1
|
Suh SM, Kim S, Kim HJ, Shin MK, Kim HY. Development and verification of new reference plasmid (pUC_GM-SB) for the DNA-based detection of genetically modified sugar beet H7-1. Food Sci Biotechnol 2024; 33:3291-3297. [PMID: 39328229 PMCID: PMC11422527 DOI: 10.1007/s10068-024-01572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/20/2024] [Accepted: 03/28/2024] [Indexed: 09/28/2024] Open
Abstract
The sugar beet is the second-largest sugar-producing crop. Genetically modified (GM) sugar beet, which have herbicide-resistant, have been developed to increase production and comprise over 90% of the market share. This study describes qualitative and quantitative PCR methods for the GM sugar beet H7-1 with reference plasmid (pUC_GM-SB) containing an endogenous gene (GS2) and an event-specific gene for H7-1 that served as a positive control for PCR. The detection limit of qualitative PCR was approximately 10 copies of the reference plasmid and 0.05% in spiked samples. In the case of quantitative PCR, the detection limit was five copies of the reference plasmid. Regarding repeatability, the standard deviation and relative standard deviation were found to range from 0.11 to 0.24 and from 0.23% to 0.99%, respectively. This study provides food safety assurance for imported GM sugar beet H7-1 using the reference plasmid and supports efficient detection methods. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01572-6.
Collapse
Affiliation(s)
- Seung-Man Suh
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Korea
| | - Sumin Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Korea
| | - Hyun-Jae Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Korea
| | - Min-Ki Shin
- Novel Food Division, National Institute of Food and Drug Safety Evaluation, Cheongju, 28159 Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Korea
| |
Collapse
|
2
|
El-Azaz J, Maeda HA. A simplified liquid chromatography-mass spectrometry methodology to probe the shikimate and aromatic amino acid biosynthetic pathways in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39466904 DOI: 10.1111/tpj.17105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
Plants direct substantial amounts of carbon toward the biosynthesis of aromatic amino acids (AAAs), particularly phenylalanine to produce lignin and other phenylpropanoids. Yet, we have a limited understanding of how plants regulate AAA metabolism, partially because of a scarcity of robust analytical methods. Here, we established a simplified workflow for simultaneous quantification of AAAs and their pathway intermediates from plant tissues, based on extraction at two alternative pH and analysis by Zwitterionic hydrophilic interaction liquid chromatography coupled to mass spectrometry. This workflow was then used to analyze metabolic responses to elevated or reduced carbon flow through the shikimate pathway in plants. Increased flow upon expression of a feedback-insensitive isoform of the first shikimate pathway enzyme elevated all AAAs and pathway intermediates, especially arogenate, the last common precursor within the post-chorismate pathway of tyrosine and phenylalanine biosynthesis. Additional overexpression of an arogenate dehydrogenase enzyme increased tyrosine levels and depleted phenylalanine and arogenate pools; however, the upstream shikimate pathway intermediates remained accumulated at high levels. Glyphosate treatment, which restricts carbon flow through the shikimate pathway by inhibiting its penultimate step, led to a predictable accumulation of shikimate and other precursors upstream of its target enzyme but also caused an unexpected accumulation of downstream metabolites, including arogenate. These findings highlight that the shikimate pathway and the downstream post-chorismate AAA pathways function as independently regulated modules in plants. The method developed here paves the way for a deeper understanding of the shikimate and AAA biosynthetic pathways in plants.
Collapse
Affiliation(s)
- Jorge El-Azaz
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Solomon J, Gutierrez-Reyes CD, Chávez-Reyes J, Onigbinde S, Marichal-Cancino BA, López-Lariz CH, Beck M, Mechref Y. Neuroglycome alterations of hippocampus and prefrontal cortex of juvenile rats chronically exposed to glyphosate-based herbicide. Front Neurosci 2024; 18:1442772. [PMID: 39234181 PMCID: PMC11371619 DOI: 10.3389/fnins.2024.1442772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/19/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Glyphosate-based herbicides (GBHs) have been shown to have significant neurotoxic effects, affecting both the structure and function of the brain, and potentially contributing to the development of neurodegenerative disorders. Despite the known importance of glycosylation in disease progression, the glycome profile of systems exposed to GBH has not been thoroughly investigated. Methods In this study, we conducted a comprehensive glycomic profiling using LC-MS/MS, on the hippocampus and prefrontal cortex (PFC) of juvenile rats exposed to GBH orally, aiming to identify glyco-signature aberrations after herbicide exposure. Results We observed changes in the glycome profile, particularly in fucosylated, high mannose, and sialofucosylated N-glycans, which may be triggered by GBH exposure. Moreover, we found major significant differences in the N-glycan profiles between the GBH-exposed group and the control group when analyzing each gender independently, in contrast to the analysis that included both genders. Notably, gender differences in the behavioral test of object recognition showed a decreased performance in female animals exposed to GBH compared to controls (p < 0.05), while normal behavior was recorded in GBH-exposed male rats (p > 0.05). Conclusion These findings suggest that glycans may play a role in the neurotoxic effect caused by GBH. The result suggests that gender variation may influence the response to GBH exposure, with potential implications for disease progression and specifically the neurotoxic effects of GBHs. Understanding these gender-specific responses could enhance knowledge of the mechanisms underlying GBH-induced toxicity and its impact on brain health. Overall, our study represents the first detailed analysis of N-glycome profiles in the hippocampus and PFC of rats chronically exposed to GBH. The observed alterations in the expression of N-glycan structures suggest a potential neurotoxic effect associated with chronic GBH exposure, highlighting the importance of further research in this area.
Collapse
Affiliation(s)
- Joy Solomon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | | | - Jesús Chávez-Reyes
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Bruno A Marichal-Cancino
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | - Carlos H López-Lariz
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | - Mia Beck
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
4
|
She F, Anderson BW, Khana DB, Zhang S, Steinchen W, Fung DK, Lucas LN, Lesser NG, Stevenson DM, Astmann TJ, Bange G, van Pijkeren JP, Amador-Noguez D, Wang JD. Allosteric Regulation of Pyruvate Kinase Enables Efficient and Robust Gluconeogenesis by Preventing Metabolic Conflicts and Carbon Overflow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.607825. [PMID: 39211278 PMCID: PMC11361145 DOI: 10.1101/2024.08.15.607825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Glycolysis and gluconeogenesis are reciprocal metabolic pathways that utilize different carbon sources. Pyruvate kinase catalyzes the irreversible final step of glycolysis, yet the physiological function of its regulation is poorly understood. Through metabolomics and enzyme kinetics studies, we discovered that pyruvate kinase activity is inhibited during gluconeogenesis in the soil bacterium Bacillus subtilis . This regulation involves an extra C-terminal domain (ECTD) of pyruvate kinase, which is essential for autoinhibition and regulation by metabolic effectors. Introducing a pyruvate kinase mutant lacking the ECTD into B. subtilis resulted in defects specifically under gluconeogenic conditions, including inefficient carbon utilization, slower growth, and decreased resistance to the herbicide glyphosate. These defects are not caused by the phosphoenolpyruvate-pyruvate-oxaloacetate futile cycle. Instead, we identified two significant metabolic consequences of pyruvate kinase dysregulation during gluconeogenesis: increased carbon overflow into the medium and failure to expand glycolytic intermediates such as phosphoenolpyruvate (PEP). In silico analysis revealed that in wild-type cells, an expanded PEP pool enabled by pyruvate kinase regulation is critical for the thermodynamic feasibility of gluconeogenesis. Our findings underscore the importance of allosteric regulation during gluconeogenesis in coordinating metabolic flux, efficient energy utilization, and antimicrobial resistance.
Collapse
|
5
|
Lapierre C, Erlandson LW, Stoneroad II R, Rhiner A, Gosnell R, Barber J, Pham L. Substances of health concern in home-distilled and commercial alcohols from Texas. Heliyon 2024; 10:e32317. [PMID: 38912503 PMCID: PMC11190660 DOI: 10.1016/j.heliyon.2024.e32317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Objective Poor distillation practices in the production of spirits have historically resulted in many instances of adverse health outcomes including death. Concern has focused on lead and copper contamination as well as unhealthy levels of methanol and glyphosate. This study assesses home-distilled and commercially distilled alcohols from Texas for these substances of concern, highlighting their potential risks to public health. Methods Atomic absorption spectroscopy, gas chromatography, and enzyme-linked immunosorbent assay were employed to determine lead and copper, methanol, and glyphosate levels in 12 commercial and 36 home-distilled alcohol samples. Results Our findings showed that 11 % of the home-distilled alcohols exceeded the U.S. Alcohol and Tobacco Tax and Trade Bureau's copper safety limits of 0.5 mg/L for wine. Additionally, 36 % of these samples surpassed the European Commission (EC)'s lead legal threshold of 0.15 mg/L set for wine products. Results from commercial alcohols indicated that no samples exceeded the same safety limits for copper, and 33 % exceeded the same legal threshold for lead. Both commercial and home-distilled alcohols exhibited methanol concentrations remarkably below the 0.35 % limit for brandy set by the U.S. Food and Drug Administration. Only two home-distilled samples contained detectable glyphosate concentrations well below 100 μg/L, the maximum residue level in beer and wine established by the EC. Conclusions Our findings suggested that consumption of alcohol in Texas may pose potential health risks associated with the elevated content of lead and copper. There is a need for increased focus on alcohol as a potential source of exposure to heavy metals.
Collapse
Affiliation(s)
- Coady Lapierre
- Department of Counseling and Psychology, Texas A&M University-Central Texas, Texas, USA
| | | | - Randy Stoneroad II
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| | - Andrew Rhiner
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| | - Renae Gosnell
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| | - John Barber
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| | - Linh Pham
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| |
Collapse
|
6
|
Masci M, Caproni R, Nevigato T. Chromatographic Methods for the Determination of Glyphosate in Cereals Together with a Discussion of Its Occurrence, Accumulation, Fate, Degradation, and Regulatory Status. Methods Protoc 2024; 7:38. [PMID: 38804332 PMCID: PMC11130892 DOI: 10.3390/mps7030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
The European Union's recent decision to renew the authorization for the use of glyphosate until 15 December 2033 has stimulated scientific discussion all around the world regarding its toxicity or otherwise for humans. Glyphosate is a chemical of which millions of tons have been used in the last 50 years worldwide to dry out weeds in cultivated fields and greenhouses and on roadsides. Concern has been raised in many areas about its possible presence in the food chain and its consequent adverse effects on health. Both aspects that argue in favor of toxicity and those that instead may indicate limited toxicity of glyphosate are discussed here. The widespread debate that has been generated requires further investigations and field measurements to understand glyphosate's fate once dispersed in the environment and its concentration in the food chain. Hence, there is a need for validated analytical methods that are available to analysts in the field. In the present review, methods for the analytical determination of glyphosate and its main metabolite, AMPA, are discussed, with a specific focus on chromatographic techniques applied to cereal products. The experimental procedures are explained in detail, including the cleanup, derivatization, and instrumental conditions, to give the laboratories involved enough information to proceed with the implementation of this line of analysis. The prevalent chromatographic methods used are LC-MS/MS, GC-MS/SIM, and GC-MS/MS, but sufficient indications are also given to those laboratories that wish to use the better performing high-resolution MS or the simpler HPLC-FLD, HPLC-UV, GC-NPD, and GC-FPD techniques for screening purposes. The concentrations of glyphosate from the literature measured in wheat, corn, barley, rye, oats, soybean, and cereal-based foods are reported, together with its regulatory status in various parts of the world and its accumulation mechanism. As for its accumulation in cereals, the available data show that glyphosate tends to accumulate more in wholemeal flours than in refined ones, that its concentration in the product strictly depends on the treatment period (the closer it is to the time of harvesting, the higher the concentration), and that in cold climates, the herbicide tends to persist in the soil for a long time.
Collapse
Affiliation(s)
- Maurizio Masci
- Council for Agricultural Research and Economics (CREA), Research Centre for Food and Nutrition, via Ardeatina 546, 00178 Rome, Italy (T.N.)
| | | | | |
Collapse
|
7
|
Parimi DS, Jyothirmai MV, Ravva MK, Jaiswal AK, Suresh AK. Bioengineering of Cu 2O structured macro-biotemplate for the ultra-efficient and selective hand-retrieval of glyphosate from agro-farms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171051. [PMID: 38382616 DOI: 10.1016/j.scitotenv.2024.171051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Glyphosate (Gly) is a massively utilized toxic herbicide exceeding its statutory restrictions, causing adverse environmental and health impacts. Engineered nanomaterials, even though are integral to remediate Gly, their practical use is limited due to time and energy driven purifications, and negative environmental impacts. Here, a 3D wide area (~1.6 ± 0.4 cm2) Cu2O nanoparticle supported biotemplate is designed using fish-scale wastes as a sustainable approach for the ultra-efficient and selective hand-remediation of Gly from real-time samples from agro-farms. While the innate metal binding and reducing ability of collagenous scales aided self-synthesis cum grafting of Cu2O, the selective binding potential of Cu2O to Gly facilitated its hand-retrieval; as assessed using optical characterizations, Fourier transform infrared spectroscopy, thermogravimetric analysis and liquid chromatography mass spectrometry. Optimization studies revealed extractions of diverse pay-loads of Gly between 0.1 μg/mL to 40 μg/mL per 80 mg biotemplate grafted with ~6.354 μg of sub-5 nm Cu2O and was exponential to the number of Cu2O@biotemplates. Even though pH and surfactant didn't have any impact on the adsorption of Gly to the Cu2O@biotemplates, increase in the ionic strength led to a drastic increase in the adsorption. Density function theory simulations unveiled the involvement of phosphonic and carboxylic groups of Gly for interaction with Cu2O with a bond length of 1.826 Å and 1.833 Å, respectively. Overall, our sustainably generated, cost-efficient, hand-retrievable Cu2O supported biotemplate can be generalized to extract diverse organophosphorus toxins from agro-farms and other sewage embodiments. SYNOPSIS: Glyphosate is an excessively applied herbicide with potent health hazards and carcinogenicity. Thus, a hand removable Cu2O-supported biotemplate to selectively and efficiently remediate glyphosate from irrigation water is developed.
Collapse
Affiliation(s)
- Divya S Parimi
- Bionanotechnology and Sustainable Laboratory, Department of Biological Sciences, School of Engineering and Applied Sciences, SRM University-AP, Amaravati 522503, India
| | - M V Jyothirmai
- Department of Chemistry, School of Engineering and Applied Sciences, SRM University-AP, Amaravati 522503, India
| | - Mahesh Kumar Ravva
- Department of Chemistry, School of Engineering and Applied Sciences, SRM University-AP, Amaravati 522503, India
| | - Amit K Jaiswal
- Environmental Sustainability and Health Institute, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| | - Anil K Suresh
- Bionanotechnology and Sustainable Laboratory, Department of Biological Sciences, School of Engineering and Applied Sciences, SRM University-AP, Amaravati 522503, India.
| |
Collapse
|
8
|
Kolić D, Pehar V, Kovarik Z. Environmental exposure to glyphosate does not inhibit human acetylcholinesterase and butyrylcholinesterase. Arh Hig Rada Toksikol 2024; 75:76-80. [PMID: 38548375 PMCID: PMC10978157 DOI: 10.2478/aiht-2024-75-3822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/01/2024] [Accepted: 03/01/2024] [Indexed: 04/01/2024] Open
Abstract
Glyphosate has remained the leading herbicide on the global market to date, despite the continuous debate between consumers, scientific community, and regulatory agencies over its carcinogenicity, genotoxicity, environmental persistence, and the role in the development of neurodegenerative disorders. Chemically, glyphosate belongs to a large family of organophosphorus pesticides, which exert a neurotoxic effect by inhibiting acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), enzymes of the cholinergic system essential for maintaining neurotransmission. Although research shows that glyphosate is a weak cholinesterase inhibitor in fish and mammals compared to other OP compounds, no conclusive data exist concerning the inhibition of human AChE and BChE. In our study we analysed its inhibitory potency on human AChE and BChE, by establishing its IC50 and reversible inhibition in terms of dissociation inhibition constants. Glyphosate concentration of 40 mmol/L caused near total inhibition of enzyme activity (approx. 10 % activity remaining). Inhibition dissociation constants (K i) of glyphosate-AChE and -BChE complexes were 28.4±2.7 mmol/L and 19.3±1.8 mmol/L, respectively. In conclusion, glyphosate shows a slight binding preference for BChE but exhibits inhibition only in a high concentration range. Our results are in line with studies reporting that its neurotoxic effect is not primarily linked to the cholinergic system.
Collapse
Affiliation(s)
- Dora Kolić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Zagreb, Croatia
| | - Vesna Pehar
- Dr Franjo Tuđman Croatian Defence Academy, Zagreb, Croatia
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Division of Toxicology, Zagreb, Croatia
- University of Zagreb Faculty of Science, Zagreb, Croatia
| |
Collapse
|
9
|
Xu R, Bao Y, Jiao F, Li M, Zhang X, Zhang F, Guo J. Unraveling the atomic mechanisms underlying glyphosate insensitivity in EPSPS: implications of distal mutations. J Biomol Struct Dyn 2024:1-12. [PMID: 38400730 DOI: 10.1080/07391102.2024.2318472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS), as an indispensable enzyme in the shikimate pathway, is the specific target of grasser killer glyphosate (GPJ). GPJ is a competitive inhibitor of phosphoenolpyruvate (PEP), which is the natural substrate of EPSPS. A novel Ls-EPSPS gene variant discovered from Liliaceae, named ELs-EPSPS, includes five distal mutations, E112V, D142N, T351S, D425G, and R496G, endowing high GPJ insensitivity. However, the implicit molecular mechanism of the enhanced tolerance/insensitivity of GPJ in ELs-EPSPS is not fully understood. Herein, we try to interpret the hidden molecular mechanism using computational methods. Computational results reveal the enhanced flexibility of apo EPSPS upon mutations. The enhanced affinity of the initial binding substrate shikimate-3-phosphate (S3P), and the higher probability of second ligands PEP/GPJ entering the pocket are observed in the ELs-EPSPS-S3P system. Docking and MD results further confirmed the decreased GPJ-induced EPSPS inhibition upon mutations. And, the alterations of K98 and R179 side-chain orientations upon mutations are detrimental to GPJ binding at the active site. Additionally, the oscillation of side chain K98, in charge of PEP location, improves the proximity effect for substrates in the dual-substrate systems upon mutations. Our results clarify that the enhanced GPJ tolerance of EPSPS is achieved from decreased competitive inhibition of GPJ at the atomic perspective, and this finding further contributes to the cultivation of EPSPS genes with higher GPJ tolerance/insensitivity and a mighty renovation for developing glyphosate-resistant crops.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ran Xu
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yiqiong Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fangfang Jiao
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Mengrong Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxiao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Feng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
- Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Macao Polytechnic University, Macao, China
| |
Collapse
|
10
|
Babich R, Merutka I, Craig E, Harichandara A, De Silva PMCS, Gunasekara TDKSC, Jayasundara N. Transcriptomic and behavioral analyses reveal unique target tissues and molecular pathways associated with embryonic exposure to low level glyphosate and metal mixtures in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169271. [PMID: 38114029 PMCID: PMC10964846 DOI: 10.1016/j.scitotenv.2023.169271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Investigation of developmental molecular events following exposure to environmentally relevant agrochemical mixtures is critical to predicting their potential long-term ecological and human health risks. Here, we sought to uncover transcriptomic changes during zebrafish (Danio rerio) embryonic development following exposure to glyphosate and co-exposure to metals. Glyphosate is widely used globally with an allowable drinking water limit of 700 ppb. We examined effects of glyphosate (10 ppb) alone and when co-exposed to a metal mixture containing low levels of arsenic (4 ppb), lead (5 ppb), cadmium (2 ppb), and vanadium (15 ppb). This mixture was derived based on behavioral and morphological toxicity findings and environmentally relevant concentrations found in agricultural regions where glyphosate and metals are ubiquitously present. Gene expression patterns coupled to a single-cell transcriptomic dataset revealed that developmental exposure (28-72 h post fertilization) to glyphosate dysregulates expression of developmental genes specific to the central nervous system. Subsequent studies indicated significant suppression of larval zebrafish movement with 10 ppb glyphosate exposure. Studies with glyphosate + metals mixture and metals mixture alone showed unique developmental transcriptomic patterns and behavioral changes compared to glyphosate exposure alone. However, some outcomes (e.g., changes in expression of genes involved in epigenetic regulation and extracellular matrix patterning) were common across all three exposures compared to the control. Notably, glyphosate + metals co-exposure distinctly suppresses lysosomal transcripts and targets renal developmental genes. While further studies are required to uncover the precise nature of the interactions between glyphosate and metals, our study shows that glyphosate at very low levels is a behavioral and neurotoxicant that changes when metals are present. Given this herbicide affects distinctive physiological processes, including renal development and lysosomal dysregulation when co-exposed with metals, we conclude that environmental cation levels should be considered in glyphosate toxicity and risk assessment.
Collapse
Affiliation(s)
- Remy Babich
- University of Maine, Orono, ME 14069, United States of America.
| | - Ilaria Merutka
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States of America
| | - Emily Craig
- University of Maine, Orono, ME 14069, United States of America; Nicholas School of the Environment, Duke University, Durham, NC 27708, United States of America
| | | | | | | | - Nishad Jayasundara
- University of Maine, Orono, ME 14069, United States of America; Nicholas School of the Environment, Duke University, Durham, NC 27708, United States of America
| |
Collapse
|
11
|
Palberg D, Kaszecki E, Dhanjal C, Kisiała A, Morrison EN, Stock N, Emery RJN. Impact of glyphosate and glyphosate-based herbicides on phyllospheric Methylobacterium. BMC PLANT BIOLOGY 2024; 24:119. [PMID: 38369476 PMCID: PMC10875822 DOI: 10.1186/s12870-024-04818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Symbiotic Methylobacterium comprise a significant portion of the phyllospheric microbiome, and are known to benefit host plant growth, development, and confer tolerance to stress factors. The near ubiquitous use of the broad-spectrum herbicide, glyphosate, in farming operations globally has necessitated a more expansive evaluation of the impacts of the agent itself and formulations containing glyphosate on important components of the plant phyllosphere, including Methylobacterium.This study provides an investigation of the sensitivity of 18 strains of Methylobacterium to glyphosate and two commercially available glyphosate-based herbicides (GBH). Nearly all strains of Methylobacterium showed signs of sensitivity to the popular GBH formulations WeatherMax® and Transorb® in a modified Kirby Bauer experiment. However, exposure to pure forms of glyphosate did not show a significant effect on growth for any strain in both the Kirby Bauer test and in liquid broth, until polysorbate-20 (Tween20) was added as a surfactant. Artificially increasing membrane permeability through the introduction of polysorbate-20 caused a 78-84% reduction in bacterial cell biomass relative to controls containing glyphosate or high levels of surfactant only (0-9% and 6-37% reduction respectively). Concentrations of glyphosate as low as 0.05% w/v (500 µg/L) from both commercial formulations tested, inhibited the culturability of Methylobacterium on fresh nutrient-rich medium.To better understand the compatibility of important phyllospheric bacteria with commercial glyphosate-based herbicides, this study endeavours to characterize sensitivity in multiple strains of Methylobacterium, and explore possible mechanisms by which toxicity may be induced.
Collapse
Affiliation(s)
- Daniel Palberg
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Emma Kaszecki
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Chetan Dhanjal
- Department of Biological Sciences, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Anna Kisiała
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Erin N Morrison
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Naomi Stock
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
- Water Quality Centre, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - R J Neil Emery
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
12
|
Rosolen APF, Ribeiro RA, Teleken JL, de Oliveira Chaves J, Padilha SC, Goes ME, Morari J, Boschero AC, Balbo SL, Bonfleur ML. Pubertal glyphosate-based herbicide exposure aggravates high-fat diet-induced obesity in female mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15872-15884. [PMID: 38302837 DOI: 10.1007/s11356-024-32234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Glyphosate-based herbicides (GBH) are the most widely used pesticides globally. Studies have indicated that they may increase the risk of various organic dysfunctions. Herein, we verified whether exposure to GBH during puberty increases the susceptibility of male and female mice to obesity when they are fed a high-fat diet (HFD) in adulthood. From the 4th-7th weeks of age, male and female C57Bl/6 mice received water (CTL group) or 50 mg GBH /kg body weight (BW; GBH group). From the 8th-21st weeks of age, the mice were fed a standard diet or a HFD. It was found that pubertal GBH exposure exacerbated BW gains and hyperphagia induced by HFD, but only in female GBH-HFD mice. These female mice also exhibited high accumulation of perigonadal and subcutaneous fat, as well as reduced lean body mass. Both male and female GBH-HFD displayed hypertrophic white adipocytes. However, only in females, pubertal GBH exposure aggravated HFD-induced fat accumulation in brown adipocytes. Furthermore, GBH increased plasma cortisol levels by 80% in GBH-HFD males, and 180% in GBH-HFD females. In conclusion, pubertal GBH exposure aggravated HFD-induced obesity, particularly in adult female mice. This study provides novel evidence that GBH misprograms lipid metabolism, accelerating the development of obesity when individuals are challenged by a second metabolic stressor, such as an obesogenic diet.
Collapse
Affiliation(s)
- Ana Paula Farina Rosolen
- Laboratório de Fisiologia Endócrina E Metabolismo (LAFEM), Centro de Ciências Biológicas E da Saúde, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Cascavel, CEP: 85819-110, Brazil
| | - Rosane Aparecida Ribeiro
- Departamento de Biologia Geral, Setor de Ciências Biológicas E da Saúde, Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
- Programa de Pós-Graduação Em Produtos Bioativos E Biociências, Universidade Federal Do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil
| | - Jakeline Liara Teleken
- Laboratório de Fisiologia Endócrina E Metabolismo (LAFEM), Centro de Ciências Biológicas E da Saúde, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Cascavel, CEP: 85819-110, Brazil
| | - Janaina de Oliveira Chaves
- Programa de Pós-Graduação Em Produtos Bioativos E Biociências, Universidade Federal Do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil
| | - Suellen Camila Padilha
- Laboratório de Fisiologia Endócrina E Metabolismo (LAFEM), Centro de Ciências Biológicas E da Saúde, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Cascavel, CEP: 85819-110, Brazil
| | - Maria Eduarda Goes
- Laboratório de Fisiologia Endócrina E Metabolismo (LAFEM), Centro de Ciências Biológicas E da Saúde, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Cascavel, CEP: 85819-110, Brazil
| | - Joseane Morari
- Centro de Pesquisa Em Obesidade E Comorbidades (OCRC), Faculdade de Ciências Médicas (FCM), UNICAMP, Campinas, SP, Brazil
| | - Antonio Carlos Boschero
- Centro de Pesquisa Em Obesidade E Comorbidades (OCRC), Faculdade de Ciências Médicas (FCM), UNICAMP, Campinas, SP, Brazil
| | - Sandra Lucinei Balbo
- Laboratório de Fisiologia Endócrina E Metabolismo (LAFEM), Centro de Ciências Biológicas E da Saúde, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Cascavel, CEP: 85819-110, Brazil
| | - Maria Lúcia Bonfleur
- Laboratório de Fisiologia Endócrina E Metabolismo (LAFEM), Centro de Ciências Biológicas E da Saúde, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Cascavel, CEP: 85819-110, Brazil.
| |
Collapse
|
13
|
Schwedt I, Schöne K, Eckert M, Pizzinato M, Winkler L, Knotkova B, Richts B, Hau JL, Steuber J, Mireles R, Noda-Garcia L, Fritz G, Mittelstädt C, Hertel R, Commichau FM. The low mutational flexibility of the EPSP synthase in Bacillus subtilis is due to a higher demand for shikimate pathway intermediates. Environ Microbiol 2023; 25:3604-3622. [PMID: 37822042 DOI: 10.1111/1462-2920.16518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Glyphosate (GS) inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase that is required for aromatic amino acid, folate and quinone biosynthesis in Bacillus subtilis and Escherichia coli. The inhibition of the EPSP synthase by GS depletes the cell of these metabolites, resulting in cell death. Here, we show that like the laboratory B. subtilis strains also environmental and undomesticated isolates adapt to GS by reducing herbicide uptake. Although B. subtilis possesses a GS-insensitive EPSP synthase, the enzyme is strongly inhibited by GS in the native environment. Moreover, the B. subtilis EPSP synthase mutant was only viable in rich medium containing menaquinone, indicating that the bacteria require a catalytically efficient EPSP synthase under nutrient-poor conditions. The dependency of B. subtilis on the EPSP synthase probably limits its evolvability. In contrast, E. coli rapidly acquires GS resistance by target modification. However, the evolution of a GS-resistant EPSP synthase under non-selective growth conditions indicates that GS resistance causes fitness costs. Therefore, in both model organisms, the proper function of the EPSP synthase is critical for the cellular viability. This study also revealed that the uptake systems for folate precursors, phenylalanine and tyrosine need to be identified and characterized in B. subtilis.
Collapse
Affiliation(s)
- Inge Schwedt
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Kerstin Schöne
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Maike Eckert
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Manon Pizzinato
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Laura Winkler
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Barbora Knotkova
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August University of Göttingen, Göttingen, Germany
| | - Björn Richts
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August University of Göttingen, Göttingen, Germany
| | - Jann-Louis Hau
- FG Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Julia Steuber
- FG Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Raul Mireles
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, Israel
| | - Lianet Noda-Garcia
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, Israel
| | - Günter Fritz
- FG Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Carolin Mittelstädt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Fabian M Commichau
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| |
Collapse
|
14
|
Patriarcheas D, Momtareen T, Gallagher JEG. Yeast of Eden: microbial resistance to glyphosate from a yeast perspective. Curr Genet 2023; 69:203-212. [PMID: 37269314 PMCID: PMC10716058 DOI: 10.1007/s00294-023-01272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/05/2023]
Abstract
First marketed as RoundUp, glyphosate is history's most popular herbicide because of its low acute toxicity to metazoans and broad-spectrum effectiveness across plant species. The development of glyphosate-resistant crops has led to increased glyphosate use and consequences from the use of glyphosate-based herbicides (GBH). Glyphosate has entered the food supply, spurred glyphosate-resistant weeds, and exposed non-target organisms to glyphosate. Glyphosate targets EPSPS/AroA/Aro1 (orthologs across plants, bacteria, and fungi), the rate-limiting step in the production of aromatic amino acids from the shikimate pathway. Metazoans lacking this pathway are spared from acute toxicity and acquire their aromatic amino acids from their diet. However, glyphosate resistance is increasing in non-target organisms. Mutations and natural genetic variation discovered in Saccharomyces cerevisiae illustrate similar types of glyphosate resistance mechanisms in fungi, plants, and bacteria, in addition to known resistance mechanisms such as mutations in Aro1 that block glyphosate binding (target-site resistance (TSR)) and mutations in efflux drug transporters non-target-site resistance (NTSR). Recently, genetic variation and mutations in an amino transporter affecting glyphosate resistance have uncovered potential off-target effects of glyphosate in fungi and bacteria. While glyphosate is a glycine analog, it is transported into cells using an aspartic/glutamic acid (D/E) transporter. The size, shape, and charge distribution of glyphosate closely resembles D/E, and, therefore, glyphosate is a D/E amino acid mimic. The mitochondria use D/E in several pathways and mRNA-encoding mitochondrial proteins are differentially expressed during glyphosate exposure. Mutants downstream of Aro1 are not only sensitive to glyphosate but also a broad range of other chemicals that cannot be rescued by exogenous supplementation of aromatic amino acids. Glyphosate also decreases the pH when unbuffered and many studies do not consider the differences in pH that affect toxicity and resistance mechanisms.
Collapse
Affiliation(s)
- Dionysios Patriarcheas
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, WV, 26506, USA
| | - Taizina Momtareen
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, WV, 26506, USA
| | - Jennifer E G Gallagher
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, WV, 26506, USA.
| |
Collapse
|
15
|
Schwedt I, Collignon M, Mittelstädt C, Giudici F, Rapp J, Meißner J, Link H, Hertel R, Commichau FM. Genomic adaptation of Burkholderia anthina to glyphosate uncovers a novel herbicide resistance mechanism. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:727-739. [PMID: 37311711 PMCID: PMC10667639 DOI: 10.1111/1758-2229.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
Glyphosate (GS) specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase that converts phosphoenolpyruvate (PEP) and shikimate-3-phosphate to EPSP in the shikimate pathway of bacteria and other organisms. The inhibition of the EPSP synthase depletes the cell of the EPSP-derived aromatic amino acids as well as of folate and quinones. A variety of mechanisms (e.g., EPSP synthase modification) has been described that confer GS resistance to bacteria. Here, we show that the Burkholderia anthina strain DSM 16086 quickly evolves GS resistance by the acquisition of mutations in the ppsR gene. ppsR codes for the pyruvate/ortho-Pi dikinase PpsR that physically interacts and regulates the activity of the PEP synthetase PpsA. The mutational inactivation of ppsR causes an increase in the cellular PEP concentration, thereby abolishing the inhibition of the EPSP synthase by GS that competes with PEP for binding to the enzyme. Since the overexpression of the Escherichia coli ppsA gene in Bacillus subtilis and E. coli did not increase GS resistance in these organisms, the mutational inactivation of the ppsR gene resulting in PpsA overactivity is a GS resistance mechanism that is probably unique to B. anthina.
Collapse
Affiliation(s)
- Inge Schwedt
- FG Synthetic Microbiology, Institute for BiotechnologyBTU Cottbus‐SenftenbergSenftenbergGermany
- FG Molecular Microbiology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Madeline Collignon
- FG Synthetic Microbiology, Institute for BiotechnologyBTU Cottbus‐SenftenbergSenftenbergGermany
| | - Carolin Mittelstädt
- FG Synthetic Microbiology, Institute for BiotechnologyBTU Cottbus‐SenftenbergSenftenbergGermany
| | - Florian Giudici
- FG Synthetic Microbiology, Institute for BiotechnologyBTU Cottbus‐SenftenbergSenftenbergGermany
| | - Johanna Rapp
- Interfaculty Institute for Microbiology and Infection Medicine TübingenUniversity of Tübingen, Bacterial MetabolomicsTübingenGermany
| | - Janek Meißner
- Department of General Microbiology, Institute for Microbiology and GeneticsUniversity of GoettingenGöttingenGermany
| | - Hannes Link
- Interfaculty Institute for Microbiology and Infection Medicine TübingenUniversity of Tübingen, Bacterial MetabolomicsTübingenGermany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for BiotechnologyBTU Cottbus‐SenftenbergSenftenbergGermany
- Department of Genomic and Applied Microbiology, Institute for Microbiology and GeneticsUniversity of GoettingenGöttingenGermany
| | - Fabian M. Commichau
- FG Synthetic Microbiology, Institute for BiotechnologyBTU Cottbus‐SenftenbergSenftenbergGermany
- FG Molecular Microbiology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
16
|
Xiao T, Chen Y, Xu Y, Song Y, Ren X, Wang W, Zhuang K, Chen X, Cai G. Higher urinary glyphosate exposure is associated with increased risk of liver dysfunction in adults: An analysis of NHANES, 2013-2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-30463-2. [PMID: 37858023 DOI: 10.1007/s11356-023-30463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Glyphosate (GLY) exposure, both exogenous and endogenous, is a global concern. Multiple studies of model systems in vitro and in vivo have demonstrated the potential toxic effects of GLY exposure on human organs, particularly the liver and renal system. However, there is currently limited epidemiological evidence establishing a link between GLY exposure and hepatorenal function in the general population. In this study, a multivariable linear regression model and forest plots were employed to evaluate the connection between urinary GLY and biomarkers of hepatorenal function in 2241 participants from the National Health and Nutrition Examination Survey 2013-2016. Additionally, subgroup analyses were conducted based on age, gender, race, BMI, and chronic kidney disease (CKD). Alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), AST/ALT and fibrosis 4 score (FIB-4) all increased with elevated urinary GLY concentrations after adjusting for potential confounders, while albumin (ALB) exhibited the opposite trend, particularly among younger, female, non-Hispanic white, overweight, and CKD participants. Furthermore, individuals in the third tertile had a greater risk of liver dysfunction than those in the first tertile after categorizing urinary GLY concentrations. However, our study showed no proof that GLY exposure affects the ratio of urine albumin to creatinine (ACR) or serum creatinine levels. Overall, these results imply that GLY exposure may have adverse effects on human liver function.
Collapse
Affiliation(s)
- Tuo Xiao
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yuhao Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yue Xu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yanqi Song
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xuejing Ren
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- Henan Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Wenjuan Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Kaiting Zhuang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.
| |
Collapse
|
17
|
Urueña Á, Blasco-Lavilla N, De la Rúa P. Sulfoxaflor effects depend on the interaction with other pesticides and Nosema ceranae infection in the honey bee (Apis mellifera). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115427. [PMID: 37666201 DOI: 10.1016/j.ecoenv.2023.115427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Honey bees health is compromised by many factors such as the use of agrochemicals in agriculture and the various diseases that can affect them. Multiple studies have shown that these factors can interact, producing a synergistic effect that can compromise the viability of honey bees. This study analyses the interactions between different pesticides and the microsporidium Nosema ceranae and their effect on immune and detoxification gene expression, sugar consumption and mortality in the Iberian western honey bee (Apis mellifera iberiensis). For this purpose, workers were infected with N. ceranae and subjected to a sugar-water diet with field concentrations of the pesticides sulfoxaflor, azoxystrobin and glyphosate. Increased sugar intake and altered immune and cytochrome P450 gene expression were observed in workers exposed to sulfoxaflor and infected with N. ceranae. None of the pesticides affected Nosema spore production in honey bee gut. Of the three pesticides tested (alone or in combination) only sulfoxaflor increased mortality in honey bees. Taken together, our results suggest that the effects of sulfoxaflor were attenuated in contact with other pesticides, and that Nosema infection leads to increase sugar intake in sulfoxaflor-exposed bees. Overall, this underlines the importance of studying the interaction between different stressors to understand their overall impact not only on honey bee but also on wild bees health.
Collapse
Affiliation(s)
- Álvaro Urueña
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Nuria Blasco-Lavilla
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Pilar De la Rúa
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
18
|
D'Amico RN, Boehr DD. Allostery, engineering and inhibition of tryptophan synthase. Curr Opin Struct Biol 2023; 82:102657. [PMID: 37467527 DOI: 10.1016/j.sbi.2023.102657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
The final two steps of tryptophan biosynthesis are catalyzed by the enzyme tryptophan synthase (TS), composed of alpha (αTS) and beta (βTS) subunits. Recently, experimental and computational methods have mapped "allosteric networks" that connect the αTS and βTS active sites. In αTS, allosteric networks change across the catalytic cycle, which might help drive the conformational changes associated with its function. Directed evolution studies to increase catalytic function and expand the substrate profile of stand-alone βTS have also revealed the importance of αTS in modulating the conformational changes in βTS. These studies also serve as a foundation for the development of TS inhibitors, which can find utility against Mycobacterium tuberculosis and other bacterial pathogens.
Collapse
Affiliation(s)
- Rebecca N D'Amico
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA, 16802
| | - David D Boehr
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA, 16802.
| |
Collapse
|
19
|
Zhang C, Zhong X, Li S, Yan L, Li J, He Y, Lin Y, Zhang Y, Xia L. Artificial evolution of OsEPSPS through an improved dual cytosine and adenine base editor generated a novel allele conferring rice glyphosate tolerance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2194-2203. [PMID: 37402157 DOI: 10.1111/jipb.13543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023]
Abstract
Exploiting novel endogenous glyphosate-tolerant alleles is highly desirable and has promising potential for weed control in rice breeding. Here, through fusions of different effective cytosine and adenine deaminases with nCas9-NG, we engineered an effective surrogate two-component composite base editing system, STCBE-2, with improved C-to-T and A-to-G base editing efficiency and expanded the editing window. Furthermore, we targeted a rice endogenous OsEPSPS gene for artificial evolution through STCBE-2-mediated near-saturated mutagenesis. After hygromycin and glyphosate selection, we identified a novel OsEPSPS allele with an Asp-213-Asn (D213N) mutation (OsEPSPS-D213N) in the predicted glyphosate-binding domain, which conferred rice plants reliable glyphosate tolerance and had not been reported or applied in rice breeding. Collectively, we developed a novel dual base editor which will be valuable for artificial evolution of important genes in crops. And the novel glyphosate-tolerant rice germplasm generated in this study will benefit weeds management in rice paddy fields.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xue Zhong
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- CAAS/Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), Sanya, 572024, China
| | - Shaoya Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- CAAS/Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), Sanya, 572024, China
- Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agricultural and Rural Affairs, Sanya, 572024, China
| | - Lei Yan
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jingying Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- CAAS/Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), Sanya, 572024, China
- Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agricultural and Rural Affairs, Sanya, 572024, China
| | - Yubing He
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- CAAS/Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), Sanya, 572024, China
- Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agricultural and Rural Affairs, Sanya, 572024, China
| | - Yong Lin
- Beijing Dabeinong Technology Group Co., Ltd, Beijing, 10080, China
| | - Yangjun Zhang
- Beijing Dabeinong Technology Group Co., Ltd, Beijing, 10080, China
| | - Lanqin Xia
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- CAAS/Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), Sanya, 572024, China
- Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agricultural and Rural Affairs, Sanya, 572024, China
| |
Collapse
|
20
|
Barco-Antoñanzas M, Font-Farre M, Eceiza MV, Gil-Monreal M, van der Hoorn RAL, Royuela M, Zabalza A. Cysteine proteases are activated in sensitive Amaranthus palmeri populations upon treatment with herbicides inhibiting amino acid biosynthesis. PHYSIOLOGIA PLANTARUM 2023; 175:e13993. [PMID: 37882288 DOI: 10.1111/ppl.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 10/27/2023]
Abstract
The herbicides glyphosate and pyrithiobac inhibit the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in the aromatic amino acid biosynthetic pathway and acetolactate synthase (ALS) in the branched-chain amino acid biosynthetic pathway, respectively. Here we characterise the protease activity profiles of a sensitive (S), a glyphosate-resistant (GR) and a multiple-resistant (MR) population of Amaranthus palmeri in response to glyphosate and pyrithiobac. Amino acid accumulation and cysteine protease activities were induced with both herbicides in the S population and with pyrithiobac in the GR population, suggesting that the increase in cysteine proteases is responsible for the increased degradation of the available proteins and the observed increase in free amino acids. Herbicides did not induce any changes in the proteolytic activities in the populations with target-site resistance, indicating that this effect was only induced in sensitive plants.
Collapse
Affiliation(s)
- Maria Barco-Antoñanzas
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, Pamplona, Spain
| | - Maria Font-Farre
- The Plant Chemetics Laboratory, Department of Biology Sciences, University of Oxford, Oxford, UK
| | - Mikel V Eceiza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, Pamplona, Spain
| | - Miriam Gil-Monreal
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, Pamplona, Spain
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Biology Sciences, University of Oxford, Oxford, UK
| | - Mercedes Royuela
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, Pamplona, Spain
| | - Ana Zabalza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, Pamplona, Spain
| |
Collapse
|
21
|
Koo DH, Sathishraj R, Nakka S, Ju Y, Nandula VK, Jugulam M, Friebe B, Gill BS. Extrachromosomal circular DNA-mediated spread of herbicide resistance in interspecific hybrids of pigweed. PLANT PHYSIOLOGY 2023; 193:229-233. [PMID: 37186777 PMCID: PMC10469533 DOI: 10.1093/plphys/kiad281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are found in many eukaryotic organisms. EccDNA-powered copy number variation plays diverse roles, from oncogenesis in humans to herbicide resistance in crop weeds. Here, we report interspecific eccDNA flow and its dynamic behavior in soma cells of natural populations and F1 hybrids of Amaranthus sp. The glyphosate-resistance (GR) trait is controlled by eccDNA-based amplification harboring the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene (eccDNA replicon), the molecular target of glyphosate. We documented pollen-mediated transfer of eccDNA in experimental hybrids between glyphosate-susceptible Amaranthus tuberculatus and GR Amaranthus palmeri. Experimental hybridization and fluorescence in situ hybridization (FISH) analysis revealed that the eccDNA replicon in Amaranthus spinosus derived from GR A. palmeri by natural hybridization. FISH analysis also revealed random chromosome anchoring and massive eccDNA replicon copy number variation in soma cells of weedy hybrids. The results suggest that eccDNAs are inheritable across compatible species, contributing to genome plasticity and rapid adaptive evolution.
Collapse
Affiliation(s)
- Dal-Hoe Koo
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Rajendran Sathishraj
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Sridevi Nakka
- Heartland Plant Innovations Inc., Manhattan, KS 66506, USA
| | - Yoonha Ju
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Vijay K Nandula
- National Institute of Food and Agriculture, USDA, Kansas City, MO 64105, USA
- Crop Production Systems Research Unit, USDA-ARS, Stoneville, MS 38776, USA
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Bernd Friebe
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Bikram S Gill
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
22
|
Liu S, Rao J, Zhu J, Li G, Li F, Zhang H, Tao L, Zhou Q, Tao Y, Zhang Y, Huang K, Wei C. Integrated physiological, metabolite and proteomic analysis reveal the glyphosate stress response mechanism in tea plant (Camellia sinensis). JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131419. [PMID: 37099910 DOI: 10.1016/j.jhazmat.2023.131419] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
Glyphosate residues can tremendously impact the physiological mechanisms of tea plants, thus threatening tea security and human health. Herein, integrated physiological, metabolite, and proteomic analyses were performed to reveal the glyphosate stress response mechanism in tea plant. After exposure to glyphosate (≥1.25 kg ae/ha), the leaf ultrastructure was damaged, and chlorophyll content and relative fluorescence intensity decreased significantly. The characteristic metabolites catechins and theanine decreased significantly, and the 18 volatile compounds content varied significantly under glyphosate treatments. Subsequently, tandem mass tags (TMT)-based quantitative proteomics was employed to identify the differentially expressed proteins (DEPs) and to validate their biological functions at the proteome level. A total of 6287 proteins were identified and 326 DEPs were screened. These DEPs were mainly catalytic, binding, transporter and antioxidant active proteins, involved in photosynthesis and chlorophyll biosynthesis, phenylpropanoid and flavonoid biosynthesis, sugar and energy metabolism, amino acid metabolism, and stress/defense/detoxification pathway, etc. A total of 22 DEPs were validated by parallel reaction monitoring (PRM), demonstrating that the protein abundances were consistent between TMT and PRM data. These findings contribute to our understanding of the damage of glyphosate to tea leaves and molecular mechanism underlying the response of tea plants to glyphosate.
Collapse
Affiliation(s)
- Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Jia Rao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Guoqiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Fangdong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Hongxiu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Lingling Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Qianqian Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Yongning Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Youze Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Kelin Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China.
| |
Collapse
|
23
|
Lach P, Garcia-Cruz A, Canfarotta F, Groves A, Kalecki J, Korol D, Borowicz P, Nikiforow K, Cieplak M, Kutner W, Piletsky SA, Sharma PS. Electroactive molecularly imprinted polymer nanoparticles for selective glyphosate determination. Biosens Bioelectron 2023; 236:115381. [PMID: 37267687 DOI: 10.1016/j.bios.2023.115381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 06/04/2023]
Abstract
Redox-active molecularly imprinted polymer nanoparticles selective for glyphosate, MIP-Gly NPs, were devised, synthesized, and subsequently integrated onto platinum screen-printed electrodes (Pt-SPEs) to fabricate a chemosensor for selective determination of glyphosate (Gly) without the need for redox probe in the test solution. That was because, ferrocenylmethyl methacrylate was added to the polymerization mixtures during the NPs synthesis so that the resulting MIP-Gly NPs contained covalently immobilized ferrocenyl moieties as the reporting redox ingredient, conferring these NPs with electroactive properties. MIP-Gly NPs of four different compositions were evaluated. The herein described approach represents a simple and effective way to endow MIP NPs with electrochemical reporting capabilities with neither the need to functionalize them post-synthesis nor to use electrochemical mediators present in the tested solution during the analyte determinations. MIP-Gly NPs synthesized using allylamine and squaramide-based monomers appeared most selective to Gly. The Pt-SPEs modified with MIP-Gly NPs were characterized with differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Changes in the DPV peak originating from the oxidation of the ferrocenyl moieties in these MIP-Gly NPs served as the analytical signal. The DPV limit of detection and the linear dynamic concentration range for Gly were 3.7 pM and 25 pM-500 pM, respectively. Moreover, the selectivity of the fabricated chemosensors was sufficiently high to determine Gly successfully in spiked river water samples.
Collapse
Affiliation(s)
- Patrycja Lach
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Alvaro Garcia-Cruz
- Chemistry Department, College of Science and Engineering, University of Leicester, LE1 7RH, United Kingdom
| | | | - Alistair Groves
- MIP Discovery, Colworth Science Park, MK44 1LQ, United Kingdom
| | - Jakub Kalecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Dominik Korol
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Pawel Borowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Kostiantyn Nikiforow
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938, Warsaw, Poland.
| | - Sergey A Piletsky
- Chemistry Department, College of Science and Engineering, University of Leicester, LE1 7RH, United Kingdom.
| | - Piyush Sindhu Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
24
|
Chen J, Cui H, Li Z, Yu H, Hou Q, Li X. Potential Role of EPSPS Mutations in the Resistance of Eleusine indica to Glyphosate. Int J Mol Sci 2023; 24:ijms24098250. [PMID: 37175957 PMCID: PMC10179075 DOI: 10.3390/ijms24098250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Gene mutation is a basic evolutionary mechanism in plants under selection pressure of herbicides. Such mutation has pleiotropic effects on plant growth. We systemically investigated the effects of Pro106Leu (P106L), Pro106Ser (P106S), and Thr102Ile + Pro106Ser (TIPS) mutations on EPSPS functionality and fitness traits in Eleusine indica at the biochemical and physiological levels. The affinity of natural EPSPS for glyphosate was 53.8 times higher than that for phosphoenolpyruvate (PEP), as revealed by the dissociation constant; the constant decreased in both the P106L (39.9-fold) and P106S (46.9-fold) mutants but increased in the TIPS (87.5-fold) mutant. The Km (PEP) values of the P106L, P106S, and TIPS mutants were 2.4-, 0.7-, and 4.1-fold higher than that of natural EPSPS, corresponding to resistance levels of 2.5, 1.9, and 11.4, respectively. The catalytic efficiency values (maximum reaction rates) were 0.89-, 0.94-, and 0.26-fold higher than that of natural EPSPS. The levels of metabolites related to amino acids and nucleotides were significantly reduced in the mutated plants. The fitness costs were substantial for the biomass, total leaf area, seed number, and seedling emergence throughout the growth period in the plants with P106L and TIPS mutations. These results provide insights into EPSPS kinetics and their effect on plant growth.
Collapse
Affiliation(s)
- Jingchao Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hailan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiling Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haiyan Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiang Hou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangju Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
25
|
Rainio MJ, Margus A, Tikka S, Helander M, Lindström L. The effects of short-term glyphosate-based herbicide exposure on insect gene expression profiles. JOURNAL OF INSECT PHYSIOLOGY 2023; 146:104503. [PMID: 36935035 DOI: 10.1016/j.jinsphys.2023.104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/25/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most frequently used herbicides worldwide. The use of GBHs is intended to tackle weeds, but GBHs have been shown to affect the life-history traits and antioxidant defense system of invertebrates found in agroecosystems. Thus far, the effects of GBHs on detoxification pathways among invertebrates have not been sufficiently investigated. We performed two different experiments-1) the direct pure glyphosate and GBH treatment, and 2) the indirect GBH experiment via food-to examine the possible effects of environmentally relevant GBH levels on the survival of the Colorado potato beetle (Leptinotarsa decemlineata) and the expression profiles of their detoxification genes. As candidate genes, we selected four cytochrome P450 (CYP), three glutathione-S-transferase (GST), and two acetylcholinesterase (AChE) genes that are known to be related to metabolic or target-site resistances in insects. We showed that environmentally relevant levels of pure glyphosate and GBH increased the probability for higher mortality in the Colorado potato beetle larvae in the direct experiment, but not in the indirect experiment. The GBHs or glyphosate did not affect the expression profiles of the studied CYP, GST, or AChE genes; however, we found a large family-level variation in expression profiles in both the direct and indirect treatment experiments. These results suggest that the genes selected for this study may not be the ones expressed in response to glyphosate or GBHs. It is also possible that the relatively short exposure time did not affect gene expression profiles, or the response may have already occurred at a shorter exposure time. Our results show that glyphosate products may affect the survival of the herbivorous insect already at lower levels, depending on their sensitivity to pesticides.
Collapse
Affiliation(s)
- Miia J Rainio
- Department of Biology, University of Turku, FI-20014 Turku, Finland; Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Aigi Margus
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Santtu Tikka
- Department of Mathematics and Statistics, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Marjo Helander
- Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Leena Lindström
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| |
Collapse
|
26
|
Palma-Bautista C, Belluccini P, Vázquez-García JG, Alcántara-de la Cruz R, Barro F, Portugal J, De Prado R. Target-site and non-target-site resistance mechanisms confer multiple resistance to glyphosate and 2,4-D in Carduus acanthoides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105371. [PMID: 36963940 DOI: 10.1016/j.pestbp.2023.105371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Carduus acanthoides L. is mainly a range-land weed, but in the 2010s has begun to invade GM crop production systems in Córdoba (Argentina), where glyphosate and 2,4-D have been commonly applied. In 2020, C. acanthoides was found with multiple resistance to these two herbicides. In this study, the mechanisms that confer multiple resistance to glyphosate and 2,4-D, were characterized in one resistant (R) population of C. acanthoides in comparison to a susceptible (S) population. No differences in 14C-herbicide absorption and translocation were observed between R and S populations. In addition, 14C-glyphosate was well translocated to the shoots (∼30%) and roots (∼16%) in both R and S plants, while most of 14C-2,4-D remained restricted in the treated leaf. Glyphosate metabolism did not contribute to resistance of the R population; however, as corroborated by malathion pretreatment, the mechanism of resistance to 2,4-D was enhanced metabolism (63% of the herbicide) mediated by cytochrome P450 (Cyt-P450). No differences were found in baseline EPSPS activity, copy number, and/or gene expression between the R and S populations, but a Pro-106-Ser mutation in EPSPS was present in the R population. Multiple resistances in the R population of C. acanthoides from Argentina were governed by target site resistance (a Pro-106 mutation for glyphosate) and non-target site resistance (Cyt-P450-based metabolic resistance for 2,4-D) mechanisms. This is the first case of resistance to glyphosate and 2,4-D confirmed for this weed in the world.
Collapse
Affiliation(s)
- Candelario Palma-Bautista
- Department Agroforestry, Biochemistry and Molecular Biology, University of Cordoba, Córdoba 14071, Spain
| | - Pablo Belluccini
- INTA, Marcos Juárez, Provincial Route 12, Marcos Juarez, Cordoba 2580, Argentina
| | - José G Vázquez-García
- Department Agroforestry, Biochemistry and Molecular Biology, University of Cordoba, Córdoba 14071, Spain
| | - Ricardo Alcántara-de la Cruz
- Centro de Ciências da Natureza, Campus Lagoa do Sino, Universidade Federal de São Carlos, Buri 18290-000, Brazil.
| | - Francisco Barro
- Institute for Sustainable Agriculture, CSIC, Córdoba 14080, Spain
| | - João Portugal
- Biosciences Department, Polytechnic Institute of Beja, Beja 7800-295, Portugal; VALORIZA-Research Centre for Endogenous Resource Valorization, Polytechnic Institute of Portalegre, Portalegre 7300-555, Portugal
| | - Rafael De Prado
- Department Agroforestry, Biochemistry and Molecular Biology, University of Cordoba, Córdoba 14071, Spain
| |
Collapse
|
27
|
Guo W, Zhang C, Wang S, Zhang T, Tian X. Temperature influences glyphosate efficacy on glyphosate-resistant and -susceptible goosegrass ( Eleusine indica). FRONTIERS IN PLANT SCIENCE 2023; 14:1169726. [PMID: 37035058 PMCID: PMC10073670 DOI: 10.3389/fpls.2023.1169726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Glyphosate has been widely used to control Eleusine indica and other weeds in South China for many years. Among the most troublesome weeds in South China, E. indica can remain alive all year round. However, the influence of temperature on glyphosate efficacy on E. indica, especially under days with fluctuating temperature, is unknown. This study evaluated the influence of two temperature regimes on glyphosate efficacy on glyphosate-resistant (R) and -susceptible (S) E. indica biotypes. Plants of the R and S biotypes were cultivated under two temperature regimes (high: 30°C/20°C day/night; low: 20°C/15°C day/night). Dose-response experiments showed improved efficacy of glyphosate at the low temperature compared with that at the high temperature for both biotypes. Based on the LD50 values, the R biotype was 8.9 times more resistant to glyphosate than the S biotype at the high temperature; however, the resistance index (R/S) decreased to 3.1 at the low temperature. At 4 days after glyphosate application, shikimic acid accumulation was greater at the low temperature than at the high temperature in plants of both biotypes, and the increase was higher in plants of the R biotype than in the S biotype. At a sublethal glyphosate dose (R: 400 g ai ha-1; S: 200 g ai ha-1), plants grown at the low temperature showed a strong decrease in leaf chlorophyll content and Fv/Fm value compared with those of plants grown at the high temperature and the untreated control. At 3 days after treatment, glyphosate absorption was similar between biotypes at the high temperature, but absorption decreased to 64.9% and 53.1% at the low temperature for the R and S biotypes, respectively. For both biotypes, glyphosate translocation from the leaf to the remainder of the plant was reduced at the low temperature compared with that at the high temperature. No differences in glyphosate translocation were observed between biotypes within each temperature regime. This is the first report on the effect of temperature on glyphosate efficacy on E. indica, and provides important insights for glyphosate application and resistance management.
Collapse
Affiliation(s)
- Wenlei Guo
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Chun Zhang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Siwei Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Taijie Zhang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Xingshan Tian
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
28
|
Zulet-Gonzalez A, Gorzolka K, Döll S, Gil-Monreal M, Royuela M, Zabalza A. Unravelling the Phytotoxic Effects of Glyphosate on Sensitive and Resistant Amaranthus palmeri Populations by GC-MS and LC-MS Metabolic Profiling. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061345. [PMID: 36987034 PMCID: PMC10058430 DOI: 10.3390/plants12061345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/18/2023] [Accepted: 03/12/2023] [Indexed: 06/05/2023]
Abstract
Glyphosate, the most successful herbicide in history, specifically inhibits the activity of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19), one of the key enzymes in the shikimate pathway. Amaranthus palmeri is a driver weed in agriculture today that has evolved glyphosate-resistance through increased EPSPS gene copy number and other mechanisms. Non-targeted GC-MS and LC-MS metabolomic profiling was conducted to examine the innate physiology and the glyphosate-induced perturbations in one sensitive and one resistant (by EPSPS amplification) population of A. palmeri. In the absence of glyphosate treatment, the metabolic profile of both populations was very similar. The comparison between the effects of sublethal and lethal doses on sensitive and resistant populations suggests that lethality of the herbicide is associated with an amino acid pool imbalance and accumulation of the metabolites of the shikimate pathway upstream from EPSPS. Ferulic acid and its derivatives were accumulated in treated plants of both populations, while quercetin and its derivative contents were only lower in the resistant plants treated with glyphosate.
Collapse
Affiliation(s)
- Ainhoa Zulet-Gonzalez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Campus Arrosadia s/n, 31006 Pamplona, Spain
| | - Karin Gorzolka
- Leibniz Institute for Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Stefanie Döll
- Leibniz Institute for Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Miriam Gil-Monreal
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Campus Arrosadia s/n, 31006 Pamplona, Spain
| | - Mercedes Royuela
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Campus Arrosadia s/n, 31006 Pamplona, Spain
| | - Ana Zabalza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Campus Arrosadia s/n, 31006 Pamplona, Spain
| |
Collapse
|
29
|
Cullen MG, Bliss L, Stanley DA, Carolan JC. Investigating the effects of glyphosate on the bumblebee proteome and microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161074. [PMID: 36566850 DOI: 10.1016/j.scitotenv.2022.161074] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate is one of the most widely used herbicides globally. It acts by inhibiting an enzyme in an aromatic amino acid synthesis pathway specific to plants and microbes, leading to the view that it poses no risk to other organisms. However, there is growing concern that glyphosate is associated with health effects in humans and an ever-increasing body of evidence that suggests potential deleterious effects on other animals including pollinating insects such as bees. Although pesticides have long been considered a factor in the decline of wild bee populations, most research on bees has focussed on demonstrating and understanding the effects of insecticides. To assess whether glyphosate poses a risk to bees, we characterised changes in survival, behaviour, sucrose solution consumption, the digestive tract proteome, and the microbiota in the bumblebee Bombus terrestris after chronic exposure to field relevant doses of technical grade glyphosate or the glyphosate-based formulation, RoundUp Optima+®. Regardless of source, there were changes in response to glyphosate exposure in important cellular and physiological processes in the digestive tract of B. terrestris, with proteins associated with oxidative stress regulation, metabolism, cellular adhesion, the extracellular matrix, and various signalling pathways altered. Interestingly, proteins associated with endocytosis, oxidative phosphorylation, the TCA cycle, and carbohydrate, lipid, and amino acid metabolism were differentially altered depending on whether the exposure source was glyphosate alone or RoundUp Optima+®. In addition, there were alterations to the digestive tract microbiota of bees depending on the glyphosate source No impacts on survival, behaviour, or food consumption were observed. Our research provides insights into the potential mode of action and consequences of glyphosate exposure at the molecular, cellular and organismal level in bumblebees and highlights issues with the current honeybee-centric risk assessment of pesticides and their formulations, where the impact of co-formulants on non-target organisms are generally overlooked.
Collapse
Affiliation(s)
- Merissa G Cullen
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Liam Bliss
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Dara A Stanley
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 2, Ireland; Earth Institute, University College Dublin, Belfield, Dublin 2, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
30
|
Lacroix R, Kurrasch DM. Glyphosate Toxicity: In Vivo, In Vitro, and Epidemiological Evidence. Toxicol Sci 2023; 192:kfad018. [PMID: 36857578 DOI: 10.1093/toxsci/kfad018] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Glyphosate is the most applied agricultural chemical worldwide and has become nearly ubiquitous throughout the environment. Glyphosate is an effective herbicide because it disrupts the shikimate pathway, which is responsible for the synthesis of essential amino acids in plants and microorganisms. Given that there is no known target for glyphosate in higher animals, its toxicity to humans and other animals is heavily debated, especially after the 2015 IARC ruling that glyphosate is carcinogenic. Today, a growing body of literature shows in vitro, in vivo, and epidemiological evidence for the toxicity of glyphosate across animal species. With the application of glyphosate increasing globally, it is important to discuss these reports to enable a broader conversation on glyphosate toxicity and its impact on human and environmental health. Here, we summarize the recent glyphosate literature and discuss its implications.
Collapse
Affiliation(s)
- Rachel Lacroix
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
31
|
Palus K, Bulc M, Całka J. Glyphosate affects the neurochemical phenotype of the intramural neurons in the duodenum in the pig. Neurogastroenterol Motil 2023; 35:e14507. [PMID: 36502523 DOI: 10.1111/nmo.14507] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Glyphosate-based herbicides have been one of the most intensively used pollutants worldwide and food products containing glyphosate are an essential component of human and animal diet. The aim of present study was to determine the effect of glyphosate intoxication on the neurochemical properties of the enteric nervous system (ENS) neurons located in the wall of the porcine duodenum. METHODS Fifteen sexually immature gilts divided into 3 groups were used: control-animals receiving empty gelatin capsules; G1-animals receiving a low dose of glyphosate-corresponding to the theoretical maximum daily intake (TMDI) - 0.05 mg/kg bw/day; G2-animals receiving a higher dose of glyphosate-corresponding to the acceptable daily intake (ADI)-0.5 mg/kg/day in gelatin capsules orally for 28 days. After this time, the animals were euthanized and small intestine samples were collected. Frozen sections were then subjected to the procedure of double immunofluorescent staining. KEY RESULTS Glyphosate supplementation led to alterations in the neurochemical code of the ENS neurons in the porcine duodenum. Generally, increased population of neurons immunoreactive to PACAP, CGRP, CART, nNOS, and a decreased number of VAChT-like immunoreactive neurons were noted. CONCLUSIONS AND INFERENCES It may be a first preclinical symptom of digestive tract dysfunction in the course of glyphosate intoxication and further studies are needed to assess the toxicity and risks of glyphosate to humans.
Collapse
Affiliation(s)
- Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Michał Bulc
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
32
|
Wu J, Sun X, Wu C, Hong X, Xie L, Shi Z, Zhao L, Du Q, Xiao W, Sun J, Wang J. Single-cell transcriptome analysis reveals liver injury induced by glyphosate in mice. Cell Mol Biol Lett 2023; 28:11. [PMID: 36739397 PMCID: PMC9898913 DOI: 10.1186/s11658-023-00426-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/24/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glyphosate (GLY), as the active ingredient of the most widely used herbicide worldwide, is commonly detected in the environment and living organisms, including humans. Its toxicity and carcinogenicity in mammals remain controversial. Several studies have demonstrated the hepatotoxicity of GLY; however, the underlying cellular and molecular mechanisms are still largely unknown. METHODS Using single-cell RNA sequencing (scRNA-seq), immunofluorescent staining, and in vivo animal studies, we analyzed the liver tissues from untreated and GLY-treated mice. RESULTS We generated the first scRNA-seq atlas of GLY-exposed mouse liver. GLY induced varied cell composition, shared or cell-type-specific transcriptional alterations, and dysregulated cell-cell communication and thus exerted hepatotoxicity effects. The oxidative stress and inflammatory response were commonly upregulated in several cell types. We also observed activation and upregulated phagocytosis in macrophages, as well as proliferation and extracellular matrix overproduction in hepatic stellate cells. CONCLUSIONS Our study provides a comprehensive single-cell transcriptional picture of the toxic effect of GLY in the liver, which offers novel insights into the molecular mechanisms of the GLY-associated hepatotoxicity.
Collapse
Affiliation(s)
- Jiangpeng Wu
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Xiuping Sun
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Chunyi Wu
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Lulin Xie
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Zixu Shi
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Liang Zhao
- Department of Pathology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528300, China
- Department of Pathology and Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qingfeng Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Xiao
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China.
| | - Jichao Sun
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| | - Jigang Wang
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China.
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
33
|
Singh DP, Packirisamy G. Applications of nanotechnology to combat the problems associated with modern food. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:479-487. [PMID: 35870139 DOI: 10.1002/jsfa.12146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Currently, modern lifestyle diseases (LSD) such as cancer, diabetes, hypertension, cardiovascular and thyroid disease are commonly seen among people of different age groups. One of the root causes of this LSD is the type of food that we are eating. Staple crops like rice, sugarcane, vegetables and wheat are grown with the application of agrochemicals (e.g., glyphosate), traces of which are found in our food; after that, it gets ultra-processed in factories; e.g., chips and snacks are fried using saturated fats (trans fat); sugar and wheat (derivatives bread, buns, cookies) are processed using toxic chemicals (bleaching agents). As a result, the nutritional value of food is compromised due to low dietary fiber content and synthetic additives - e.g., sucralose (artificial sweetener) - which promotes inflammation and weakens our immune system, causing our body to become sensitive to microbial infection and many other LSDs. To strengthen the immune system, people start taking synthetically prepared supplements and drugs for a prolonged time, which further deteriorates the body organs and their normal function; e.g., prolonged medication for hypothyroidism poses a risk of heart attack and joint pain. Nanotechnology solves the above problems in the food, nutraceuticals and agriculture sectors. Nanotechnology-based naturally processed products such as nano-nutraceuticals, nanofood, nanofertilizers and nanopesticides will benefit our health. They possess desirable properties such as high bioavailability, targeted delivery, least processing and sustained release. With the help of nanotechnology, we can get nutritional and agrochemical-free food. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dravin Pratap Singh
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
34
|
Liu F, Liu Y, Zou J, Zhang L, Zheng H, Luo Y, Wang X, Wang L. Molecular Characterization and Efficacy Evaluation of Transgenic Maize Harboring cry2Ab- vip3A- cp4epsps for Insect Resistance and Herbicide Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:612. [PMID: 36771697 PMCID: PMC9919038 DOI: 10.3390/plants12030612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Insect infestation and weed interference have a seriously negative impact on the growth, yield, and grain quality of maize. In this study, transgenic maize plants harboring three exogenous genes, cry2Ab, vip3A, and cp4epsps, that were constructed into a single T-DNA were developed for protection against insects and weeds. The transgene integration sites on the chromosomes in two transgenic maize events, CVC-1 and CVC-2, were determined using whole genome sequencing and specific PCR detection. As revealed by laboratory insect bioassays, these two transgenic events exhibited strong insecticidal toxicity against three major species of Lepidoptera insects, including Mythimna separata, Helicoverpa armigera, and Spodoptera frugiperda, with mortality rates exceeding 96%, 100%, and 100%, respectively, after six days of infestation. In addition, CVC-1 exhibited a high tolerance to glyphosate under field conditions. The successful expressions of cry2Ab, vip3A, and cp4epsps in various tissues at different developmental stages of CVC-1 were validated at the transcriptional and translational levels using quantitative real-time reverse transcription PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. These findings demonstrated that the transgenic maize CVC-1 developed using this triple gene construct has excellent insect resistance and herbicide tolerance, which may provide a valuable germplasm resource and data support for future maize breeding of insect and weed control.
Collapse
Affiliation(s)
- Fantao Liu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin Normal University, Harbin 150025, China
| | - Yuan Liu
- CAAS/Key Laboratory of Agricultural Genomics (Beijing), Biotechnology Research Institute, Ministry of Agriculture, Beijing 100081, China
| | - Junjie Zou
- CAAS/Key Laboratory of Agricultural Genomics (Beijing), Biotechnology Research Institute, Ministry of Agriculture, Beijing 100081, China
| | - Lan Zhang
- CAAS/Key Laboratory of Agricultural Genomics (Beijing), Biotechnology Research Institute, Ministry of Agriculture, Beijing 100081, China
| | - Hongyan Zheng
- CAAS/Key Laboratory of Agricultural Genomics (Beijing), Biotechnology Research Institute, Ministry of Agriculture, Beijing 100081, China
| | - Yanzhong Luo
- CAAS/Key Laboratory of Agricultural Genomics (Beijing), Biotechnology Research Institute, Ministry of Agriculture, Beijing 100081, China
| | - Xiaoping Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin Normal University, Harbin 150025, China
| | - Lei Wang
- CAAS/Key Laboratory of Agricultural Genomics (Beijing), Biotechnology Research Institute, Ministry of Agriculture, Beijing 100081, China
- National Nanfan Research Institute (Sanya), Sanya 572022, China
| |
Collapse
|
35
|
Yu Y, Liu H, Zhang L, Sun Z, Lei B, Miao Y, Chu H, Han S, Shi Y, Zheng J. Distinct response patterns of plants and soil microorganisms to agronomic practices and seasonal variation in a floodplain ecosystem. Front Microbiol 2023; 14:1094750. [PMID: 36778881 PMCID: PMC9909268 DOI: 10.3389/fmicb.2023.1094750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Climate change and anthropogenic activities are the greatest threats to floodplain ecosystems. A growing body of literature shows that floodplain ecosystems have experienced increased chemical fertilizer and pesticide loads, which will disturb the above and belowground ecosystems. However, we lack knowledge regarding the effects of such human activities on the vegetation and soil microbiomes in these ecosystems. Methods In the present study, plant functional traits and Illumina Mi-Seq sequencing were to assess the impact of nitrogen fertilizer and glyphosate addition on the structure and function of the vegetation and soil microbiomes (bacteria, fungi, and protists) in a floodplain ecosystem, and to assess the influence of seasonal variation. Results We identified distinct response mechanisms of plant and microbial communities to the addition of nitrogen fertilizer and glyphosate, and seasonal variation. Nitrogen fertilizer and glyphosate significantly affected plant diversity, aboveground and underground biomass, and C and N content and significantly changed the leaf area and plant stature of dominant plants. However, the addition of nitrogen fertilizer and glyphosate did not significantly affect the diversity and structure of bacterial, fungal, and protist communities. The application of nitrogen fertilizer could improve the negative effects of glyphosate on the functional traits of plant communities. The seasonal variation of floodplain has significantly changed the soil's physical, chemical, and biological properties. Our results showed that compared with that in summer, the soil ecosystem multifunctionality of the floodplain ecosystem in autumn was significantly lower. Seasonal variation had a significant effect on plant diversity and functional traits. Moreover, seasonal variation significantly affected the community compositions, diversity, and structure of bacteria, fungi, and protists. Seasonal variation had a stronger impact on fungal community assembly than on that of bacteria and protists. In summer, the assembly of the fungal community was dominated by a deterministic process, while in autumn, it is dominated by a stochastic process. In addition, the negative association among bacteria, fungi, and protists has been strengthened in autumn and formed a more robust network to cope with external changes. Discussion These results extended our understanding of the ecological patterns of soil microbiomes in floodplain ecosystems and provided support for enhancing the ecological barrier function and the service potential of floodplain ecosystems.
Collapse
Affiliation(s)
- Yanyan Yu
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, China
- School of Science and Technology, Xinyang College, Xinyang, Henan, China
- Yellow River Floodplain Ecosystems Research Station, Henan University, Kaifeng, Henan, China
| | - Hao Liu
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Yellow River Floodplain Ecosystems Research Station, Henan University, Kaifeng, Henan, China
| | - Lanlan Zhang
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Yellow River Floodplain Ecosystems Research Station, Henan University, Kaifeng, Henan, China
| | - Zhongjie Sun
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Yellow River Floodplain Ecosystems Research Station, Henan University, Kaifeng, Henan, China
| | - Binghai Lei
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Yellow River Floodplain Ecosystems Research Station, Henan University, Kaifeng, Henan, China
| | - Yuan Miao
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Yellow River Floodplain Ecosystems Research Station, Henan University, Kaifeng, Henan, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shijie Han
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Yellow River Floodplain Ecosystems Research Station, Henan University, Kaifeng, Henan, China
| | - Yu Shi
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Yellow River Floodplain Ecosystems Research Station, Henan University, Kaifeng, Henan, China
| | - Junqiang Zheng
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Yellow River Floodplain Ecosystems Research Station, Henan University, Kaifeng, Henan, China
| |
Collapse
|
36
|
Deng W, Duan Z, Li Y, Peng C, Yuan S. Multiple Resistance Mechanisms Involved in Glyphosate Resistance in Eleusine indica. PLANTS (BASEL, SWITZERLAND) 2022; 11:3199. [PMID: 36501239 PMCID: PMC9740094 DOI: 10.3390/plants11233199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate is a non-selective herbicide and is widely used for weed control in non-cultivated land in China. One susceptible (S) and five putative glyphosate-resistant (R1, R2, R3, R4, and R5) Eleusine indica biotypes were selected to investigate their resistance levels and the potential resistance mechanisms. Based on the dose-response assays, the R3 and R5 biotypes showed a low-level (2.4 to 3.5-fold) glyphosate resistance, and the R1, R2, and R4 biotypes exhibited a moderate- to high-level (8.6 to 19.2-fold) resistance, compared with the S biotype. The analysis of the target-site resistance (TSR) mechanism revealed that the P106A mutation and the heterozygous double T102I + P106S mutation were found in the R3 and R4 biotypes, respectively. In addition, the similar EPSPS gene overexpression was observed in the R1, R2, and R5 biotypes, suggesting that additional non-target-site resistance (NTSR) mechanisms may contribute to glyphosate resistance in R1 and R2 biotypes. Subsequently, an RNA-Seq analysis was performed to identify candidate genes involved in NTSR. In total, ten differentially expressed contigs between untreated S and R1 or R2 plants, and between glyphosate-treated S and R1 or R2 plants, were identified and further verified with RT-qPCR. One ATP-binding cassette (ABC) transporter gene, one aldo-keto reductases (AKRs) gene and one cytochrome P450 monooxygenase (CytP450) gene were up-regulated in R1 or R2 plants. These results indicated that EPSPS overexpression, single or double mutation was a common TSR mechanisms in E. indica. Additional NTSR mechanisms could play an essential role in glyphosate resistance. Three genes, ABCC4, AKR4C10, and CYP88, could serve as important candidate genes and deserve further functional studies.
Collapse
|
37
|
van Wyk JW, Adams JB, von der Heyden S. Conservation implications of herbicides on seagrasses: sublethal glyphosate exposure decreases fitness in the endangered Zostera capensis. PeerJ 2022; 10:e14295. [PMID: 36405027 PMCID: PMC9673766 DOI: 10.7717/peerj.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Worldwide seagrass populations are in decline, calling for urgent measures in their conservation. Glyphosate is the most widely used herbicide globally, leading to increasing concern about its ecological impact, yet little is known about the prevalence or impact of glyphosate on seagrasses. In this study, we investigated the effect of sublethal glyphosate exposure on the endangered seagrass, Zostera capensis, to identify effects on growth, photosynthetic pigments and leaf morphology as measures of seagrass fitness. Seagrasses were exposed to a single dose of a commercial glyphosate formulation-ranging between 250 to 2,200 µg/L. After three weeks, the median leaf area decreased by up to 27%, with reductions of up to 31% in above ground biomass (p < 0.05). Photosynthetic pigment concentration showed no significant difference between groups. The observed effects on biomass and leaf area were seen at glyphosate levels below the regulatory limits set for surface water by several countries and may negatively affect the long-term resilience of this ecosystem engineer to additional stressors, such as those associated with climate change and anthropogenic pollution. As such, glyphosates and other herbicides that are washed into estuarine and marine ecosystems, pose a significant threat to the persistence of seagrasses and are important factors to consider in seagrass conservation, management and restoration efforts.
Collapse
Affiliation(s)
- Johanna W. van Wyk
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Janine B. Adams
- Institute for Coastal and Marine Research, Department of Botany, Nelson Mandela University, Gqeberha, South Africa
| | | |
Collapse
|
38
|
Lopes AR, Moraes JS, Martins CDMG. Effects of the herbicide glyphosate on fish from embryos to adults: a review addressing behavior patterns and mechanisms behind them. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106281. [PMID: 36103761 DOI: 10.1016/j.aquatox.2022.106281] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The use of agrochemicals has grown in recent years following the increase in agricultural productivity, to eliminate weeds that can compromise crop yields. The intensive use of these products combined with the lack of treatment of agricultural wastewater is causing contamination of the natural environments, especially the aquatics. Glyphosate [N-(phosphonomethyl) glycine] is the most commonly used herbicide in agriculture worldwide. Studies have shown that this compound is toxic to a variety of fish species at the concentrations of environmental relevance. Glyphosate-based herbicides can affect fish biochemical, physiological, endocrine, and behavioral pathways. Changes in behaviors such as foraging, escaping from predators, and courtship can compromise the survival of species and even communities. The behavior patterns of fish has been shown to be a sensitive tool for risk assessment. In this sense, this review summarizes and discusses the toxic effects of glyphosate and its formulations on the behavior of fish in different life stages. Additionally, behavioral impairments were associated with other negative effects of glyphosate such as energy imbalance, stress responses, AChE inhibition, and physiological and endocrine disturbances, which are evidenced and described in the literature. Graphical abstract.
Collapse
Affiliation(s)
- Andressa Rubim Lopes
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande RS, Brazil.
| | - Jenifer Silveira Moraes
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande RS, Brazil
| | - Camila de Martinez Gaspar Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande RS, Brazil
| |
Collapse
|
39
|
Costa ÍA, Gross MA, D. O. Alves E, Fonseca FJ, Paterno LG. An impedimetric e-tongue based on CeO2-graphene oxide chemical sensors for detection of glyphosate and its potential interferents. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Li H, Yang Y, Hu Y, Chen CC, Huang JW, Min J, Dai L, Guo RT. Structural analysis and engineering of aldo-keto reductase from glyphosate-resistant Echinochloa colona. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129191. [PMID: 35739721 DOI: 10.1016/j.jhazmat.2022.129191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate is a dominant organophosphate herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of the shikimate pathway. Glyphosate is extensively applied since manufactured, which has led to the emergence of various glyphosate-resistant crops and weeds. However, the molecular mechanism of many glyphosate-resistance machineries remains unclear. Recently, the upregulated expression of two homologous aldo-keto reductases (AKRs), designated as AKR4C16 and AKR4C17, were found to contribute to the glyphosate resistance in Echinochloa colona. This represents the first naturally evolved glyphosate-degrading machinery reported in plants. Here, we report the three-dimensional structure of these two AKR enzymes in complex with cofactor by performing X-ray crystallography. Furthermore, the binding-mode of glyphosate were elucidated in a ternary complex of AKR4C17. Based on the structural information and the previous study, we proposed a possible mechanism of action of AKR-mediated glyphosate degradation. In addition, a variant F291D of AKR4C17 that was constructed based on structure-based engineering showed a 70% increase in glyphosate degradation. In conclusion, these results demonstrate the structural features and glyphosate-binding mode of AKR4C17, which increases our understanding of the enzymatic mechanism of glyphosate bio-degradation and provides an important basis for the designation of AKR-based glyphosate-resistance for further applications.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yumei Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
41
|
Effects of Glyphosate-Based Herbicide on Primary Production and Physiological Fitness of the Macroalgae Ulva lactuca. TOXICS 2022; 10:toxics10080430. [PMID: 36006109 PMCID: PMC9415031 DOI: 10.3390/toxics10080430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 11/26/2022]
Abstract
The use of glyphosate-based herbicides (GBHs) worldwide has increased exponentially over the last two decades increasing the environmental risk to marine and coastal habitats. The present study investigated the effects of GBHs at environmentally relevant concentrations (0, 10, 50, 100, 250, and 500 μg·L−1) on the physiology and biochemistry (photosynthesis, pigment, and lipid composition, antioxidative systems and energy balance) of Ulva lactuca, a cosmopolitan marine macroalgae species. Although GBHs cause deleterious effects such as the inhibition of photosynthetic activity, particularly at 250 μg·L−1, due to the impairment of the electron transport in the chloroplasts, these changes are almost completely reverted at the highest concentration (500 μg·L−1). This could be related to the induction of tolerance mechanisms at a certain threshold or tipping point. While no changes occurred in the energy balance, an increase in the pigment antheraxanthin is observed jointly with an increase in ascorbate peroxidase activity. These mechanisms might have contributed to protecting thylakoids against excess radiation and the increase in reactive oxygen species, associated with stress conditions, as no increase in lipid peroxidation products was observed. Furthermore, changes in the fatty acids profile, usually attributed to the induction of plant stress response mechanisms, demonstrated the high resilience of this macroalgae. Notably, the application of bio-optical tools in ecotoxicology, such as pulse amplitude modulated (PAM) fluorometry and laser-induced fluorescence (LIF), allowed separation of the control samples and those treated by GBHs in different concentrations with a high degree of accuracy, with PAM more accurate in identifying the different treatments.
Collapse
|
42
|
Printemps R, Guilbot S, Didier H, Nalin R, Le Grand B. The Cardiotoxic Effect of Roundup® is not Induced by Glyphosate: A Non-specific Blockade of Human Ca V1.2 Channels. Cardiovasc Toxicol 2022; 22:676-688. [PMID: 35595953 DOI: 10.1007/s12012-022-09749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/22/2022] [Indexed: 11/03/2022]
Abstract
In Roundup®, the active principle glyphosate is formulated with adjuvants that help it to penetrate the plants' cell membranes. Several reports and reviews report cardiovascular effects of Roundup®, pointing the presence of arrhythmias as a potential consequence of Roundup® toxicity and death cause. However, it still remains debatable whether these cardiac events are related to glyphosate per se or to the Roundup® adjuvants. The present study aims to compare the pro-arrhythmogenic properties of Roundup® and glyphosate in an animal model and in human cardiomyocytes. In isolated guinea pig heart, the cardiotoxicity of Roundup® (significant effect on heart rate and depressive effect on ventricular contractility) was demonstrated with the highest concentrations (100 µM). In human cardiomyocytes, the cardiotoxicity is confirmed by a marked effect on contractility and a strong effect on cell viability. Finally, this Roundup® depressive effect on heart contractility is due to a concentration-dependent blocking effect on cardiac calcium channel CaV1.2 with an IC50 value of 3.76 µM. Surprisingly, no significant effect on each parameter has been shown with glyphosate. Glyphosate was devoid of major effect on cardiac calcium channel with a maximal effect at 100 µM (- 27.2 ± 1.7%, p < 0.01). In conclusion, Roundup® could induce severe cardiac toxicity by a blockade of CaV1.2 channel, leading to a worsening of heart contractility and genesis of arrhythmias. This toxicity could not be attributed to glyphosate.
Collapse
Affiliation(s)
| | | | - Hélène Didier
- PhysioStim, 10 rue Henri Regnault, 81100, Castres, France
| | - Renaud Nalin
- PhysioStim, 10 rue Henri Regnault, 81100, Castres, France
| | - Bruno Le Grand
- PhysioStim, 10 rue Henri Regnault, 81100, Castres, France
| |
Collapse
|
43
|
A Gold Nanoparticle-Based Molecular Self-Assembled Colorimetric Chemosensor Array for Monitoring Multiple Organic Oxyanions. Processes (Basel) 2022. [DOI: 10.3390/pr10071251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Determination of oxyanions is of paramount importance because of the essential role they play in metabolic processes involved in various aquatic environmental problems. In this investigation, a novel chemical sensor array has been developed by using gold nanoparticles modified with different chain lengths of aminothiols (AET-AuNPs) as sensing elements. The proposed sensor array provides a fingerprint-like response pattern originating from cross-reactive binding events and capable of targeting various anions, including the herbicide glyphosate. In addition, chemometric techniques, linear discrimination analysis (LDA) and the support vector machine (SVM) algorithm were employed for analyte classification and regression/prediction. The obtained sensor array demonstrates a remarkable ability to determine multiple oxyanions in both qualitative and quantitative analysis. The described methodology could be used as a simple, sensitive and fast routine analysis for oxyanions in both laboratory and field settings.
Collapse
|
44
|
Langton M, Appell M, Koob J, Pandelia ME. Domain Fusion of Two Oxygenases Affords Organophosphonate Degradation in Pathogenic Fungi. Biochemistry 2022; 61:956-962. [PMID: 35506879 PMCID: PMC9177745 DOI: 10.1021/acs.biochem.2c00163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Proteins of the HD-domain superfamily employ a conserved histidine-aspartate (HD) dyad to coordinate diverse metallocofactors. While most known HD-domain proteins are phosphohydrolases, new additions to this superfamily have emerged such as oxygenases and lyases, expanding their functional repertoire. To date, three HD-domain oxygenases have been identified, all of which employ a mixed-valent FeIIFeIII cofactor to activate their substrates and utilize molecular oxygen to afford cleavage of C-C or C-P bonds via a diferric superoxo intermediate. Phylogenetic analysis reveals an uncharacterized multidomain protein in the pathogenic soil fungus Fonsecaea multimorphosa, herein designated PhoF. PhoF consists of an N-terminal FeII/α-ketoglutarate-dependent domain resembling that of PhnY and a C-terminal HD-domain like that of PhnZ. PhnY and PhnZ are part of an organophosphonate degradation pathway in which PhnY hydroxylates 2-aminoethylphosphonic acid, and PhnZ cleaves the C-P bond of the hydroxylated product yielding phosphate and glycine. Employing electron paramagnetic resonance and Mössbauer spectroscopies in tandem with activity assays, we determined that PhoF carries out the O2-dependent degradation of two aminophosphonates, demonstrating an expanded catalytic efficiency with respect to the individual, but mechanistically coupled PhnY and PhnZ. Our results recognize PhoF as a new example of an HD-domain oxygenase and show that domain fusion of an organophosphonate degradation pathway may be a strategy for disease-causing fungi to acquire increased functional versatility, potentially important for their survival.
Collapse
Affiliation(s)
- Michelle Langton
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Matthew Appell
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Jeremy Koob
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Maria-Eirini Pandelia
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
45
|
Piro A, Nisticò DM, Oliva D, Fagà FA, Mazzuca S. Physiological and Metabolic Response of Arthrospira maxima to Organophosphates. Microorganisms 2022; 10:microorganisms10051063. [PMID: 35630505 PMCID: PMC9146548 DOI: 10.3390/microorganisms10051063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
The Spirulina spp. exhibited an ability to tolerate the organophosphates. This study aimed to explore the effects of the herbicide glyphosate on a selected strain of the cyanobacteria Arthrospira maxima cultivated in a company. Experimental cultivations acclimated in aquaria were treated with 0.2 mM glyphosate [N-(phosphonomethyl) glycine]. The culture biomass, the phycocyanin, and the chlorophyll a concentrations were evaluated every week during 42 days of treatment. The differentially expressed proteins in the treated cyanobacteria versus the control cultivations were evaluated weekly during 21 days of treatment. Even if the glyphosate treatment negatively affected the biomass and the photosynthetic pigments, it induced resistance in the survival A. maxima population. Proteins belonging to the response to osmotic stress and methylation pathways were strongly accumulated in treated cultivation; the response to toxic substances and the negative regulation of transcription seemed to have a role in the resistance. The glyphosate-affected enzyme, chorismate synthase, a key enzyme in the shikimic acid pathway, was accumulated during treatment, suggesting that the surviving strain of A. maxima expressed a glyphosate-resistant target enzyme.
Collapse
Affiliation(s)
- Amalia Piro
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via P. Bucci 12/C, 87036 Rende, Italy; (D.M.N.); (D.O.); (S.M.)
- Correspondence:
| | - Dante Matteo Nisticò
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via P. Bucci 12/C, 87036 Rende, Italy; (D.M.N.); (D.O.); (S.M.)
| | - Daniela Oliva
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via P. Bucci 12/C, 87036 Rende, Italy; (D.M.N.); (D.O.); (S.M.)
| | | | - Silvia Mazzuca
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via P. Bucci 12/C, 87036 Rende, Italy; (D.M.N.); (D.O.); (S.M.)
| |
Collapse
|
46
|
Frlan R. An Evolutionary Conservation and Druggability Analysis of Enzymes Belonging to the Bacterial Shikimate Pathway. Antibiotics (Basel) 2022; 11:antibiotics11050675. [PMID: 35625318 PMCID: PMC9137983 DOI: 10.3390/antibiotics11050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Enzymes belonging to the shikimate pathway have long been considered promising targets for antibacterial drugs because they have no counterpart in mammals and are essential for bacterial growth and virulence. However, despite decades of research, there are currently no clinically relevant antibacterial drugs targeting any of these enzymes, and there are legitimate concerns about whether they are sufficiently druggable, i.e., whether they can be adequately modulated by small and potent drug-like molecules. In the present work, in silico analyses combining evolutionary conservation and druggability are performed to determine whether these enzymes are candidates for broad-spectrum antibacterial therapy. The results presented here indicate that the substrate-binding sites of most enzymes in this pathway are suitable drug targets because of their reasonable conservation and druggability scores. An exception was the substrate-binding site of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, which was found to be undruggable because of its high content of charged residues and extremely high overall polarity. Although the presented study was designed from the perspective of broad-spectrum antibacterial drug development, this workflow can be readily applied to any antimicrobial target analysis, whether narrow- or broad-spectrum. Moreover, this research also contributes to a deeper understanding of these enzymes and provides valuable insights into their properties.
Collapse
Affiliation(s)
- Rok Frlan
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
47
|
Grau D, Grau N, Gascuel Q, Paroissin C, Stratonovitch C, Lairon D, Devault DA, Di Cristofaro J. Quantifiable urine glyphosate levels detected in 99% of the French population, with higher values in men, in younger people, and in farmers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32882-32893. [PMID: 35018595 PMCID: PMC9072501 DOI: 10.1007/s11356-021-18110-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/10/2021] [Indexed: 05/05/2023]
Abstract
France is the first pesticide-consuming country in Europe. Glyphosate is the most used pesticide worldwide and glyphosate is detected in the general population of industrialized countries, with higher levels found in farmers and children. Little data was available concerning exposure in France. Our objective was to determine glyphosate levels in the French general population and to search for an association with seasons, biological features, lifestyle status, dietary habits, and occupational exposure. This study includes 6848 participants recruited between 2018 and 2020. Associated data include age, gender, location, employment status, and dietary information. Glyphosate was quantified by a single laboratory in first-void urine samples using ELISA. Our results support a general contamination of the French population, with glyphosate quantifiable in 99.8% of urine samples with a mean of 1.19 ng/ml + / - 0.84 after adjustment to body mass index (BMI). We confirm higher glyphosate levels in men and children. Our results support glyphosate contamination through food and water intake, as lower glyphosate levels are associated with dominant organic food intake and filtered water. Higher occupational exposure is confirmed in farmers and farmers working in wine-growing environment. Thus, our present results show a general contamination of the French population with glyphosate, and further contribute to the description of a widespread contamination in industrialized countries.
Collapse
Affiliation(s)
- Daniel Grau
- Association Campagne Glyphosate, Foix, France
| | - Nicole Grau
- Association Campagne Glyphosate, Foix, France
| | | | | | - Cécile Stratonovitch
- ARSEAA, Pôle Guidance Infantile, Psychiatrie Infanto-juvénile Secteur III, Labège, France
| | - Denis Lairon
- Faculté de Médecine de La Timone, Aix Marseille Université, INSERM, INRA, C2VN, Marseille, France
| | - Damien A Devault
- Centre Universitaire de Formation Et de Recherche de Mayotte, Dembeni, Mayotte, France
| | | |
Collapse
|
48
|
Barco-Antoñanzas M, Gil-Monreal M, Eceiza MV, Royuela M, Zabalza A. Primary metabolism in an Amaranthus palmeri population with multiple resistance to glyphosate and pyrithiobac herbicides. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111212. [PMID: 35351301 DOI: 10.1016/j.plantsci.2022.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The objective of this work was to characterize the resistance mechanisms and the primary metabolism of a multiple resistant (MR) population of Amaranthus palmeri to glyphosate and to the acetolactate synthase (ALS) inhibitor pyrithiobac. All MR plants analysed were glyphosate-resistant due to 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene amplification. Resistance to pyrithiobac was more variable among individuals and was related to point mutations at five positions in the ALS gene sequence: A122, A205, W574, S653 and G654. All MR plants were heterozygous for W574, the most abundant mutation. In nontreated plants, the presence of mutations did not affect ALS functionality, and plants with the W574L mutation showed the highest ALS resistance level to pyrithiobac. The accumulation of the transcripts corresponding to several genes of the aromatic amino acid (AAA) and branched-chain amino acid (BCAA) pathways detected in nontreated MR plants indicated additional effects of EPSPS gene amplification and ALS mutations. The physiological performance of the MR population after treatment with glyphosate and/or pyrithiobac was compared with that of a sensitive (S) population. The increase induced in total soluble sugars, AAA or BCAA content by both herbicides was higher in the S population than in the MR population. Physiological effects were not exacerbated after the mixture of both herbicides in S or in MR populations. This study provides new insights into the physiology of a multiple resistant A. palmeri, which could be very useful for achieving effective management of this weed.
Collapse
Affiliation(s)
- María Barco-Antoñanzas
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, E-31006 Pamplona, Spain
| | - Miriam Gil-Monreal
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, E-31006 Pamplona, Spain
| | - Mikel V Eceiza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, E-31006 Pamplona, Spain
| | - Mercedes Royuela
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, E-31006 Pamplona, Spain
| | - Ana Zabalza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, E-31006 Pamplona, Spain.
| |
Collapse
|
49
|
G Protein-coupled Receptor (GPCR) Reconstitution and Labeling for Solution Nuclear Magnetic Resonance (NMR) Studies of the Structural Basis of Transmembrane Signaling. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092658. [PMID: 35566006 PMCID: PMC9101874 DOI: 10.3390/molecules27092658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large membrane protein family found in higher organisms, including the human body. GPCRs mediate cellular responses to diverse extracellular stimuli and thus control key physiological functions, which makes them important targets for drug design. Signaling by GPCRs is related to the structure and dynamics of these proteins, which are modulated by extrinsic ligands as well as by intracellular binding partners such as G proteins and arrestins. Here, we review some basics of using nuclear magnetic resonance (NMR) spectroscopy in solution for the characterization of GPCR conformations and intermolecular interactions that relate to transmembrane signaling.
Collapse
|
50
|
Wu Z, Hu Y, Pan X, Tang Y, Dai Y, Wu Y. A liquid colorimetric chemosensor for ultrasensitive detection of glyphosate residues in vegetables using a metal oxide with intrinsic peroxidase catalytic activity. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:710-723. [PMID: 35104180 DOI: 10.1080/19440049.2021.2020912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/08/2021] [Indexed: 01/05/2023]
Abstract
The control of pesticide residues in food is of increasing importance nowadays due to the over-use and misapplication of herbicides in agricultural production. However, the current colorimetric method for rapid detection of glyphosate still faces many challenges like the low sensitivity and stability. Herein, a simple and ultrasensitive liquid colorimetric chemosensor for glyphosate detection was successfully constructed. Glyphosate pesticide can interact with metallic oxidelike porous Co3O4 nanodisc, and inhibit its inherent peroxidase-mimicking activity, making the colour of the solution change from blue to light blue or even colourless. The colour variation of the colorimetric chemosensor enables us to easily distinguish in less than 20 min even by the naked eye whether glyphosate exceeds the allowable level. The limit of detection (LOD) of the chemosensor for glyphosate was calculated as low as 2.37 μg·L-1, and the chemosensor displays excellent selectivity against other competitive pesticides and metal ions. Further studies have also validated the applicability of the colorimetric chemosensor in actual samples like tomato, cucumber and cabbage, indicating that the proposed strategy may have promising application prospects for detecting glyphosate residues in agricultural products.
Collapse
Affiliation(s)
- Zhen Wu
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| | - Yang Hu
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| | - Xiaoli Pan
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| | - Yue Tang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| | - Yifeng Dai
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| | - Yuangen Wu
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
- Key Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China National Light Industry, Yibin, China
| |
Collapse
|