1
|
Sule RO, Morisseau C, Yang J, Hammock BD, Gomes AV. Triazine herbicide prometryn alters epoxide hydrolase activity and increases cytochrome P450 metabolites in murine livers via lipidomic profiling. Sci Rep 2024; 14:19135. [PMID: 39160161 PMCID: PMC11333623 DOI: 10.1038/s41598-024-69557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Oxylipins are a group of bioactive fatty acid metabolites generated via enzymatic oxygenation. They are notably involved in inflammation, pain, vascular tone, hemostasis, thrombosis, immunity, and coagulation. Oxylipins have become the focus of therapeutic intervention since they are implicated in many conditions, such as nonalcoholic fatty liver disease, cardiovascular disease, and aging. The liver plays a crucial role in lipid metabolism and distribution throughout the organism. Long-term exposure to pesticides is suspected to contribute to hepatic carcinogenesis via notable disruption of lipid metabolism. Prometryn is a methylthio-s-triazine herbicide used to control the growth of annual broadleaf and grass weeds in many cultivated plants. The amounts of prometryn documented in the environment, mainly waters, soil and plants used for human and domestic consumption are significantly high. Previous research revealed that prometryn decreased liver development during zebrafish embryogenesis. To understand the mechanisms by which prometryn could induce hepatotoxicity, the effect of prometryn (185 mg/kg every 48 h for seven days) was investigated on hepatic and plasma oxylipin levels in mice. Using an unbiased LC-MS/MS-based lipidomics approach, prometryn was found to alter oxylipins metabolites that are mainly derived from cytochrome P450 (CYP) and lipoxygenase (LOX) in both mice liver and plasma. Lipidomic analysis revealed that the hepatotoxic effects of prometryn are associated with increased epoxide hydrolase (EH) products, increased sEH and mEH enzymatic activities, and induction of oxidative stress. Furthermore, 9-HODE and 13-HODE levels were significantly increased in prometryn treated mice liver, suggesting increased levels of oxidation products. Together, these results support that sEH may be an important component of pesticide-induced liver toxicity.
Collapse
Affiliation(s)
- Rasheed O Sule
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Maldonado A, Nowicki J, Pratchett MS, Schlenk D. Differences in diet and biotransformation enzymes of coral reef butterflyfishes between Australia and Hawaii. Comp Biochem Physiol C Toxicol Pharmacol 2019; 216:1-9. [PMID: 30368017 DOI: 10.1016/j.cbpc.2018.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/21/2018] [Indexed: 11/29/2022]
Abstract
Many reef fishes are capable of feeding on chemically-defended benthic prey, such as soft (alcyonarian) corals; however, little is known about the molecular mechanisms that underpin allelochemical biotransformation and detoxification. Butterflyfishes (Chaetodon: Chaetdontidae) are a useful group for comparatively exploring links between biotransformation enzymes and diet, because they commonly feed on chemically defended prey. Moreover, diets of some species vary among geographic locations. This study compares gene expression, protein and enzymatic activity of key detoxification enzymes (cytochrome P450 (CYP) 2, 3, epoxide hydrolase, glutathione transferase and UDP-glucuronosyltransferase) in livers of four coral-feeding butterflyfish species between Australia and Hawaii, where these fishes differ in diet composition. For C. kleinii, C. auriga, and C. unimaculatus, we found higher CYP2 and CYP3 levels were linked to more allelochemically rich diets in Australia relative to Hawaii. For C. lunulatus from Hawaii CYP2 and CYP3 levels were 1 to 20-fold higher than C. lunulatus from Australia, possibly due to their predominant prey in Hawaii (Porities spp.) being richer in allelochemicals. UGT, GST and epoxide hydrolase varied between species and location and did not correspond to any specific dietary preference or location. Higher levels of CYP2 and CYP3A isozymes in species that feed on allelochemically-rich prey suggest that these biotransformation enzymes may be involved in detoxification of coral dietary allelochemicals in butterflyfishes.
Collapse
Affiliation(s)
- Aileen Maldonado
- Department of Environmental Science, University of California, Riverside, CA, 2258 Geology, 900 University Ave., Riverside, CA 92521, USA.
| | - Jessica Nowicki
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Morgan S Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia.
| | - Daniel Schlenk
- Department of Environmental Science, University of California, Riverside, CA, 2258 Geology, 900 University Ave., Riverside, CA 92521, USA.
| |
Collapse
|
3
|
Flavouring Group Evaluation 31 (FGE.31) - One Epoxide from Chemical Group 32 - Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
4
|
Morisseau C, Beetham JK, Pinot F, Debernard S, Newman JW, Hammock BD. Cress and potato soluble epoxide hydrolases: purification, biochemical characterization, and comparison to mammalian enzymes. Arch Biochem Biophys 2000; 378:321-32. [PMID: 10860549 DOI: 10.1006/abbi.2000.1810] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Affinity chromatographic methods were developed for the one-step purification to homogeneity of recombinant soluble epoxide hydrolases (sEHs) from cress and potato. The enzymes are monomeric, with masses of 36 and 39 kDa and pI values of 4.5 and 5.0, respectively. In spite of a large difference in sequence, the two plant enzymes have properties of inhibition and substrate selectivity which differ only slightly from mammalian sEHs. Whereas mammalian sEHs are highly selective for trans- versus cis-substituted stilbene oxide and 1,3-diphenylpropene oxide (DPPO), plant sEHs exhibit far greater selectivity for trans- versus cis-stilbene oxide, but little to no selectivity for DPPO isomers. The isolation of a covalently linked plant sEH-substrate complex indicated that the plant and mammalian sEHs have a similar mechanism of action. We hypothesize an in vivo role for plant sEH in cutin biosynthesis, based on relatively high plant sEH activity on epoxystearate to form a cutin precursor, 9,10-dihydroxystearate. Plant sEHs display a high thermal stability relative to mammalian sEHs. This stability and their high enantioselectivity for a single substrate suggest that their potential as biocatalysts for the preparation of enantiopure epoxides should be evaluated.
Collapse
Affiliation(s)
- C Morisseau
- Department of Entomology, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
5
|
Jones CR, Lubet RA, Henneman JR, Nims RW. Dose-response relationships for cytochrome P450 induction by phenobarbital in the cotton rat (Sigmodon hispidus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 121:197-203. [PMID: 9972461 DOI: 10.1016/s0742-8413(98)10040-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The induction of a hepatic pleiotropic response, including increase in liver/body weight ratio, induction of hepatic CYP2B and CYP3A protein and catalytic activity, and hepatic microsomal epoxide hydration activity, was investigated in male cotton rats (Sigmodon hispidus) administered graded dietary concentrations (0-1500 ppm) of phenobarbital (PB) for 14 days. A dose-dependent induction of each endpoint was observed, although plateaus in the various dose-response curves were not obtained, and ED50 values (PB concentrations associated with half-maximal responses) for the various endpoints were not able to be calculated. A maximal 1.31-fold increase, compared to the control value, in live/body weight ratio was observed, while microsomal epoxide hydration activity was increased as much as 3.6-fold by PB administration. Pentoxy- and benzyloxyresorufin O-dealkylation and testosterone 16 beta-hydroxylation activities (considered to be relatively selective for CYP2B in the Norway rat (Rattus norvegicus)), were induced maximally less than five-fold. Testosterone 6 beta-hydroxylation (considered to be relatively selective for CYP3A in R. norvegicus) was induced maximally less than two-fold. Maximal induction of 7-ethoxy-4-trifluoromethyl-coumarin O-deethylation was 18-fold, compared to the control rate. Western blotting studies indicated that hepatic microsomal proteins immunoreactive with polyclonal antisera to R. norvegicus CYP2B1 or CYP3A1 were induced, in a dose-responsive manner, by PB in the cotton rats. These results indicate that the cotton rat responds to PB treatment with a coordinate pleiotropic response similar to that displayed by R. norvegicus, although the substrate specificity of the induced proteins appears to differ between the two rodent species.
Collapse
Affiliation(s)
- C R Jones
- Laboratory of Neurosciences, National Institute on Aging, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
6
|
Mésange F, Sebbar M, Kedjouar B, Capdevielle J, Guillemot JC, Ferrara P, Bayard F, Delarue F, Faye JC, Poirot M. Microsomal epoxide hydrolase of rat liver is a subunit of theanti-oestrogen-binding site. Biochem J 1998; 334 ( Pt 1):107-12. [PMID: 9693109 PMCID: PMC1219668 DOI: 10.1042/bj3340107] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A tritiated photoaffinity labelling analogue of tamoxifen, [(2-azido-4-benzyl)-phenoxy]-N-ethylmorpholine (azido-MBPE), was used to identify the anti-oestrogen-binding site (AEBS) in rat liver tissue [Poirot, Chailleux, Fargin, Bayard and Faye (1990) J. Biol. Chem. 265, 17039-17043]. UV irradiation of rat liver microsomal proteins incubated with tritiated azido-MBPE led to the characterization of two photolabelled proteins of molecular masses 40 and 50 kDa. The amino acid sequences of proteolytic products from the 50 kDa protein were identical with those from rat microsomal epoxide hydrolase (mEH). Treatment of hepatocytes with anti-sense mRNA directed against mEH abolished AEBS in these cells. In addition we found that tamoxifen and N-morpholino-2-[4-(phenylmethyl)phenoxy]ethanamine, a selective ligand of AEBS, were potent inhibitors of the catalytic hydration of styrene oxide by mEH. However, functional overexpression of the human mEH did not significantly modify the binding capacity of [3H]tamoxifen. Taken together, these results suggest that the 50 kDa protein, mEH, is necessary but not sufficient to reconstitute AEBS.
Collapse
Affiliation(s)
- F Mésange
- INSERM U397, Institut Louis Bugnard, CHU Rangueil, 31403 Toulouse Cedex 4, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gorbunova M, Gerus I, Kukhar V. The interaction of 4-ethoxy-1,1,1-trifluoro-3-buten-2-one with C-nucleophiles — organo-magnesium and -zinc compounds. J Fluor Chem 1993. [DOI: 10.1016/s0022-1139(00)80468-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Winder BS, Nourooz-Zadeh J, Isseroff RR, Moghaddam MF, Hammock BD. Properties of enzymes hydrating epoxides in human epidermis and liver. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1993; 25:1291-301. [PMID: 8224376 DOI: 10.1016/0020-711x(93)90081-o] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. Cytosolic and microsomal epoxide hydrolyzing enzymes of human skin and liver were compared and found to be different. 2. Epidermal and hepatic cytosolic epoxide hydrolases were different in terms of substrate selectivity, pI, inhibitor sensitivity and affinity chromatographic properties. 3. Microsomal epoxide hydrolases had the same pIs but different substrate selectivities. 4. Cytosolic epoxide hydrolase from adults had higher specific activity than that from neonates or cultured epidermis, but lower activity than adult hepatic enzymes. 5. The sizes of cytosolic epoxide hydrolase from epidermis and liver were similar and lower than that from cultured fibroblasts. 6. Cytosolic epoxide hydrolase from all sources shared similar antigenic determinants.
Collapse
Affiliation(s)
- B S Winder
- University College and Middlesex School of Medicine, London, U.K
| | | | | | | | | |
Collapse
|
9
|
Nourooz-Zadeh J, Winder BS, Dietze EC, Giometti CS, Tollaksen SL, Hammock BD. Biochemical characterization of a variant form of cytosolic epoxide hydrolase induced by parental exposure to N-ethyl-N-nitrosourea. ACTA ACUST UNITED AC 1992; 103:207-14. [PMID: 1360372 DOI: 10.1016/0742-8413(92)90253-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. ENU4 mice express a protein variant originally detected in a CBF1 mouse sired by a C57BL/6 mouse exposed to N-ethyl-N-nitrosourea. It appears to be an isoelectric point variant of cytosolic epoxide hydrolase. Affinity purified cytosolic epoxide hydrolase from ENU4 mice has a pI of approximately 5.1 compared to 5.6 in other mouse strains. 2. Clofibrate induced cytosolic epoxide hydrolase to similar levels in five strains of mice. However, CBF1 and ENU4 mice were more sensitive to the induction of palmitoyl CoA oxidase activity. 3. Except for isoelectric point, the physico- and immunochemical properties of cytosolic epoxide hydrolase from ENU4 mice were similar to those of the other mouse strains. Substrate specificities for five of six substrates tested were also similar.
Collapse
Affiliation(s)
- J Nourooz-Zadeh
- Department of Entomology, University of California, Davis 95616
| | | | | | | | | | | |
Collapse
|
10
|
Horsfield BP, Reidy GF, Murray M. Studies on the developmental and adrenal regulation of cytosolic and microsomal epoxide hydrolase activities in rat liver. Biochem Pharmacol 1992; 44:815-8. [PMID: 1510727 DOI: 10.1016/0006-2952(92)90420-n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present study was undertaken to ascertain developmental profiles of microsomal epoxide hydrolase (mEH) and cytosolic epoxide hydrolase (cEH) enzyme activities in rat liver. During development, mEH activity reached an optimum by 6 weeks of age (63 nmol/min/mg protein). Activities decreased thereafter in both sexes although in adult male liver the activity was twice that measured in adult female liver. Thus, the importance of pituitary maturation was suggested from these findings. Since glucocorticoids have been implicated in the regulation of mEH gene expression the effect of adrenalectomy on mEH activity was investigated in adult male rat liver. The procedure increased mEH activity almost two-fold and the increase was reversed by dexamethasone, but not deoxycorticosterone, administration. With respect to hepatic cEH activity, the developmental profiles indicated that enzyme activity was greatest in rats at 1 week of age (12-15 nmol/min/mg protein) and very little activity was detected beyond 4 weeks of age (approximately 5 nmol/min/mg protein); sex differences in cEH activity were not apparent at any age. Thus, the pituitary appears to be important in the developmental induction of mEH but not cEH. Glucocorticoids appear to provide the major hormonal influence on mEH expression. Thus, the hypothalamus-pituitary-adrenal axis is involved in the regulation of mEH but the regulation of the cEH enzyme remains unclear.
Collapse
Affiliation(s)
- B P Horsfield
- Department of Medicine, University of Sydney, Westmead Hospital, Australia
| | | | | |
Collapse
|
11
|
Nourooz-Zadeh J, Uematsu T, Borhan B, Kurth MJ, Hammock BD. Characterization of the cytosolic epoxide hydrolase-catalyzed hydration products from 9,10:12,13-diepoxy stearic esters. Arch Biochem Biophys 1992; 294:675-85. [PMID: 1567223 DOI: 10.1016/0003-9861(92)90741-e] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In a previous report we hypothesized that diepoxy fatty methylesters are metabolized to tetraols and/or tetrahydrofurandiols through an epoxydiol intermediate. In this study, p-nitrophenyldiepoxystearate was incubated with affinity-purified liver cytosolic epoxide hydrolase and product formation was monitored by reverse phase HPLC. The diepoxystearate was converted to the corresponding 9,10,12,13-tetraol using a concentrated enzyme (greater than or equal to 100 micrograms/ml). When lower concentration of the enzyme was used, simultaneous elevation of 9,10-epoxy-12,13-dihydroxy and 12,13-epoxy-9,10-dihydroxystearate along with disappearance of tetraol was observed. The epoxydiols were intermediates which could be isolated and cyclized quantitatively to form two chromatographically distinct tetrahydrofurandiols (A with a low Rf value and B with a high Rf value on TLC). Gas chromatographic analysis on a cyclodex-beta capillary column revealed that each compound was composed of two different isomers. The structure of these isomers was 9(12)-oxy-10,13-dihydroxystearate and 10(13)-oxy-9,12-dihydroxystearate using mass spectrometry. Stereochemistry of the aliphatic chain across the tetrahydrofuran moiety was determined by nuclear Overhauser effect spectroscopy. Chemically and enzymatically generated tetrahydrofurandiols had similar retention time on GC and HPLC, and identical mass spectra using the electron impact mode.
Collapse
Affiliation(s)
- J Nourooz-Zadeh
- Department of Entomology, University of California, Davis 95616
| | | | | | | | | |
Collapse
|
12
|
Arand M, Knehr M, Thomas H, Zeller HD, Oesch F. An impaired peroxisomal targeting sequence leading to an unusual bicompartmental distribution of cytosolic epoxide hydrolase. FEBS Lett 1991; 294:19-22. [PMID: 1743286 DOI: 10.1016/0014-5793(91)81333-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To gain an understanding of the mechanism by which the subcellular distribution of cytosolic epoxide hydrolase (cEH) is directed, we have analyzed the carboxy terminal region of rat liver cEH by means of cDNA cloning to define the structure of its possible peroxisomal targeting sequence (PTS). Purified cEH was subjected to peptide analysis following endoproteinase Glu-C digestion and HPLC-separation of the fragments. The obtained sequence information was used to perform PCR experiments resulting in the isolation of a 680 bp cDNA clone encoding the carboxy terminus of cEH. The deduced amino acid sequence displays a terminal tripeptide Ser-Lys-Ile which is highly homologous to the PTS (Ser-Lys-Leu) found in other peroxisomal enzymes. This slight difference appears to be sufficient to convert the signal sequence into an impaired and therefore ambivalent PTS, directing the enzyme partly to the peroxisomes and allowing part to reside in the cytosol.
Collapse
Affiliation(s)
- M Arand
- Institute of Toxicology, University of Mainz, Germany
| | | | | | | | | |
Collapse
|
13
|
Moody DE, Narloch BA, Shull LR, Hammock BD. The effect of structurally divergent herbicides on mouse liver xenobiotic-metabolizing enzymes (P-450-dependent mono-oxygenases, epoxide hydrolases and glutathione S-transferases) and carnitine acetyltransferase. Toxicol Lett 1991; 59:175-85. [PMID: 1755024 DOI: 10.1016/0378-4274(91)90070-m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Male mice were treated with structurally diverse herbicides to study their effect on liver xenobiotic-metabolizing enzymes. Chlorfiurecol, trifluralin, alachlor, propham, MCPP and 2,4-DP caused increases in phase I (cytochrome P-450, ethoxycoumarin O-deethylase, and/or aminopyrine N-demethylase) and phase II (microsomal epoxide hydrolase and cytosolic glutathione S-transferase) activities. MCPP and 2,4-DP also increased cytosolic epoxide hydrolase and carnitine acetyltransferase activities suggestive of peroxisome proliferation. Benthiocarb and molinate increased only some phase II enzyme activities. Dicamba, at the dose employed, caused mortality and decreases in some of the enzymes monitored. Most of the herbicides tested induced xenobiotic-metabolizing enzyme activities, the pattern of induction being dependent on herbicide structure.
Collapse
Affiliation(s)
- D E Moody
- Department of Entomology, University of California, Davis
| | | | | | | |
Collapse
|
14
|
Krämer A, Frank H, Setiabudi F, Oesch F, Glatt H. Influence of the level of cytosolic epoxide hydrolase on the induction of sister chromatid exchanges by trans-beta-ethylstyrene 7,8-oxide in human lymphocytes. Biochem Pharmacol 1991; 42:2147-52. [PMID: 1958232 DOI: 10.1016/0006-2952(91)90350-e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
trans-beta-Ethylstyrene 7,8-oxide, a substrate of cytosolic epoxide hydrolase, and 4-fluorochalcone oxide, an inhibitor of this enzyme, were investigated on induction of sister chromatid exchanges (SCE) in human lymphocytes. Both epoxides enhanced the frequency of SCE. 4-Fluorochalcone oxide at low concentration (2.5 microM) inhibited cytosolic epoxide hydrolase activity towards trans-beta-ethylstyrene 7,8-oxide in lymphocytes by 74% and had no effect on glutathione transferase activity using this substrate. At this concentration it did not induce SCE itself, but it potentiated the effect of trans-beta-ethylstyrene 7,8-oxide several fold. In lymphocytes from different subjects, the number of SCE induced by a low concentration of trans-beta-ethylstyrene 7,8-oxide correlated negatively with the individual cytosolic epoxide hydrolase activity (r = -0.72; -0.73 in two series of experiments). The number of SCE induced by a high concentration of trans-beta-ethylstyrene 7,8-oxide did not correlate with cytosolic epoxide hydrolase activity (r = 0.004; -0.24), but a negative correlation was found with glutathione transferase activity (r = -0.50). This finding is consistent with the results of biochemical studies in lymphocytes in which we determined the relative contribution of cytosolic epoxide hydrolase and glutathione transferase to the metabolism of trans-beta-ethylstyrene 7,8-oxide at varying substrate concentrations. The study demonstrates that the level of genotoxic effects induced in human lymphocytes is influenced by the individual level of detoxifying enzymes. At low concentrations, cytosolic epoxide hydrolase was more important than glutathione transferase activity.
Collapse
Affiliation(s)
- A Krämer
- Institute of Toxicology, University of Mainz, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
15
|
Moody DE, Montgomery KA, Ashour MB, Hammock BD. Effects of environmentally encountered epoxides on mouse liver epoxide-metabolizing enzymes. Biochem Pharmacol 1991; 41:1625-37. [PMID: 2043152 DOI: 10.1016/0006-2952(91)90163-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Male mice were treated (i.p.) for 3 days with 15 different environmentally encountered epoxides, and the effects of these compounds on liver microsomal and cytosolic epoxide hydrolase (mEH and cEH), glutathione S-transferase (mGST and cGST) and carboxylesterase (mCE) activities were determined. The epoxides included the pesticides: heptachlor epoxide, dieldrin, tridiphane, and juvenoid R-20458; the natural products: disparlure, limonin, nomilin, and epoxymethyloleate; the endogenous steroids: lanosterol epoxide, cholesterol-alpha-epoxide, and progesterone epoxide; and the industrial or synthetic epoxides: epichlorohydrin, araldite, trans-stilbene oxide, and 4'-phenylchalcone oxide. The pesticide epoxides were the most effective inducers of liver weight, microsomal protein, and the enzyme activities measured, with mEH and cEH activities towards cis-stilbene oxide (mEHcso and cEHcso), cGST activities towards four of five substrates, and mCE towards clofibrate (mCEclof) and p-nitrophenylacetate (mCEpna) increased following treatment with most of the pesticides. The synthetic epoxides increased some of the same activities, while the natural products, except for increases in cGST activities, and endogenous steroid epoxides were generally not inductive. cEH activity towards trans-stilbene oxide (cEHtso) was increased only following treatment with the peroxisome proliferator, tridiphane, but decreased following treatment with several of the epoxides, while microsomal cholesterol epoxide hydrolase (mEHchol) was increased only moderately by disparlure. Microsomes could effectively conjugate glutathione to chlorodinitrobenzene (mGSTcdnb) and cis-stilbene oxide (mGSTcso). These two activities were differentially induced by a few of the epoxides, suggesting that they may be selective substrates for different isozymes of mGST. Correlation coefficients were determined for the relative response of liver weight, subfraction protein, and enzyme activities. A relatively high correlation was found between the response of liver weight and cytosolic hydrolysis of trans-stilbene oxide (r = 0.73) and cis-stilbene oxide (r = 0.62), and cytosolic glutathione conjugation of dichloronitrobenzene (r = 0.66) and trans-stilbene oxide (r = 0.75). In addition, relatively high correlations were found between the different cGST activities, in particular for dichloronitrobenzene with trans-stilbene oxide (r = 0.89). These studies show that there exists a wide variation in the response of xenobiotic-metabolizing enzymes to environmentally encountered epoxides and that a fairly strong correlation exists between the increases in liver size and increases in certain cytosolic enzyme activities; they also suggest further studies concerning the possibility of an additional isozyme of mGST.
Collapse
Affiliation(s)
- D E Moody
- Department of Entomology, University of California, Davis 95616
| | | | | | | |
Collapse
|
16
|
Zhang X, Archelas A, Méou A, Furstoss R. Microbiological Transformations. 21. An expedient route to both enantiomers of Marmin and Epoxyauraptens via microbiological dihydroxylation of 7-geranyloxycoumarin. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/s0957-4166(00)80044-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Qato MK, Reinmund SG, Guenthner TM. Production of monospecific antiserum to a cytosolic epoxide hydrolase from human liver. Biochem Pharmacol 1990; 39:293-300. [PMID: 2302254 DOI: 10.1016/0006-2952(90)90028-j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A method for the purification to apparent homogeneity of cytosolic trans-stilbene oxide hydrolase from human liver is presented. The method employed ion exchange and gel filtration chromatography. From 50 g of human liver, 4.9 mg of homogenous enzyme protein was obtained. Although the enzyme had lost much of its catalytic activity during purification, it was nevertheless suitable for the preparation of antibodies to the enzyme. Only one immunogenic species was present in the antigen preparation, but some antibodies that were cross-reactive to sites on catalase were present in the antiserum. These catalase-specific antibodies were removed by immunoaffinity chromatography, and an IgG fraction that is monospecific to the cytosolic epoxide hydrolase was obtained. The usefulness of antibodies to this enzyme in immunoblotting experiments, following either sodium dodecyl sulfate-polyacrylamide gel electrophoresis or isoelectric focussing, as well as in enzyme-linked immunosorbent assays, is demonstrated.
Collapse
Affiliation(s)
- M K Qato
- Department of Pharmacology, University of Illinois College of Medicine, Chicago 60612
| | | | | |
Collapse
|
18
|
Dietze EC, Magdalou J, Hammock BD. Human and murine cytosolic epoxide hydrolase: physical and structural properties. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1990; 22:461-70. [PMID: 2347424 DOI: 10.1016/0020-711x(90)90258-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
1. Human and murine liver cytosolic epoxide hydrolase (CEH) had an apparent Mw of 59,000 by SDS-PAGE. 2. Peptide maps of CNBr, trypsin and Staphylococcus aureus V8 digests, as well as amino acid analysis, showed that human and murine CEH were similar. Uninduced and clofibrate induced murine CEH appeared qualitatively identical. 3. The CEHs shared antigenic determinants as determined by Western blotting. 4. Circular dichroism spectra indicate that human CEH had 39% alpha-helix. Uninduced and clofibrate induced murine CEH had 38 and 35% alpha-helix, respectively.
Collapse
Affiliation(s)
- E C Dietze
- Department of Entomology, University of California, Davis 95616
| | | | | |
Collapse
|
19
|
Guenthner TM, Hjelle JT, Whalen R. Selective inhibition of cytosolic epoxide hydrolase activity in vitro by compounds that inhibit catalase. JOURNAL OF BIOCHEMICAL TOXICOLOGY 1989; 4:241-9. [PMID: 2634095 DOI: 10.1002/jbt.2570040407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability of a number of known inhibitors of catalase activity to affect cytosolic and microsomal epoxide hydrolase activities in vitro, measured as enzymatic trans-stilbene oxide hydrolysis and styrene oxide hydrolysis, respectively, was investigated. Catalase and cytosolic epoxide hydrolase activities are inhibited by hydroxylated metabolites of 2-amino-4,5-diphenylthiazole (DPT). The metabolite hydroxylated on the 4-phenyl ring (4OH-DPT) and the metabolite hydroxylated on both phenyl rings (4,5-DIOH-DPT) are potent inhibitors of both enzymes; the metabolite hydroxylated on the 5-phenyl ring (5OH-DPT) is less potent. Unmetabolized DPT has no effect on either enzyme. 4OH-DPT inhibits, but 5OH-DPT enhances, microsomal epoxide hydrolase activity. 4,5-DIOH-DPT and DPT have no effect on this enzyme. Other compounds that inhibit both catalase and cytosolic epoxide hydrolase activities, but do not inhibit microsomal epoxide hydrolase activity, are nordihydroguaiaretic acid and 2-aminothiazole. Microsomal epoxide hydrolase activity is enhanced by 2-aminothiazole and levamisole in vitro. Thus these inhibitors of catalase are selective epoxide hydrolase inhibitors in that they inhibit cytosolic epoxide hydrolase activity in vitro, but have either no effect on, or increase the activity of, microsomal epoxide hydrolase in vitro. Conversely, the selective cytosolic epoxide hydrolase inhibitors 4-phenylchalcone oxide and 4'-phenylchalcone oxide do not inhibit catalase activity, nor does trichloropropene oxide, a selective microsomal epoxide hydrolase inhibitor.
Collapse
Affiliation(s)
- T M Guenthner
- Department of Pharmacology, University of Illinois College of Medicine, Chicago 60612
| | | | | |
Collapse
|
20
|
Riley RJ, Maggs JL, Lambert C, Kitteringham NR, Park BK. An in vitro study of the microsomal metabolism and cellular toxicity of phenytoin, sorbinil and mianserin. Br J Clin Pharmacol 1988; 26:577-88. [PMID: 3207562 PMCID: PMC1386635 DOI: 10.1111/j.1365-2125.1988.tb05298.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
1. The cytotoxicity of metabolites generated from phenytoin, sorbinil and mianserin by human and mouse liver microsomes was assessed by co-incubation with human mononuclear leucocytes as target cells. Cytotoxicity was determined by trypan blue dye exclusion. 2. Phenytoin and sorbinil were metabolised by NADPH-dependent murine microsomal enzymes to cytotoxic metabolites. Cytotoxicity produced by both drugs was significantly enhanced by the epoxide hydrolase inhibitor trichloropropane oxide (TCPO). No significant cytotoxicity was observed in the presence of human liver microsomes. 3. Mianserin was metabolised by both human and mouse liver microsomes to a cytotoxin. Cytotoxicity was greater in the presence of human liver microsomes (13.7 +/- 2.2%; mean +/- s.d. for four livers, compared with 6.0 +/- 2.4%, mean +/- s.d., n = 4, with mouse liver microsomes), and was unaffected by pretreatment with TCPO. 4. Stable metabolites were quantified by radiometric high performance liquid chromatography. Phenytoin and sorbinil were metabolised to 5-(p-hydroxyphenyl)-5-phenyl-hydantoin (0.3-0.5% of incubated radioactivity) and 2-hydroxysorbinil (0.4-2.7% of incubated radioactivity), respectively, by both human and mouse liver microsomes. 5. Mianserin was metabolised to 8-hydroxymianserin and desmethylmianserin by both human and mouse liver microsomes. Desmethylmianserin was the major product in incubations with human liver microsomes (32.3 +/- 12%, mean +/- s.d. for four livers), whereas 8-hydroxymianserin was the predominant metabolite generated by mouse liver microsomes (25.9 +/- 1.5%, mean +/- s.d., n = 4). 6. Generation of electrophilic metabolites was assessed by determination of the amount of radiolabelled material which became irreversibly bound to protein. Only mouse liver microsomes activated phenytoin to a chemically reactive metabolite, whereas both mouse and human liver microsomes generated reactive metabolites from sorbinil and mianserin. 7. These studies show that drug cytotoxicity can be mediated by low concentrations (circa microM) of metabolites generated by NADPH-dependent hepatic microsomal enzymes; however demonstration of cytotoxicity in vitro has not been established as a means of predicting in vivo toxicity.
Collapse
Affiliation(s)
- R J Riley
- Department of Pharmacology and Therapeutics, University of Liverpool
| | | | | | | | | |
Collapse
|
21
|
Waechter F, Bentley P, Bieri F, Muakkassah-Kelly S, Stäubli W, Villermain M. Organ distribution of epoxide hydrolases in cytosolic and microsomal fractions of normal and nafenopin-treated male DBA/2 mice. Biochem Pharmacol 1988; 37:3897-903. [PMID: 3190736 DOI: 10.1016/0006-2952(88)90071-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Using trans-stilbene oxide and styrene oxide as substrates, epoxide hydrolase activities were measured in cytosolic and microsomal fractions from liver, kidney, heart, lung and testis of male DBA/2 mice. The activities towards these two substrates are remarkably organ specific: trans-stilbene oxide was most effectively hydrolyzed in subcellular fractions from liver, kidney and heart, whereas styrene oxide was predominantly hydrolyzed in those from liver, lung and testis. Immunoblotting experiments were performed with two polyclonal antibodies isolated from goat antisera. Using an anti-mouse liver cytosolic epoxide hydrolase antibody, the corresponding antigen protein was predominantly detected in both cytosolic and microsomal fractions from liver, kidney and heart. An anti-rat liver microsomal epoxide hydrolase antibody proved to be cross-reactive with the mouse enzyme and stained SDS-gels run with microsomal fractions from liver, lung and testis. The anti-mouse liver cytosolic epoxide hydrolase antibody precipitated cytosolic epoxide hydrolase activities from liver, kidney and heart cytosolic fractions. Dietary exposure to the hypolipidemic agent nafenopin (2000 ppm/10 days) caused an induction of trans-stilbene oxide hydrolase and styrene oxide hydrolase activities in cytosolic and microsomal liver fractions whereas, in the other organs, the same activities were unaffected by this treatment. This finding was in accordance with the increased amounts of antigen protein as detected with the antibodies in liver fractions from treated animals. The anti-mouse liver cytosolic epoxide hydrolase antibody was found to precipitate the whole trans-stilbene oxide hydrolase activity also from liver cytosol of nafenopin-treated mice, which indicates the presence of a single cytosolic epoxide hydrolase following induction.
Collapse
Affiliation(s)
- F Waechter
- Central Toxicology Unit, Ciba-Geigy Ltd, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Schladt L, Thomas H, Hartmann R, Oesch F. Human liver cytosolic epoxide hydrolases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 176:715-23. [PMID: 3169021 DOI: 10.1111/j.1432-1033.1988.tb14335.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human liver epoxide hydrolases were characterized by several criteria and a cytosolic cis-stilbene oxide hydrolase (cEHCSO) was purified to apparent homogeneity. Styrene oxide and five phenylmethyloxiranes were tested as substrates for human liver epoxide hydrolases. With microsomes activity was highest with trans-2-methylstyrene oxide, followed by styrene 7,8-oxide, cis-2-methylstyrene oxide, cis-1,2-dimethylstyrene oxide, trans-1,2-dimethylstyrene oxide and 2,2-dimethylstyrene oxide. With cytosol the same order was obtained for the first three substrates, whereas activity with 2,2-dimethylstyrene oxide was higher than with cis-1,2-dimethylstyrene oxide and no hydrolysis occurred with trans-1,2-dimethylstyrene oxide. Generally, activities were lower with cytosol than with microsomes. The isoelectric point for both microsomal styrene 7,8-oxide and cis-stilbene oxide hydrolyzing activity was 7.0, whereas cEHCSO had an isoelectric point of 9.2 and cytosolic trans-stilbene oxide hydrolase (cEHTSO) of 5.7. The cytosolic epoxide hydrolases could be separated by anion-exchange chromatography and gel filtration. The latter technique revealed a higher molecular mass for cEHCSO than for cEHTSO. Both cytosolic epoxide hydrolases showed higher activities at pH 7.4 than at pH 9.0, whereas the opposite was true for microsomal epoxide hydrolase. The effects of ethanol, methanol, tetrahydrofuran, acetonitrile, acetone and dimethylsulfoxide on microsomal epoxide hydrolase depended on the substrate tested, whereas both cytosolic enzymes were not at all, or only slightly, affected by these solvents. Effects of different enzyme modulators on microsomal epoxide hydrolase also depended on the substrates used. Trichloropropene oxide and styrene 7,8-oxide strongly inhibited cEHCSO whereas cEHTSO was moderately affected by these compounds. Immunochemical investigations revealed a close relationship between cEHCSO and rat liver microsomal, but not cytosolic, epoxide hydrolase. Interestingly, cEHTSO has no immunological relationship to rat microsomal, nor to rat cytosolic epoxide hydrolase. cEHTSO from human liver differed also from its counterpart in the rat in that it was only moderately affected by tetrahydrofuran, acetonitrile and trichloropropene oxide. Five steps were necessary to purify cEHCSO. The enzyme has a molecular mass (49 kDa) identical to that of rat liver microsomal epoxide hydrolase.
Collapse
Affiliation(s)
- L Schladt
- Institut für Toxikologie, Universität Mainz, Federal Republic of Germany
| | | | | | | |
Collapse
|
23
|
Abstract
Two convenient and sensitive continuous spectrophotometric assays for cytosolic epoxide hydrolase are described. The assays are based on the differences in the ultraviolet spectra of the epoxide substrates and their diol products. The hydrolysis of 1,2-epoxy-1-(p-nitrophenyl)pentane (ENP5) is accompanied by a decrease in absorbance at 302 nm, while the hydration of 1,2-epoxy-1-(2-quinolyl)pentane (EQU5) produces an increase in absorbance at 315.5 nm. The Km, Vmax values for ENP5 and EQU5 with purified mouse liver cytosolic epoxide hydrolase were 1.7 microM, 11,700 nmol/min/mg and 25 microM, 8300 nmol/min/mg, respectively. Both substrates are hydrolyzed significantly faster than trans-stilbene oxide, which is currently the most commonly used substrate for measuring cytosolic epoxide hydrolase activity. No spontaneous hydrolysis of the substrates is detectable under normal assay conditions. The assays are applicable to whole tissue homogenates as well as purified enzyme preparations. p-Nitrostyrene oxide and p-nitrophenyl glycidyl ether were also examined and found to be very poor substrates for cytosolic epoxide hydrolase from mouse liver.
Collapse
Affiliation(s)
- R N Wixtrom
- Department of Entomology, University of California, Davis 95616
| | | |
Collapse
|
24
|
Steinberg P, Schladt L, Dienes HP, Timms C, Oesch F. Microsomal and cytosolic epoxide hydrolases, the peroxisomal fatty acid beta-oxidation system and catalase. Activities, distribution and induction in rat liver parenchymal and non-parenchymal cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 176:39-45. [PMID: 3416872 DOI: 10.1111/j.1432-1033.1988.tb14248.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A number of structurally unrelated hypolipidaemic agents and certain phthalate-ester plasticizers induce hepatomegaly and proliferation of peroxisomes in rodent liver, but there is relatively limited data regarding the specific effects of these drugs on liver non-parenchymal cells. In the present study, liver parenchymal, Kupffer and endothelial cells from untreated and fenofibrate-fed rats were isolated and the activities of two enzymes associated with peroxisomes (catalase and the peroxisomal fatty acid beta-oxidation system) as well as cytosolic and microsomal epoxide hydrolase were measured. Microsomal epoxide hydrolase, cytosolic epoxide hydrolase and catalase activities were 7-12-fold higher in parenchymal cells than in Kupffer or endothelial cells from untreated rats; the peroxisomal fatty acid beta-oxidation activity was only detected in parenchymal cells. Fenofibrate increased catalase, cytosolic epoxide hydrolase and peroxisomal fatty acid beta-oxidation activities in parenchymal cells by about 1.5-, 3.5- and 20-fold, respectively. The induction of catalase (2-3-fold) and cytosolic epoxide hydrolase (3-5-fold) was also observed in Kupffer and endothelial cells; furthermore, a low peroxisomal fatty acid beta-oxidation activity was detected in endothelial cells. Morphological examination by electron microscopy showed that peroxisomes were confined to liver parenchymal cells in untreated animals, but could also be observed in endothelial cells after administration of fenofibrate.
Collapse
Affiliation(s)
- P Steinberg
- Institut für Toxikologie, Universität Mainz, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
25
|
Magdalou J, Hammock BD. 1,2-Epoxycycloalkanes: substrates and inhibitors of microsomal and cytosolic epoxide hydrolases in mouse liver. Biochem Pharmacol 1988; 37:2717-22. [PMID: 3395352 DOI: 10.1016/0006-2952(88)90033-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Six different 1,2-epoxycycloalkanes, whose rings were constituted of 5 to 12 carbon atoms, were tested as possible inhibitors of epoxide-metabolizing enzymes and substrates for the microsomal and cytosolic epoxide hydrolases (mEH, cEH) in mouse liver. The geometric configurations and the relative steric hindrances of these epoxides were estimated from their ease of hydrolysis in acidic conditions to the corresponding diols, their abilities to react with nitrobenzylpyridine, and the chemical shifts of the groups associated with the oxirane rings measured by proton and 13C-NMR. The cyclopentene, -hexene, -heptene, -octene and -decene oxides adopted mainly a cis-configuration. By contrast, cyclododecene oxide presented a trans-configuration. Steric hindrance increased with the size of the ring and was particularly strong when cyclooctene, -decene and -dodecene oxides were considered. With the exception of cyclohexene oxide, all the compounds were weak inhibitors of EH and glutathione S-transferase (GST) activities. Cyclohexene oxide exhibited a selective inhibition of the mEH with an I50 of 4.0.10(-6) M. As the size of the ring increased, inhibitory potency was gradually lost. The cEH and the GST activities were less sensitive to the inhibitory effects of these epoxides (I50, 1 mM or above). A marked difference between the substrate selectivities of mEH and cEH for these epoxides was observed. The mEH hydrated all of the cyclic epoxides, although some of them at a very low rate; the best substrate was the cycloheptene oxide (2.3 nmol/min/mg protein). On the other hand, cyclodecene oxide was a substrate of cEH, but no diol formation was detected when cyclopentene, -hexene and -dodecene oxides were incubated with cytosolic enzyme.
Collapse
Affiliation(s)
- J Magdalou
- Department of Entomology, University of California, Davis 95616
| | | |
Collapse
|
26
|
Abstract
Epoxide hydrolase activity is recovered in the high-speed supernatant fraction from the liver of all mammals so far examined, including man. For some as yet unexplained reason, the rat has a very low level of this activity, so that cytosolic epoxide hydrolase is generally studied in mice. This enzyme selectively hydrolyzes trans epoxides, thereby complementing the activity of microsomal epoxide hydrolase, for which cis epoxides are better substrates. Cytosolic epoxide hydrolase has been purified to homogeneity from the livers of mice, rabbits and humans. Certain of the physicochemical and enzymatic properties of the mouse enzyme have been thoroughly characterized. Neither the primary amino acid, cDNA nor gene sequences for this protein are yet known, but such characterization is presently in progress. Unlike microsomal epoxide hydrolase and most other enzymes involved in xenobiotic metabolism, cytosolic epoxide hydrolase is not induced by treatment of rodents with substances such as phenobarbital, 2-acetylaminofluorene, trans-stilbene oxide, or butylated hydroxyanisole. The only xenobiotics presently known to induce cytosolic epoxide hydrolase are substances which also cause peroxisome proliferation, e.g., clofibrate, nafenopin and phthalate esters. These and other observations indicate that this enzyme may actually be localized in peroxisomes in vivo and is recovered in the high-speed supernatant because of fragmentation of these fragile organelles during homogenization, i.e., recovery of this enzyme in the cytosolic fraction is an artefact. The functional significance of cytosolic epoxide hydrolase is still largely unknown. In addition to deactivating xenobiotic epoxides to which the organism is exposed directly or which are produced during xenobiotic metabolism, primarily by the cytochrome P-450 system, this enzyme may be involved in cellular defenses against oxidative stress.
Collapse
Affiliation(s)
- J Meijer
- Department of Biochemistry, Arrhenius Laboratory, University of Stockholm, Sweden
| | | |
Collapse
|
27
|
Magdalou J, Hammock BD. Metabolism of tridiphane (2-(3,5-dichlorophenyl)-2(2,2,2-trichloroethyl)oxirane) by hepatic epoxide hydrolases and glutathione S-transferases in mouse. Toxicol Appl Pharmacol 1987; 91:439-49. [PMID: 3424374 DOI: 10.1016/0041-008x(87)90065-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The transformation of the herbicide tridiphane (Tandem, Dowco 356, 2-(3,5-dichlorophenyl)-2(2,2,2-trichloroethyl)oxirane by the epoxide-metabolizing enzymes, epoxide hydrolases (EH) and glutathione S-transferases (GST), was investigated in mouse liver microsomes and cytosol. The microsomal EH catalyzed the formation of tridiphane diol. The production of this metabolite was prevented by cyclohexene oxide at 1 mM, a known inhibitor of microsomal EH. The structure of the diol was verified by comparison of retention time or Rf of the compound with those of an authentic standard using gas-liquid chromatography or thin-layer chromatography techniques. The diol formed a diester with 1-butane boronic acid or an aldehyde with lead tetraacetate. Mass spectral analysis supported the structural assignment. After optimization of the assay conditions, kinetic constants for the hydration of tridiphane by the microsomal EH were determined (Km = 65 microM and Vmax = 0.9 nmol/min/mg protein). Dietary exposure of mice to the hypolipidemic drug clofibrate at a dose of 0.5% (w/w) for 2 weeks increased by 173% the metabolism of tridiphane to tridiphane diol by the microsomal fraction. No diol could be detected following incubation of tridiphane with the cytosolic EH, even after induction by clofibrate. Tridiphane was also a substrate for GST, but administration of clofibrate did not change the specific activity for the formation of the glutathione conjugate. The herbicide was a rather weak inhibitor of the microsomal EH and the cytosolic GST activities measured with cis-stilbene oxide and trans-stilbene oxide as substrates with I50's of 3.0 x 10(-5) and 1.8 x 10(-4)M, respectively. Tridiphane diol was a poor inhibitor of the enzymes studied, and the glutathione conjugate of tridiphane caused marked inhibition of only the GST activity (I50, 2.0 x 10(-5)M). By contrast the activity of cytosolic EH (trans-stilbene oxide) was relatively insensitive to the addition of tridiphane or of tridiphane metabolites.
Collapse
Affiliation(s)
- J Magdalou
- Department of Entomology, University of California, Davis 95616
| | | |
Collapse
|
28
|
Moody DE, Hammock BD. Purification of microsomal epoxide hydrolase from liver of rhesus monkey: partial separation of cis- and trans-stilbene oxide hydrolase. Arch Biochem Biophys 1987; 258:156-66. [PMID: 3310896 DOI: 10.1016/0003-9861(87)90332-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Solubilized rhesus monkey liver microsomes were used as the starting material for the purification of epoxide (cis-stilbene oxide) hydrolase. Successive chromatography over DEAE-Sephacel followed by CM-cellulose resulted in two peaks of activity, CM A and CM B. Passage of these two eluates over separate hydroxyapatite columns resulted in two peaks of activity from CM A, HA A1, and HA A2, and one peak from CM B and HA B, with respective recoveries of 1, 7, and 0.2% of cis-stilbene oxide hydrolase activities. A similar recovery was found for benzo[a]pyrene-4,5-oxide hydrolase, while trans-stilbene oxide hydrolase activity coeluted only in HA A2. Fraction HA A1 was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunoblots of the three eluates and solubilized microsomes incubated with anti-HA A1 demonstrated a single band at 49 kDa in each fraction. The three eluates were differentially affected by the inhibitors of epoxide hydrolase, trichloropropene oxide and 4-phenylchalcone oxide, and addition of Lubrol PX and phospholipid. Immunoprecipitation of HA A2 resulted in coprecipitation of cis- and trans-stilbene oxide hydrolase activity. Upon immunoprecipitation of solubilized microsomes, all the cis-stilbene oxide and benzo[a]pyrene-4,5-oxide, but only 50-60% of trans-stilbene oxide hydrolase activity was precipitated. These studies support findings with other species that (i) an immunochemically distinct cytosolic-like epoxide hydrolase exists in microsomes, and (ii) microsomal epoxide hydrolase activity can be separated during ion-exchange chromatography giving proteins with similar molecular weights and immunochemical cross-reactivity. The precipitation of cis- and trans-stilbene oxide hydrolase activity in eluate HA A2 provides convincing evidence that these isozymes are not structurally identical.
Collapse
Affiliation(s)
- D E Moody
- Department of Entomology, University of California, Davis 95616
| | | |
Collapse
|
29
|
Meijer J, Lundqvist G, DePierre JW. Comparison of the sex and subcellular distributions, catalytic and immunochemical reactivities of hepatic epoxide hydrolases in seven mammalian species. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 167:269-79. [PMID: 3113952 DOI: 10.1111/j.1432-1033.1987.tb13333.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sex and species differences in hepatic epoxide hydrolase activities towards cis- and trans-stilbene oxide were examined in common laboratory animals, as well as in monkey and man. In general trans-stilbene oxide was found to be a good substrate for epoxide hydrolase activity in cytosolic fractions, whereas the cis isomer was selectively hydrated by the microsomal fraction (with the exception of man, where the cytosol also hydrated this isomer efficiently). The specific cytosolic epoxide hydrolase activity was highest in mouse, followed by hamster and rabbit. Epoxide hydrolase activity in the crude 'mitochondrial' fraction towards trans-stilbene oxide was also highest in mouse and low in all other species examined. Microsomal epoxide hydrolase activity was highest in monkey, followed by guinea pig, human and rabbit, which all had similar activities. Sex differences were generally small, but where significant, male animals had higher catalytic activities than females of the same species in most cases. Antibodies raised against microsomal epoxide hydrolase purified from rat liver reacted with microsomes from all species investigated, indicating structural conservation of this protein. Antibodies directed towards cytosolic epoxide hydrolase purified from mouse liver reacted only with liver cytosol from mouse and hamster and with the 'mitochondrial' fraction from mouse in immunodiffusion experiments. Immunoblotting also revealed reaction with rat liver cytosol. The cytosolic and 'mitochondrial' epoxide hydrolases in all three mouse strains and in both sexes for each strain were immunochemically identical. The anomalies in human liver epoxide hydrolase activities observed here indicate that no single common laboratory animal is a good model for man with regard to these activities.
Collapse
|
30
|
Schladt L, Hartmann R, Timms C, Strolin-Benedetti M, Dostert P, Wörner W, Oesch F. Concomitant induction of cytosolic but not microsomal epoxide hydrolase with peroxisomal beta-oxidation by various hypolipidemic compounds. Biochem Pharmacol 1987; 36:345-51. [PMID: 2880593 DOI: 10.1016/0006-2952(87)90292-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effects of two cholesterol-lowering (probucol and 1-benzyl-imidazole), three triglyceride- and cholesterol-lowering (clofibrate, tiadenol and fenofibrate) and one triglyceride-lowering (acetylsalicylic acid) compounds on the specific activities of two lipid-metabolizing enzymes (cyanide-insensitive peroxisomal beta-oxidation and palmitoyl-CoA hydrolase) and two xenobiotic metabolizing enzymes (cytosolic (cEH) and microsomal epoxide hydrolase (mEHb] from the livers of male Fischer F-344 rats were investigated. With the exception of probucol and acetylsalicylic acid, all compounds tested caused a dose-dependent hepatomegaly. Taken on a weight basis fenofibrate was the most effective inducer, causing a 20-fold induction of peroxisomal beta-oxidation, a 13-fold induction of cEH activity and a 16-fold induction of palmitoyl-CoA hydrolase activity. The other compounds with triglyceride-lowering activity also induced cEH as well as peroxisomal beta-oxidation and palmitoyl-CoA hydrolase activity. The potency of each individual drug was similar for induction of cEH activity as compared with that of peroxisomal beta-oxidation and palmitoyl-CoA hydrolase activity, but very dissimilar for mEHb, which upon treatment with any of the triglyceride-lowering compounds was either not or only minimally (less than 1.5-fold) induced. 1-Benzylimidazole possessing exclusively cholesterol-lowering activity increased mEHb much more than either cEH or peroxisomal beta-oxidation. The absence of an enhancement of cEH activity in in vitro studies confirmed that the increase in enzyme activity by the test compounds is not caused by activation. cEH activity was also induced in the kidney but only about 2-fold by fenofibrate, tiadenol and acetylsalicylic acid.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
31
|
Silva MH, Hammock BD. Affinity purification of cytosolic epoxide hydrolase from human, rhesus monkey, baboon, rabbit, rat and mouse liver. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1987; 87:95-102. [PMID: 3608436 DOI: 10.1016/0305-0491(87)90475-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An affinity purification system based on elution of cytosolic epoxide hydrolase from a methoxycitronellyl thiol ligand with 4-azidochalcone oxide was applied to a variety of samples including liver from human, monkey, baboon, rabbit, rat and mouse as well as mammary gland from mouse. Hepatic tissues yielded a major 58 kDa band on SDS-PAGE, but the system had to be modified slightly to remove a 33 kDa band for rat. All of the affinity purified hydrolases showed similar properties with regard to substrate selectivity, pH dependence and mobilities on SDS-PAGE.
Collapse
|
32
|
Glatt HR, Oesch F. Species differences in enzymes controlling reactive epoxides. ARCHIVES OF TOXICOLOGY. SUPPLEMENT. = ARCHIV FUR TOXIKOLOGIE. SUPPLEMENT 1987; 10:111-24. [PMID: 2437883 DOI: 10.1007/978-3-642-71617-1_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Activities of enzymes involved in the metabolic formation and catabolism of epoxides were determined in liver subcellular preparations from 11 mammalian species and various strains of mice. The most conspicuous finding was that the activities of the microsomal epoxide hydrolase were clearly lower in the mouse than in the other species. This invited the working hypothesis that epoxides may be involved in mouse liver carcinogenesis. The carcinogens may be metabolised themselves to reactive epoxides or they may modify the metabolism of epoxides formed from endogenous or other foreign compounds. To examine the former point, phenobarbital, DDT (1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane), lindane and benzo(a)pyrene were investigated for mutagenicity in Salmonella typhimurium using as the carcinogen-metabolising system subcellular liver preparations from animals in which these compounds efficiently induce liver tumours and from resistant animals. Phenobarbital, DDT and lindane were not mutagenic under any conditions, including those where microsomal epoxide hydrolase was also inhibited. However, a DDT metabolite, 1,1-bis(p-chlorophenyl)-2,2-dichloroethane was mutagenic in strain TA98, when norharman was added to the metabolising system, rat liver postmitochondrial fraction. Benzo(a)pyrene, which efficiently induces liver tumours in male but not in female newborn C3HeB/FeJ X A/J mice, was similarly activated by liver preparations from male and female animals. This was true with and without pretreatment of the mice with an inducer of cytochrome P-448. Also, activities and inducibilities of monooxygenase, epoxide hydrolase and glutathione transferase (toward benzo(a)pyrene and benzo(a)pyrene 4,5-oxide, respectively) were indistinguishable between males and females. Therefore, differences in the metabolism of benzo(a)pyrene do not appear to be the reason for the sex difference in tumour susceptibility. Likewise, mouse strains with high and low frequencies of spontaneous and chemically-induced liver tumours did not appreciably differ in their hepatic microsomal epoxide hydrolase activities. The low level of this activity therefore cannot constitute the critical factor for the high tumour susceptibility of certain strains of mice. However the statement does not preclude potentiation of the susceptibility toward particular carcinogens owing to this metabolic trait of the mouse.
Collapse
|
33
|
Helferich WG, Silva MH, Flueck WT, Hammock BD, Shull LR. Xenobiotic biotransformation in livers and lungs of adult black-tailed deer: comparison with domestic goat and sheep. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1987; 88:145-9. [PMID: 2890476 DOI: 10.1016/0742-8413(87)90058-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
1. The capacity of liver and lung tissue of black-tailed dear (Odocoileus hemionus columbianus) to biotransform xenobiotics was compared in vitro to the domestic sheep and goat. Donor animals were all females of varying ages. Tissues from the black-tailed deer were collected in the wild. A variety of biotransformation enzymes were measured in both microsomal and cytosolic fractions. 2. Deer liver was lower in total cytochrome P450 concentration, but mono-oxygenase activities were greater compared to sheep and goat. The opposite was true for the lung. 3. Epoxide hydrolase activities were significantly different in deer vs sheep and goat. 4. In general, both hepatic and pulmonary activities were more similar between sheep and goat than either species compared to the deer, however, the magnitude of the hepatic differences did not exceed 5-fold. 5. Based on these limited results, there is no reason to discredit the sheep or goat as a toxicity testing model for deer.
Collapse
Affiliation(s)
- W G Helferich
- Department of Entomology, University of California, Davis 95616
| | | | | | | | | |
Collapse
|
34
|
Schladt L, Wörner W, Setiabudi F, Oesch F. Distribution and inducibility of cytosolic epoxide hydrolase in male Sprague-Dawley rats. Biochem Pharmacol 1986; 35:3309-16. [PMID: 3768023 DOI: 10.1016/0006-2952(86)90428-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytosolic epoxide hydrolase (cEH) activity has been determined in liver and various extrahepatic tissues of male Sprague-Dawley rats using trans-stilbene oxide (TSO) and trans-ethylstyrene oxide (TESO) as substrates. Large interindividual differences in the specific activity of cytosolic epoxide hydrolase in the liver from more than 80 individual rats were observed varying by a factor of 38. In a randomly selected group of five animals liver cEH varied by a factor of 3.9 and kidney cEH by a factor of 2.7, whereas liver microsomal epoxide hydrolase and lactate dehydrogenase showed only very low variations (1.4- and 1.1-fold, respectively). The individual relative activity of kidney cEH was related to that of the liver. Cytosolic epoxide hydrolase activity was present in all of six extrahepatic rat tissues investigated. Interestingly specific activities were very high in the heart and kidney (higher than in liver), followed by liver greater than brain greater than lung greater than testis greater than spleen. TSO and TESO hydrolases in subcellular fractions of rat liver were present at highest specific activities in the cytosolic and the heavy mitochondrial fraction. As indicated by the marker enzymes, catalase, urate oxidase and cytochrome oxidase, this organelle-bound epoxide hydrolase activity may be of peroxisomal and/or mitochondrial origin. In the microsomal fraction, TSO and TESO hydrolase activity is very low, whereas STO hydrolase activity is highest in this fraction and very low in cytosol. In kidney, subcellular distribution is similar to that observed in liver. None of the commonly used inducers of xenobiotic metabolizing enzymes caused significant changes in the specific activities of rat hepatic cEH (trans-stilbene oxide, alpha-pregnenolone carbonitrile, 3-methylcholanthrene, beta-naphthoflavone, isosafrole, butylated hydroxytoluene, 2,3,7,8-tetrachlorodibenzo-p-dioxin, dibenzo[a,h]anthracene, phenobarbitone). However, clofibrate, a hypolipidemic agent, very strongly induced rat liver cEH (about 5-fold), whereas microsomal epoxide hydrolase activity was not affected. Specific activity of kidney cEH was increased about 2-fold.
Collapse
|
35
|
Moody DE, Silva MH, Hammock BD. Epoxide hydrolysis in the cytosol of rat liver, kidney, and testis. Measurement in the presence of glutathione and the effect of dietary clofibrate. Biochem Pharmacol 1986; 35:2073-80. [PMID: 3015145 DOI: 10.1016/0006-2952(86)90573-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The hydrolysis of trans- and cis-stilbene oxide and benzo[a]pyrene-4,5-oxide was measured in cytosol and microsomes of liver, kidney, and testis of control and clofibrate-fed rats. Significant levels of nonprotein sulfhydryls were detected in cytosol from liver (4.6 mM) and testis (1.5 mM). Glutathione was moderately stable in these fractions and interfered with the partition assays as conjugates were retained in the aqueous phase along with diols. When the products were separated by thin-layer chromatography, significant amounts of glutathione-conjugates were found to have been formed in the cytosol of liver and testis. Overnight dialysis or preincubation of cytosol with 0.5 mM diethylmaleate eliminated conjugate formation without affecting diol production. In dialyzed cytosol from clofibrate-fed rats (0.5%, 14 days), the rates of hydrolysis of trans-stilbene oxide were 506, 171, and 96% of controls for liver, kidney, and testis, respectively, and 126% of controls in liver microsomes. Rates of hydrolysis of cis-stilbene oxide were 149, 172, and 96% of controls in microsomes and 154, 124, and 91% of controls in cytosols from livers, kidneys, and testis of clofibrate-fed rats respectively. Hydrolysis of benzo[a]pyrene-4,5-oxide was similar to that of cis-stilbene oxide. Conjugation of the cis-stilbene oxide with glutathione was detected in cytosols from all three tissues with lesser amounts in the microsomes from liver and kidneys. After clofibrate treatment, the rates of this activity were 200, 173, and 95% of controls in cytosol from liver, kidneys and testis, and 203 and 202% of controls in microsomes from liver and kidneys respectively. These results indicate that epoxide hydrolysis and conjugation in rat liver and kidney are responsive to clofibrate treatment and support other evidence which suggests that hydrolysis of cis- and trans-stilbene oxides in cytosol is catalyzed, in part, by distinct enzymes.
Collapse
|
36
|
Guenthner TM. Selective inhibition and selective induction of multiple microsomal epoxide hydrolases. Biochem Pharmacol 1986; 35:839-45. [PMID: 3954789 DOI: 10.1016/0006-2952(86)90253-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The inhibition in vitro and induction in vivo of microsomal trans-stilbene oxide hydrolase have been studied. This microsomal epoxide hydrolase activity is distinguishable from the previously well-defined microsomal arene oxide hydrolase by a number of catalytic criteria. Two substituted chalcone oxides, 4-phenylchalcone oxide and 4'-phenylchalcone oxide, are potent inhibitors of microsomal trans-stilbene oxide hydrolase, but have no apparent activity against benzo[a]pyrene 4,5-oxide hydrolase. Conversely, compounds that are potent inhibitors of benzo[a]pyrene 4,5-oxide hydrolase, including styrene oxide, cyclohexene oxide, and trichloropropene oxide, inhibit microsomal trans-stilbene oxide hydrolase only at very high (millimolar) concentrations. The chalcone oxides inhibit microsomal trans-stilbene oxide hydrolase noncompetitively, and have micromolar or nanomolar affinity constants for the enzyme. Attempts were made to induce microsomal trans-stilbene oxide hydrolase in vivo. Compounds that induced microsomal benzo[a]pyrene 4,5-oxide hydrolase levels in mice did not simultaneously induce trans-stilbene oxide hydrolase levels. Clofibrate was an exception; it induced levels of both enzymes to a small but statistically significant degree. The two microsomal hydrolase activities have, therefore, very different catalytic sites and appear to be under separate genetic control. 4-Phenylchalcone oxide and 4'-phenylchalcone oxide are selective inhibitors of microsomal trans-stilbene oxide hydrolase and may prove to be very useful in assessing the involvement of this enzyme in the metabolism of endogenous or xenobiotic epoxides.
Collapse
|
37
|
Patel BN, Mackness MI, Nwosu V, Connock MJ. Subcellular localization of epoxide hydrolase in mouse liver and kidney. Biochem Pharmacol 1986; 35:231-5. [PMID: 3942597 DOI: 10.1016/0006-2952(86)90519-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The subcellular distribution of epoxide hydrolase activity towards TSO and HEOM in mouse liver and kidney was investigated using zonal rotor centrifugation. Epoxide hydrolase activity towards TSO was found predominantly in the soluble fraction with peroxisomes accounting for activity in the particulate fractions. Renal particulate activity towards HEOM was found predominantly in the microsomes.
Collapse
|
38
|
Bulleid NJ, Graham AB, Craft JA. Microsomal epoxide hydrolase of rat liver. Purification and characterization of enzyme fractions with different chromatographic characteristics. Biochem J 1986; 233:607-11. [PMID: 3082328 PMCID: PMC1153070 DOI: 10.1042/bj2330607] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Microsomal epoxide hydrolase was purified from rat liver, and different fractions of the purified enzyme, which varied in their contents of phospholipid, were obtained by ion-exchange chromatography. One fraction (A), which did not bind to CM-cellulose, had a high phospholipid content, and a second fraction (B), which was eluted from CM-cellulose at high ionic strength, had a low phospholipid content. Removal of most of the phospholipid from fraction A altered its chromatographic behaviour. When the delipidated material was re-applied to CM-cellulose, most of the enzyme bound to the cation-exchanger. The specific activities of all the fractions described (with styrene epoxide [(1,2-epoxyethyl)benzene] as substrate) were altered by adding the non-ionic detergent Lubrol PX or phospholipid. Lubrol PX inhibited enzyme activity, and phospholipid reversed this inhibition. The various enzyme fractions isolated appeared to be different forms of the same protein, as judged by their minimum Mr values and immunochemical properties. These results indicate that different fractions of epoxide hydrolase isolated by ion-exchange chromatography probably are not different isoenzyme forms.
Collapse
|
39
|
Hammock BD, Prestwich GD, Loury DN, Cheung PY, Eng WS, Park SK, Moody DE, Silva MH, Wixtrom RN. Comparison of crude and affinity purified cytosolic epoxide hydrolases from hepatic tissue of control and clofibrate-fed mice. Arch Biochem Biophys 1986; 244:292-309. [PMID: 3947062 DOI: 10.1016/0003-9861(86)90119-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An affinity purification procedure was developed for the cytosolic epoxide hydrolase based upon the selective binding of the enzyme to immobilized methoxycitronellyl thiol. Several elution systems were examined, but the most successful system employed selective elution with a chalcone oxide. This affinity system allowed the purification of the cytosolic epoxide hydrolase activity from livers of both control and clofibrate-fed mice. A variety of biochemical techniques including pH dependence, substrate preference, kinetics, inhibition, amino acid analysis, peptide mapping, Western blotting, analytical isoelectric focusing, and gel permeation chromatography failed to distinguish between the enzymes purified from control and clofibrate-fed animals. The quantitative removal of the cytosolic epoxide hydrolase acting on trans-stilbene oxide from 100,000g supernatants, allowed analysis of remaining activities acting differentially on cis-stilbene oxide and benzo[a]pyrene 4,5-oxide. Such analysis indicated the existence of a novel epoxide hydrolase activity in the cytosol of mouse liver preparations.
Collapse
|
40
|
Loury DN, Moody DE, Kim BW, Hammock BD. Effect of dietary clofibrate on epoxide hydrolase activity in tissues of mice. Biochem Pharmacol 1985; 34:1827-33. [PMID: 4039938 DOI: 10.1016/0006-2952(85)90656-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effects of dietary clofibrate on the epoxide-metabolizing enzymes of mouse liver, kidney, lung and testis were evaluated using trans-stilbene oxide as a selective substrate for the cytosolic epoxide hydrolase, cis-stilbene oxide and benzo[a]pyrene 4,5-oxide as substrates for the microsomal form, and cis-stilbene oxide as a substrate for glutathione S-transferase activity. The hydration of trans-stilbene oxide was greatest in liver followed by kidney greater than lung greater than testis. Its hydrolysis was increased significantly in the cytosolic fraction of liver and kidney of clofibrate-treated mice and in the microsomes from the liver. Isoelectric focusing indicates that the same enzyme is responsible for hydrolysis of trans-stilbene oxide in normal and induced liver and kidney. Clofibrate induced glutathione S-transferase activity on cis-stilbene oxide only in the liver. Hydrolysis of both cis-stilbene oxide and benzo[a]pyrene 4,5-oxide was highest in testis followed by liver greater than lung greater than kidney. Hydration of cis-stilbene oxide was induced significantly in both liver and kidney by clofibrate but that of benzo[a]pyrene 4,5-oxide was induced only in the liver. These and other data based on ratios of hydration of benzo[a]pyrene 4,5-oxide to cis-stilbene oxide in tissues of normal and induced animals indicate that there are one or more novel epoxide hydrolase activities which cannot be accounted for by either the classical cytosolic or microsomal hydrolases. These effects are notable in the microsomes of kidney and especially in the cytosol of testis.
Collapse
|
41
|
Moody DE, Loury DN, Hammock BD. Epoxide metabolism in the liver of mice treated with clofibrate (ethyl-alpha-(p-chlorophenoxyisobutyrate)), a peroxisome proliferator. Toxicol Appl Pharmacol 1985; 78:351-62. [PMID: 4049385 DOI: 10.1016/0041-008x(85)90240-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An increase in cytosolic epoxide hydrolase (cEH) activity occurs in the livers of mice treated with peroxisome proliferating-hypolipidemic-nongenotoxic carcinogens. As increases in activity of epoxide metabolizing enzymes may reflect the carcinogenic mechanism, a detailed comparison of the response of cEH, microsomal epoxide hydrolase (mEH), and cytosolic glutathione S-transferase (cGST) activities using the geometrical isomers trans- and cis-stilbene oxide as substrates has been performed in livers from mice treated with clofibrate (ethyl-alpha-(p-chlorophenoxyisobutyrate]. The maximal increase of cEH activity occurred at lower dietary doses of clofibrate (0.5%) and within a shorter time (5 days) than mEH and cGST (2%, 14 days) activity. After 14 days at 0.5% clofibrate, cEH, mEH, and cGST activities were 250, 175, and 165% and 290, 220, and 75% of control values in male and female mice, respectively. Withdrawal of clofibrate from the diet resulted in a reversion of activities to control values within 7 days. Clofibrate treatment shifted the apparent subcellular compartmentation of all three enzymatic activities with an increase in the ratio of soluble to particulate activity. In particular, the relative specific activity of all three enzymes decreased in the light mitochondrial (peroxisomal) cell fraction, and an increase of a mEH-like activity (benzo[a]pyrene-4,5-oxide and cis-stilbene oxide hydrolysis) in the cytosol occurred. Both the increase of cEH activity and the appearance of mEH-like activity in the cytosol are novel responses of epoxide metabolizing enzymes, which may be related to the novel cellular responses that follow clofibrate treatment, peroxisome proliferation, hypolipidemia, and nongenotoxic carcinogenesis.
Collapse
|
42
|
Prestwich GD, Lucarelli I, Park SK, Loury DN, Moody DE, Hammock BD. Cyclopropyl oxiranes: reversible inhibitors of cytosolic and microsomal epoxide hydrolases. Arch Biochem Biophys 1985; 237:361-72. [PMID: 3977318 DOI: 10.1016/0003-9861(85)90288-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A series of aryl- and alkyl-substituted cyclopropyl oxiranes were synthesized as potential suicide inhibitors of mouse liver epoxide hydrolase (EH). The inhibitory potency of each compound and its corresponding alkene precursor was determined with mouse liver EHs using [3H]-cis-stilbene oxide as substrate for microsomal EH (mEH) and for glutathione-S-transferase, and using [3H]-trans-stilbene oxide for cytosolic EH (cEH). The cyclopropyl oxiranes all showed low (26-60% at 5 X 10(-4) M) inhibition of glutathione transferase and moderate inhibition (I50 = 5 X 10(-4) to 6 X 10(-6) M) for cEH and mEH. cis-Phenylcyclopropyl oxirane had an I50 for mEH near that for a commonly used inhibitor, 1,1,1-trichloropropene oxide. Inhibition appeared competitive and reversible, and the cyclopropyl oxiranes appeared to function as alternate substrates. Absence of irreversible inhibition is evidence against a strongly electrophilic epoxide-opening mechanism involving a cyclopropyl carbinyl-homoallyl cation rearrangement. Instead, a concerted mechanism is favored, in which electrophilic opening and hydroxide attack occur in a concerted fashion.
Collapse
|
43
|
Prestwich GD, Hammock BD. Rapid purification of cytosolic epoxide hydrolase from normal and clofibrate-treated animals by affinity chromatography. Proc Natl Acad Sci U S A 1985; 82:1663-7. [PMID: 3856846 PMCID: PMC397332 DOI: 10.1073/pnas.82.6.1663] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Epoxide hydrolase from liver cytosol (cEH) of both normal and clofibrate-treated mice can be bioselectively adsorbed onto an affinity column prepared from epoxy-activated Sepharose and 7-methoxycitronellyl thiol. The free ligand is a modest inhibitor of cEH (I50, approximately equal to 3 X 10(-4) M) and lacks the epoxide function necessary for it to be turned over as a substrate. This study demonstrates that a methoxy group can be used to mimic an oxirane in a vertebrate system. Bioselective elution of cEH can be accomplished with several chalcone oxides, which are selective potent inhibitors (I50, 1-50 X 10(-7) M), and activity can be recovered by dialysis. This procedure thus enhances the purification by offering independent opportunities for selective binding and selective elution. Conservatively, a 40%-80% recovery of partially inhibited enzyme activity can be achieved in 4-48 hr with a 30- to 90-fold purification. The purified cEH from clofibrate-induced animals was essentially homogeneous by NaDodSO4/PAGE and had an apparent subunit molecular weight of 58,000. The cEHs from normal and clofibrate-induced animals appeared identical by NaDodSO4/PAGE. Since the cEH activity in normal and clofibrate-treated animals is due to the same enzyme, the increase in cEH activity caused by selected hypolipidemic agents appears to be true induction.
Collapse
|
44
|
|