1
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
2
|
Blake MJ, Steer CJ. Liver Regeneration in Acute on Chronic Liver Failure. Clin Liver Dis 2023; 27:595-616. [PMID: 37380285 DOI: 10.1016/j.cld.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Liver regeneration is a multifaceted process by which the organ regains its original size and histologic organization. In recent decades, substantial advances have been made in our understanding of the mechanisms underlying regeneration following loss of hepatic mass. Liver regeneration in acute liver failure possesses several classic pathways, while also exhibiting unique differences in key processes such as the roles of differentiated cells and stem cell analogs. Here we summarize these unique differences and new molecular mechanisms involving the gut-liver axis, immunomodulation, and microRNAs with an emphasis on applications to the patient population through stem cell therapies and prognostication.
Collapse
Affiliation(s)
- Madelyn J Blake
- Department of Medicine, University of Minnesota Medical School, 420 Delaware Street Southeast, MMC 36, Minneapolis, MN 55455, USA.
| | - Clifford J Steer
- Department of Medicine, University of Minnesota Medical School, 420 Delaware Street Southeast, MMC 36, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, 420 Delaware Street Southeast, MMC 36, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Di-Iacovo N, Pieroni S, Piobbico D, Castelli M, Scopetti D, Ferracchiato S, Della-Fazia MA, Servillo G. Liver Regeneration and Immunity: A Tale to Tell. Int J Mol Sci 2023; 24:1176. [PMID: 36674692 PMCID: PMC9864482 DOI: 10.3390/ijms24021176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The physiological importance of the liver is demonstrated by its unique and essential ability to regenerate following extensive injuries affecting its function. By regenerating, the liver reacts to hepatic damage and thus enables homeostasis to be restored. The aim of this review is to add new findings that integrate the regenerative pathway to the current knowledge. An optimal regeneration is achieved through the integration of two main pathways: IL-6/JAK/STAT3, which promotes hepatocyte proliferation, and PI3K/PDK1/Akt, which in turn enhances cell growth. Proliferation and cell growth are events that must be balanced during the three phases of the regenerative process: initiation, proliferation and termination. Achieving the correct liver/body weight ratio is ensured by several pathways as extracellular matrix signalling, apoptosis through caspase-3 activation, and molecules including transforming growth factor-beta, and cyclic adenosine monophosphate. The actors involved in the regenerative process are numerous and many of them are also pivotal players in both the immune and non-immune inflammatory process, that is observed in the early stages of hepatic regeneration. Balance of Th17/Treg is important in liver inflammatory process outcomes. Knowledge of liver regeneration will allow a more detailed characterisation of the molecular mechanisms that are crucial in the interplay between proliferation and inflammation.
Collapse
Affiliation(s)
- Nicola Di-Iacovo
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Stefania Pieroni
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Danilo Piobbico
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Marilena Castelli
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Damiano Scopetti
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Simona Ferracchiato
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Maria Agnese Della-Fazia
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Giuseppe Servillo
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
- Centro Universitario di Ricerca sulla Genomica Funzionale (C.U.R.Ge.F.), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
4
|
Shu W, Yang M, Yang J, Lin S, Wei X, Xu X. Cellular crosstalk during liver regeneration: unity in diversity. Cell Commun Signal 2022; 20:117. [PMID: 35941604 PMCID: PMC9358812 DOI: 10.1186/s12964-022-00918-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022] Open
Abstract
The liver is unique in its ability to regenerate from a wide range of injuries and diseases. Liver regeneration centers around hepatocyte proliferation and requires the coordinated actions of nonparenchymal cells, including biliary epithelial cells, liver sinusoidal endothelial cells, hepatic stellate cells and kupffer cells. Interactions among various hepatocyte and nonparenchymal cells populations constitute a sophisticated regulatory network that restores liver mass and function. In addition, there are two different ways of liver regeneration, self-replication of liver epithelial cells and transdifferentiation between liver epithelial cells. The interactions among cell populations and regenerative microenvironment in the two modes are distinct. Herein, we first review recent advances in the interactions between hepatocytes and surrounding cells and among nonparenchymal cells in the context of liver epithelial cell self-replication. Next, we discuss the crosstalk of several cell types in the context of liver epithelial transdifferentiation, which is also crucial for liver regeneration. Video abstract
Collapse
Affiliation(s)
- Wenzhi Shu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.,Program in Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Mengfan Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
| | - Jiayin Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengda Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.,Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China. .,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China. .,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China. .,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China. .,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| |
Collapse
|
5
|
Elsaid DS, Elbedewy TAH, Soliman NA, Shalaby KA, Abdel-Hamid Haroun R. Interleukin-37, vascular endothelial growth factor A, and transforming growth factor-β1: promising biomarkers in primary immune thrombocytopenia. Expert Rev Hematol 2022; 15:757-768. [PMID: 35815383 DOI: 10.1080/17474086.2022.2099832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Immune thrombocytopenic purpura (ITP) is an acquired autoimmune hematologic disorder with heterogeneous bleeding manifestations. Many biomarkers such as interleukin-37 (IL-37), vascular endothelial growth factor A (VEGFA), and transforming growth factor-β1 (TGFß1) have a role in immunity, inflammation, and megakaryopoiesis. METHODS In the present study, immunoassay of interleukin-37 as well as the gene expression of vascular endothelial growth factor A and transforming growth factor-β1 were done in 60 primary ITP patients, 60 thrombocytopenia patients, and 60 healthy volunteers. RESULTS Increased IL-37 level and down regulation of VEGFA and TGFß1gene expression were detected in primary ITP patients when compared with other groups. A negative correlation was observed between IL-37 and platelet count. However, a positive correlation was observed between VEGFA and TGFß1 levels and platelet count. CONCLUSION Current results suggested that interleukin-37, vascular endothelial growth factor A, and transforming growth factor-β may be promising indicators in the diagnosis of ITP and detection of disease severity with inexpensive and cost-effectiveness compared to the benefits.
Collapse
Affiliation(s)
- Dina Samir Elsaid
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Nema Ali Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Kamal Ali Shalaby
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
6
|
Hadjittofi C, Feretis M, Martin J, Harper S, Huguet E. Liver regeneration biology: Implications for liver tumour therapies. World J Clin Oncol 2021; 12:1101-1156. [PMID: 35070734 PMCID: PMC8716989 DOI: 10.5306/wjco.v12.i12.1101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
The liver has remarkable regenerative potential, with the capacity to regenerate after 75% hepatectomy in humans and up to 90% hepatectomy in some rodent models, enabling it to meet the challenge of diverse injury types, including physical trauma, infection, inflammatory processes, direct toxicity, and immunological insults. Current understanding of liver regeneration is based largely on animal research, historically in large animals, and more recently in rodents and zebrafish, which provide powerful genetic manipulation experimental tools. Whilst immensely valuable, these models have limitations in extrapolation to the human situation. In vitro models have evolved from 2-dimensional culture to complex 3 dimensional organoids, but also have shortcomings in replicating the complex hepatic micro-anatomical and physiological milieu. The process of liver regeneration is only partially understood and characterized by layers of complexity. Liver regeneration is triggered and controlled by a multitude of mitogens acting in autocrine, paracrine, and endocrine ways, with much redundancy and cross-talk between biochemical pathways. The regenerative response is variable, involving both hypertrophy and true proliferative hyperplasia, which is itself variable, including both cellular phenotypic fidelity and cellular trans-differentiation, according to the type of injury. Complex interactions occur between parenchymal and non-parenchymal cells, and regeneration is affected by the status of the liver parenchyma, with differences between healthy and diseased liver. Finally, the process of termination of liver regeneration is even less well understood than its triggers. The complexity of liver regeneration biology combined with limited understanding has restricted specific clinical interventions to enhance liver regeneration. Moreover, manipulating the fundamental biochemical pathways involved would require cautious assessment, for fear of unintended consequences. Nevertheless, current knowledge provides guiding principles for strategies to optimise liver regeneration potential.
Collapse
Affiliation(s)
- Christopher Hadjittofi
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Michael Feretis
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Jack Martin
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Simon Harper
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Huguet
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
7
|
Kitto LJ, Henderson NC. Hepatic Stellate Cell Regulation of Liver Regeneration and Repair. Hepatol Commun 2021; 5:358-370. [PMID: 33681672 PMCID: PMC7917274 DOI: 10.1002/hep4.1628] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
The hepatic mesenchyme has been studied extensively in the context of liver fibrosis; however, much less is known regarding the role of mesenchymal cells during liver regeneration. As our knowledge of the cellular and molecular mechanisms driving hepatic regeneration deepens, the key role of the mesenchymal compartment during the regenerative response has been increasingly appreciated. Single-cell genomics approaches have recently uncovered both spatial and functional zonation of the hepatic mesenchyme in homeostasis and following liver injury. Here we discuss how the use of preclinical models, from in vivo mouse models to organoid-based systems, are helping to shape our understanding of the role of the mesenchyme during liver regeneration, and how these approaches should facilitate the precise identification of highly targeted, pro-regenerative therapies for patients with liver disease.
Collapse
Affiliation(s)
- Laura J. Kitto
- Centre for Inflammation ResearchThe Queen’s Medical Research InstituteEdinburgh BioQuarterUniversity of EdinburghEdinburghUnited Kingdom
| | - Neil C. Henderson
- Centre for Inflammation ResearchThe Queen’s Medical Research InstituteEdinburgh BioQuarterUniversity of EdinburghEdinburghUnited Kingdom
- MRC Human Genetics UnitInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
8
|
de Haan LR, Verheij J, van Golen RF, Horneffer-van der Sluis V, Lewis MR, Beuers UHW, van Gulik TM, Olde Damink SWM, Schaap FG, Heger M, Olthof PB. Unaltered Liver Regeneration in Post-Cholestatic Rats Treated with the FXR Agonist Obeticholic Acid. Biomolecules 2021; 11:biom11020260. [PMID: 33578971 PMCID: PMC7916678 DOI: 10.3390/biom11020260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
In a previous study, obeticholic acid (OCA) increased liver growth before partial hepatectomy (PHx) in rats through the bile acid receptor farnesoid X-receptor (FXR). In that model, OCA was administered during obstructive cholestasis. However, patients normally undergo PHx several days after biliary drainage. The effects of OCA on liver regeneration were therefore studied in post-cholestatic Wistar rats. Rats underwent sham surgery or reversible bile duct ligation (rBDL), which was relieved after 7 days. PHx was performed one day after restoration of bile flow. Rats received 10 mg/kg OCA per day or were fed vehicle from restoration of bile flow until sacrifice 5 days after PHx. Liver regeneration was comparable between cholestatic and non-cholestatic livers in PHx-subjected rats, which paralleled liver regeneration a human validation cohort. OCA treatment induced ileal Fgf15 mRNA expression but did not enhance post-PHx hepatocyte proliferation through FXR/SHP signaling. OCA treatment neither increased mitosis rates nor recovery of liver weight after PHx but accelerated liver regrowth in rats that had not been subjected to rBDL. OCA did not increase biliary injury. Conclusively, OCA does not induce liver regeneration in post-cholestatic rats and does not exacerbate biliary damage that results from cholestasis. This study challenges the previously reported beneficial effects of OCA in liver regeneration in cholestatic rats.
Collapse
Affiliation(s)
- Lianne R. de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China;
- Department of Surgery, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (T.M.v.G.); (P.B.O.)
| | - Joanne Verheij
- Department of Pathology, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Rowan F. van Golen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Verena Horneffer-van der Sluis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; (V.H.-v.d.S.); (M.R.L.)
| | - Matthew R. Lewis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; (V.H.-v.d.S.); (M.R.L.)
| | - Ulrich H. W. Beuers
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands;
| | - Thomas M. van Gulik
- Department of Surgery, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (T.M.v.G.); (P.B.O.)
| | - Steven W. M. Olde Damink
- Department of Surgery & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (S.W.M.O.D.); (F.G.S.)
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Frank G. Schaap
- Department of Surgery & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (S.W.M.O.D.); (F.G.S.)
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China;
- Department of Surgery, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (T.M.v.G.); (P.B.O.)
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: or ; Tel.: +86-138-19345926 or +31-30-2533966
| | - Pim B. Olthof
- Department of Surgery, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (T.M.v.G.); (P.B.O.)
- Department of Surgery, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
9
|
Leventhal TM, KC M, Steer CJ. Liver Regeneration in Acute and Acute-on-Chronic Liver Failure. LIVER FAILURE 2020:65-90. [DOI: 10.1007/978-3-030-50983-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Manco R, Leclercq IA, Clerbaux LA. Liver Regeneration: Different Sub-Populations of Parenchymal Cells at Play Choreographed by an Injury-Specific Microenvironment. Int J Mol Sci 2018; 19:E4115. [PMID: 30567401 PMCID: PMC6321497 DOI: 10.3390/ijms19124115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Liver regeneration is crucial for the maintenance of liver functional mass during homeostasis and diseases. In a disease context-dependent manner, liver regeneration is contributed to by hepatocytes or progenitor cells. As long as they are replicatively competent, hepatocytes are the main cell type responsible for supporting liver size homeostasisand regeneration. The concept that all hepatocytes within the lobule have the same proliferative capacity but are differentially recruited according to the localization of the wound, or whether a yet to be defined sub-population of hepatocytes supports regeneration is still debated. In a chronically or severely injured liver, hepatocytes may enter a state of replicative senescence. In such conditions, small biliary cells activate and expand, a process called ductular reaction (DR). Work in the last few decades has demonstrated that DR cells can differentiate into hepatocytes and thereby contribute to parenchymal reconstitution. In this study we will review the molecular mechanisms supporting these two processes to determine potential targets that would be amenable for therapeutic manipulation to enhance liver regeneration.
Collapse
Affiliation(s)
- Rita Manco
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Laure-Alix Clerbaux
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| |
Collapse
|
11
|
Abstract
Liver regeneration after simple resection represents a unique process in which the organ returns to its original size and histologic structure. Over the past 30 years, there has been significant progress in elucidating the mechanisms associated with regeneration after loss of hepatic mass. Liver regeneration after acute liver failure shares several of these classical pathways. It differs, however, in key processes, including the role of both differentiated and stemlike cells. This article outlines these differences in addition to new molecular mechanisms, including immunomodulation, microRNAs, and the gut-liver axis. In addition, applications to the patient population, including prognostication and stem cell therapies, are explored.
Collapse
Affiliation(s)
- Keith M Wirth
- Department of Surgery, University of Minnesota Medical School, 420 Delaware Street SouthEast, MMC 195, Minneapolis, MN 55455, USA.
| | - Scott Kizy
- Department of Surgery, University of Minnesota Medical School, 420 Delaware Street SouthEast, MMC 195, Minneapolis, MN 55455, USA
| | - Clifford J Steer
- Departments of Medicine, and Genetics, Cell Biology and Development, University of Minnesota Medical School, 420 Delaware Street SouthEast, MMC 36, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Miwa Y, Ellis A, Hughes R, Langley P, Wendon J, Williams R. Effect of ELAD Liver Support on Plasma HGF and TGF–β1 in Acute Liver Failure. Int J Artif Organs 2018. [DOI: 10.1177/039139889601900406] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to investigate the effects of treatment with the extracorporeal liver assist device (ELAD) in patients with acute liver failure (ALF) on plasma hepatocyte growth factor (HGF), the most potent growth factor, and transforming growth factor-β1 (TGF-β1), an inhibitory factor for liver regeneration. Initial plasma HGF, measured by ELISA, was significantly increased in the ALF patients (7.86 ± SEM 1.76 ng/ml) compared with normal subjects (0.10 ± 0.02 ng/ml, p<0.001). After 6 hours of ELAD haemoperfusion, plasma HGF increased further (30.5 ± 6.19 ng/ml, p<0.001), with a subsequent decrease towards the initial value by 48 hours. Initial plasma levels of TGF-β1 determined by ELISA were significantly increased in the ALF patients (43.4 ± 5.9 ng/ml) compared with normal subjects (25.1 ± 2.3 ng/ml, p<0.01), but there was no change in plasma TGF-β1 during the study period in either the ELAD or control ALF group. As HGF is a heparin-binding growth factor and similar changes in HGF were observed during CVVHD, one possible explanation is that heparin administered as anticoagulant for extracorporeal circulation is involved in the effects observed on HGF.
Collapse
Affiliation(s)
- Y. Miwa
- Institute of Liver Studies, King's College School of Medicine & Dentistry, London - UK
| | - A.J. Ellis
- Institute of Liver Studies, King's College School of Medicine & Dentistry, London - UK
| | - R.D. Hughes
- Institute of Liver Studies, King's College School of Medicine & Dentistry, London - UK
| | - P.G. Langley
- Institute of Liver Studies, King's College School of Medicine & Dentistry, London - UK
| | - J.A. Wendon
- Institute of Liver Studies, King's College School of Medicine & Dentistry, London - UK
| | - R. Williams
- Institute of Liver Studies, King's College School of Medicine & Dentistry, London - UK
| |
Collapse
|
13
|
Lilja H, Blanc P, Demetriou AA, Rozga J. Response of Cultured Fetal and Adult Rat Hepatocytes to Growth Factors and Cyclosporine. Cell Transplant 2017; 7:257-66. [PMID: 9647435 DOI: 10.1177/096368979800700304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hepatocyte transplantation is a promising alternative to orthotopic liver transplantation in experimental animal models with genetic disorders of liver metabolism and liver failure. Fetal hepatocytes have several characteristics that make them potentially suitable as donor cells. In contrast to adult hepatocytes, fetal hepatocytes are thought to be highly proliferative, which may facilitate engraftment, expansion of transplanted cell population, and gene transfer requiring active DNA synthesis. The present study was undertaken to evaluate the proliferative capacity of fetal and adult rat hepatocytes under standardized culture conditions. Fetal (20 days of gestation) and adult hepatocytes were cultured in serum-free media at low densities and treated with growth factors. Proliferation was assessed by [3H]-thymidine incorporation and cell cycle analysis by flow cytometry. In nonstimulated cells, DNA synthesis at 4 h was about × 100 higher and after 10 days in culture ×20 higher in fetal compared to adult hepatocytes. When epidermal growth factor (EGF) was added, maximal DNA synthesis in fetal hepatocytes was seen at 48 h, whereas in adult hepatocytes at 72 h. For adult hepatocytes, the average increase compared to untreated cells was × 13.8 with EGF, ×18.5 with transforming growth factor alpha (TGF-α), and ×7.6 with hepatocyte growth factor (HGF). For fetal hepatocytes, the increase was twofold with either EGF, TGF-α or HGF. EGF-, TGF-α- and HGF-dependent DNA synthesis was inhibited by transfroming growth factor beta-1 (TGF-β1) in both fetal and adult hepatocyte cultures; this antiproliferative effect was significantly stronger in adult hepatocyte cultures. With cyclosporine, EGF-, TGF-α- and HGF-dependent DNA synthesis in fetal hepatocyte cultures decreased by 36–46%, whereas in adult hepatocytes by 19–27%. These results show that in contrast to adult hepatocytes, fetal hepatocytes have high spontaneous proliferative activity independently of growth factors and are relatively resistant to the inhibitory effect of TGF-β1. It was also found that cyclosporine suppresses proliferation of cultured fetal hepatocytes.
Collapse
Affiliation(s)
- H Lilja
- Department of Surgery, Burns and Allen Research Institute, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA 90048, USA
| | | | | | | |
Collapse
|
14
|
Liu M, Chen P. Proliferation‑inhibiting pathways in liver regeneration (Review). Mol Med Rep 2017; 16:23-35. [PMID: 28534998 DOI: 10.3892/mmr.2017.6613] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/13/2017] [Indexed: 12/14/2022] Open
Abstract
Liver regeneration, an orchestrated process, is the primary compensatory mechanism following liver injury caused by various factors. The process of liver regeneration consists of three stages: Initiation, proliferation and termination. Proliferation‑promoting factors, which stimulate the recovery of mitosis in quiescent hepatocytes, are essential in the initiation and proliferation steps of liver regeneration. Proliferation‑promoting factors act as the 'motor' of liver regeneration, whereas proliferation inhibitors arrest cell proliferation when the remnant liver reaches a suitable size. Certain proliferation inhibitors are also expressed and activated in the first two steps of liver regeneration. Anti‑proliferation factors, acting as a 'brake', control the speed of proliferation and determine the terminal point of liver regeneration. Furthermore, anti‑proliferation factors function as a 'steering‑wheel', ensuring that the regeneration process proceeds in the right direction by preventing proliferation in the wrong direction, as occurs in oncogenesis. Therefore, proliferation inhibitors to ensure safe and stable liver regeneration are as important as proliferation‑promoting factors. Cytokines, including transforming growth factor‑β and interleukin‑1, and tumor suppressor genes, including p53 and p21, are important members of the proliferation inhibitor family in liver regeneration. Certain anti‑proliferation factors are involved in the process of gene expression and protein modification. The suppression of liver regeneration led by metabolism, hormone activity and pathological performance have been reviewed previously. However, less is known regarding the proliferation inhibitors of liver regeneration and further investigations are required. Detailed information regarding the majority of known anti‑proliferation signaling pathways also remains fragmented. The present review aimed to understand the signalling pathways that inhbit proliferation in the process of liver regeneration.
Collapse
Affiliation(s)
- Menggang Liu
- Department of Hepatobiliary Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Ping Chen
- Department of Hepatobiliary Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
15
|
Oya Y, Masuzaki R, Tsugawa D, Ray KC, Dou Y, Karp SJ. Dicer-dependent production of microRNA221 in hepatocytes inhibits p27 and is required for liver regeneration in mice. Am J Physiol Gastrointest Liver Physiol 2017; 312:G464-G473. [PMID: 28232457 PMCID: PMC5451560 DOI: 10.1152/ajpgi.00383.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 01/31/2023]
Abstract
Dicer processes microRNAs (miRs) into active forms in a wide variety of tissues, including the liver. To determine the role of Dicer in liver regeneration, we performed a series of in vivo and in vitro studies in a murine 2/3 hepatectomy model. Dicer was downregulated after 2/3 hepatectomy, and loss of Dicer inhibited liver regeneration associated with decreased cyclin A2 and miR-221, as well as increased levels of the cell cycle inhibitor p27. In vitro, miR-221 inhibited p27 production in primary hepatocytes and increased hepatocyte proliferation. Specific reconstitution of miR-221 in hepatocyte-specific Dicer-null mice inhibited p27 and restored liver regeneration. In wild type mice, targeted inhibition of miR-221 using a cholesterol-conjugated miR-221 inhibited hepatocyte proliferation after 2/3 hepatectomy. These results identify Dicer production of miR-221 as an essential component of a miRNA-dependent mechanism for suppression of p27 that controls the rate of hepatocyte proliferation after partial hepatectomy.NEW & NOTEWORTHY Our findings demonstrate a direct role for microRNAs in controlling the rate of liver regeneration after injury. By deleting Dicer, an enzyme responsible for processing microRNAs into mature forms, we determined miR-221 is a critical microRNA in the physiological process of restoration of liver mass after injury. miR-221 suppresses p27, releasing its inhibitory effects on hepatocyte proliferation. Pharmaceuticals based on miR-221 may be useful to modulate hepatocyte proliferation in the setting of liver injury.
Collapse
Affiliation(s)
- Yuki Oya
- 1Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Ryota Masuzaki
- 1Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Daisuke Tsugawa
- 1Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Kevin C. Ray
- 1Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Yongchao Dou
- 2Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Seth J. Karp
- 1Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; and
| |
Collapse
|
16
|
Shi L, Resaul J, Owen S, Ye L, Jiang WG. Clinical and Therapeutic Implications of Follistatin in Solid Tumours. Cancer Genomics Proteomics 2017; 13:425-435. [PMID: 27807065 DOI: 10.21873/cgp.20005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/05/2016] [Indexed: 12/20/2022] Open
Abstract
Follistatin (FST), as a single-chain glycosylated protein, has two major isoforms, FST288 and FST315. The FST315 isoform is the predominant form whilst the FST288 variant accounts for less than 5% of the encoded mRNA. FST is differentially expressed in human tissues and aberrant expression has been observed in a variety of solid tumours, including gonadal, gastric and lung cancer, hepatocellular carcinoma, basal cell carcinoma and melanoma. Based on the current evidence, FST is an antagonist of transforming growth factor beta family members, such as activin and bone morphogenetic proteins (BMPs). FST plays a role in tumourigenesis, metastasis and angiogenesis of solid tumours through its interaction with activin and BMPs, thus resulting in pathophysiological function. In terms of diagnosis, prognosis and therapy, FST has shown strong promise. Through a better understanding of its biological functions, potential clinical applications may yet emerge.
Collapse
Affiliation(s)
- Lei Shi
- Urology Department, Yantai Yu Huang Ding Hospital, Yantai, Shandong Province, P.R. China.,Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Jeyna Resaul
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Sioned Owen
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K.
| |
Collapse
|
17
|
Zhang X, Lu J, He B, Tang L, Liu X, Zhu D, Cao H, Wang Y, Li L. A tryptophan derivative, ITE, enhances liver cell metabolic functions in vitro. Int J Mol Med 2017; 39:101-112. [PMID: 27959388 PMCID: PMC5179183 DOI: 10.3892/ijmm.2016.2825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/05/2016] [Indexed: 01/01/2023] Open
Abstract
Cell encapsulation provides a three-dimensional support by incorporating isolated cells into microcapsules with the goal of simultaneously maintaining cell survival and function, as well as providing active transport for a bioreactor in vitro similarly to that observed in vivo. However, the biotra-nsformation and metabolic functions of the encapsulated cells are not satisfactory for clinical applications. For this purpose, in this study, hepatoma-derived Huh7 cells/C3A cells were treated with 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), an endogenous non-toxic ligand for aryl hydrocarbon receptor, in monolayer cultures and on microspheres. The mRNA and protein levels, as well as the metabolic activities of drug metabolizing enzymes, albumin secretion and urea synthesis were determined. When the Huh7 and C3A cells cultured in a monolayer on two‑dimensional surfaces, ITE enhanced the protein levels and the metabolic activities of the major cytochrome P450 (CYP450) enzymes, CYP1A1, CYP1A2, CYP3A4 and CYP1B1, and slightly increased albumin secretion and urea synthesis. Moreover, when cultured on microspheres, ITE also substantially increased the protein levels and metabolic activities of CYP1A1, CYP1A2, CYP3A4 and CYP1B1 in both liver cell lines. On the whole, our findings indicate that ITE enhances the enzymatic activities of major CYP450 enzymes and the metabolic functions of liver cells cultured in monolayer or on microspheres, indicating that it may be utilized to improve the functions of hepatocytes. Thus, it may be used in the future for the treatment of liver diseases.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Bin He
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang 310003, P.R. China
| | - Lingling Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Xiaoli Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Yingjie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| |
Collapse
|
18
|
Rivera FJ, Kazanis I, Ghevaert C, Aigner L. Beyond Clotting: A Role of Platelets in CNS Repair? Front Cell Neurosci 2016; 9:511. [PMID: 26834562 PMCID: PMC4718976 DOI: 10.3389/fncel.2015.00511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/21/2015] [Indexed: 12/16/2022] Open
Affiliation(s)
- Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University SalzburgSalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria
| | - Ilias Kazanis
- Department of Clinical Neuroscience, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of CambridgeCambridge, UK; Department of Biology, University of PatrasPatras, Greece
| | - Cedric Ghevaert
- Department of Haematology, University of CambridgeCambridge, UK; National Health Service Blood and Transplant, Cambridge Biomedical CampusCambridge, UK
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University SalzburgSalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria
| |
Collapse
|
19
|
Edelmann S, Fahrner R, Malinka T, Song BH, Stroka D, Mermod N. Nuclear Factor I-C acts as a regulator of hepatocyte proliferation at the onset of liver regeneration. Liver Int 2015; 35:1185-94. [PMID: 25293436 DOI: 10.1111/liv.12697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 10/01/2014] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Knockout studies of the murine Nuclear Factor I-C (NFI-C) transcription factor revealed abnormal skin wound healing and growth of its appendages, suggesting a role in controlling cell proliferation in adult regenerative processes. Liver regeneration following partial hepatectomy (PH) is a well-established regenerative model whereby changes elicited in hepatocytes lead to their rapid and phased proliferation. Although NFI-C is highly expressed in the liver, no hepatic function was yet established for this transcription factor. This study aimed to determine whether NFI-C may play a role in hepatocyte proliferation and liver regeneration. METHODS Liver regeneration and cell proliferation pathways following two-thirds PH were investigated in NFI-C knockout (ko) and wild-type (wt) mice. RESULTS We show that the absence of NFI-C impaired hepatocyte proliferation because of plasminogen activator I (PAI-1) overexpression and the subsequent suppression of urokinase plasminogen activator (uPA) activity and hepatocyte growth factor (HGF) signalling, a potent hepatocyte mitogen. This indicated that NFI-C first acts to promote hepatocyte proliferation at the onset of liver regeneration in wt mice. The subsequent transient down regulation of NFI-C, as can be explained by a self-regulatory feedback loop with transforming growth factor beta 1 (TGF-ß1), may limit the number of hepatocytes entering the first wave of cell division and/or prevent late initiations of mitosis. CONCLUSION NFI-C acts as a regulator of the phased hepatocyte proliferation during liver regeneration.
Collapse
Affiliation(s)
- Simone Edelmann
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
20
|
Nassef YE, Shady MMA, Galal EM, Hamed MA. Performance of diagnostic biomarkers in predicting liver fibrosis among hepatitis C virus-infected Egyptian children. Mem Inst Oswaldo Cruz 2015; 108:887-93. [PMID: 24141960 DOI: 10.1590/0074-0276130139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 08/16/2013] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to identify specific markers that mirror liver fibrosis progression as an alternative to biopsy when biopsy is contraindicated, especially in children. After liver biopsies were performed, serum samples from 30 hepatitis C virus (HCV) paediatric patients (8-14 years) were analysed and compared with samples from 30 healthy subjects. All subjects were tested for the presence of serum anti-HCV antibodies. Direct biomarkers for liver fibrosis, including transforming growth factor-β1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), hyaluronic acid (HA), procollagen type III amino-terminal peptide (PIIINP) and osteopontin (OPN), were measured. The indirect biomarkers aspartate and alanine aminotransferases, albumin and bilirubin were also tested. The results revealed a significant increase in the serum marker levels in HCV-infected children compared with the healthy group, whereas albumin levels exhibited a significant decrease. Significantly higher levels of PIIINP, TIMP-1, OPN and HA were detected in HCV-infected children with moderate to severe fibrosis compared with children with mild fibrosis (p < 0.05). The diagnostic accuracy of these direct biomarkers, represented by sensitivity, specificity and positive predictive value, emphasises the utility of PIIINP, TIMP-1, OPN and HA as indicators of liver fibrosis among HCV-infected children.
Collapse
Affiliation(s)
- Yasser E Nassef
- National Research Centre, Child Health Department, Cairo, Egypt
| | | | | | | |
Collapse
|
21
|
Chen Y, Williams V, Filippova M, Filippov V, Duerksen-Hughes P. Viral carcinogenesis: factors inducing DNA damage and virus integration. Cancers (Basel) 2014; 6:2155-86. [PMID: 25340830 PMCID: PMC4276961 DOI: 10.3390/cancers6042155] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/03/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022] Open
Abstract
Viruses are the causative agents of 10%-15% of human cancers worldwide. The most common outcome for virus-induced reprogramming is genomic instability, including accumulation of mutations, aberrations and DNA damage. Although each virus has its own specific mechanism for promoting carcinogenesis, the majority of DNA oncogenic viruses encode oncogenes that transform infected cells, frequently by targeting p53 and pRB. In addition, integration of viral DNA into the human genome can also play an important role in promoting tumor development for several viruses, including HBV and HPV. Because viral integration requires the breakage of both the viral and the host DNA, the integration rate is believed to be linked to the levels of DNA damage. DNA damage can be caused by both endogenous and exogenous factors, including inflammation induced by either the virus itself or by co-infections with other agents, environmental agents and other factors. Typically, cancer develops years to decades following the initial infection. A better understanding of virus-mediated carcinogenesis, the networking of pathways involved in transformation and the relevant risk factors, particularly in those cases where tumorigenesis proceeds by way of virus integration, will help to suggest prophylactic and therapeutic strategies to reduce the risk of virus-mediated cancer.
Collapse
Affiliation(s)
- Yan Chen
- Department of Basic Science, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Vonetta Williams
- Department of Basic Science, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Maria Filippova
- Department of Basic Science, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Valery Filippov
- Department of Basic Science, Loma Linda University, Loma Linda, CA 92354, USA.
| | | |
Collapse
|
22
|
Seo KW, Sohn SY, Bhang DH, Nam MJ, Lee HW, Youn HY. Therapeutic effects of hepatocyte growth factor-overexpressing human umbilical cord blood-derived mesenchymal stem cells on liver fibrosis in rats. Cell Biol Int 2013; 38:106-16. [PMID: 24115681 DOI: 10.1002/cbin.10186] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/26/2013] [Indexed: 01/18/2023]
Abstract
Fibrosis is a common end stage for a variety of liver diseases, including most chronic liver diseases, and results from an imbalance between collagen deposition and degradation. Mesenchymal stem cells (MSCs) have the ability to migrate into fibrotic livers and differentiate into hepatocytes. Hepatocyte growth factor (HGF) has potent anti-apoptotic and mitogenic effects on hepatocytes during liver injury and plays an essential role in the development and regeneration of the liver. In this study, human HGF-overexpressing human umbilical cord blood-derived MSCs (hHGF-HUCB-MSCs) were prepared using the pMEX Expression System, and the upregulation of hHGF expression was confirmed by RT-PCR and ELISA. HGF expressed by hHGF-HUCB-MSCs exerted a stimulatory effect on hepatocyte proliferation in vitro. hHGF-HUCB-MSCs were transplanted to investigate the therapeutic effects of these cells on carbon tetrachloride (CCL4)-induced liver fibrosis in a rat model. After 4 weeks of cell treatment once per week with 2 × 10(6) cells, biochemical analysis of the serum and histopathological analysis of the liver tissue were performed. The results of the biochemical analysis of the serum show that the hHGF-HUCB-MSC-treated group had higher levels of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase, indicating the improvement of liver function. Histopathology showed that the hHGF-HUCB-MSC-treated group had reduction in the density of collagen fibres. Thus hHGF-HUCB-MSCs can enhance liver regeneration and could be useful for the treatment of patients with liver fibrosis or cirrhosis.
Collapse
Affiliation(s)
- Kyoung-Won Seo
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chungnam National University, 99 Daehakro, Yuseoung gu, Daejon, 305-764, Republic of Korea
| | | | | | | | | | | |
Collapse
|
23
|
Martínez-Palacián A, del Castillo G, Suárez-Causado A, García-Álvaro M, de la Morena-Frutos D, Fernández M, Roncero C, Fabregat I, Herrera B, Sánchez A. Mouse hepatic oval cells require Met-dependent PI3K to impair TGF-β-induced oxidative stress and apoptosis. PLoS One 2013; 8:e53108. [PMID: 23301029 PMCID: PMC3534654 DOI: 10.1371/journal.pone.0053108] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/23/2012] [Indexed: 02/07/2023] Open
Abstract
We have previously shown that oval cells harboring a genetically inactivated Met tyrosine kinase (Met−/− oval cells) are more sensitive to TGF-β-induced apoptosis than cells expressing a functional Met (Metflx/flx), demonstrating that the HGF/Met axis plays a pivotal role in oval cell survival. Here, we have examined the mechanism behind this effect and have found that TGF-β induced a mitochondria-dependent apoptotic cell death in Metflx/flx and Met−/− oval cells, associated with a marked increase in levels of the BH3-only proteins Bim and Bmf. Bmf plays a key role during TGF-β-mediated apoptosis since knocking down of BMF significantly diminished the apoptotic response in Met−/− oval cells. TGF-β also induced oxidative stress accompanied by NADPH oxidase 4 (Nox4) mRNA up-regulation and decreased protein levels of antioxidant enzymes. Antioxidants inhibit both TGF-β-induced caspase 3 activity and Bmf up-regulation, revealing an oxidative stress-dependent Bmf regulation by TGF-β. Notably, oxidative stress-related events were strongly amplified in Met−/− oval cells, emphasizing the critical role of Met in promoting survival. Pharmacological inhibition of PI3K did impair HGF-driven protection from TGF-β-induced apoptosis and increased sensitivity of Metflx/flx oval cells to TGF-ß by enhancing oxidative stress, reaching apoptotic indices similar to those obtained in Met−/− oval cells. Interestingly, both PI3K inhibition and/or knockdown itself resulted in caspase-3 activation and loss of viability in Metflx/flx oval cells, whereas no effect was observed in Met−/− oval cells. Altogether, results presented here provide solid evidences that both paracrine and autocrine HGF/Met signaling requires PI3K to promote mouse hepatic oval cell survival against TGF-β-induced oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Adoración Martínez-Palacián
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Gaelle del Castillo
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Amileth Suárez-Causado
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - María García-Álvaro
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Diego de la Morena-Frutos
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Margarita Fernández
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Cesáreo Roncero
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Isabel Fabregat
- Laboratori d´Oncologia Molecular and Departament de Ciències Fisiològiques II, Universitat de Barcelona, Institut d´Investigació Biomèdica de Bellvitge, ĹHospitalet de Llobregat, Barcelona, Spain
| | - Blanca Herrera
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Aránzazu Sánchez
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- * E-mail:
| |
Collapse
|
24
|
Ito H, Kamiya A, Ito K, Yanagida A, Okada K, Nakauchi H. In vitro expansion and functional recovery of mature hepatocytes from mouse adult liver. Liver Int 2012; 32:592-601. [PMID: 22222094 DOI: 10.1111/j.1478-3231.2011.02741.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/08/2011] [Indexed: 02/13/2023]
Abstract
BACKGROUND Mature hepatocytes retain the ability to regenerate the liver lobule fully in vivo following injury. Several cytokines and soluble factors (hepatocyte growth factors, epidermal growth factors, insulin and nicotinamide) are known to be important for proliferation of mature hepatocytes in vitro. However, hepatocytes monolayer-cultured on extracellular matrices have gradually lost their specific functions, particularly those in drug metabolism. AIM We have explored and established a new culture system for expansion of functional hepatocytes. METHODS We evaluated two approaches for efficient expansion of mature hepatocytes: (i) Co-culture with mouse embryonic fibroblasts (MEF); (ii) Addition to culture of inhibitors of cell signals involved in liver regeneration. After expansion steps, 3-dimensional spheroid-forming culture was used to re-induce mature hepatocellular function. RESULTS The addition of inhibitors for tumour growth factor (TGF) β and glycogen synthase kinase (GSK) 3β efficiently induced in vitro expansion of mature hepatocytes. Although expression of hepatocellular functional genes decreased after expansion in monolayer culture, their expression and the activity of cytochrome P450 enzymes significantly increased with spheroid formation. Furthermore, when hepatocytes were co-cultured with MEF, addition of a MAPK/ERK kinase (MEK) inhibitor at the spheroid formation step enhanced drug-metabolism-related gene expression. CONCLUSION Combination of the MEF co-culture system with the addition of inhibitors of TGFβ and GSK3β induced in vitro expansion of hepatocytes. Moreover, expression of mature hepatocellular genes and the activity of drug-metabolism enzymes in expanded hepatocytes were re-induced after spheroid culture.
Collapse
Affiliation(s)
- Hidenori Ito
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Buergy D, Wenz F, Groden C, Brockmann MA. Tumor-platelet interaction in solid tumors. Int J Cancer 2012; 130:2747-60. [PMID: 22261860 DOI: 10.1002/ijc.27441] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/16/2011] [Indexed: 12/11/2022]
Abstract
Elevated platelet counts in patients diagnosed with malignant tumors were first described more than 100 years ago. Today it is well known that in many types of solid tumors, thrombocytosis at the time of diagnosis is associated with shorter survival. From this well-documented clinical correlation between platelet count and prognosis of solid tumors, the following questions arise: (i) Are the increased platelet counts the reason for shortened survival as platelet-secreted cytokines might boost tumor growth and angiogenesis? (ii) Do platelets affect tumor metastasis thereby shortening survival time? or (iii) Are increased platelet counts simply an epiphenomenon of tumor growth with larger tumors resulting in higher platelet counts and shorter survival times? We address these three questions within our review of the current literature to provide a comprehensive overview of the current concepts in tumor-platelet interaction.
Collapse
Affiliation(s)
- Daniel Buergy
- Department of Anesthesiology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | |
Collapse
|
26
|
Marquardt JU, Seo D, Gómez-Quiroz LE, Uchida K, Gillen MC, Kitade M, Kaposi-Novak P, Conner EA, Factor VM, Thorgeirsson SS. Loss of c-Met accelerates development of liver fibrosis in response to CCl(4) exposure through deregulation of multiple molecular pathways. Biochim Biophys Acta Mol Basis Dis 2012; 1822:942-51. [PMID: 22386877 DOI: 10.1016/j.bbadis.2012.02.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 12/21/2022]
Abstract
HGF/c-Met signaling plays a pivotal role in hepatocyte survival and tissue remodeling during liver regeneration. HGF treatment accelerates resolution of fibrosis in experimental animal models. Here, we utilized Met(fl/fl);Alb-Cre(+/-) conditional knockout mice and a carbon tetrachloride(CCl(4))-induced liver fibrosis model to formally address the role of c-Met signaling in hepatocytes in the context of chronic tissue injury. Histological changes during injury (4weeks) and healing phase (4weeks) were monitored by immunohistochemistry; expression levels of selected key fibrotic molecules were evaluated by western blotting, and time-dependent global transcriptomic changes were examined using a microarray platform. Loss of hepatocyte c-Met signaling altered hepatic microenvironment and aggravated hepatic fibrogenesis. Greater liver damage was associated with decreased hepatocyte proliferation, excessive stellate cell activation and rapid dystrophic calcification of necrotic areas. Global transcriptome analysis revealed a broad impact of c-Met on critical signaling pathways associated with fibrosis. Loss of hepatocyte c-Met caused a strong deregulation of chemotactic and inflammatory signaling (MCP-1, RANTES, Cxcl10) in addition to modulation of genes involved in reorganization of the cytoskeletal network (Actb, Tuba1a, Tuba8), intercellular communications and adhesion (Adam8, Icam1, Itgb2), control of cell proliferation (Ccng2, Csnk2a, Cdc6, cdk10), DNA damage and stress response (Rad9, Rad52, Ercc4, Gsta1 and 2, Jun). Our study demonstrates that deletion of c-Met receptor in hepatocytes results in pronounced changes in hepatic metabolism and microenvironment, and establishes an essential role for c-Met in maintaining the structural integrity and adaptive plasticity of the liver under adverse conditions.
Collapse
Affiliation(s)
- Jens U Marquardt
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Transforming growth factor-β (TGF-β) is a central regulator in chronic liver disease contributing to all stages of disease progression from initial liver injury through inflammation and fibrosis to cirrhosis and hepatocellular carcinoma. Liver-damage-induced levels of active TGF-β enhance hepatocyte destruction and mediate hepatic stellate cell and fibroblast activation resulting in a wound-healing response, including myofibroblast generation and extracellular matrix deposition. Being recognised as a major profibrogenic cytokine, the targeting of the TGF-β signalling pathway has been explored with respect to the inhibition of liver disease progression. Whereas interference with TGF-β signalling in various short-term animal models has provided promising results, liver disease progression in humans is a process of decades with different phases in which TGF-β or its targeting might have both beneficial and adverse outcomes. Based on recent literature, we summarise the cell-type-directed double-edged role of TGF-β in various liver disease stages. We emphasise that, in order to achieve therapeutic effects, we need to target TGF-β signalling in the right cell type at the right time.
Collapse
|
28
|
Han N, Jin K, He K, Cao J, Teng L. Protease-activated receptors in cancer: A systematic review. Oncol Lett 2011; 2:599-608. [PMID: 22848234 DOI: 10.3892/ol.2011.291] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/06/2011] [Indexed: 12/16/2022] Open
Abstract
The traditional view of the role of proteases in tumor growth, progression and metastasis has significantly changed. Apart from their contribution to cancer progression, it is evident that a subclass of proteases, such as thrombin, serves as signal molecules controlling cell functions through the protease-activated receptors (PARs). Among the four types of PAR (PAR1-4; cloned and named in order of their discovery), PAR1, PAR3 and PAR4 are activated by thrombin, unlike PAR2, which is activated by trypsin-like serine proteases. Thrombin has been proven to be a significant factor in both the behavior of cancer in its involvement in hemostasis and blood coagulation. Thrombin is a key supporter of various cellular effects relevant to tumor growth and metastasis, as well as a potent activator of angiogenesis, which is essential for the growth and development of all solid tumor types. This review presents an overview of the role of PAR-mediated thrombin in angiogenesis and cancer, focusing on the ability of PAR1- and PAR4-mediated thrombin to affect tumorigenesis and angiogenesis.
Collapse
Affiliation(s)
- Na Han
- Sir Run Run Shaw Institute of Clinical Medicine, Zhejiang University: Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310016
| | | | | | | | | |
Collapse
|
29
|
Differential effects of tumor–platelet interaction in vitro and in vivo in glioblastoma. J Neurooncol 2011; 105:45-56. [DOI: 10.1007/s11060-011-0560-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
|
30
|
Tanoue S, Uto H, Kumamoto R, Arima S, Hashimoto S, Nasu Y, Takami Y, Moriuchi A, Sakiyama T, Oketani M, Ido A, Tsubouchi H. Liver regeneration after partial hepatectomy in rat is more impaired in a steatotic liver induced by dietary fructose compared to dietary fat. Biochem Biophys Res Commun 2011; 407:163-8. [PMID: 21371432 DOI: 10.1016/j.bbrc.2011.02.131] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 02/25/2011] [Indexed: 02/08/2023]
Abstract
Hepatic steatosis (HS) has a negative effect on liver regeneration, but different pathophysiologies of HS may lead to different outcomes. Male Sprague-Dawley rats were fed a high fructose (66% fructose; H-fruc), high fat (54% fat; H-fat), or control chow diet for 4 weeks. Based on hepatic triglyceride content and oil red O staining, HS developed in the H-fruc group, but was less severe compared to the H-fat group. Hepatic mRNA expression levels of fatty acid synthase and fructokinase were increased and those of carnitine palmitoyltransferase-1 and peroxisome proliferator-activated receptor-α were decreased in the H-fruc group compared to the H-fat group. Liver regeneration after 70% partial hepatectomy (PHx) was evaluated by measuring the increase in postoperative liver mass and PCNA-positive hepatocytes, and was impaired in the H-fruc group compared to the H-fat and control groups on days 3 and 7. Serum levels of tumor necrosis factor-α, interleukin-6 and hepatocyte growth factor did not change significantly after PHx. In contrast, serum TGF-β1 levels were slightly but significantly lower in the control group on day 1 and in the H-fat group on day 3 compared to the level in each group on day 0, and then gradually increased. However, the serum TGF-β1 level did not change after PHx in the H-fruc group. These results indicate that impairment of liver regeneration after PHx in HS is related to the cause, rather than the degree, of steatosis. This difference may result from altered metabolic gene expression profiles and potential dysregulation of TGF-β1 expression.
Collapse
Affiliation(s)
- Shirou Tanoue
- Department of Digestive and Lifestyle-Related Diseases, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The approval of sorafenib as the standard of care (SOC) for advanced hepatocellular carcinoma (HCC) fostered interest to further evaluate several other targeted therapies and extend the positioning of sorafenib alone and in combination with other drugs and local therapies at earlier stages and in an adjuvant setting. This review highlights current research using targeted therapies in HCC. Information for this review was compiled by searching PubMed and MEDLINE databases for articles published until September 2010. Several small molecules and humanized antibodies with anti-angiogenic and antiproliferative properties are currently being investigated in preclinical and/or clinical trials. Results are awaited from these clinical trials and offer promise for extending the current treatment options in HCC. Currently published data suggest that substantial progress may be achieved in the treatment of patients with HCC in the next 10 years.
Collapse
Affiliation(s)
- Sandrine Faivre
- Department of Medical Oncology, Beaujon/Bichat University Hospital, Assistance Publique-Hôpitaux de Paris, University INSERM U728, Paris 7, Clichy, France
| | | | | |
Collapse
|
32
|
Sabrkhany S, Griffioen AW, Oude Egbrink MGA. The role of blood platelets in tumor angiogenesis. Biochim Biophys Acta Rev Cancer 2010; 1815:189-96. [PMID: 21167916 DOI: 10.1016/j.bbcan.2010.12.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 12/03/2010] [Accepted: 12/04/2010] [Indexed: 01/20/2023]
Abstract
Coagulation abnormalities occur frequently in cancer patients. It is becoming evident that blood platelets have an important function in this process. However, understanding of the underlying mechanisms is still very modest. In this review, we discuss the role of platelets in tumor angiogenesis and growth and suggest their potential significance in malignancies. Platelets contain various pro-and antiangiogenic molecules, which seem to be endocytosed and sequestered in different populations of α-granules. Furthermore, tumor endothelial cells are phenotypically and functionally different from endothelial cells in healthy tissue, stimulating local platelet adhesion and subsequent activation. As a consequence, platelets are able to secrete their angiogenic and angiostatic content, most likely in a regulated manner. The overall effect of these platelet-endothelium interactions appears to be proangiogenic, stimulating tumor angiogenesis. We favor the view that local adhesion and activation of blood platelets and dysregulation of coagulation represent underestimated pathways in the progression of cancer.
Collapse
Affiliation(s)
- Siamack Sabrkhany
- Laboratory for Microcirculation, Cardiovascular Research Institute Maastricht (CARIM), Dept. of Physiology, Maastricht, The Netherlands
| | | | | |
Collapse
|
33
|
Watanabe K, Yokoyama Y, Kokuryo T, Kawai K, Kitagawa T, Seki T, Nakagawa A, Nagino M. Segmental cholangitis impairs hepatic regeneration capacity after partial hepatectomy in rats. HPB (Oxford) 2010; 12:664-73. [PMID: 21083791 PMCID: PMC3003476 DOI: 10.1111/j.1477-2574.2010.00229.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with hilar cholangiocarcinoma or hepatolithiasis often develop segmental cholangitis (SC), but it is unclear whether hepatectomy for patients with SC can be performed safely. METHODS Rats were subjected to segmental bile duct ligation (SBDL) with LPS (SC group) or a saline (Sham group) infusion into the bile duct of the ligated lobes. The rats were sacrificed at 3, 24 and 48 h after the SBDL. For another experiment, the rats were subjected to partial hepatectomy (PHx) for the ligated lobes. Hepatic regeneration rates and the expression of regeneration-associated genes were evaluated. RESULTS In the SC group, severe parenchymal damage was observed in the acute phase (3 h). Altered gene expression in the liver in response to biliary infection occurred not only in the infected lobes but also in the non-infected lobes. In the rats of the SC group, both the hepatic regeneration rate and serum HGF levels were significantly lower than in the Sham group. CONCLUSION These results clearly demonstrate that SC impairs the regeneration capacity of the contralateral remnant liver. Therefore, hepatectomy should be avoided for patients with SC even if it occurs in the part of the liver to be resected.
Collapse
Affiliation(s)
- Katsutaka Watanabe
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sánchez A, Fabregat I. Growth factor- and cytokine-driven pathways governing liver stemness and differentiation. World J Gastroenterol 2010; 16:5148-61. [PMID: 21049549 PMCID: PMC2975086 DOI: 10.3748/wjg.v16.i41.5148] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver is unique in its capacity to regenerate in response to injury or tissue loss. Hepatocytes and other liver cells are able to proliferate and repopulate the liver. However, when this response is impaired, the contribution of hepatic progenitors becomes very relevant. Here, we present an update of recent studies on growth factors and cytokine-driven intracellular pathways that govern liver stem/progenitor cell expansion and differentiation, and the relevance of these signals in liver development, regeneration and carcinogenesis. Tyrosine kinase receptor signaling, in particular, c-Met, epidermal growth factor receptors or fibroblast growth factor receptors, contribute to proliferation, survival and differentiation of liver stem/progenitor cells. Different evidence suggests a dual role for the transforming growth factor (TGF)-β signaling pathway in liver stemness and differentiation. On the one hand, TGF-β mediates progression of differentiation from a progenitor stage, but on the other hand, it contributes to the expansion of liver stem cells. Hedgehog family ligands are necessary to promote hepatoblast proliferation but need to be shut off to permit subsequent hepatoblast differentiation. In the same line, the Wnt family and β-catenin/T-cell factor pathway is clearly involved in the maintenance of liver stemness phenotype, and its repression is necessary for liver differentiation during development. Collectively, data indicate that liver stem/progenitor cells follow their own rules and regulations. The same signals that are essential for their activation, expansion and differentiation are good candidates to contribute, under adequate conditions, to the paradigm of transformation from a pro-regenerative to a pro-tumorigenic role. From a clinical perspective, this is a fundamental issue for liver stem/progenitor cell-based therapies.
Collapse
|
35
|
Turányi E, Dezso K, Bugyik E, Szurián K, Paku S, Nagy P. The primary mitogen (TCPOBOP)-induced hepatocyte proliferation is resistant to transforming growth factor- β-1 inhibition. Liver Int 2010; 30:1505-10. [PMID: 21040405 DOI: 10.1111/j.1478-3231.2010.02324.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Transforming growth factor (TGF)-β-1 is a very efficient inhibitor of hepatocyte proliferation in various in vivo and in vitro experimental systems. However, there are no data on whether it can influence the mitogenic response induced by primary hepatocyte mitogens. AIMS In this study, we compared the proliferative response in the liver between wild-type and transgenic mice, overexpressing active TGF-β-1 in their liver following the treatment by a primary hepatocyte mitogen TCPOBOP (1,4-bis[2-(3,5-dichloropyridyloxy)]benzene). METHODS The proliferative response was characterized by the immunohistochemical examination of pulse and cumulative bromodeoxyuridine labelling and by quantitative real-time polymerase chain reaction analysis of cell cycle-related genes. RESULTS Neither of the applied techniques revealed significant differences between the two groups of mice; furthermore, we observed the upregulation of TGF-β-1 expression following the mitogenic treatment. CONCLUSIONS TGF-β-1 does not inhibit the primary mitogen-induced proliferative response of the hepatocytes. This observation may provide an explanation for the divergent consequences of hepatic proliferations induced by partial hepatectomy or primary mitogenic treatment.
Collapse
Affiliation(s)
- Eszter Turányi
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
36
|
Tostões RM, Leite SB, Miranda JP, Sousa M, Wang DI, Carrondo MJ, Alves PM. Perfusion of 3D encapsulated hepatocytes-A synergistic effect enhancing long-term functionality in bioreactors. Biotechnol Bioeng 2010; 108:41-9. [DOI: 10.1002/bit.22920] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Mamiya T, Yamazaki K, Masugi Y, Mori T, Effendi K, Du W, Hibi T, Tanabe M, Ueda M, Takayama T, Sakamoto M. Reduced transforming growth factor-beta receptor II expression in hepatocellular carcinoma correlates with intrahepatic metastasis. J Transl Med 2010; 90:1339-45. [PMID: 20531292 DOI: 10.1038/labinvest.2010.105] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) occurs mainly in the liver associated with chronic hepatitis and hepatic cirrhosis as a result of prolonged viral infection. Transforming growth factor-beta (TGF-beta) induces the fibrosis in hepatic cirrhosis, although it is also an inhibitor of hepatocyte proliferation. To understand the role of TGF-beta signaling in HCC progression, we analyzed gene expression in HCC cells in relation to TGF-beta signaling using a two-way clustering algorithm. By the analysis, five HCC cell lines were classified into two groups according to their metastatic capacity. TGF-beta receptor II (TGFBR2) was downregulated in metastatic cells, which did not show a response to TGF-beta. Immunohistochemistry demonstrated clear membrane distribution of TGFBR2 in noncancerous hepatocytes, whereas reduced TGFBR2 expression was observed in 34 of 136 HCCs. In clinical cases, reduced TGFBR2 expression correlated with larger tumor size (P<0.001), poor differentiation (P<0.001), portal vein invasion (P=0.002), intrahepatic metastasis (IM) (P<0.001), and shorter recurrence-free survival (P=0.022). In conclusion, reduced TGFBR2 expression was associated with aggressive features of HCC such as IM, and may represent an immunohistochemical biomarker to detect aggressive HCC.
Collapse
Affiliation(s)
- Takao Mamiya
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Han C, Bowen WC, Li G, Demetris AJ, Michalopoulos GK, Wu T. Cytosolic phospholipase A2alpha and peroxisome proliferator-activated receptor gamma signaling pathway counteracts transforming growth factor beta-mediated inhibition of primary and transformed hepatocyte growth. Hepatology 2010; 52:644-55. [PMID: 20683962 PMCID: PMC3013516 DOI: 10.1002/hep.23703] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Hepatocellular carcinoma often develops in the setting of abnormal hepatocyte growth associated with chronic hepatitis and liver cirrhosis. Transforming growth factor beta (TGF-beta) is a multifunctional cytokine pivotal in the regulation of hepatic cell growth, differentiation, migration, extracellular matrix production, stem cell homeostasis, and hepatocarcinogenesis. However, the mechanisms by which TGF-beta influences hepatic cell functions remain incompletely defined. We report herein that TGF-beta regulates the growth of primary and transformed hepatocytes through concurrent activation of Smad and phosphorylation of cytosolic phospholipase A(2)alpha (cPLA(2)alpha), a rate-limiting key enzyme that releases arachidonic acid for the production of bioactive eicosanoids. The interplays between TGF-beta and cPLA(2)alpha signaling pathways were examined in rat primary hepatocytes, human hepatocellular carcinoma cells, and hepatocytes isolated from newly developed cPLA(2)alpha transgenic mice. CONCLUSION Our data show that cPLA(2)alpha activates peroxisome proliferator-activated receptor gamma (PPAR-gamma) and thus counteracts Smad2/3-mediated inhibition of cell growth. Therefore, regulation of TGF-beta signaling by cPLA(2)alpha and PPAR-gamma may represent an important mechanism for control of hepatic cell growth and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Chang Han
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Utoh R, Tateno C, Kataoka M, Tachibana A, Masumoto N, Yamasaki C, Shimada T, Itamoto T, Asahara T, Yoshizato K. Hepatic hyperplasia associated with discordant xenogeneic parenchymal-nonparenchymal interactions in human hepatocyte-repopulated mice. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:654-65. [PMID: 20522646 DOI: 10.2353/ajpath.2010.090430] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Liver mass is optimized in relation to body mass. Rat (r) and human (h) hepatocytes were transplanted into liver-injured immunodeficient mice and allowed to proliferate for 3 or 11 weeks, respectively, when the transplants stopped proliferating. Liver/body weight ratio was normal throughout in r-hepatocyte-bearing mice (r-hep-mice), but increased continuously in h-hepatocyte-bearing mice (h-hep-mice), until reaching approximately three times the normal m-liver size, which was considered to be hyperplasia of h-hepatocytes because there were no significant differences in cell size among host (mouse [m-]) and donor (r- and h-) hepatocytes. Transforming growth factor-beta (TGF-beta) type I receptor, TGF-beta type II receptor, and activin A type IIA receptor mRNAs in proliferating r-hepatocytes of r-hep-mice were lower than in resting r-hepatocytes (normal levels) and increased to normal levels during the termination phase. Concomitantly, m-hepatic stellate cells began to express TGF-beta proteins. In stark contrast, TGF-beta type II receptor and activin A type IIA receptor mRNAs in h-hepatocytes remained low throughout and m-hepatic stellate cells did not express TGF-beta in h-hep-mice. As expected, Smad2 and 3 translocated into nuclei in r-hep-mice but not in h-hep-mice. Histological analysis showed a paucity of m-stellate cells in h-hepatocyte colonies of h-hep-mouse liver. We conclude that m-stellate cells are able to normally interact with concordant r-hepatocytes but not with discordant h-hepatocytes, which seems to be at least partly responsible for the failure of the liver size optimization in h-hep-mice.
Collapse
Affiliation(s)
- Rie Utoh
- Yoshizato Project, Cooperative Link of Unique Science and Technology for Economy Revitalization, Hiroshima Prefectural Institute of Industrial Science and Technology, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hayashi H, Beppu T, Sugita H, Masuda T, Okabe H, Takamori H, Baba H. Serum HGF and TGF-beta1 levels after right portal vein embolization. Hepatol Res 2010; 40:311-7. [PMID: 20070396 DOI: 10.1111/j.1872-034x.2009.00599.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM The changes in the serum hepatocyte growth factor (HGF) and transforming growth factor (TGF)-beta1 levels after portal vein embolization (PVE), and their clinical significance, remain unclear and we aimed to assess their relationship. METHODS The serum HGF and TGF-beta1 levels were prospectively measured in 22 patients before and 1, 3, 5, 7, and 14 day after right PVE. Computed tomographic volumetry was performed before and at a mean of 26 +/- 4 days after right PVE. RESULTS Three to four weeks after right PVE, the volume of embolized lobe significantly decreased from 704 +/- 157 cm(3) before PVE to 539 +/- 168 cm(3) after PVE (P < 0.001). In contrast, the volume of nonembolized lobe significantly increased from 426 +/- 142 cm(3) to 560 +/- 165 cm(3) (P < 0.001). The serum HGF level significantly increased on day 3 after PVE compared with the pretreatment level (P = 0.005), while the serum TGF-beta1 level significantly decreased and reached its lowest value on day 3 (P = 0.002). Using Pearson's correlation analysis, we found that the serum HGF and TGF-beta1 levels on day 14 negatively associated with the large hypertrophic response in the nonembolized lobe (HGF: r = -0.490, P = 0.021; TGF-beta1: r = -0.473, P = 0.026). CONCLUSIONS PVE induced an increase in the serum HGF level and reduced the serum TGF-beta1 level. Measurement of serum HGF and TGF-beta1 levels on day 14 after right PVE may be useful for assessment of the future liver hypertrophy in nonembolized lobe after right PVE.
Collapse
Affiliation(s)
- Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Zhong Z, Tsukada S, Rehman H, Parsons CJ, Theruvath TP, Rippe RA, Brenner DA, Lemasters JJ. Inhibition of transforming growth factor-beta/Smad signaling improves regeneration of small-for-size rat liver grafts. Liver Transpl 2010; 16:181-90. [PMID: 20104486 PMCID: PMC2834418 DOI: 10.1002/lt.21966] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is a potent inhibitor of cell proliferation. This study investigated whether overexpression of Smad7, which blocks TGF-beta-induced activation of Smad2/3, could prevent the suppression of regeneration of small-for-size liver grafts. Rats were intravenously given adenoviruses (2 x 10(10) pfu/rat) carrying the LacZ gene or the Smad7 gene (Ad-Smad7) 3 days prior to liver harvesting. Half-size livers were implanted into recipients of the same weight or twice the donor weight, and this resulted in half-size or quarter-size liver grafts. Cell proliferation, detected by 5-bromo-2'-deoxyuridine (BrdU) incorporation, increased to 23% in half-size grafts at 38 hours after implantation but was only 4% in quarter-size grafts. Graft weight did not increase after 38 hours in full-size and quarter-size grafts but increased 28% in half-size grafts. Ad-Smad7 restored BrdU labeling to 32%, and the graft weight increased to 43% in quarter-size grafts. Serum total bilirubin increased approximately 30-fold after the implantation of quarter-size grafts. Ad-Smad7 blunted hyperbilirubinemia by 80%. The basal hepatic TGF-beta(1) level was 7 ng/g of liver wet weight, and this increased to 30 ng/g at 1.5 hours after the transplantation of full-size grafts but decreased rapidly afterwards. After the transplantation of quarter-size grafts, however, TGF-beta(1) progressively increased to 159 ng/g in 38 hours. Nuclear phosphorylated Smad2/3 was barely detectable, and p21Cip1 expression was negligible in full-size grafts but increased markedly in quarter-size grafts. Ad-Smad7 blocked Smad2/3 activation and expression of p21Cip1. Together, these data show that TGF-beta is responsible, at least in part, for the defective liver regeneration in small-for-size grafts by activating the Smad signaling pathway.
Collapse
Affiliation(s)
- Zhi Zhong
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC
| | - Shigeki Tsukada
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Hasibur Rehman
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC
| | | | - Tom P. Theruvath
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC
| | - Richard A. Rippe
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | | | - John J. Lemasters
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
42
|
Abstract
There have been innumerable studies published in the attempt to identify gene expression signatures in hepatocellular carcinoma (HCC). When all the regulators and targets of the differentially expressed genes are analyzed from larger studies, the most striking theme is upregulation of mitosis-promoting and cell proliferation genes in HCC compared with 'liver-specific gene clusters' in non-tumorous tissue. A major limitation of expression profiling is that it only provides a 'snapshot' of what is an evolving process and thus cannot distinguish the differences in gene expression that are primary effectors of dysregulated growth from those that represent downstream consequences. The development of HCC in a chronically diseased liver, often referred to as hepatocarcinogenesis, is a multistep process characterized by the progressive accumulation and interplay of genetic alterations causing aberrant growth, malignant transformation of liver parenchymal cells, followed by vascular invasion and metastasis. This review will discuss HCC precursor lesions, draw on the 'proliferation cluster' genes highlighted from HCC expression profiling studies, relate them to a selection of regulatory networks important in liver regeneration, cell cycle control and their potential significance in the pathogenesis of HCC or primary liver cancer.
Collapse
Affiliation(s)
- Narci C Teoh
- Gastroenterology and Hepatology Laboratory, Australian National University Medical School, The Canberra Hospital, Australian Capital Territory, Australia.
| |
Collapse
|
43
|
Padrissa-Altés S, Franco-Gou R, Boillot O, Serafín A, Rimola A, Arroyo V, Rodés J, Peralta C, Roselló-Catafau J. Effect of angiotensin II and bradykinin inhibition in rat reduced-size liver transplantation. Liver Transpl 2009; 15:313-320. [PMID: 19242996 DOI: 10.1002/lt.21693] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study examined whether angiotensin II (Ang II) blockers [Ang II type I receptor antagonist, Ang II type II receptor antagonist, and angiotensin converting enzyme (ACE) inhibitor] could reduce hepatic injury and improve regeneration in reduced-size orthotopic liver transplantation (ROLT) and whether the beneficial effects of ischemic preconditioning (PC) in ROLT could be explained by changes in Ang II. We show that small liver grafts generated Ang II after ROLT and that this was associated with increased angiotensinogen and ACE messenger RNA expression. Furthermore, inhibition of Ang II did not contribute to PC-induced protection in ROLT. All Ang II blockers reduced hepatic injury, but none of them promoted liver regeneration. Bradykinin (BK) receptor antagonist improved liver regeneration but did not reduce hepatic injury in ROLT. Finally, the combination of Ang II blockers and BK receptor antagonists in ROLT reduced hepatic injury and improved liver regeneration. In conclusion, treatments with either Ang II blockers or BK receptor antagonists cannot, on their own, improve the outcome of ROLT. Although Ang II blockers can reduce hepatic ischemia-reperfusion injury and BK receptor antagonists can promote liver regeneration, neither confers both benefits at the same time. Consequently, it may be of clinical interest to apply both treatments simultaneously.
Collapse
Affiliation(s)
- Susagna Padrissa-Altés
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Cientícas, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Muller M. Cellular senescence: molecular mechanisms, in vivo significance, and redox considerations. Antioxid Redox Signal 2009; 11:59-98. [PMID: 18976161 DOI: 10.1089/ars.2008.2104] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cellular senescence is recognized as a critical cellular response to prolonged rounds of replication and environmental stresses. Its defining characteristics are arrested cell-cycle progression and the development of aberrant gene expression with proinflammatory behavior. Whereas the mechanistic events associated with senescence are generally well understood at the molecular level, the impact of senescence in vivo remains to be fully determined. In addition to the role of senescence as an antitumor mechanism, this review examines cellular senescence as a factor in organismal aging and age-related diseases, with particular emphasis on aberrant gene expression and abnormal paracrine signaling. Senescence as an emerging factor in tissue remodeling, wound repair, and infection is considered. In addition, the role of oxidative stress as a major mediator of senescence and the role of NAD(P)H oxidases and changes to intracellular GSH/GSSG status are reviewed. Recent findings indicate that senescence and the behavior of senescent cells are amenable to therapeutic intervention. As the in vivo significance of senescence becomes clearer, the challenge will be to modulate the adverse effects of senescence without increasing the risks of other diseases, such as cancer. The uncoupled relation between cell-cycle arrest and the senescent phenotype suggests that this is an achievable outcome.
Collapse
Affiliation(s)
- Michael Muller
- Centre for Education and Research on Ageing, ANZAC Research Institute, University of Sydney, Concord RG Hospital, Concord, Sydney, Australia.
| |
Collapse
|
45
|
Ho-Tin-Noé B, Goerge T, Cifuni SM, Duerschmied D, Wagner DD. Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res 2008; 68:6851-8. [PMID: 18701510 PMCID: PMC2547489 DOI: 10.1158/0008-5472.can-08-0718] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer is associated with a prothrombogenic state capable of platelet activation. Platelets, on the other hand, can support angiogenesis, a process involved in the progression of tumor growth and metastasis. However, it is unclear whether platelet/tumor interactions substantially contribute to tumor physiology. We investigated whether platelets stabilize tumor vessels and studied the underlying mechanisms. We induced severe acute thrombocytopenia in mice bearing s.c. Lewis lung carcinoma or B16F10 melanoma. Intravital microscopy revealed that platelet depletion led to a rapid destabilization of tumor vessels with intratumor hemorrhage starting as soon as 30 min after induction of thrombocytopenia. Using an inhibitor of glycoprotein Ibalpha (GPIbalpha) and genetically engineered mice with platelet adhesion defects, we investigated the role of platelet adhesion receptors in stabilizing tumor vessels. We found that a single defect in either GPIbalpha, von Willebrand factor, P-selectin, or platelet integrin activation did not lead to intratumor hemorrhage. We then compared the ability of transfused resting and degranulated platelets to prevent intratumor hemorrhage. Whereas resting platelets prevented thrombocytopenia-induced tumor bleeding, circulating degranulated platelets did not. This suggests that the prevention of intratumor hemorrhage by platelets relies on the secretion of the content of platelet granules. Supporting this hypothesis, we further found that thrombocytopenia dramatically impairs the balance between propermeability and antipermeability factors in tumor-bearing animals, in particular depleting blood of angiopoietin-1 and serotonin. Our results show a crucial contribution of platelets to tumor homeostasis through continuous prevention of severe intratumor hemorrhage and consequent cell death. The study also suggests platelet function as a reasonable target for specific destabilization of tumor vessels.
Collapse
Affiliation(s)
- Benoit Ho-Tin-Noé
- Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
46
|
del Castillo G, Factor VM, Fernández M, Alvarez-Barrientos A, Fabregat I, Thorgeirsson SS, Sánchez A. Deletion of the Met tyrosine kinase in liver progenitor oval cells increases sensitivity to apoptosis in vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1238-47. [PMID: 18385520 DOI: 10.2353/ajpath.2008.070793] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The hepatocyte growth factor (HGF)/Met signaling system is essential for liver development, homeostasis, and function. In this study, we took advantage of a liver-specific, Met-conditional knockout mouse generated in our laboratory to address the molecular mechanisms of HGF/Met signaling in adult liver progenitor cell (oval cell) biology. For this purpose, we isolated oval cells from 3,5-diethoxycarbonyl-1,4-dihydro-collidine-treated Met(flx/flx) mice and established oval cell-derived cell lines that carried either functional (Met(flx/flx)) or a nonfunctional (Met(-/-)) met gene using virus-mediated Cre-loxP recombination. Oval cells lacking Met tyrosine kinase activity displayed neither Met phosphorylation nor activation of downstream targets and were refractory to HGF stimulation. Although Met(-/-) and Met(flx/flx) cells proliferated at similar rates under 10% serum, Met-deficient cells demonstrated decreased cell viability and were more prone to apoptosis when challenged with either serum starvation or the pro-apoptotic cytokine transforming growth factor-beta. Treatment with HGF reduced transforming growth factor-beta-mediated cell death in Met(flx/flx) but not Met(-/-) cells. Importantly, Met(flx/flx) and Met(-/-) cells both constitutively expressed hgf, and conditioned medium from serum-starved oval cells exhibited anti-apoptotic activity in Met(flx/flx) cells. Furthermore, serum-starved Met(flx/flx) cells showed persistent activation of the Met tyrosine kinase, suggesting HGF/Met autocrine regulation. In conclusion, these data reveal a critical, functional role for Met in oval cell survival through an autocrine mechanism.
Collapse
Affiliation(s)
- Gaelle del Castillo
- Department Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal S/N, 28040-Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Hagiwara S, Otsuka T, Yamazaki Y, Kosone T, Sohara N, Ichikawa T, Sato K, Kakizaki S, Takagi H, Mori M. Overexpression of NK2 promotes liver fibrosis in carbon tetrachloride-induced chronic liver injury. Liver Int 2008; 28:126-131. [PMID: 17976157 DOI: 10.1111/j.1478-3231.2007.01616.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIMS Hepatocyte growth factor (HGF) inhibits liver fibrosis induced by carbon tetrachloride (CCl4) in animal models. NK2 is a natural splice variant of HGF, but its in vivo function remains to be elucidated. We investigated the in vivo effects of NK2 on CCl4-induced liver fibrosis. METHODS NK2 transgenic mice and wild-type (WT) mice were injected intraperitoneally with CCl4 twice a week. The extent of hepatic fibrosis was evaluated by Azan-Mallory staining. Expression levels of mRNAs of transforming growth factor-beta1 (TGF-beta1) and matrix metalloproteinase-13 (MMP-13) were examined by real-time polymerase chain reaction. The protein levels of alpha-smooth muscle actin (alpha-SMA), c-Met and its phosphorylation were determined by Western blot analysis. RESULTS Liver fibrosis was significantly more severe in NK2 transgenic mice than in WT mice. CCl4 administration increased the expression levels of TGF-beta1 mRNA and alpha-SMA protein, and decreased the expression of MMP-13 mRNA in livers of NK2 transgenic mice compared with those of WT mice. c-Met protein expression in the liver was compatible with the degree of fibrosis. As for c-Met activation, no difference was found between NK2 and WT livers. CONCLUSION Overexpression of NK2 acts as an antagonist of HGF and promotes liver fibrosis in CCl4-induced chronic liver injury.
Collapse
Affiliation(s)
- Satoshi Hagiwara
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 2007; 111:1227-33. [PMID: 17962514 DOI: 10.1182/blood-2007-09-113837] [Citation(s) in RCA: 635] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Platelets, in addition to their function in hemostasis, play an important role in wound healing and tumor growth. Because platelets contain angiogenesis stimulators and inhibitors, the mechanisms by which platelets regulate angiogenesis remain unclear. As platelets adhere to activated endothelium, their action can enhance or inhibit local angiogenesis. We therefore suspected a higher organization of angiogenesis regulators in platelets. Using double immunofluorescence and immunoelectron microscopy, we show that pro- and antiangiogenic proteins are separated in distinct subpopulations of alpha-granules in platelets and megakaryocytes. Double immunofluorescence labeling of vascular endothelial growth factor (VEGF) (an angiogenesis stimulator) and endostatin (an angiogenesis inhibitor), or for thrombospondin-1 and basic fibroblast growth factor, confirms the segregation of stimulators and inhibitors into separate and distinct alpha-granules. These observations motivated the hypothesis that distinct populations of alpha-granules could undergo selective release. The treatment of human platelets with a selective PAR4 agonist (AYPGKF-NH(2)) resulted in release of endostatin-containing granules, but not VEGF-containing granules, whereas the selective PAR1 agonist (TFLLR-NH(2)) liberated VEGF, but not endostatin-containing granules. In conclusion, the separate packaging of angiogenesis regulators into pharmacologically and morphologically distinct populations of alpha-granules in megakaryocytes and platelets may provide a mechanism by which platelets can locally stimulate or inhibit angiogenesis.
Collapse
|
49
|
Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 2007. [PMID: 17962514 DOI: 10.1182/blood-2007-09-113837.an] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Platelets, in addition to their function in hemostasis, play an important role in wound healing and tumor growth. Because platelets contain angiogenesis stimulators and inhibitors, the mechanisms by which platelets regulate angiogenesis remain unclear. As platelets adhere to activated endothelium, their action can enhance or inhibit local angiogenesis. We therefore suspected a higher organization of angiogenesis regulators in platelets. Using double immunofluorescence and immunoelectron microscopy, we show that pro- and antiangiogenic proteins are separated in distinct subpopulations of alpha-granules in platelets and megakaryocytes. Double immunofluorescence labeling of vascular endothelial growth factor (VEGF) (an angiogenesis stimulator) and endostatin (an angiogenesis inhibitor), or for thrombospondin-1 and basic fibroblast growth factor, confirms the segregation of stimulators and inhibitors into separate and distinct alpha-granules. These observations motivated the hypothesis that distinct populations of alpha-granules could undergo selective release. The treatment of human platelets with a selective PAR4 agonist (AYPGKF-NH(2)) resulted in release of endostatin-containing granules, but not VEGF-containing granules, whereas the selective PAR1 agonist (TFLLR-NH(2)) liberated VEGF, but not endostatin-containing granules. In conclusion, the separate packaging of angiogenesis regulators into pharmacologically and morphologically distinct populations of alpha-granules in megakaryocytes and platelets may provide a mechanism by which platelets can locally stimulate or inhibit angiogenesis.
Collapse
|
50
|
Fausto N, Mead JE, Gruppuso PA, Castilla A, Jakowlew SB. Effects of TGF-beta s in the liver: cell proliferation and fibrogenesis. CIBA FOUNDATION SYMPOSIUM 2007; 157:165-74; discussion 174-7. [PMID: 1649033 DOI: 10.1002/9780470514061.ch11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
TGF-beta 1 is a potent inhibitor of hepatocyte proliferation in vivo and in culture and an inducer of fibrogenesis. It is produced by non-parenchymal cells in normal, regenerating, neoplastic and pre-neoplastic liver. TGF-beta 2 and beta 3 are also found in liver non-parenchymal cells and the amounts of their mRNAs increase during liver regeneration. TGF-beta 2 has similar effects to TGF-beta 1. Membranes from normal adult rat liver bind TGF-beta 1 with kinetics consistent with the presence of a single high affinity binding site; membranes from livers that have been regenerating for 12-72 hours show high affinity binding sites not detected in livers of normal or sham-operated rats. Affinity labelling of membranes from normal and regenerating liver shows two receptor proteins with Mr 85,000 and 65,000. In contrast, a prominent band corresponding to a binding protein of Mr 280,000 is detected in membrane preparations of cultured liver epithelial cells. Although modulation of TGF-beta 1 receptors occurs during liver regeneration, it has not been possible to determine which receptor is responsible for the TGF-beta 1 effects in hepatocytes. Other studies have demonstrated a significant correlation between TGF-beta 1 mRNA expression and various indicators of fibrogenesis in patients with chronic liver disease. Thus in animals and humans TGF-beta 1 appears to play a major role in the pathogenesis of fibrosis in chronic liver disease.
Collapse
Affiliation(s)
- N Fausto
- Department of Pathology, Brown University, Providence, RI 02912
| | | | | | | | | |
Collapse
|