1
|
Yamamoto D, Shima K, Matsuo K, Nishioka T, Chen CY, Hu GF, Sasaki A, Tsuji T. Ornithine decarboxylase antizyme induces hypomethylation of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2) in human oral cancer cell line. PLoS One 2010; 5:e12554. [PMID: 20838441 PMCID: PMC2933235 DOI: 10.1371/journal.pone.0012554] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 07/31/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Methylation of CpG islands of genome DNA and lysine residues of histone H3 and H4 tails regulates gene transcription. Inhibition of polyamine synthesis by ornithine decarboxylase antizyme-1 (OAZ) in human oral cancer cell line resulted in accumulation of decarboxylated S-adenosylmethionine (dcSAM), which acts as a competitive inhibitor of methylation reactions. We anticipated that accumulation of dcSAM impaired methylation reactions and resulted in hypomethylation of genome DNA and histone tails. METHODOLOGY/PRINCIPAL FINDINGS Global methylation state of genome DNA and lysine residues of histone H3 and H4 tails were assayed by Methylation by Isoschizomers (MIAMI) method and western blotting, respectively, in the presence or absence of OAZ expression. Ectopic expression of OAZ mediated hypomethylation of CpG islands of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2). Protein level of DNA methyltransferase 3B (DNMT3B) and histone H3K9me specific methyltransferase G9a were down-regulated in OAZ transfectant. CONCLUSIONS/SIGNIFICANCE OAZ induced hypomethylation of CpG islands of global genome DNA and H3K9me2 by down-regulating DNMT3B and G9a protein level. Hypomethylation of CpG islands of genome DNA and histone H3K9me2 is a potent mechanism of induction of the genes related to tumor suppression and DNA double strand break repair.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School, Okayama, Japan
| | - Kaori Shima
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kou Matsuo
- Division of Oral Pathology, Department of Biosciences, Kyushu Dental College, Kitakyushu, Japan
| | - Takashi Nishioka
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chang Yan Chen
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Guo-fu Hu
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School, Okayama, Japan
| | - Takanori Tsuji
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Jänne J, Alhonen L, Pietilä M, Keinänen TA. Genetic approaches to the cellular functions of polyamines in mammals. ACTA ACUST UNITED AC 2004; 271:877-94. [PMID: 15009201 DOI: 10.1111/j.1432-1033.2004.04009.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The polyamines putrescine, spermidine and spermine are organic cations shown to participate in a bewildering number of cellular reactions, yet their exact functions in intermediary metabolism and specific interactions with cellular components remain largely elusive. Pharmacological interventions have demonstrated convincingly that a steady supply of these compounds is a prerequisite for cell proliferation to occur. The last decade has witnessed the appearance of a substantial number of studies, in which genetic engineering of polyamine metabolism in transgenic rodents has been employed to unravel their cellular functions. Transgenic activation of polyamine biosynthesis through an overexpression of their biosynthetic enzymes has assigned specific roles for these compounds in spermatogenesis, skin physiology, promotion of tumorigenesis and organ hypertrophy as well as neuronal protection. Transgenic activation of polyamine catabolism not only profoundly disturbs polyamine homeostasis in most tissues, but also creates a complex phenotype affecting skin, female fertility, fat depots, pancreatic integrity and regenerative growth. Transgenic expression of ornithine decarboxylase antizyme has suggested that this unique protein may act as a general tumor suppressor. Homozygous deficiency of the key biosynthetic enzymes of the polyamines, ornithine and S-adenosylmethionine decarboxylase, as achieved through targeted disruption of their genes, is not compatible with murine embryogenesis. Finally, the first reports of human diseases apparently caused by mutations or rearrangements of the genes involved in polyamine metabolism have appeared.
Collapse
Affiliation(s)
- Juhani Jänne
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland.
| | | | | | | |
Collapse
|
3
|
Abstract
Arginine functions in the body as a free amino acid, a component of most proteins, and the substrate for several non-protein, nitrogen-containing compounds, many of which function in immunity. Although arginine is synthesized in the body, it is not made in sufficient quantities to support growth or meet metabolic requirements during periods of stress. Based on the biochemical and physiological role of arginine in maintaining health and immunity, arginine is being added at pharmacologic concentrations to enteral formulas to boost immune function. Unfortunately, animal and human studies that investigate enteral arginine supplementation as the single variable do not show clear immunologic benefit. The inconsistent effects of arginine supplementation on immune function are due to numerous factors, such as the amount and timing of arginine supplementation, the animal species or strain of species, and the experimental model. Systematic study is required to determine whether a basal dietary intake of arginine is required to maintain immune function during health and how much arginine is required to meet metabolic requirements during periods of growth or stress.
Collapse
Affiliation(s)
- Carmelo Nieves
- Food Science and Human Nutrition Department, University of Florida, PO Box 110370, Gainesville, FL 32611-0370, USA
| | | |
Collapse
|
4
|
Pantazaki AA, Anagnostopoulos CG, Lioliou EE, Kyriakidis DA. Characterization of ornithine decarboxylase and regulation by its antizyme in Thermus thermophilus. Mol Cell Biochem 1999; 195:55-64. [PMID: 10395069 DOI: 10.1023/a:1006984618465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis was highly purified from the thermophilic bacterium Thermus thermophilus. The enzyme preparation showed a single band on SDS-polyacrylamide gel electrophoresis, a pH optimum of 7.5 and a temperature optimum at 60 degrees C. The native enzyme which is phosphorylated could, upon treatment with alkaline phosphatase, lose all activity. The inactive form could be reversibly activated by nucleotides in the order of NTP>NDP>NMP. When physiological polyamines were added to the purified enzyme in vitro, spermine or spermidine activated ODC by 140 or 40%, respectively, while putrescine caused a small inhibition. The basic amino acids lysine and arginine were competitive inhibitors of ODC, while histidine did not affect the enzyme activity. Among the phosphoamino acids tested, phosphoserine was the most effective activator of purified ODC. Polyamines added at high concentration to the medium resulted in a delay or in a complete inhibition of the growth of T. thermophilus, and in a decrease of the specific activity of ornithine decarboxylase. The decrease of ODC activity resulted from the appearance of a non-competitive inhibitor of ODC, the antizyme (Az). The T. thermophilus antizyme was purified by an ODC-Sepharose affinity column chromatography, as well as by immunoprecipitation using antibodies raised against the E. coli antizyme. The antizyme of E. coli inhibited the ODC of T. thermophilus, and vice versa. The fragment of amino acids 56-292 of the E. coli antizyme, produced as a fusion protein of glutathione S-transferase, did not inhibit the ODC of E. coli or T. thermophilus.
Collapse
Affiliation(s)
- A A Pantazaki
- Department of Chemistry, Aristotle University of Thessaloniki, Greece
| | | | | | | |
Collapse
|
5
|
Lovkvist-Wallstrom E, Stjernborg-Ulvsback L, Scheffler IE, Persson L. Regulation of Mammalian Ornithine Decarboxylase. Studies on the Induction of the Enzyme by Hypotonic stress. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.0040f.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Abstract
The activity of ornithine decarboxylase (ODC) measured in different regions of rat brain was highest in the hippocampus and lowest in the cerebellum. The ODC activity of a crude extract of the cerebellum was increased by the addition of GTP to the enzyme assay. Following dissociation of the ODC-antizyme complex by Sephadex G-75 chromatography in buffer containing 0.25 M NaCl, the GTP-activatable ODC was found in every brain region analysed. This GTP-activatable brain ODC has greater affinity for antizyme than the non-GTP-activatable brain ODC or the kidney ODC. The irreversible inhibitor of ODC, alpha-difluoromethylornithine (DFMO), inhibited approx. 60% of the ODC activity of all brain regions, whereas kidney ODC was inhibited totally by DFMO. When extracts of brain and kidney were incubated at 55 degrees C, kidney ODC was rapidly inactivated, but brain ODC was more heat-stable. Brain ODC, but not kidney ODC, was activated by GTP and ATP, and also by their deoxy forms. The K1/2 for activation of the enzyme was 2 microM for GTP and 40 microM for ATP. Using partially purified brain ODC, the activation by GTP was irreversible. These results demonstrate for the first time that the GTP-activatable ODC exists in the brain and is associated with the antizyme. The possible mechanisms of activation by GTP, the significance of this finding for the regulation of brain ODC, and the similarities to and differences from the GTP-activatable ODC found in certain rodent and human tumours are all discussed.
Collapse
|
7
|
Lövkvist E, Stjernborg L, Persson L. Feedback regulation of mammalian ornithine decarboxylase. Studies using a transient expression system. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 215:753-9. [PMID: 8354283 DOI: 10.1111/j.1432-1033.1993.tb18089.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ornithine decarboxylase catalyzes the first step in the biosynthesis of polyamines in mammalian cells. The enzyme is subject to various control mechanisms to maintain adequate intracellular levels of polyamines. Polyamines exert a strong feedback control on ornithine decarboxylase. In a recent study [van Daalen Wetters, T., Macrae, M., Brabant, M., Sittler, A. & Coffino, P. (1989) Mol. Cell. Biol. 9, 5484-5490], it was concluded that feedback control of ornithine decarboxylase is mainly, if not exclusively, a posttranslational phenomenon. The existence of a fast-acting polyamine-stimulated component of ornithine decarboxylase degradation that acts on newly synthesized monomeric forms of the enzyme was postulated. In the present study we have used a transient expression system to test this hypothesis. The expression of ornithine decarboxylase in mock-transfected COS cells varied depending on the cellular supply of polyamines as has been found in other mammalian cells. Thus, supplementing the cells with exogenous spermidine resulted in a marked decrease in ornithine decarboxylase activity, whereas depletion of intracellular polyamines, using an ornithine decarboxylase inhibitor, gave a large increase in the cellular content of the enzyme. COS cells expressing an ornithine decarboxylase mRNA devoid of its 5' non-translated region did not exhibit any feedback control of the enzyme, neither in the presence of exogenous spermidine nor when the intracellular polyamine levels were depleted to the same extent as in the mock-transfected COS cells. The results strongly suggest that the feedback control of ornithine decarboxylase is not merely a posttranslational phenomenon.
Collapse
Affiliation(s)
- E Lövkvist
- Department of Physiology, University of Lund, Sweden
| | | | | |
Collapse
|
8
|
Urdiales JL, Matés JM, Núñez de Castro I, Sánchez-Jiménez FM. Chlorpheniramine inhibits the ornithine decarboxylase induction of Ehrlich carcinoma growing in vivo. FEBS Lett 1992; 305:260-4. [PMID: 1299628 DOI: 10.1016/0014-5793(92)80682-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The antihistaminic (+/-)-chlorpheniramine significantly reduced the progression of Ehrlich carcinoma when it was administered at 0.5 mg/mouse/day from the third day on, after tumour inoculation. The ODC activity of tumour cells was diminished by 70% on day 7 after tumour transplantation, when maximum ODC activity is detected in non-treated tumour growing 'in vivo'. Northern blot analyses indicated that the inhibitory effect of this 1,4-diamine takes place at a post-transcriptional level. Results obtained from serum-free cultured cells indicated that chlorpheniramine inhibits the ODC synthesis rate.
Collapse
Affiliation(s)
- J L Urdiales
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | | | |
Collapse
|
9
|
Matés JM, Sánchez-Jiménez F, López-Herrera J, Núñez de Castro I. Regulation by 1,4-diamines of the ornithine decarboxylase activity induced by ornithine in perifused tumor cells. Biochem Pharmacol 1991; 42:1045-52. [PMID: 1872891 DOI: 10.1016/0006-2952(91)90287-f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ornithine decarboxylase (ODC) activity of Ehrlich carcinoma cells was increased more than 36-fold after being maintained for 3.5 hr in vitro in a special chamber which allowed continuous perifusion with 0.5 mM ornithine; if incubated in vitro without perifusion the ODC activity was, of course, only 9-fold by the same concentration of ornithine. Ornithine withdrawal from the perifusion medium resulted in a decay of enzyme activity observed after 90 min; this decay was prevented by addition of 55 microM pyridoxal to the medium. The 1,4-diamines putrescine, spermidine, spermine, agmatine, histamine, serotonin, tryptamine, chlorpheniramine and harmaline at 55 microM strongly suppressed ODC induction by 0.5 mM ornithine in perifused Ehrlich ascites cells. Methyl derivatives also behave as strong inhibitors of ODC induction. On the contrary, N-acetylation paralleled with a decrease in the inhibition capacity: 55 microM N-acetyl putrescine, N-acetyl serotonin or N-omega-acetylhistamine suppressed ODC induction by ornithine in 66, 64 and 19%, respectively. The addition to the perifusion medium of the same concentrations of 1,3-diamines (1,3-diaminopropane, 1,3-diamino-2-propanol or the alkaloid gramine) as well as 1,5-diamines (1,5-diaminopentane and the antihistamic doxylamine or cimetidine) failed to suppress the induction of ODC activity by ornithine. Interestingly, 1,4-benzenediamine, which strongly inhibits ODC activity when the induced enzyme is assayed in its presence, did not suppress the induction of the enzyme when both 0.5 mM ornithine and 55 microM 1,4-benzenediamine were present in the perifusion medium. The inhibitory capacity in down-regulating ODC is not due to differences in the diamine uptake by the cells. The results suggest that the N-N distance (6A) and the charge of one amino group are important chemical characteristics for regulatory effects.
Collapse
Affiliation(s)
- J M Matés
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | | | |
Collapse
|
10
|
|
11
|
Matés JM, Sánchez-Jiménez FM, García-Caballero M, Núñez de Castro I. Histamine and serotonin inhibit induction of ornithine decarboxylase by ornithine in perifused Ehrlich ascites tumour cells. FEBS Lett 1989; 250:257-61. [PMID: 2753136 DOI: 10.1016/0014-5793(89)80733-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ornithine induced more than 36-fold the ornithine decarboxylase activity in confined Ehrlich ascites tumour cells after 3.5 h of continuous perifusion with 0.5 mM ornithine; arginine and glutamine also induced the activity 3- and 4-fold, respectively. The addition of cycloheximide or actinomycin D antibiotics to the perifusion medium confirmed that the regulation of the enzyme synthesis takes place at the level of translation. Perifusion in the presence of 0.5 mM ornithine and 55, 25, and 10 microM histamine suppressed the induction by 91, 53, and 35% respectively. Similar results were obtained in the presence of serotonin. Histidine also showed inhibitory effect but 5 mM histidine was required to produce 21% inhibition; other basic amino acids were ineffective.
Collapse
Affiliation(s)
- J M Matés
- Cátedra de Bioquimica y Biologia Molecular, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | | | |
Collapse
|
12
|
Murakami Y, Nishiyama M, Hayashi S. Involvement of antizyme in stabilization of ornithine decarboxylase caused by inhibitors of polyamine synthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 180:181-4. [PMID: 2495941 DOI: 10.1111/j.1432-1033.1989.tb14630.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Contrary to previous findings, ornithine decarboxylase (ODC) was stabilized by treatment of cells with DL-alpha-difluoromethylornithine, an enzyme-activated irreversible inhibitor of ODC. Both this inhibitor and cyclohexylamine, a spermidine synthase inhibitor known to stabilize ODC, caused decreases in the antizyme/ODC ratio by increasing ODC content and conversely decreasing antizyme content. The relationship between cellular polyamine levels and antizyme content indicated that spermidine is the most important polyamine for antizyme induction. These results suggest that antizyme is involved in the mechanism underlying the stabilization of ODC by inhibitors of polyamine synthesis and support the hypothesis that cellular polyamines regulate ODC degradation via antizyme.
Collapse
Affiliation(s)
- Y Murakami
- Department of Nutrition, Jikei University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
13
|
Ruiz O, Buldain G, Garrido DA, Frydman RB. Interaction of alkylputrescines with ornithine decarboxylase from rat liver and Escherichia coli: an in vitro and in vivo study. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 954:114-25. [PMID: 3282545 DOI: 10.1016/0167-4838(88)90061-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The inhibitory effect of a series of 2-alkylputrescines on rat liver and Escherichia coli ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) was examined. At 2.5 mM concentrations, 2-methyl-, 2-propyl-, 2-butyl-, 2-pentyl- and 2-hexylputrescines were stronger inhibitors of the mammalian enzyme than putrescine. Only the higher homologues (from 2-propyl- to 2-hexylputrescine) were inhibitors of the E. coli enzyme. An analysis of the effect of increasing concentrations of the 2-alkylputrescines showed that the main difference in the behaviour of the mammalian and E. coli decarboxylases toward 2-alkylputrescines was that the former was strongly inhibited by 2-methylputrescine whereas the latter was not. 2-Alkylputrescines were found to be competitive inhibitors of both the bacterial and mammalian enzyme. The smallest Ki values (0.1 and 0.5 mM) were found for the 2-hexyl- and 2-pentylputresciens. N-Methyl-, N-ethyl-, N-propyl- and N-butylputrescines (50 mumol per 100 g body weight) were assayed as inhibitors of thioacetamide-induced rat liver ornithine decarboxylase. N-Propylputrescine was found to be the most inhibitory (66% inhibition) and although the N-alkylputrescines were taken up by the liver, they did not inhibit the liver polyamine pools. Both putrescine and N-methylputrescine were found to stabilize the thioacetamide-induced ornithine decarboxylase at the onset of the enzyme's degradation, while 2-alkylputrescines were inhibitory under similar conditions. N-Methylputrescine induced antizyme in thioacetamide-treated rats. In thioacetamide- or dexamethasone-treated rats, 2-methylputrescine was found to be the strongest in vivo inhibitor of the liver decarboxylase. Although 2-alkylputrescines were efficiently taken up by the liver, they did not noticeably inhibit its polyamine pools. 2-methylputrescine decreased the putrescine concentration of the liver, but not its spermidine and spermine content. No induction of ornithine decarboxylase antizyme by 2-methylputrescine could be detected. The intrahepatic concentration of the latter decreased with time, very likely due to its degradation by a diamine oxidase, since the decrease was inhibited by aminoguanidine.
Collapse
Affiliation(s)
- O Ruiz
- Facultad de Farmacia y Bioqímica, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
14
|
Porter CW, Bergeron RJ. Enzyme regulation as an approach to interference with polyamine biosynthesis--an alternative to enzyme inhibition. ADVANCES IN ENZYME REGULATION 1988; 27:57-79. [PMID: 3250233 DOI: 10.1016/0065-2571(88)90009-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The progress reviewed here would seem to validate the regulatory approach to interference with polyamine biosynthesis as an antiproliferative strategy. To our knowledge, this is the first example, among anticancer drugs, of pharmacological intervention of a biochemical pathway based strictly on regulatory control. Several features of polyamine biology naturally favor this approach and may account for its relative success. These include (a) the nature of the regulatory mechanisms themselves, (b) the exquisite sensitivity of the pathway to regulatory control, (c) the rapid turnover of ODC and AdoMetDC, (d) the different structural specificity of ODC and AdoMetDC regulation versus growth-dependent functions, and (e) the direct dependence of growth on sustained polyamine biosynthesis. As such, the regulatory approach to interference with polyamine biosynthesis offers several advantages over the use of specific enzyme inhibitors (Table 10). Of these, perhaps, the more significant are the facts that more than one enzyme can be simultaneously and specifically suppressed and that compensatory mechanisms, which otherwise counter the effects of enzyme inhibitors (11), are not invoked. We are encouraged by the concurrence of in vitro mechanistic findings with the predictions of the hypothesis for the regulatory approach and by the in vitro and in vivo growth inhibitory effects of the analogs against murine leukemia. One disadvantage of the regulatory analogs, such as BESm, has been that, as with specific polyamine inhibitors such as DFMO, analog-induced polyamine depletion results in cytostatic growth inhibition. While this response may help to minimize host toxicities, it clearly compromises antitumor activity. An intriguing exception to this generality has recently been found among human lung carcinoma cell lines. Previously, Luk et al. (93, 94) and others (95) reported that, among a spectrum of human lung carcinoma lines, small cell carcinoma was exquisitely sensitive to the ODC inhibitor, DFMO. Not only did these cells display a cessation of growth but also an inability to survive during DFMO-induced polyamine depletion. Studies extending these findings to long term maintenance therapy in human small cell lung carcinoma implants in athymic mice revealed sustained growth inhibition of the tumor for longer than one year (96). Casero et al. (97) now find that human large cell carcinoma, which is otherwise refractory to chemotherapeutic intervention, displays a cytotoxic response in vitro to polyamine depletion induced by BES or BESm but not by DFMO.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C W Porter
- Grace Cancer Drug Center, Roswell Park Memorial Institute, Buffalo, New York 14263
| | | |
Collapse
|
15
|
Solano F, Peñafiel R, Solano ME, Lozano JA. Kinetic study of the inhibition of rat liver ornithine decarboxylase by diamines; considerations on the mechanism of interaction between enzyme and inhibitor. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1988; 20:463-70. [PMID: 3366303 DOI: 10.1016/0020-711x(88)90216-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
1. Partially purified rat liver ornithine decarboxylase is inhibited by several diamines including putrescine, 1,3-diaminopropane, cadaverine and p-phenylenediamine. 2. The inhibition is dependent on pH, being strong at pH above 8 and negligible below pH 6.5. 3. The kinetic study of the inhibition showed that while the aromatic diamine behaved as a simple competitive inhibitor, the aliphatic diamines presented a more complex pattern of inhibition in which two molecules of inhibitor might bind to the enzyme active site. 4. The Ki values for the different inhibitors were calculated and the degree of affinity for the enzyme was p-phenylenediamine greater than putrescine greater than cadaverine greater than 1,3-diaminopropane. 5. A molecular mechanism explaining how one or two molecules of inhibitor can bind to the enzyme is proposed.
Collapse
Affiliation(s)
- F Solano
- Departmento de Bioquímica, Facultad de Medicina, Universidad de Murcia, Spain
| | | | | | | |
Collapse
|
16
|
Calvo-Mendez C, Martinez-Pacheco M, Ruiz-Herrera J. Regulation of ornithine decarboxylase activity in Mucor bacilliformis and Mucor rouxii. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/0147-5975(87)90015-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Kaczmarek L, Calabretta B, Ferrari S, de Riel JK. Cell-cycle-dependent expression of human ornithine decarboxylase. J Cell Physiol 1987; 132:545-51. [PMID: 3308908 DOI: 10.1002/jcp.1041320318] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A human ornithine decarboxylase (ODC) gene probe has been isolated from a Jurkat T-cell cDNA expression library, sequenced, and used to analyze ODC mRNA levels in untransformed human lymphocytes and fibroblasts stimulated to proliferate by various mitogens. The partial cDNA sequence is 86% homologous to the mouse ODC cDNA, and Northern blots indicate that the human and mouse mRNA species are similar in size. ODC mRNA is barely detectable in quiescent human T lymphocytes and undetectable in density-arrested W138 fibroblasts. Following stimulation of T-lymphocyte proliferation with phytohemagglutinin, the ODC mRNA level rises to a peak around mid G1 phase and decreases as the cells enter S phase. Serum stimulation of density-arrested fibroblasts results in an elevation of the ODC mRNA level which persists throughout the cell cycle. Epidermal growth factor (20 ng/ml) but not insulin (10 mg/ml) or dexamethasone (55 ng/ml) stimulates ODC expression in quiescent W138 fibroblasts. Southern blots suggest that human cells have a single copy of the ODC gene.
Collapse
Affiliation(s)
- L Kaczmarek
- Department of Pathology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | | | | | | |
Collapse
|
18
|
Porter CW, Berger FG, Pegg AE, Ganis B, Bergeron RJ. Regulation of ornithine decarboxylase activity by spermidine and the spermidine analogue N1N8-bis(ethyl)spermidine. Biochem J 1987; 242:433-40. [PMID: 3036091 PMCID: PMC1147723 DOI: 10.1042/bj2420433] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polyamine biosynthesis in intact cells can be exquisitely controlled with exogenous polyamines through the regulation of rate-limiting biosynthetic enzymes, particularly ornithine decarboxylase (ODC). In an attempt to exploit this phenomenon as an antiproliferative strategy, certain polyamine analogues have been identified [Porter, Cavanaugh, Stolowich, Ganis, Kelly & Bergeron (1985) Cancer Res. 45, 2050-2057] which lower ODC activity in intact cells, have no direct inhibitory effects on ODC, are incapable of substituting for spermidine (SPD) in supporting cell growth, and are growth-inhibitory at micromolar concentrations. In the present study, the most effective of these analogues, N1N8-bis(ethyl)SPD (BES), is compared with SPD in its ability to regulate ODC activity in intact L1210 cells and in the mechanism(s) by which this is accomplished. With respect to time and dose-dependence of ODC suppression, both polyamines closely paralleled one another in their response curves, although BES was slightly less effective than SPD. Conditions of minimal treatment leading to near-maximal ODC suppression (70-80%) were determined and found to be 3 microM for 2 h with either SPD or BES. After such treatment, ODC activity was fully recovered within 2-4 h when cells were re-seeded in drug-free media. By assessing BES or [3H]SPD concentrations in treated and recovered cells, it was possible to deduce that an intracellular accumulation of BES or SPD equivalent to less than 6.5% of the combined cellular polyamine pool was sufficient to invoke ODC regulatory mechanisms. Decreases in ODC activity after BES or SPD treatment were closely paralleled by concomitant decreases in ODC protein. Since cellular ODC mRNA was not similarly decreased by either BES or SPD, it was concluded that translational and/or post-translational mechanisms, such as increased degradation of ODC protein or decreased translation of ODC mRNA, were probably responsible for regulation of enzyme activity. Experimental evidence indicated that neither of these mechanisms seemed to be mediated by cyclic AMP or ODC-antizyme induction. On the basis of the consistent similarities between BES and SPD in all parameters studied, it is concluded that the analogue most probably acts by the same mechanisms as SPD in regulating polyamine biosynthesis.
Collapse
|
19
|
Tsirka SA, Sklaviadis TK, Kyriakidis DA. Non-competitive inhibition of ornithine decarboxylase by a phosphopeptide and phosphoamino acids. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 884:482-9. [PMID: 3096379 DOI: 10.1016/0304-4165(86)90198-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In Tetrahymena pyriformis the cytosolic ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) activity is considerably inhibited by the presence of polyamines in the growth medium, while the nuclear ornithine decarboxylase is only slightly affected. Experimental evidence suggests that the presence of putrescine and/or spermidine elicits the appearance of non-competitive inhibitors of ornithine decarboxylase. One of the inhibitors has a molecular weight of 25,000 and properties of antizyme. In addition, two other low molecular weight inhibitors are extracted, one which is a phosphoserine oligopeptide, and the other which is phosphotyrosine. All inhibit non-competitively the homologous and heterologous (Escherichia coli and rat liver) ornithine decarboxylases. Similarly, non-competitive inhibition was obtained when the commercially available phosphoamino acids were tested against the already mentioned ornithine decarboxylases.
Collapse
|
20
|
Hölttä E, Pohjanpelto P. Control of ornithine decarboxylase in Chinese hamster ovary cells by polyamines. Translational inhibition of synthesis and acceleration of degradation of the enzyme by putrescine, spermidine, and spermine. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67685-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
21
|
Decarboxylation of arginine and ornithine by arginine decarboxylase purified from cucumber (Cucumis sativus) seedlings. J Biosci 1986. [DOI: 10.1007/bf02703478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Sorimachi K, Yasumura Y. Regulation of alkaline phosphatase activity in rat hepatoma cells. Effects of serum proteins, cycloheximide, actinomycin D, chloroquine, dinitrophenol and potassium cyanide. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 885:272-81. [PMID: 2418885 DOI: 10.1016/0167-4889(86)90242-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alkaline phosphatase activity in rat hepatoma cells (R-Y121B) cultured in a monolayer at 0.5% serum was enhanced by serum, bovine serum albumin, casein and gamma-globulin, but ovalbumin, polyvinylpyrrolidone, dexamethasone, insulin and dibutyrylcyclic AMP showed little effect on alkaline phosphatase activity. In addition, cycloheximide, actinomycin D, chloroquine, dinitrophenol and potassium cyanide also increased the enzyme activity, although the incorporation of [14C]leucine into cellular proteins was almost completely inhibited in the presence of these cytotoxic substances. When R-Y121B cell homogenates were incubated at 37 degrees C, alkaline phosphatase activity increased in a pH-dependent manner: the maximal increase was observed at pH 7.1. The magnitudes of the increase differed among cell homogenates and a 4- to 10-fold increase was observed. Alkaline phosphatase in R-Y121B cells was apparently heat-stable, but that in the cells obtained from various treatments was heat labile and the latter activity decreased to less than 50% of the initial activity after 15 min of incubation at 56 degrees C. Alkaline phosphatase in the control and also in the treated cells was more sensitive to L-homoarginine than L-phenylalanine. The Lineweaver-Burk plot showed that the increases in the enzyme activity were accompanied by changes not only in V but also in Km for alkaline phosphatase reaction. Finally, it has been suggested that the increases in alkaline phosphatase activity under various conditions are due to the conversion of the molecule with a low enzyme activity to the molecule with a high enzyme activity in R-Y121B cells.
Collapse
|
23
|
Kanamoto R, Utsunomiya K, Kameji T, Hayashi S. Effects of putrescine on synthesis and degradation of ornithine decarboxylase in primary cultured hepatocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 154:539-44. [PMID: 3948865 DOI: 10.1111/j.1432-1033.1986.tb09432.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Changes in both synthesis rate and degradation rate of ornithine decarboxylase (ODC) were pursued in primary cultures of adult rat hepatocytes during the process of ODC induction caused by asparagine and glucagon and also during the process of rapid ODC decay caused by putrescine. The synthesis rate of ODC was determined by [35S]methionine incorporation into the enzyme, which was separated afterwards by immunoprecipitation and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The degradation rate of ODC was determined by following the decay of prelabeled ODC. The enzyme induction caused by asparagine (10 mM) and glucagon (1 microM) was due both to an increase in the synthesis rate and to a decrease in the degradation rate. Addition of 10 mM putrescine caused a rapid decay of ODC activity, which was faster than ODC decay in the presence of cycloheximide. This rapid decay in ODC activity was accompanied by slightly slower decay in ODC protein, which was due both to partial suppression of ODC synthesis and to several fold acceleration of ODC degradation.
Collapse
|
24
|
Holinka CF, Gurpide E. Ornithine decarboxylase activity in human endometrium and endometrial cancer cells. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1985; 21:697-706. [PMID: 3935643 DOI: 10.1007/bf02620925] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ornithine decarboxylase (ODC) activities were significantly higher in proliferative endometrium during the estrogen-dominated follicular phase of the menstrual cycle than in secretory endometrium after the formation of the progesterone-secreting corpus luteum. The enzymatic activity was increased about fivefold by renewal of the medium during incubations of endometrial fragments or isolated endometrial glands. Endometrial adenocarcinoma cells (HEC-1, HEC-50), both in monolayers and suspension, also responded to medium renewal by increasing ODC activity about 10-fold after 4 h, with subsequent reduction to control levels after 7 h. These effects were blocked by actinomycin D and cycloheximide. Endometrial stromal cells exhibited highly variable ODC activities at different passages. Difluoromethylornithine (DFMO) and sodium molybdate had marked antiproliferative effects in HEC-50 cultures, reducing cell numbers to 10 to 20% of control values 11 d after plating and inhibiting ODC activity by approximately 80% on Day 7. The antiproliferative effect of DFMO, but not that of molybdate, was reversed by 10 microM putrescine, the product of ODC activity. In contrast to DFMO, molybdate had no effect on ODC activity of cell homogenates. Molybdate did not elicit antizyme formation in HEC-50 cells under conditions in which putrescine did. These results indicate that ODC activity, present in both epithelial and stromal cells, as shown analytically and also by autoradiography after labeling with [3H]DFMO, may be related to cell proliferation in vivo and that proliferation of human endometrial cancer cells in culture can be arrested by DFMO and by molybdate.
Collapse
|
25
|
Linden M, Anehus S, Långström E, Baldetorp B, Heby O. Cell cycle phase-dependent induction of ornithine decarboxylase-antizyme. J Cell Physiol 1985; 125:273-6. [PMID: 4055911 DOI: 10.1002/jcp.1041250215] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The activities of ornithine decarboxylase (ODC) and ODC inhibitory protein (ODC-antizyme) were studied in Ehrlich ascites tumor cells, separated according to their position in the cell cycle by centrifugal elutriation. Release and/or synthesis of ODC-antizyme was induced by putrescine treatment. Each mouse received an intraperitoneal injection of 25 mumoles of putrescine at 0, 1, 2, and 3 hr after tumor transplantation. Tumor cells obtained from putrescine-treated and control mice at 4 hr after transplantation were separated into fractions representing all phases of the cell cycle. The cell cycle distribution of the tumor cells in each fraction was determined by flow cytometry. In control tumor cells the ODC activity exhibited two maxima; in late-G1/early-S and in late-S/G2. A marked decrease in ODC activity was observed in mid-S phase. This decrease coincided with maximum ODC-antizyme activity (revealed by putrescine treatment), suggesting that ODC-antizyme is involved in the regulation of ODC activity during the cell cycle.
Collapse
|
26
|
Abstract
DL-Allylglycine causes a marked increase in mouse brain ornithine decarboxylase (ODC) activity. The amount of immunoreactive enzyme protein increases concomitantly with the activity, but the enzyme protein decreases more slowly than that of the activity. The amount of immunoreactive ODC in brain is many hundred times that of the catalytically active enzyme. The fact that mouse brain cytosol contains high amounts of dissociable antizyme (an inactivating protein) indicates the existence of an inactive, immunoreactive ODC-antizyme pool. The total antizyme content does not change markedly, but instead there are significant changes in different antizyme pools. Putrescine concentrations start to increase 8 h after treatment with allylglycine and concomitantly with this increase, antizyme is released to inhibit enzyme activity. These results indicate the involvement of antizyme in the inactivation process of ODC.
Collapse
|
27
|
Feinstein SC, Dana SL, McConlogue L, Shooter EM, Coffino P. Nerve growth factor rapidly induces ornithine decarboxylase mRNA in PC12 rat pheochromocytoma cells. Proc Natl Acad Sci U S A 1985; 82:5761-5. [PMID: 3862093 PMCID: PMC390632 DOI: 10.1073/pnas.82.17.5761] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mechanism by which nerve growth factor (NGF) stimulates ornithine decarboxylase (OrnDCase; EC 4.1.1.17) activity in the rat pheochromocytoma cell line PC12 was investigated. As demonstrated previously, NGF rapidly induces OrnDCase activity in a dose-dependent manner, with maximal enzymatic activity at 4-6 hr after exposure to NGF. Activity subsequently returns to near basal levels. A cloned OrnDCase cDNA was used to analyze the levels of OrnDCase RNA. In response to NGF administration, OrnDCase RNA levels were induced. The time course of the OrnDCase RNA induction paralleled that of the enzyme activity induction, and the magnitude of both inductions was quantitatively the same. Increased concentration of OrnDCase RNA was clearly detected at the earliest time point examined, 2 hr. No change was observed in the size of OrnDCase RNA. The dose-response curves for both RNA and enzyme activity inductions were also similar. Thus, increased OrnDCase RNA levels fully account for, and are responsible for, the induction of activity. Further, one-third of the OrnDCase RNA induction was unaffected by cycloheximide treatment but was fully blocked by actinomycin D treatment, suggesting that NGF acts through at least two mechanisms to mediate the OrnDCase induction. The first mechanism is cycloheximide insensitive and the second is mediated through an event requiring ongoing protein synthesis. Both mechanisms require ongoing transcription, as evidenced by the complete sensitivity of the induction process to actinomycin D.
Collapse
|
28
|
Laitinen PH, Huhtinen RL, Hietala OA, Pajunen AE. Ornithine decarboxylase activity in brain regulated by a specific macromolecule, the antizyme. J Neurochem 1985; 44:1885-91. [PMID: 3989567 DOI: 10.1111/j.1471-4159.1985.tb07184.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mouse brain ornithine decarboxylase activity is about 70-fold higher at the time of birth compared with that of adult mice. Enzyme activity declines rapidly after birth and reaches the adult level by 3 weeks. Immunoreactive enzyme concentration parallels very closely the decrease of enzyme activity during the first postnatal week, remaining constant thereafter. The content of brain antizyme, the macromolecular inhibitor to ornithine decarboxylase, in turn is very low during the first 7 days and starts then to increase and at the age of 3 weeks it is about six times the level of that in newborn mice. This may explain the decrease in enzyme activity during brain maturation, and suggests the regulation of polyamine biosynthesis by an antizyme-mediated mechanism in adult brain.
Collapse
|
29
|
Canellakis ES, Kyriakidis DA, Rinehart CA, Huang SC, Panagiotidis C, Fong WF. Regulation of polyamine biosynthesis by antizyme and some recent developments relating the induction of polyamine biosynthesis to cell growth. Review. Biosci Rep 1985; 5:189-204. [PMID: 3893559 DOI: 10.1007/bf01119588] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This review considers the role of antizyme, of amino acids and of protein synthesis in the regulation of polyamine biosynthesis. The ornithine decarboxylase of eukaryotic cells and of Escherichia coli can be non-competitively inhibited by proteins, termed antizymes, which are induced by di- and poly- amines. Some antizymes have been purified to homogeneity and have been shown to be structurally unique to the cell of origin. Yet, the E. coli antizyme and the rat liver antizyme cross react and inhibit each other's biosynthetic decarboxylases. These results indicate that aspects of the control of polyamine biosynthesis have been highly conserved throughout evolution. Evidence for the physiological role of the antizyme in mammalian cells rests upon its identification in normal uninduced cells, upon the inverse relationship that exists between antizyme and ornithine decarboxylase as well as upon the existence of the complex of ornithine decarboxylase and antizyme in vivo. Furthermore, the antizyme has been shown to be highly specific; its Keq for ornithine decarboxylase is 1.4 X 10(11) M-1. In addition, mammalian cells contain an anti-antizyme, a protein that specifically binds to the antizyme of an ornithine decarboxylase-antizyme complex and liberates free ornithine decarboxylase from the complex. In E. coli, in which polyamine biosynthesis is mediated both by ornithine decarboxylase and by arginine decarboxylase, three proteins (one acidic and two basic) have been purified, each of which inhibits both these enzymes. They do not inhibit the biodegradative ornithine and arginine decarboxylases nor lysine decarboxylase. The two basic inhibitors have been shown to correspond to the ribosomal proteins S20/L26 and L34, respectively. The relationship of the acidic antizyme to other known E. coli proteins remains to be determined. In mammalian cells, ornithine decarboxylase can be induced by a broad spectrum of compounds. These range from hormones and growth factors to natural amino acids such as asparagine and to non-metabolizable amino acid analogues such as alpha-amino-isobutyric acid. The amino acids that induce ornithine decarboxylase as well as those that promote polyamine uptake utilize the sodium dependent A and N transport systems. Consequently, they act in concert and increase intracellular polyamine levels by both mechanisms. The induction of ornithine decarboxylase by growth factors, such as NGF, EGF, and PDGF as well as by insulin requires the presence of these same amino acids and does not occur in their absence. However, the inducing amino acid need not be incorporated into protein nor covalently modified.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
30
|
Bishop PB, Young J, Peng T, Richards JF. An inhibitor of ornithine decarboxylase in the thymus and spleen of dexamethasone-treated rats. Biochem J 1985; 226:105-12. [PMID: 3977859 PMCID: PMC1144682 DOI: 10.1042/bj2260105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A marked decrease in activity of ornithine decarboxylase in thymus and spleen occurs soon after treatment of rats with a glucocorticoid. In the present study, evidence was obtained that extracts of these tissues prepared 5 h after administration of dexamethasone, when the enzyme activity is very low, contain an inhibitor of ornithine decarboxylase. The inhibitor is also present at 12 h after treatment and, in lesser amount, at 2.5 h, but was not evident at 24 h. The inhibitory activity was destroyed by treatment with heat or with trypsin, and was not lost on dialysis of the extract. Preliminary experiments indicate that the Mr of the inhibitor is greater than 50 000, which differentiates it from antizyme, an inhibitor of ornithine decarboxylase found in several other cell types. The inhibitor seems to act by a non-catalytic and non-competitive mechanism. The inhibition is dependent on the amount of inhibitor and does not change with time. Since inhibition is not changed by dialysis of the inhibitory extract, its activity apparently does not require small-Mr substances. This differentiates it from inhibitors which inactivate ornithine decarboxylase by covalent modification, such as the polyamine-dependent protein kinase or transglutaminase. The formation of this inhibitor is an early event in lymphoid tissues in response to dexamethasone and may be important in causing the inhibition of cell division which precedes the destruction of lymphocytes.
Collapse
|
31
|
Murakami Y, Fujita K, Kameji T, Hayashi S. Accumulation of ornithine decarboxylase-antizyme complex in HMOA cells. Biochem J 1985; 225:689-97. [PMID: 3919709 PMCID: PMC1144645 DOI: 10.1042/bj2250689] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A new method was developed for the assay of ornithine decarboxylase (ODC)-antizyme complex, in which alpha-difluoromethylornithine (DFMO)-inactivated ODC was used to release active ODC competitively from the complex. ODC-antizyme complex was present in the extracts of hepatoma tissue-culture (HTC) cells and of ODC-stabilized variant HMOA cells, in much larger amounts in the latter. Cellular amounts of the complex fluctuated after a change of medium in a similar manner in HTC and HMOA cells, increasing during the period of ODC decay. After treatment with cycloheximide, the decay of ODC-antizyme complex in HMOA cells was more rapid than the decay of free ODC, but it was much slower than the decay of free ODC or complexed ODC in HTC cells. Administration of putrescine caused a rapid increase in the amount of ODC-antizyme complex in both HTC and HMOA cells, but nevertheless the decay of total ODC (free ODC plus ODC-antizyme complex) was more rapid with putrescine than with cycloheximide. These results suggested the possibility that ODC is degraded through complex-formation with antizyme. In contrast with complexed antizyme, free antizyme was not stabilized in HMOA cells.
Collapse
|
32
|
Linden M, Oredsson SM, Anehus S, Heby O. Inhibition of ornithine decarboxylase activity and cell growth by diamines: a comparison between the effects of two homologs, 1,3-diaminopropane and 1,4-diaminobutane (putrescine). J Cell Biochem 1985; 29:105-13. [PMID: 3934184 DOI: 10.1002/jcb.240290206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ornithine decarboxylase (ODC) activity of Ehrlich ascites tumor cells was almost completely inhibited by treatment with either putrescine (10 mM) or 1,3-diaminopropane (5 mM). 1,3-Diaminopropane treatment eradicated the cellular content of putrescine and reduced that of spermidine and spermine. Putrescine treatment caused a dramatic increase in cellular putrescine content and a temporary decrease in spermidine and spermine content. Despite the fact that 1,3-diaminopropane and putrescine inhibited the ODC activity more effectively than did alpha-difluoromethylornithine (DFMO), an enzyme-activated irreversible inhibitor of ODC, they were considerably less antiproliferative in action. However, as compared to DFMO the diamines were less effective in reducing the total polyamine (putrescine + spermidine + spermine) content of the cells.
Collapse
|
33
|
Abstract
Ornithine decarboxylase is a key enzyme in polyamine synthesis and growth of mammalian cells. In this chapter I review recent reports on the purification and properties of the pure enzyme, and on the localization, synthesis and regulation of the enzyme in the cell. The use of monospecific antibodies, radiolabeled irreversible inhibitors and cDNA clones for studying enzyme localization, turnover and regulation, is briefly described. This first part is meant to serve as a basis for the analysis of ornithine decarboxylase as a target of chemotherapy. A selection of the most potent inhibitors of ornithine decarboxylase is presented and the effects of some of these in cell culture, in animals and in the clinical setting are reviewed.
Collapse
|
34
|
Panagiotidis CA, Canellakis ES. Comparison of the basic Escherichia coli antizyme 1 and antizyme 2 with the ribosomal proteins S20/L26 and L34. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42508-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
35
|
Gibbs JB, Brooker G. Calcium dependence for increased antizyme inhibitory activity of ornithine decarboxylase in rat glioma cells. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 801:99-105. [PMID: 6432061 DOI: 10.1016/0304-4165(84)90216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ornithine decarboxylase activity was inhibited by the antizyme inhibitor protein in extracts from C6-2B rat glioma cells. Antizyme activity in C6-2B cells was increased 3- to 10-fold by micromolar concentrations of putrescine, spermidine and spermine. The calcium chelator EGTA (pCa 6.4) inhibited basal and polyamine-stimulated antizyme activity, and this inhibition was prevented by concurrent incubation with calcium, but not with magnesium. EGTA appeared to block antizyme synthesis, because the half-life values of antizyme activity in the presence of EGTA or cycloheximide were similar (121-143 min). Also, calcium readdition rapidly reversed EGTA inhibition of antizyme activity by a mechanism which could be blocked by cycloheximide. The ability of EGTA to inhibit spermidine-stimulated antizyme activity was not due to reduced spermidine uptake, because EGTA actually stimulated [3H]spermidine accumulation in the trichloroacetic acid-soluble fraction of C6-2B cells after 3 h.
Collapse
|
36
|
Kitani T, Fujisawa H. Purification and some properties of a protein inhibitor (antizyme) of ornithine decarboxylase from rat liver. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90923-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Wu VS, Byus CV. A role for ornithine in the regulation of putrescine accumulation and ornithine decarboxylase activity in Reuber H35 hepatoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 804:89-99. [PMID: 6539129 DOI: 10.1016/0167-4889(84)90102-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We investigated the ability of intracellular ornithine to alter both the biosynthesis of putrescine and the activity of ornithine decarboxylase in Reuber H35 hepatoma cells in culture incubated with 12-O- tetrade - canoylphorbol 13-acetate (TPA). In confluent cultures of H35 cells, the addition of TPA (1.6 microM) caused the activity of ornithine decarboxylase to increase by more than 100-fold within 4 h. When exogenous ornithine (0.1-1.0 mM) was added to the culture medium with TPA, a marked dose-dependent increase in the production of putrescine was observed. The activity of ornithine decarboxylase in the same cultures incubated with ornithine decreased in a similar dose-dependent manner. The addition of arginine (0.1-1.0 mM) (but not lysine or histidine) to the H35 cells in culture concomitant with TPA also led to a relative increase in putrescine biosynthesis and a decrease in ornithine decarboxylase activity compared to cultures not receiving the amino acids. A similar response to exogenous ornithine and TPA was observed in a series of less confluent rapidly growing cultures which were in culture for a shorter period of time. The confluent cultures possessed a basal level of arginase (55 units/mg protein) which increased approx. 2-fold upon treatment with TPA. The intracellular concentration of ornithine in the unstimulated cells was in the order of 0.02-0.03 mM. Upon incubation of the cells with exogenous ornithine or arginine, the intracellular pools of these amino acids increased 4- to 8-fold.
Collapse
|
38
|
Fujita K, Matsufuji S, Murakami Y, Hayashi S. Antizyme to ornithine decarboxylase is present in the liver of starved rats. Biochem J 1984; 218:557-62. [PMID: 6712631 PMCID: PMC1153372 DOI: 10.1042/bj2180557] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Antizyme to ornithine decarboxylase (ODC) and ODC-antizyme complex were both present in liver cytosols of starved rats. The antizyme was identified by its molecular weight, kinetic properties, formation of a complex with ODC, and reversal of its inhibition by antizyme inhibitor. The average amount of antizyme in liver cytosols of starved rats was 0.1 unit/mg of protein, roughly corresponding to basal hepatic ODC activity in rats fed ad libitum. The presence of ODC-antizyme complex was detected by using antizyme inhibitor. These results indicate that antizyme participates in the regulation of ODC activity in vivo under physiological conditions.
Collapse
|
39
|
Kitani T, Fujisawa H. Influence of salts on the activity and the subunit structure of ornithine decarboxylase from rat liver. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 784:164-7. [PMID: 6691994 DOI: 10.1016/0167-4838(84)90123-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The influence of salts on the subunit structure and the kinetics of purified rat ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) was examined. Salts were found to cause subunit dissociation of the enzyme, producing the monomeric form of molecular weight 55 000 in the presence of 0.25 M NaCl/10 mM sodium phosphate buffer (pH 7.0): the molecular weight was estimated to be 150 000 in 10 mM and 250 000 in 1 mM sodium phosphate buffer. Inclusion of NaCl in kinetic assays of rat ornithine decarboxylase had little effect on maximal velocity. However, the Km value for L-ornithine was dramatically increased with increasing sodium chloride concentration: the presence of 0.25 M NaCl resulted in a 10-fold increase of the Km. Thus, the presence of salts caused dramatic changes both in the subunit structure and in the catalytic property of the enzyme, although a direct correlation between both the changes was not evidenced.
Collapse
|
40
|
|
41
|
|
42
|
Seely JE, Pegg AE. Effect of 1,3-diaminopropane on ornithine decarboxylase enzyme protein in thioacetamide-treated rat liver. Biochem J 1983; 216:701-7. [PMID: 6667263 PMCID: PMC1152565 DOI: 10.1042/bj2160701] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A radioimmunoassay for ornithine decarboxylase was used to study the regulation of this enzyme in rat liver. The antiserum used reacts with ornithine decarboxylase from mouse, human or rat cells. Rat liver ornithine decarboxylase enzyme activity and enzyme protein (as determined by radioimmunoassay) were measured in thioacetamide-treated rats at various times after administration of 1,3-diaminopropane. Enzyme activity declined rapidly after 1,3-diaminopropane treatment as did the amount of enzyme protein, although the disappearance of enzyme activity slightly preceded the loss of immunoreactive protein. The loss of enzyme protein after cycloheximide treatment also occurred rapidly, but was significantly slower than that seen with 1,3-diaminopropane. When 1,3-diaminopropane and cycloheximide were injected simultaneously, the rate of disappearance of enzyme activity and enzyme protein was the same as that seen with cycloheximide alone. These results show that the rapid loss in enzyme activity after 1,3-diaminopropane treatment is primarily due to a loss in enzyme protein and that protein synthesis is needed in order for 1,3-diaminopropane to exert its full effect. A macromolecular inhibitor of ornithine decarboxylase that has been termed antizyme is induced in response to 1,3-diaminopropane, but our results indicate that the loss of enzyme activity is not due to the accumulation of inactive ornithine decarboxylase-antizyme complexes. It is possible that the antizyme enhances the degradation of the enzyme protein. Control experiments demonstrated that the antiserum used would have detected any inactive antizyme-ornithine decarboxylase complexes present in liver since addition of antizyme to ornithine decarboxylase in vitro did not affect the amount of ornithine decarboxylase detected in our radioimmunoassay. Anti-(ornithine decarboxylase) antibodies may be useful in the purification of antizyme since the antizyme-ornithine decarboxylase complex can be immunoprecipitated, and antizyme released from the precipitate with 0.3 M-NaCl.
Collapse
|
43
|
Mitchell JL, Wilson JM. Polyamine-stimulated alteration of the ornithine decarboxylase molecule in Physarum polycephalum. Biochem J 1983; 214:345-51. [PMID: 6615477 PMCID: PMC1152254 DOI: 10.1042/bj2140345] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The molecular mechanism for polyamine-stimulated feedback modification of ornithine decarboxylase isolated from Physarum polycephalum was investigated by using two-dimensional polyacrylamide-gel electrophoresis. Partially purified A-form enzyme was converted into the B-form enzyme by isolated fractions of the Physarum A-B-converting protein, and the substrates and products were subsequently labelled by covalent addition of alpha-difluoro[14C]methylornithine, an enzyme-activated irreversible inhibitor. The active (A-form) and inactive (B-form) states of this enzyme were found to have the same Mr value, 52 000, yet they differed noticeably in their pI values, 5.45 and 5.65 respectively. In further experiments, the use of high-specific-radioactivity [3H]spermidine to stimulate this enzyme modification was shown not to result in the covalent attachment of this polyamine to ornithine decarboxylase. These results demonstrate that the polyamine-induced modification of ornithine decarboxylase in Physarum is not due to any of the mechanisms previously suggested for ornithine decarboxylase inactivation in this and other eukaryotes, namely phosphorylation, covalent polyamine addition or the non-covalent association of a specific low-Mr protein.
Collapse
|
44
|
Abstract
Ornithine decarboxylase, the rate-limiting enzyme in polyamine synthesis, is known to be regulated by a macromolecular inhibitor, termed antizyme, in a number of cellular systems. The present results show that the antizyme is also a functional component of polyamine metabolism in the brain. It could be demonstrated both in normal randomly selected mice and in animals which had been subjected either to intracerebroventricular injection of saline, which is known to cause a transient activation of ornithine decarboxylase, or to 1,3-diamino-2-propanol, an antizyme-inducing agent. When compared to tissues or cell systems studied so far, the cytosol fraction from mouse brain homogenate appeared to contain an exceptionally high amount of antizyme, that was bound to some material other than active ornithine decarboxylase. This feature was seen in all the animal groups studied, being most prominent after saline injection, when the amount of dissociable antizyme exceeded 14-fold the corresponding released ornithine decarboxylase activity. In untreated animals the excess was about eightfold and after 1,3-diamino-2-propanol about fivefold.
Collapse
|
45
|
Lesiewicz J, Goldsmith LA. Antizyme release is an early event in ornithine decarboxylase induction by hair plucking. J Invest Dermatol 1983; 80:97-100. [PMID: 6822744 DOI: 10.1111/1523-1747.ep12531681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Plucking of hair from the dorsal skin of rats resulted in a rapid decrease in ornithine decarboxylase (ODC) activity. A significant loss of activity did not occur in other skin enzymes under the same conditions and in vivo incorporation of [3H]-leucine in skin was not significantly decreased 60 min immediately following hair plucking. Treatment of ODC enzyme preparations with 10% (NH4)2SO4 resulted in recovery of approximately 75% greater ODC activity than in untreated samples, suggesting the presence of an inhibitor (antizyme). ODC inhibitor was detected in plucked skin; inhibitor levels increased after treatment of plucked skin extracts with 10% (NH4)2SO4.
Collapse
|
46
|
van Wijk R. Regulation of DNA synthesis in cultured rat hepatoma cells. INTERNATIONAL REVIEW OF CYTOLOGY 1983; 85:63-107. [PMID: 6363329 DOI: 10.1016/s0074-7696(08)62370-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Tyagi AK, Tabor H, Tabor CW. Inactivation of yeast ornithine decarboxylase by polyamines in vivo does not result from the incorporation of polyamines into enzyme protein. Biochem Biophys Res Commun 1982; 109:533-40. [PMID: 6758790 DOI: 10.1016/0006-291x(82)91754-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
48
|
Raymondjean M, Kneip B, Bachner L, Bogdanovsky-Sequeval D, Schapira G. Induction by 3, 5, 3' L-triiodothyronine of L-ornithine decarboxylase in rat heart muscle. Biochimie 1982; 64:1027-34. [PMID: 6819000 DOI: 10.1016/s0300-9084(82)80383-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Injection of 3,5,3' L-triiodothyronine (15 micrograms/100 g) induces a biphasic enhancement of rat heart ornithine decarboxylase (EC. 4.1.17) activity after 4 and 21 hours. This induction is observed after each daily injection, but to a lesser extent. The properties of partially purified basal enzyme and induced enzyme, at 21h, after single injections have been compared. 1) Affinity for ornithine is the same for both enzymes, but affinity for pyridoxal-phosphate is 40-fold higher for the induced one. 2) Thermostability studies suggest that basal and induced enzymes have different conformations. 3) The two enzymes have similar immuno-reactivity. 4) The comparisons of the time-dependent activity curve after injection and of the antigen/activity ratio suggests that triiodothyronine induces the synthesis of new molecules of enzymes and that an inhibition of the enzyme activity also occurs which explains the biphasic induction.
Collapse
|
49
|
Mitchell JL, Mitchell GK, Carter DD. Amine-specificity of the inactivating ornithine decarboxylase modification in Physarum polycephalum. Biochem J 1982; 205:551-7. [PMID: 7150232 PMCID: PMC1158520 DOI: 10.1042/bj2050551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The enzyme catalysing the polyamine-stimulated modification of Physarum ornithine decarboxylase in vivo was partially purified and its activity on purified ornithine decarboxylase was examined with respect to its specificity for various amines. Spermidine, spermine and several polyamine analogues strongly promoted this reaction in vitro (apparent Km in the 0.1--0.5 mM range), whereas putrescine (apparent Km 5.33 mM) and several related diamines were not nearly as effective. In agreement with this, sensitivity studies performed in vivo also suggested that cellular spermidine, and not putrescine, is critical in modulating ornithine decarboxylase activity by this post-translational control. Unlike putrescine, or other diamines, 1,3-diaminopropane demonstrated a functional similarity to the polyamines in stimulating this reaction. This study has demonstrated a method whereby non-physiological amines capable of depressing ornithine decarboxylase activity by this natural feedback mechanism can be readily identified for further evaluation of their potential use in the experimental and medical control of polyamine biosynthesis.
Collapse
|
50
|
Viceps-Madore D, Chen KY, Tsou HR, Canellakis ES. Studies on the role of protein synthesis and of sodium on the regulation of ornithine decarboxylase activity. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 717:305-15. [PMID: 7115771 DOI: 10.1016/0304-4165(82)90184-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The minimum requirements for eliciting or enhancing ornithine decarboxylase activity (EC. 4.1.1.17); L-ornithine carboxylase) in neuroblastoma cells incubated in salts-glucose solutions have been investigated. These incubation conditions permit the study of changes in ornithine decarboxylase activity independently of the growth-associated reactions that occur in cell culture media (Chen, K.Y. and Canellakis, E.S. (1977) Proc. Natl, Acad. Sci. U.S.A. 74, 3791-3795). Ornithine decarboxylase activity can be elicited by a variety of asparagine and other amino acid analogs, including alpha-aminoisobutyric acid, that cannot participate in protein synthesis. Of the eleven asparagine analogs tested, alpha-N-CH3-DL-asparagine is the most potent in eliciting ornithine decarboxylase activity and is equivalent to asparagine in this regard. Inclusion of polar groups into the asparagine molecule results in the loss of its ability to elicit ornithine decarboxylase activity. With the use of these analogs and of analogs of other amino acids it is shown that the rapid fall in ornithine decarboxylase activity that is noted following cycloheximide treatment may not be a consequence of the inhibition of protein synthesis. The rapid fall in ornithine decarboxylase activity is primarily due to the removal of the agent that elicits and stabilizes its activity. These results, the finding that alpha-aminoisobutyric acid stimulates ornithine decarboxylase activity and that sodium is required for the stimulation of ornithine decarboxylase activity are discussed in relation to the "A" amino acid transport system.
Collapse
|