction between biotin and avidin has been exploited by adding a biotin tag to these proteins during Escherichia coli-based cytoplasmic expression and utilizing streptavidin or neutravidin coated ELISA plates for protein capture and display. The use of avidin coated ELISA plates also allows for rapid purification of biotin-tagged proteins from crude E. coli lysates, removing the requirement of prior affinity purification of each protein to be included in the ELISA-based analyses. In proof of concept experiments we demonstrate the utility of this approach for evaluating immunogenicity and cross-reactivity of serum from mice and pigs immunized with TbpBs from human and porcine pathogens.
Collapse
Affiliation(s)
- Jamie E Fegan
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary T2N 4N1, Canada
| | - Rong-Hua Yu
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary T2N 4N1, Canada
| | - Epshita A Islam
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto M5S 1A8, Canada
| | - Anthony B Schryvers
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary T2N 4N1, Canada.
| |
Collapse
|
23
|
Lombardelli L, Logiodice F, Kullolli O, Piccinni MP. Evaluation of Secreted Cytokines by Multiplex Bead-Based Assay (X MAP Technology, Luminex). Methods Mol Biol 2021; 2285:121-130. [PMID: 33928548 DOI: 10.1007/978-1-0716-1311-5_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Luminex XMAP technology permits the simultaneous evaluation of numerous cytokines in several types of biological fluids (plasma, serum, liquor, follicular fluids, etc.) and in cell supernatants. Thus, multiplexing allows to achieve a time/cost economy and ensures that all the measurements are performed in the same conditions. Simultaneous measurement of cytokines with a multiplex bead-based assay has some similarities with ELISA, in particular the use of anti-cytokine antibodies, but shows an important difference, the use of magnetic fluorescent beads coupled to anti-cytokine monoclonal antibodies. The magnetic microspheres (dyed internally with two florescent dyes) coupled with anti-cytokine monoclonal antibodies are incubated with samples and standards; after washing, the samples/standards are incubated with biotinylated anti-cytokine monoclonal antibodies; and finally, after other washings, with streptavidin-phycoerythrin solution. Luminex instrument identifies the different cytokines present in each well and converts the mean fluorescence intensity (MFI) of each measured cytokine in pg/ml, thanks to the software and the standard curves. This technique is applicable in basic and clinical research.
Collapse
Affiliation(s)
- Letizia Lombardelli
- Department of Experimental and Clinical Medicine and DENOTHE Excellence Center, University of Florence, Florence, Italy
| | - Federica Logiodice
- Department of Experimental and Clinical Medicine and DENOTHE Excellence Center, University of Florence, Florence, Italy
| | - Ornela Kullolli
- Department of Experimental and Clinical Medicine and DENOTHE Excellence Center, University of Florence, Florence, Italy
| | - Marie-Pierre Piccinni
- Department of Experimental and Clinical Medicine and DENOTHE Excellence Center, University of Florence, Florence, Italy.
| |
Collapse
|
24
|
Fadishei M, Ghasemzadeh Rahbardar M, Imenshahidi M, Mohajeri A, Razavi BM, Hosseinzadeh H. Effects of Nigella sativa oil and thymoquinone against bisphenol A-induced metabolic disorder in rats. Phytother Res 2020; 35:2005-2024. [PMID: 33315269 DOI: 10.1002/ptr.6944] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
The underlying mechanisms of bisphenol A (BPA)-induced metabolic disorder and the protective impact of Nigella sativa oil (NSO) and thymoquinone (TQ) against BPA-induced metabolic disorder were investigated. Rats were treated as follows: Control, BPA (10 mg/kg), TQ (2 mg/kg), NSO (84 μL/kg), BPA + TQ (0.5, 1, 2 mg/kg), and BPA + NSO (21, 42, 84 μL/kg). BPA was administered by gavage, while, TQ and NSO were injected intraperitoneally (daily, 54 days). The weight, blood pressure, serum parameters [glucose, lipid profile, hepatic enzymes, insulin, interlukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), leptin, adiponectin], malondialdehyde (MDA), glutathione (GSH) and insulin signaling pathways [insulin receptor substrate (p-IRS,IRS); kinase (p-Akt,Akt); glycogen synthase kinase (p-GS3K,GS3K)] were measured. BPA increased the blood pressure, MDA, lipid profile, hepatic enzymes, insulin, IL-6, TNF-α, and leptin, and decreased the GSH and phosphorylated forms of IRS, Akt, GS3K but did not alter weight, glucose, IRS, AKT, and GS3K in the liver. Administration of NSO or TQ with BPA reduced the blood pressure, liver level of MDA, lipid profile, hepatic enzymes, insulin, IL-6, TNF-α, leptin, and increased the liver level of GSH and p-IRS, p-AKT, p-GS3K. TQ and NSO are thought to be effective in controlling metabolic disorders induced by BPA.
Collapse
Affiliation(s)
- Masoumeh Fadishei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Augustine R, Das S, Hasan A, S A, Abdul Salam S, Augustine P, Dalvi YB, Varghese R, Primavera R, Yassine HM, Thakor AS, Kevadiya BD. Rapid Antibody-Based COVID-19 Mass Surveillance: Relevance, Challenges, and Prospects in a Pandemic and Post-Pandemic World. J Clin Med 2020; 9:E3372. [PMID: 33096742 PMCID: PMC7589650 DOI: 10.3390/jcm9103372] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
The aggressive outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) as COVID-19 (coronavirus disease-2019) pandemic demands rapid and simplified testing tools for its effective management. Increased mass testing and surveillance are crucial for controlling the disease spread, obtaining better pandemic statistics, and developing realistic epidemiological models. Despite the advantages of nucleic acid- and antigen-based tests such as accuracy, specificity, and non-invasive approaches of sample collection, they can only detect active infections. Antibodies (immunoglobulins) are produced by the host immune system within a few days after infection and persist in the blood for at least several weeks after infection resolution. Antibody-based tests have provided a substitute and effective method of ultra-rapid detection for multiple contagious disease outbreaks in the past, including viral diseases such as SARS (severe acute respiratory syndrome) and MERS (Middle East respiratory syndrome). Thus, although not highly suitable for early diagnosis, antibody-based methods can be utilized to detect past infections hidden in the population, including asymptomatic ones. In an active community spread scenario of a disease that can provide a bigger window for mass detections and a practical approach for continuous surveillance. These factors encouraged researchers to investigate means of improving antibody-based rapid tests and employ them as reliable, reproducible, sensitive, specific, and economic tools for COVID-19 mass testing and surveillance. The development and integration of such immunoglobulin-based tests can transform the pandemic diagnosis by moving the same out of the clinics and laboratories into community testing sites and homes. This review discusses the principle, technology, and strategies being used in antibody-based testing at present. It also underlines the immense prospect of immunoglobulin-based testing and the efficacy of repeated planned deployment in pandemic management and post-pandemic sustainable screenings globally.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha PO Box 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha PO Box 2713, Qatar;
| | - Suvarthi Das
- Department of Medicine, Stanford University Medical Center, Palo Alto, CA 94304, USA;
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha PO Box 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha PO Box 2713, Qatar;
| | - Abhilash S
- Department of Microbiology, Majlis Arts and Science College, Puramannur, Malappuram, Kerala 676552, India;
| | - Shaheen Abdul Salam
- Department of Biosciences, MES College Marampally, Aluva, Ernakulam, Kerala 683107, India;
| | - Priya Augustine
- Department of Zoology, Providence Women’s College, Kozhikode, Kerala 673009, India;
| | - Yogesh Bharat Dalvi
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Science & Research, Tiruvalla, Kerala 689101, India; (Y.B.D.); (R.V.)
| | - Ruby Varghese
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Science & Research, Tiruvalla, Kerala 689101, India; (Y.B.D.); (R.V.)
| | - Rosita Primavera
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (A.S.T.); (B.D.K.)
| | | | - Avnesh S. Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (A.S.T.); (B.D.K.)
| | - Bhavesh D. Kevadiya
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (A.S.T.); (B.D.K.)
| |
Collapse
|
26
|
Robert KA, Sharma R, Henkel R, Agarwal A. An update on the techniques used to measure oxidative stress in seminal plasma. Andrologia 2020; 53:e13726. [PMID: 32814366 DOI: 10.1111/and.13726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) are produced in significant amounts by spermatozoa and leucocytes. They are necessary to carry out various physiological functions such as sperm capacitation, hyperactivation, acrosome reaction, sperm-zona binding and cellular signalling pathways. Oxidative stress (OS) results when the ROS levels overwhelm the available antioxidant reserve. A number of direct and indirect tests have been developed to assess oxidative stress. In this manuscript, we discuss these common direct and indirect tests as well as their advantages and disadvantages. Tests measuring sperm dysfunction secondary to oxidative stress such as lipid peroxidation, DNA fragmentation and protein alterations are also described.
Collapse
Affiliation(s)
- Kathy A Robert
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Rakesh Sharma
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
27
|
Sarcina L, Torsi L, Picca RA, Manoli K, Macchia E. Assessment of Gold Bio-Functionalization for Wide-Interface Biosensing Platforms. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3678. [PMID: 32630091 PMCID: PMC7374319 DOI: 10.3390/s20133678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 12/20/2022]
Abstract
The continuous improvement of the technical potential of bioelectronic devices for biosensing applications will provide clinicians with a reliable tool for biomarker quantification down to the single molecule. Eventually, physicians will be able to identify the very moment at which the illness state begins, with a terrific impact on the quality of life along with a reduction of health care expenses. However, in clinical practice, to gather enough information to formulate a diagnosis, multiple biomarkers are normally quantified from the same biological sample simultaneously. Therefore, it is critically important to translate lab-based bioelectronic devices based on electrolyte gated thin-film transistor technology into a cost-effective portable multiplexing array prototype. In this perspective, the assessment of cost-effective manufacturability represents a crucial step, with specific regard to the optimization of the bio-functionalization protocol of the transistor gate module. Hence, we have assessed, using surface plasmon resonance technique, a sustainable and reliable cost-effective process to successfully bio-functionalize a gold surface, suitable as gate electrode for wide-field bioelectronic sensors. The bio-functionalization process herein investigated allows to reduce the biorecognition element concentration to one-tenth, drastically impacting the manufacturing costs while retaining high analytical performance.
Collapse
Affiliation(s)
- Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy; (L.S.); (L.T.); (R.A.P.)
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy; (L.S.); (L.T.); (R.A.P.)
- CSGI (Centre for Colloid and Surface Science), Department of Chemistry, 70125 Bari, Italy
- The Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland;
| | - Rosaria Anna Picca
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy; (L.S.); (L.T.); (R.A.P.)
- CSGI (Centre for Colloid and Surface Science), Department of Chemistry, 70125 Bari, Italy
| | - Kyriaki Manoli
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy; (L.S.); (L.T.); (R.A.P.)
- CSGI (Centre for Colloid and Surface Science), Department of Chemistry, 70125 Bari, Italy
| | - Eleonora Macchia
- The Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland;
| |
Collapse
|
28
|
Mwale PF, Lee CH, Lin LT, Leu SJ, Huang YJ, Chiang LC, Mao YC, Yang YY. Expression, Purification, and Characterization of Anti- Zika virus Envelope Protein: Polyclonal and Chicken-Derived Single Chain Variable Fragment Antibodies. Int J Mol Sci 2020; 21:ijms21020492. [PMID: 31940993 PMCID: PMC7014089 DOI: 10.3390/ijms21020492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Zika virus (ZIKV) is a new and emerging virus that has caused outbreaks worldwide. The virus has been linked to congenital neurological malformations in neonates and Guillain-Barré syndrome in adults. Currently there are no effective vaccines available. As a result, there is a great need for ZIKV treatment. In this study, we developed single chain variable fragment (scFv) antibodies that target the ZIKV envelope protein using phage display technology. We first induced an immune response in white leghorn laying hens against the ZIKV envelope (E) protein. Chickens were immunized and polyclonal immunoglobulin yolk (IgY) antibodies were extracted from egg yolks. A high-level titer of anti-ZIKV_E IgY antibodies was detected using enzyme-linked immunosorbent assay (ELISA) after the third immunization. The titer persisted for at least 9 weeks. We constructed two antibody libraries that contained 5.3 × 106 and 4.5 × 106 transformants. After biopanning, an ELISA phage assay confirmed the enrichment of specific clones. We randomly selected 26 clones that expressed ZIKV scFv antibodies and classified them into two groups, short-linker and long-linker. Of these, four showed specific binding activities toward ZIKV_E proteins. These data suggest that the polyclonal and monoclonal scFv antibodies have the diagnostic or therapeutic potential for ZIKV.
Collapse
Affiliation(s)
- Pharaoh Fellow Mwale
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (P.F.M.); (C.-H.L.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chi-Hsin Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (P.F.M.); (C.-H.L.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Liang-Tzung Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (L.-T.L.); (S.-J.L.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (L.-T.L.); (S.-J.L.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yun-Ju Huang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Liao-Chun Chiang
- College of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Yi-Yuan Yang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (P.F.M.); (C.-H.L.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-273-616-61 (ext. 3325); Fax: +886-2-273-245-10
| |
Collapse
|
29
|
The protective effect of inosine against rotenone-induced Parkinson's disease in mice; role of oxido-nitrosative stress, ERK phosphorylation, and A2AR expression. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1041-1053. [PMID: 31915844 DOI: 10.1007/s00210-019-01804-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a severe disabling syndrome in which neuroinflammation and various signaling pathways are believed to mediate dopaminergic neurodegeneration. Here, the possible disease-modifying effects of the purine nucleoside inosine were examined against rotenone-induced PD. Mice were allocated into six groups, namely, a normal control group receiving dimethylsulfoxide, a PD control group receiving rotenone, a standard treatment group receiving L-dopa/carbidopa together with rotenone, and three treatment groups receiving inosine in low, medium, and high doses together with rotenone. At the end of the experimental protocol, three behavioral tests were performed to assess PD motor manifestations, namely, wire-hanging test, wood-walking test, and stair test. After performing the behavioral study, mice striata were isolated for the colorimetric assay of hypoxanthine, the enzyme-linked immunosorbent assay of dopamine, tumor necrosis factor-α, interleukin-6 and nitrite, the Western blot estimation of total and phosphorylated extracellular signal-regulated kinase (tERK and pERK), the polymerase chain reaction estimation of adenosine A2A receptor (A2AR) expression, as well as the histopathological examination of substantia nigra and striatal tissue. Inosine protected against PD progression in a dose-dependent manner, with the effect comparable to the standard treatment L-dopa/carbidopa, evidenced by behavioral, biochemical, and histologic findings. The beneficial antiparkinsonian effect of inosine could be attributed to the ability of the drug to ameliorate neuroinflammation and oxido-nitrosative stress, together with suppression of ERK phosphorylation and down-regulation of A2AR expression. Inosine could therefore be considered as a disease-modifying agent against PD, but further studies are claimed to confirm such effects clinically.
Collapse
|
30
|
Felemban S, Vazquez P, Moore E. Future Trends for In Situ Monitoring of Polycyclic Aromatic Hydrocarbons in Water Sources: The Role of Immunosensing Techniques. BIOSENSORS-BASEL 2019; 9:bios9040142. [PMID: 31835623 PMCID: PMC6955691 DOI: 10.3390/bios9040142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hazardous environmental pollutants found in water, soil, and air. Exposure to this family of chemicals presents a danger to human health, and as a result, it is imperative to design methods that are able to detect PAHs in the environment, thus improving the quality of drinking water and agricultural soils. This review presents emerging immunoassay techniques used for in situ detection of PAH in water samples and how they compare to common-place techniques. It will discuss their advantages and disadvantages and why it is required to find new solutions to analyze water samples. These techniques are effective in reducing detection times and complexity of measurements. Immunoassay methods presented here are able to provide in situ analysis of PAH concentrations in a water sample, which can be a great complement to existing laboratory techniques due to their real-time screening and portability for immunoassay techniques. The discussion shows in detail the most relevant state-of-the-art surface functionalization techniques used in the field of immunosensors, with the aim to improve PAH detection capabilities. Specifically, three surface functionalization techniques are key approaches to improve the detection of PAHs, namely, substrate surface reaction, layer-by-layer technique, and redox-active probes. These techniques have shown promising improvements in the detection of PAHs in water samples, since they show a wider linear range and high level of sensitivity compared to traditional PAH detection techniques. This review explores the various methods used in the detection of PAH in water environments. It provides extra knowledge to scientists on the possible solutions that can be used to save time and resources. The combination of the solutions presented here shows great promise in the development of portable solutions that will be able to analyze a sample in a matter of minutes on the field.
Collapse
|
31
|
Abdel-Rahman M, Rezk MM, Abdel Moneim AE, Ahmed-Farid OA, Essam S. Thorium exerts hazardous effects on some neurotransmitters and thyroid hormones in adult male rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:167-176. [PMID: 31482261 DOI: 10.1007/s00210-019-01718-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022]
|
32
|
News and meta-analysis regarding anti-Beta 2 glycoprotein I antibodies and their determination. Clin Immunol 2019; 205:106-115. [DOI: 10.1016/j.clim.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 11/18/2022]
|
33
|
Vardenafil and cilostazol can improve vascular reactivity in rats with diabetes mellitus and rheumatoid arthritis co-morbidity. Life Sci 2019; 229:67-79. [PMID: 31085245 DOI: 10.1016/j.lfs.2019.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/27/2019] [Accepted: 05/10/2019] [Indexed: 12/17/2022]
Abstract
Endothelial dysfunction and vascular reactivity defects secondary to metabolic and immunological disorders carry risk of serious cardiovascular complications. Here, the effects of the phosphodiesterase (PDE) inhibitors vardenafil and cilostazol were examined against rheumatoid arthritis (RA)/diabetes mellitus (DM)-co-morbidity-induced endothelial dysfunction and vascular reactivity defects. After setting of RA/DM-co-morbidity model, rats were divided into a normal control group, an RA/DM-co-morbidity group, and two treatment groups receiving oral vardenafil (10 mg/kg/day) and cilostazol (30 mg/kg/day) for 21 days after RA/DM-co-morbidity induction. Aorta was isolated for biochemical estimations of the pro-inflammatory vasoconstrictor molecules angiotensin-II (Ang-II) and endothelin-1 (ET-1), the adhesion molecules P-selectin and vascular cell adhesion molecule-1 (VCAM-1), the energy sensor adenosine-5'-monophosphate-activated protein kinase (AMPK), and the vasodilator anti-inflammatory molecule vasoactive intestinal peptide (VIP) using enzyme-linked immunosorbent assay (ELISA) and western blot analysis. Immunohistochemical estimations of endothelial nitric oxide synthase (eNOS) and matrix metalloproteinase (MMP)-2 were performed coupled with histopathological examination using routine hematoxylin and eosin (H&E) and special Masson trichrome staining. The in vitro study was conducted using aortic strips where cumulative concentration response curves were done for the endothelium-dependent relaxing factor acetylcholine and the endothelium-independent relaxing factor sodium nitroprusside after submaximal contraction with phenylephrine. Vardenafil and cilostazol significantly improved endothelial integrity biomarkers in vivo supported with histopathological findings in addition to improved vasorelaxation in vitro. Apart from their known PDE inhibition, up-regulation of vascular AMPK and eNOS coupled with down-regulation of Ang-II, ET-1, P-selectin, VCAM-1 and MMP-2 may explain vardenafil and cilostazol protective effect against RA/DM-co-morbidity-induced endothelial dysfunction and vascular reactivity defects.
Collapse
|
34
|
Doswald S, Stark WJ, Beck-Schimmer B. Biochemical functionality of magnetic particles as nanosensors: how far away are we to implement them into clinical practice? J Nanobiotechnology 2019; 17:73. [PMID: 31151445 PMCID: PMC6544934 DOI: 10.1186/s12951-019-0506-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 01/09/2023] Open
Abstract
Magnetic nanosensors have become attractive instruments for the diagnosis and treatment of different diseases. They represent an efficient carrier system in drug delivery or in transporting contrast agents. For such purposes, magnetic nanosensors are used in vivo (intracorporeal application). To remove specific compounds from blood, magnetic nanosensors act as elimination system, which represents an extracorporeal approach. This review discusses principles, advantages and risks on recent advances in the field of magnetic nanosensors. First, synthesis methods for magnetic nanosensors and possibilities for enhancement of biocompatibility with different coating materials are addressed. Then, attention is devoted to clinical applications, in which nanosensors are or may be used as carrier- and elimination systems in the near future. Finally, risk considerations and possible effects of nanomaterials are discussed when working towards clinical applications with magnetic nanosensors.
Collapse
Affiliation(s)
- Simon Doswald
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Wendelin Jan Stark
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Beatrice Beck-Schimmer
- Institute of Anesthesiology, University of Zurich and University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
35
|
Vorauer-Uhl K, Lhota G. Quantification of Recombinant Products in Yeast. Methods Mol Biol 2019; 1923:385-428. [PMID: 30737753 DOI: 10.1007/978-1-4939-9024-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quantification of various proteins expressed in yeast can be performed by different methods. In this respect, classical as well as advanced techniques can be applied, where the analysis of crude supernatants is of special interest in screening but also manufacturing.The following chapter addresses the analytical background of the introduced methods followed by specific recommendations for the quantification of different products of industrial interest. The method portfolio includes electrophoresis, chromatography, and ELISA as classical techniques, but also biosensor-based, microfluidic and automated, miniaturized methods are introduced. Furthermore, individual strengths and perceived limitations are summarized.Although prominent examples are described, it should be noted that individual modifications are required according to host and cultivation mode.
Collapse
Affiliation(s)
- Karola Vorauer-Uhl
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria.
| | - Gabriele Lhota
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| |
Collapse
|
36
|
Biological Activity of the Carrier as a Factor in Immunogen Design for Haptens. Molecules 2018; 23:molecules23112977. [PMID: 30441861 PMCID: PMC6278478 DOI: 10.3390/molecules23112977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022] Open
Abstract
Immunoanalytical methods are frequently employed in the detection of hazardous small molecular weight compounds. However, antibody development for these molecules is a challenge, because they are haptens and cannot induce a humoral immune response in experimental animals. Immunogenic forms of haptens are usually prepared by conjugating them to a protein carrier which serves as an immune stimulator. However, the carrier is usually considered merely as a bulk mass, and its biological activity is ignored. Here, we induced an endocytic receptor, transferrin receptor, by selecting its ligand as a carrier protein to enhance antibody production. We conjugated aflatoxin, a potent carcinogenic food contaminant, to transferrin and evaluated its potential to stimulate antibody production with respect to ovalbumin conjugates. Transferrin conjugates induced aflatoxin-specific immune responses in the second immunization, while ovalbumin conjugates reached similar antibody titers after 5 injections. Monoclonal antibodies were successfully developed with mice immunized with either of the conjugates.
Collapse
|
37
|
Qi X, Zhang Y, Zhang Y, Ni T, Zhang W, Yang C, Mi J, Zhang J, Tian G. High Throughput, Absolute Determination of the Content of a Selected Protein at Tissue Levels Using Quantitative Dot Blot Analysis (QDB). J Vis Exp 2018. [PMID: 30199009 PMCID: PMC6231693 DOI: 10.3791/56885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Lacking a convenient, quantitative, high throughput immunoblot method for absolute determination of the content of a specific protein at cellular and tissue level significantly hampers the progress in proteomic research. Results derived from currently available immunoblot techniques are also relative, preventing any efforts to combine independent studies with a large-scale analysis of protein samples. In this study, we demonstrate the process of quantitative dot blot analysis (QDB) to achieve absolute quantification in a high throughput format. Using a commercially available protein standard, we are able to determine the absolute content of capping actin protein, gelsolin-like (CAPG) in protein samples prepared from three different mouse tissues (kidney, spleen, and prostate) together with a detailed explanation of the experimental details. We propose the QDB analysis as a convenient, quantitative, high throughput immunoblot method of absolute quantification of individual proteins at the cellular and tissue level. This method will substantially aid biomarker validation and pathway verification in various areas of biological and biomedical research.
Collapse
Affiliation(s)
- Xiaoying Qi
- Medicine and Pharmacy Research Center, Binzhou Medical University
| | | | - Yuan Zhang
- Medicine and Pharmacy Research Center, Binzhou Medical University
| | - Tianhui Ni
- Precision Medicine research center, Binzhou Medical University
| | | | - Chunhua Yang
- Medicine and Pharmacy Research Center, Binzhou Medical University
| | - Jia Mi
- Medicine and Pharmacy Research Center, Binzhou Medical University; Department of Chemistry - BMC, Uppsala University
| | - Jiandi Zhang
- Yantai Zestern Biotechnique Co. LTD; Precision Medicine research center, Binzhou Medical University;
| | - Geng Tian
- Medicine and Pharmacy Research Center, Binzhou Medical University;
| |
Collapse
|
38
|
Abdel-Fattah MM, Messiha BAS, Mansour AM. Modulation of brain ACE and ACE2 may be a promising protective strategy against cerebral ischemia/reperfusion injury: an experimental trial in rats. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1003-1020. [PMID: 29909460 DOI: 10.1007/s00210-018-1523-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022]
Abstract
The brain renin-angiotensin system (RAS) is considered a crucial regulator for physiological homeostasis and disease progression. We evaluated the protective effects of the angiotensin receptor blocker (ARB) telmisartan and the angiotensin-converting enzyme 2 (ACE2) activator xanthenone on experimental cerebral ischemia/reperfusion (I/R) injury. Rats were divided into a sham control, a cerebral I/R control, a standard treatment (nimodipine, 10 mg/kg/day, 15 days, p.o.), three telmisartan treatments (1, 3, and 10 mg/kg/day, 15 days, p.o.), and three xanthenone treatments (0.5, 1, and 2 mg/kg/day, 15 days, s.c.) groups. One hour after the last dose, all rats except the sham control group were exposed to 30-min cerebral ischemia followed by 24-h reperfusion. Brain ACE and ACE2 activities and the apoptotic marker caspase-3 levels were assessed. Glutathione (GSH), malondialdehyde (MDA), and nitric oxide end products (NOx) as oxidative markers and tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-10 as immunological markers were assessed. Histopathological examination and immunohistochemical evaluation of glial fibrillary acidic protein (GFAP) were performed in cerebral cortex and hippocampus sections. Telmisartan and xanthenone in the higher doses restored MDA, NOx, TNF-α, IL-6, caspase-3, ACE, and GFAP back to normal levels and significantly increased GSH, IL-10, and ACE2 compared to I/R control values. Histopathologically, both agents showed mild degenerative changes and necrosis of neurons in cerebral cortex and hippocampus compared with I/R control group. Modulation of brain RAS, either through suppression of the classic ACE pathway or stimulation of its antagonist pathway ACE2, may be a promising strategy against cerebral I/R damage.
Collapse
Affiliation(s)
| | | | - Ahmed Mohamed Mansour
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
39
|
Makris K, Haliassos A, Chondrogianni M, Tsivgoulis G. Blood biomarkers in ischemic stroke: potential role and challenges in clinical practice and research. Crit Rev Clin Lab Sci 2018; 55:294-328. [DOI: 10.1080/10408363.2018.1461190] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Konstantinos Makris
- Clinical Biochemistry Department, KAT General Hospital, Kifissia, Athens, Greece
| | | | - Maria Chondrogianni
- Second Department of Neurology, Attikon Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
40
|
Gaafar AGA, Messiha BAS, Abdelkafy AML. Nicorandil and theophylline can protect experimental rats against complete Freund's adjuvant-induced rheumatoid arthritis through modulation of JAK/STAT/RANKL signaling pathway. Eur J Pharmacol 2018; 822:177-185. [PMID: 29337196 DOI: 10.1016/j.ejphar.2018.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/20/2017] [Accepted: 01/10/2018] [Indexed: 12/23/2022]
Abstract
Signaling pathways are interesting fields of study of pathogenesis and treatment trials. We elucidated the possible protective effects of nicorandil (15mg/kg/day) and theophylline (20mg/kg/day) on experimentally-induced RA, focusing on the role of JAK (Janus Kinase) / STAT (Signal Transducer and Activator of Transcription) / RANKL (Receptor Activator of Nuclear factor-Kappa B Ligand) / cytokine signaling pathway. Four sets of experiments were performed. First, effect of test agents on normal animals was evaluated. Second, effect of test agents was evaluated on Complete Freund's Adjuvant (CFA; 0.3ml, s.c.)-induced RA to investigate anti-arthritic effect. Third, effect of test agents was evaluated on growth hormone (GH; 2mg/kg/day, s.c.)-induced stimulation of JAK/STAT/RANKL/cytokine signaling pathway to investigate the role of this signaling pathway in their anti-arthritic effect. Fourth, the effect of test agents was performed on CFA/GH-induced RA. To fulfill this purpose, serum anti-citrullinated peptide antibody (ACPA), interleukin-6 (IL-6), and cartilage oligomeric matrix protein (COMP), together with tissue JAK2, STAT3, RANKL, inducible and endothelial nitric oxide synthases (iNOS and eNOS) as well as macrophage inflammatory protein (MIP1α) were estimated using ELISA, Western blotting and PCR techniques, confirmed by a histopathological study. Test agents significantly corrected JAK2, STAT3, RANKL and IL-6 values in animals receiving GH. Additionally, test agents could correct ACPA, IL-6, COMP, JAK2, STAT3, RANKL, iNOS, eNOS and MIP1α levels compared with the respective CFA or CFA/GH controls. These results conclude that nicorandil and theophylline have good anti-arthritic effects related to modulation of JAK/STAT/RANKL signaling pathway. Further clinical trials are claimed.
Collapse
|
41
|
Kupcova Skalnikova H, Cizkova J, Cervenka J, Vodicka P. Advances in Proteomic Techniques for Cytokine Analysis: Focus on Melanoma Research. Int J Mol Sci 2017; 18:E2697. [PMID: 29236046 PMCID: PMC5751298 DOI: 10.3390/ijms18122697] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022] Open
Abstract
Melanoma is a skin cancer with permanently increasing incidence and resistance to therapies in advanced stages. Reports of spontaneous regression and tumour infiltration with T-lymphocytes makes melanoma candidate for immunotherapies. Cytokines are key factors regulating immune response and intercellular communication in tumour microenvironment. Cytokines may be used in therapy of melanoma to modulate immune response. Cytokines also possess diagnostic and prognostic potential and cytokine production may reflect effects of immunotherapies. The purpose of this review is to give an overview of recent advances in proteomic techniques for the detection and quantification of cytokines in melanoma research. Approaches covered span from mass spectrometry to immunoassays for single molecule detection (ELISA, western blot), multiplex assays (chemiluminescent, bead-based (Luminex) and planar antibody arrays), ultrasensitive techniques (Singulex, Simoa, immuno-PCR, proximity ligation/extension assay, immunomagnetic reduction assay), to analyses of single cells producing cytokines (ELISpot, flow cytometry, mass cytometry and emerging techniques for single cell secretomics). Although this review is focused mainly on cancer and particularly melanoma, the discussed techniques are in general applicable to broad research field of biology and medicine, including stem cells, development, aging, immunology and intercellular communication.
Collapse
Affiliation(s)
- Helena Kupcova Skalnikova
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
| | - Jana Cizkova
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 16500 Prague, Czech Republic.
| | - Jakub Cervenka
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12843 Prague 4, Czech Republic.
| | - Petr Vodicka
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
| |
Collapse
|
42
|
Verma MS, Tsaloglou MN, Sisley T, Christodouleas D, Chen A, Milette J, Whitesides GM. Sliding-strip microfluidic device enables ELISA on paper. Biosens Bioelectron 2017; 99:77-84. [PMID: 28738231 PMCID: PMC5628584 DOI: 10.1016/j.bios.2017.07.034] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 02/08/2023]
Abstract
This article describes a 3D microfluidic paper-based analytical device that can be used to conduct an enzyme-linked immunosorbent assay (ELISA). The device comprises two parts: a sliding strip (which contains the active sensing area) and a structure surrounding the sliding strip (which holds stored reagents—buffers, antibodies, and enzymatic substrate—and distributes fluid). Running an ELISA involves adding sample (e.g. blood) and water, moving the sliding strip at scheduled times, and analyzing the resulting color in the sensing area visually or using a flatbed scanner. We demonstrate that this device can be used to detect C-reactive protein (CRP)—a biomarker for neonatal sepsis, pelvic inflammatory disease, and inflammatory bowel diseases—at a concentration range of 1–100 ng/mL in 1000-fold diluted blood (1–100 µg/mL in undiluted blood). The accuracy of the device (as characterized by the area under the receiver operator characteristics curve) is 89% and 83% for cut-offs of 10 ng/mL (for neonatal sepsis and pelvic inflammatory disease) and 30 ng/mL (for inflammatory bowel diseases) CRP in 1000-fold diluted blood respectively. In resource-limited settings, the device can be used as a part of a kit (containing the device, a fixed-volume capillary, a pre-filled tube, a syringe, and a dropper); this kit would cost ~ $0.50 when produced in large scale (>100,000 devices/week). This kit has the technical characteristics to be employed as a pre-screening tool, when combined with other data such as patient history and clinical signs. 3D microfluidic paper-based analytical device performs ELISA with colorimetric results. Two components enable separation of reagents in the device: a sliding-strip and a functional dock. All required reagents (antibodies, enzyme, substrate, buffers) are stored in the device. User only needs to add sample and water using the provided kit. Device can detect C-reactive protein for possible pre-screening of neonatal sepsis, pelvic inflammatory disease, or inflammatory bowel diseases.
Collapse
Affiliation(s)
- Mohit S Verma
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Maria-Nefeli Tsaloglou
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA; Diagnostics for All, 4 Technology Way, Salem, MA 02138, USA
| | - Tyler Sisley
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Dionysios Christodouleas
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Austin Chen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Jonathan Milette
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - George M Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA 02138, USA; Kavli Institute for Bionano Science and Technology, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
43
|
Tian G, Tang F, Yang C, Zhang W, Bergquist J, Wang B, Mi J, Zhang J. Quantitative dot blot analysis (QDB), a versatile high throughput immunoblot method. Oncotarget 2017; 8:58553-58562. [PMID: 28938578 PMCID: PMC5601674 DOI: 10.18632/oncotarget.17236] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/26/2017] [Indexed: 11/25/2022] Open
Abstract
Lacking access to an affordable method of high throughput immunoblot analysis for daily use remains a big challenge for scientists worldwide. We proposed here Quantitative Dot Blot analysis (QDB) to meet this demand. With the defined linear range, QDB analysis fundamentally transforms traditional immunoblot method into a true quantitative assay. Its convenience in analyzing large number of samples also enables bench scientists to examine protein expression levels from multiple parameters. In addition, the small amount of sample lysates needed for analysis means significant saving in research sources and efforts. This method was evaluated at both cellular and tissue levels with unexpected observations otherwise would be hard to achieve using conventional immunoblot methods like Western blot analysis. Using QDB technique, we were able to observed an age-dependent significant alteration of CAPG protein expression level in TRAMP mice. We believe that the adoption of QDB analysis would have immediate impact on biological and biomedical research to provide much needed high-throughput information at protein level in this “Big Data” era.
Collapse
Affiliation(s)
- Geng Tian
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, P. R. China
| | - Fangrong Tang
- Yantai Zestern Biotechnique Co. LTD, Yantai, P. R. China
| | - Chunhua Yang
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, P. R. China
| | - Wenfeng Zhang
- Yantai Zestern Biotechnique Co. LTD, Yantai, P. R. China
| | - Jonas Bergquist
- Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| | - Bin Wang
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, P. R. China
| | - Jia Mi
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, P. R. China.,Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| | - Jiandi Zhang
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, P. R. China.,Yantai Zestern Biotechnique Co. LTD, Yantai, P. R. China
| |
Collapse
|
44
|
Dong J, Ueda H. ELISA-type assays of trace biomarkers using microfluidic methods. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [DOI: 10.1002/wnan.1457] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/15/2016] [Accepted: 12/17/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Jinhua Dong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers; College of Chemistry and Chemical Engineering, Linyi University; Linyi P.R. China
- Laboratory for Chemistry and Life Science, Institute of Innovative Research; Tokyo Institute of Technology; Yokohama Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research; Tokyo Institute of Technology; Yokohama Japan
| |
Collapse
|
45
|
Koide K, Tracey MP, Bu X, Jo J, Williams MJ, Welch CJ. A competitive and reversible deactivation approach to catalysis-based quantitative assays. Nat Commun 2016; 7:10691. [PMID: 26891765 PMCID: PMC4762883 DOI: 10.1038/ncomms10691] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/07/2016] [Indexed: 12/04/2022] Open
Abstract
Catalysis-based signal amplification makes optical assays highly sensitive and widely useful in chemical and biochemical research. However, assays must be fine-tuned to avoid signal saturation, substrate depletion and nonlinear performance. Furthermore, once stopped, such assays cannot be restarted, limiting the dynamic range to two orders of magnitude with respect to analyte concentrations. In addition, abundant analytes are difficult to quantify under catalytic conditions due to rapid signal saturation. Herein, we report an approach in which a catalytic reaction competes with a concomitant inactivation of the catalyst or consumption of a reagent required for signal generation. As such, signal generation proceeds for a limited time, then autonomously and reversibly stalls. In two catalysis-based assays, we demonstrate restarting autonomously stalled reactions, enabling accurate measurement over five orders of magnitude, including analyte levels above substrate concentration. This indicates that the dynamic range of catalysis-based assays can be significantly broadened through competitive and reversible deactivation. Assays for catalytic systems—particularly ones with simple colorimetric readouts—are useful for the rapid evaluation of performance. Here, the authors report an assay based on a concurrent colour-forming reaction working across a wide range that can be stopped to allow measurements and subsequently restarted.
Collapse
Affiliation(s)
- Kazunori Koide
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Matthew P Tracey
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Xiaodong Bu
- Process and Analytical Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, USA
| | - Junyong Jo
- Process and Analytical Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, USA
| | - Michael J Williams
- Process and Analytical Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, USA
| | - Christopher J Welch
- Process and Analytical Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, USA
| |
Collapse
|
46
|
He JL, Wang DS, Fan SK. Opto-Microfluidic Immunosensors: From Colorimetric to Plasmonic. MICROMACHINES 2016; 7:E29. [PMID: 30407402 PMCID: PMC6189923 DOI: 10.3390/mi7020029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/25/2016] [Accepted: 02/04/2016] [Indexed: 02/06/2023]
Abstract
Optical detection has long been the most popular technique in immunosensing. Recent developments in the synthesis of luminescent probes and the fabrication of novel nanostructures enable more sensitive and efficient optical detection, which can be miniaturized and integrated with microfluidics to realize compact lab-on-a-chip immunosensors. These immunosensors are portable, economical and automated, but their sensitivity is not compromised. This review focuses on the incorporation and implementation of optical detection and microfluidics in immunosensors; it introduces the working principles of each optical detection technique and how it can be exploited in immunosensing. The recent progress in various opto-microfluidic immunosensor designs is described. Instead of being comprehensive to include all opto-microfluidic platforms, the report centers on the designs that are promising for point-of-care immunosensing diagnostics, in which ease of use, stability and cost-effective fabrication are emphasized.
Collapse
Affiliation(s)
- Jie-Long He
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Da-Shin Wang
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Shih-Kang Fan
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
47
|
Imanaka H, Yamadzumi D, Yanagita K, Ishida N, Nakanishi K, Imamura K. The use of a proteinaceous "cushion" with a polystyrene-binding peptide tag to control the orientation and function of a target peptide adsorbed to a hydrophilic polystyrene surface. Biotechnol Prog 2016; 32:527-34. [PMID: 26801516 DOI: 10.1002/btpr.2232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/15/2015] [Indexed: 11/08/2022]
Abstract
In immobilizing target biomolecules on a solid surface, it is essential (i) to orient the target moiety in a preferred direction and (ii) to avoid unwanted interactions of the target moiety including with the solid surface. The preferred orientation of the target moiety can be achieved by genetic conjugation of an affinity peptide tag specific to the immobilization surface. Herein, we report on a strategy for reducing the extent of direct interaction between the target moiety and surface in the immobilization of hexahistidine peptide (6His) and green fluorescent protein (GFP) on a hydrophilic polystyrene (PS) surface: Ribonuclease HII from Thermococcus kodakaraensis (cHII) was genetically inserted as a "cushion" between the PS-affinity peptide tag and target moiety. The insertion of a cushion protein resulted in a considerably stronger immobilization of target biomolecules compared to conjugation with only a PS affinity peptide tag, resulting in a substantially enhanced accessibility of the detection antibody to the target 6His peptide. The fluorescent intensity of the GFP moiety was decreased by approximately 30% as the result of fusion with cHII and the PS-affinity peptide tag but was fully retained in the immobilization on the PS surface irrespective of the increased binding force. Furthermore, the fusion of cHII did not impair the stability of the target GFP moiety. Accordingly, the use of a proteinaceous cushion appears to be promising for the immobilization of functional biomolecules on a solid surface. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:527-534, 2016.
Collapse
Affiliation(s)
- Hiroyuki Imanaka
- Div. of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama, 700-8530, Japan
| | - Daisuke Yamadzumi
- Div. of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama, 700-8530, Japan
| | - Keisuke Yanagita
- Div. of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama, 700-8530, Japan
| | - Naoyuki Ishida
- Div. of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama, 700-8530, Japan
| | - Kazuhiro Nakanishi
- Div. of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama, 700-8530, Japan
| | - Koreyoshi Imamura
- Div. of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama, 700-8530, Japan
| |
Collapse
|
48
|
|
49
|
Nair SS, Prathibha P, Rejitha S, Indira M. Ethanol induced hepatic mitochondrial dysfunction is attenuated by all trans retinoic acid supplementation. Life Sci 2015; 135:101-9. [PMID: 26093263 DOI: 10.1016/j.lfs.2015.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 04/02/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
Abstract
AIMS Alcoholics have reduced vitamin A levels in serum since vitamin A and ethanol share the same metabolic pathway. Vitamin A supplementation has an additive effect on ethanol induced toxicity. Hence in this study, we assessed the impact of supplementation of all trans retinoic acid (ATRA), an active metabolite of vitamin A on ethanol induced disruptive alterations in liver mitochondria. METHODS Male Sprague Dawley rats were grouped as follows: I: Control; II: Ethanol (4 g/kg b.wt./day); III: ATRA (100 μg/kg b.wt./day); and IV: Ethanol (4 g/kg b.wt./day)+ATRA (100 μg/kg b.wt./day). Duration of the experiment was 90 days, after which the animals were sacrificed for the study. The key enzymes of energy metabolism, reactive oxygen species, mitochondrial membrane potential and hepatic mRNA expressions of Bax, Bcl-2, c-fos and c-jun were assessed. KEY FINDINGS Ethanol administration increased the reactive oxygen species generation in mitochondria. It also decreased the activities of the enzymes of citric acid cycle and oxidative phosphorylation. ATP content and mitochondrial membrane potential were decreased and cytosolic cytochrome c was increased consequently enhancing apoptosis. All these alterations were altered significantly on ATRA supplementation along with ethanol. These results were reinforced by our histopathological studies. SIGNIFICANCE ATRA supplementation to ethanol fed rats, led to reduction in oxidative stress, decreased calcium overload in the matrix and increased mitochondrial membrane potential, which might have altered the mitochondrial energy metabolism and elevated ATP production thereby reducing the apoptotic alterations. Hence ATRA supplementation seemed to be an effective intervention against alcohol induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Saritha S Nair
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India
| | - P Prathibha
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India
| | - S Rejitha
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India
| | - M Indira
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India.
| |
Collapse
|
50
|
QD-Based FRET Probes at a Glance. SENSORS 2015; 15:13028-51. [PMID: 26053750 PMCID: PMC4507597 DOI: 10.3390/s150613028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 12/21/2022]
Abstract
The unique optoelectronic properties of quantum dots (QDs) give them significant advantages over traditional organic dyes, not only as fluorescent labels for bioimaging, but also as emissive sensing probes. QD sensors that function via manipulation of fluorescent resonance energy transfer (FRET) are of special interest due to the multiple response mechanisms that may be utilized, which in turn imparts enhanced flexibility in their design. They may also function as ratiometric, or "color-changing" probes. In this review, we describe the fundamentals of FRET and provide examples of QD-FRET sensors as grouped by their response mechanisms such as link cleavage and structural rearrangement. An overview of early works, recent advances, and various models of QD-FRET sensors for the measurement of pH and oxygen, as well as the presence of metal ions and proteins such as enzymes, are also provided.
Collapse
|