1
|
Wetzelberger K, Baba SP, Thirunavukkarasu M, Ho YS, Maulik N, Barski OA, Conklin DJ, Bhatnagar A. Postischemic deactivation of cardiac aldose reductase: role of glutathione S-transferase P and glutaredoxin in regeneration of reduced thiols from sulfenic acids. J Biol Chem 2010; 285:26135-48. [PMID: 20538586 DOI: 10.1074/jbc.m110.146423] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldose reductase (AR) is a multifunctional enzyme that catalyzes the reduction of glucose and lipid peroxidation-derived aldehydes. During myocardial ischemia, the activity of AR is increased due to the oxidation of its cysteine residues to sulfenic acids. It is not known, however, whether the activated, sulfenic form of the protein (AR-SOH) is converted back to its reduced, unactivated state (AR-SH). We report here that in perfused mouse hearts activation of AR during 15 min of global ischemia is completely reversed by 30 min of reperfusion. During reperfusion, AR-SOH was converted to a mixed disulfide (AR-SSG). Deactivation of AR and the appearance of AR-SSG during reperfusion were delayed in hearts of mice lacking glutathione S-transferase P (GSTP). In vitro, GSTP accelerated glutathiolation and inactivation of AR-SOH. Reduction of AR-SSG to AR-SH was facilitated by glutaredoxin (GRX). Ischemic activation of AR was increased in GRX-null hearts but was attenuated in the hearts of cardiospecific GRX transgenic mice. Incubation of AR-SSG with GRX led to the regeneration of the reduced form of the enzyme. In ischemic cardiospecific AR transgenic hearts, AR was co-immunoprecipitated with GSTP, whereas in reperfused hearts, the association of AR with GRX was increased. These findings suggest that upon reperfusion of the ischemic heart AR-SOH is converted to AR-SSG via GSTP-assisted glutathiolation. AR-SSG is then reduced by GRX to AR-SH. Sequential catalysis by GSTP and GRX may be a general redox switching mechanism that regulates the reduction of protein sulfenic acids to cysteines.
Collapse
Affiliation(s)
- Karin Wetzelberger
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Carbone V, Giglio M, Chung R, Huyton T, Adams J, Maccari R, Ottana R, Hara A, El-Kabbani O. Structure of aldehyde reductase in ternary complex with a 5-arylidene-2,4-thiazolidinedione aldose reductase inhibitor. Eur J Med Chem 2010; 45:1140-5. [DOI: 10.1016/j.ejmech.2009.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 12/02/2009] [Accepted: 12/10/2009] [Indexed: 11/24/2022]
|
3
|
Carbone V, Zhao HT, Chung R, Endo S, Hara A, El-Kabbani O. Correlation of binding constants and molecular modelling of inhibitors in the active sites of aldose reductase and aldehyde reductase. Bioorg Med Chem 2008; 17:1244-50. [PMID: 19121944 DOI: 10.1016/j.bmc.2008.12.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 01/12/2023]
Abstract
Aldose reductase (ALR2) belongs to the aldo-keto reductase (AKR) superfamily of enzymes, is the first enzyme involved in the polyol pathway of glucose metabolism and has been linked to the pathologies associated with diabetes. Molecular modelling studies together with binding constant measurements for the four inhibitors Tolrestat, Minalrestat, quercetin and 3,5-dichlorosalicylic acid (DCL) were used to determine the type of inhibition, and correlate inhibitor potency and binding energies of the complexes with ALR2 and the homologous aldehyde reductase (ALR1), another member of the AKR superfamily. Our results show that the four inhibitors follow either uncompetitive or non-competitive inhibition pattern of substrate reduction for ALR1 and ALR2. Overall, there is correlation between the IC(50) (concentration giving 50% inhibition) values of the inhibitors for the two enzymes and the binding energies (DeltaH) of the enzyme-inhibitor complexes. Additionally, the results agree with the detailed structural information obtained by X-ray crystallography suggesting that the difference in inhibitor binding for the two enzymes is predominantly mediated by non-conserved residues. In particular, Arg312 in ALR1 (missing in ALR2) contributes favourably to the binding of DCL through an electrostatic interaction with the inhibitor's electronegative halide atom and undergoes a conformational change upon Tolrestat binding. In ALR2, Thr113 (Tyr116 in ALR1) forms electrostatic interactions with the fluorobenzyl moiety of Minalrestat and the 3- and 4-hydroxy groups on the phenyl ring of quercetin. Our modelling studies suggest that Minalrestat's binding to ALR1 is accompanied by a conformational change including the side chain of Tyr116 to achieve the selectivity for ALR1 over ALR2.
Collapse
Affiliation(s)
- Vincenzo Carbone
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
4
|
Bozdağ-Dündar O, Evranos B, Daş-Evcimen N, Sarıkaya M, Ertan R. Synthesis and aldose reductase inhibitory activity of some new chromonyl-2,4-thiazolidinediones. Eur J Med Chem 2008; 43:2412-7. [DOI: 10.1016/j.ejmech.2008.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 11/28/2007] [Accepted: 01/08/2008] [Indexed: 12/14/2022]
|
5
|
Kaiserova K, Tang XL, Srivastava S, Bhatnagar A. Role of nitric oxide in regulating aldose reductase activation in the ischemic heart. J Biol Chem 2008; 283:9101-12. [PMID: 18223294 PMCID: PMC2431016 DOI: 10.1074/jbc.m709671200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/24/2008] [Indexed: 01/04/2023] Open
Abstract
Aldose reductase (AR) catalyzes the reduction of several aldehydes ranging from lipid peroxidation products to glucose. The activity of AR is increased in the ischemic heart due to oxidation of its cysteine residues, but the underlying mechanisms remain unclear. To examine signaling mechanisms regulating AR activation, we studied the role of nitric oxide (NO). Treatment with the NO synthase (NOS) inhibitor, N-nitro-l-arginine methyl ester prevented ischemia-induced AR activation and myocardial sorbitol accumulation in rat hearts subjected to global ischemia ex vivo or coronary ligation in situ, whereas inhibition of inducible NOS and neuronal NOS had no effect. Activation of AR in the ischemic heart was abolished by pretreatment with peroxynitrite scavengers hesperetin or 5, 10, 15, 20-tetrakis-[4-sulfonatophenyl]-porphyrinato-iron [III]. Site-directed mutagenesis and electrospray ionization mass spectrometry analyses showed that Cys-298 of AR was readily oxidized to sulfenic acid by peroxynitrite. Treatment with bradykinin and insulin led to a phosphatidylinositol 3-kinase (PI3K)-dependent increase in the phosphorylation of endothelial NOS at Ser-1177 and, even in the absence of ischemia, was sufficient in activating AR. Activation of AR by bradykinin and insulin was reversed upon reduction with dithiothreitol or by inhibiting NOS or PI3K. Treatment with AR inhibitors sorbinil or tolrestat reduced post-ischemic recovery in the rat hearts subjected to global ischemia and increased the infarct size when given before ischemia or upon reperfusion. These results suggest that AR is a cardioprotective protein and that its activation in the ischemic heart is due to peroxynitrite-mediated oxidation of Cys-298 to sulfenic acid via the PI3K/Akt/endothelial NOS pathway.
Collapse
Affiliation(s)
- Karin Kaiserova
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
6
|
Barski OA, Tipparaju SM, Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 2008; 40:553-624. [PMID: 18949601 PMCID: PMC2663408 DOI: 10.1080/03602530802431439] [Citation(s) in RCA: 373] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aldo-keto reductase (AKR) superfamily comprises enzymes that catalyze redox transformations involved in biosynthesis, intermediary metabolism, and detoxification. Substrates of AKRs include glucose, steroids, glycosylation end-products, lipid peroxidation products, and environmental pollutants. These proteins adopt a (beta/alpha)(8) barrel structural motif interrupted by a number of extraneous loops and helixes that vary between proteins and bring structural identity to individual families. The human AKR family differs from the rodent families. Due to their broad substrate specificity, AKRs play an important role in the phase II detoxification of a large number of pharmaceuticals, drugs, and xenobiotics.
Collapse
Affiliation(s)
- Oleg A Barski
- Division of Cardiology, Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky 40202, USA.
| | | | | |
Collapse
|
7
|
Abstract
Vitamin C, a reducing agent and antioxidant, is a cofactor in reactions catalyzed by Cu(+)-dependent monooxygenases and Fe(2+)-dependent dioxygenases. It is synthesized, in vertebrates having this capacity, from d-glucuronate. The latter is formed through direct hydrolysis of uridine diphosphate (UDP)-glucuronate by enzyme(s) bound to the endoplasmic reticulum membrane, sharing many properties with, and most likely identical to, UDP-glucuronosyltransferases. Non-glucuronidable xenobiotics (aminopyrine, metyrapone, chloretone and others) stimulate the enzymatic hydrolysis of UDP-glucuronate, accounting for their effect to increase vitamin C formation in vivo. Glucuronate is converted to l-gulonate by aldehyde reductase, an enzyme of the aldo-keto reductase superfamily. l-Gulonate is converted to l-gulonolactone by a lactonase identified as SMP30 or regucalcin, whose absence in mice leads to vitamin C deficiency. The last step in the pathway of vitamin C synthesis is the oxidation of l-gulonolactone to l-ascorbic acid by l-gulonolactone oxidase, an enzyme associated with the endoplasmic reticulum membrane and deficient in man, guinea pig and other species due to mutations in its gene. Another fate of glucuronate is its conversion to d-xylulose in a five-step pathway, the pentose pathway, involving identified oxidoreductases and an unknown decarboxylase. Semidehydroascorbate, a major oxidation product of vitamin C, is reconverted to ascorbate in the cytosol by cytochrome b(5) reductase and thioredoxin reductase in reactions involving NADH and NADPH, respectively. Transmembrane electron transfer systems using ascorbate or NADH as electron donors serve to reduce semidehydroascorbate present in neuroendocrine secretory vesicles and in the extracellular medium. Dehydroascorbate, the fully oxidized form of vitamin C, is reduced spontaneously by glutathione, as well as enzymatically in reactions using glutathione or NADPH. The degradation of vitamin C in mammals is initiated by the hydrolysis of dehydroascorbate to 2,3-diketo-l-gulonate, which is spontaneously degraded to oxalate, CO(2) and l-erythrulose. This is at variance with bacteria such as Escherichia coli, which have enzymatic degradation pathways for ascorbate and probably also dehydroascorbate.
Collapse
Affiliation(s)
- Carole L Linster
- Université Catholique de Louvain, Christian de Duve Institute of Cellular Pathology, Brussels, Belgium
| | | |
Collapse
|
8
|
Robins LI, Dixon SM, Wilson DK, Kurth MJ. On-bead combinatorial techniques for the identification of selective aldose reductase inhibitors. Bioorg Med Chem 2006; 14:7728-35. [PMID: 16931029 DOI: 10.1016/j.bmc.2006.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/04/2006] [Accepted: 08/08/2006] [Indexed: 10/24/2022]
Abstract
Aldose reductase (AKR1B1; ALR2; E.C. 1.1.1.21) is an NADPH-dependent carbonyl reductase which has long been associated with complications resulting from the elevated blood glucose often found in diabetics. The development of effective inhibitors has been plagued by lack of specificity which has led to side effects in clinical trials. To address this problem, a library of bead-immobilized compounds was screened against fluorescently labeled aldose reductase in the presence of fluorescently labeled aldehyde reductase, a non-target enzyme, to identify compounds which were aldose reductase specific. Picked beads were decoded via novel bifunctional bead mass spec-based techniques and kinetic analysis of the ten inhibitors which were identified using this protocol yielded IC50 values in the micromolar range. Most importantly, all of these compounds showed a preference for aldose reductase with selectivities as high as approximately 7500-fold. The most potent of these exhibited uncompetitive inhibition versus the carbonyl-containing substrate D/L-glyceraldehyde with a Ki of 1.16 microM.
Collapse
Affiliation(s)
- Lori I Robins
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
9
|
Linster CL, Van Schaftingen E. Glucuronate, the precursor of vitamin C, is directly formed from UDP-glucuronate in liver. FEBS J 2006; 273:1516-27. [PMID: 16689937 DOI: 10.1111/j.1742-4658.2006.05172.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The conversion of UDP-glucuronate to glucuronate, usually thought to proceed by way of glucuronate 1-phosphate, is a site for short-term regulation of vitamin C synthesis by metyrapone and other xenobiotics in isolated rat hepatocytes. Our purpose was to explore the mechanism of this effect in cell-free systems. Metyrapone and other xenobiotics stimulated, by approximately threefold, the formation of glucuronate from UDP-glucuronate in liver extracts enriched with ATP-Mg, but did not affect the formation of glucuronate 1-phosphate from UDP-glucuronate or the conversion of glucuronate 1-phosphate to glucuronate. This and other data indicated that glucuronate 1-phosphate is not an intermediate in glucuronate formation from UDP-glucuronate, suggesting that this reaction is catalysed by a 'UDP-glucuronidase'. UDP-glucuronidase was present mainly in the microsomal fraction, where its activity was stimulated by UDP-N-acetylglucosamine, known to stimulate UDP-glucuronosyltransferases by enhancing the transport of UDP-glucuronate across the endoplasmic reticulum membrane. UDP-glucuronidase and UDP-glucuronosyltransferases displayed similar sensitivities to various detergents, which stimulated at low concentrations and generally inhibited at higher concentrations. Substrates of glucuronidation inhibited UDP-glucuronidase activity, suggesting that the latter is contributed by UDP-glucuronosyltransferase(s). Inhibitors of beta-glucuronidase and esterases did not affect the formation of glucuronate, arguing against the involvement of a glucuronidation-deglucuronidation cycle. The sensitivity of UDP-glucuronidase to metyrapone and other stimulatory xenobiotics was lost in washed microsomes, even in the presence of ATP-Mg, but it could be restored by adding a heated liver high-speed supernatant or CoASH. In conclusion, glucuronate formation in liver is catalysed by a UDP-glucuronidase which is closely related to UDP-glucuronosyltransferases. Metyrapone and other xenobiotics stimulate UDP-glucuronidase by antagonizing the inhibition exerted, presumably indirectly, by a combination of ATP-Mg and CoASH.
Collapse
Affiliation(s)
- Carole L Linster
- Laboratory of Physiological Chemistry, Université Catholique de Louvain and the Christian de Duve Institute of Cellular Pathology, Brussels, Belgium
| | | |
Collapse
|
10
|
Kaiserova K, Srivastava S, Hoetker JD, Awe SO, Tang XL, Cai J, Bhatnagar A. Redox Activation of Aldose Reductase in the Ischemic Heart. J Biol Chem 2006; 281:15110-20. [PMID: 16567803 DOI: 10.1074/jbc.m600837200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldose reductase (AR) reduces cytotoxic aldehydes and glutathione conjugates of aldehydes derived from lipid peroxidation. Its inhibition has been shown to increase oxidative injury and abolish the late phase of ischemic preconditioning. However, the mechanisms by which ischemia regulates AR activity remain unclear. Herein, we report that rat hearts subjected to ischemia, in situ or ex vivo, display a 2-4-fold increase in AR activity. The AR activity was not further enhanced by reperfusion. Activation increased Vmax of the enzyme without affecting the Km and decreased the sensitivity of the enzyme to inhibition by sorbinil. Enzyme activation could be prevented by pretreating the hearts with the radical scavenging thiol, N-(2-mercaptoproprionyl)glycine or the superoxide dismutase mimetic, Tiron, or by treating homogenates with dithiothreitol. In vitro, the recombinant enzyme was activated upon treatment with H2O2 and the activated, but not the native enzyme, formed a covalent adduct with the sulfenic acid-specific reagent dimedone. The enzyme activity in the ischemic, but not the nonischemic heart homogenates was inhibited by dimedone. Separation of proteins from hearts subjected to coronary occlusion by two-dimensional electrophoresis and subsequent matrix-assisted laser desorption ionization time-of-flight/mass spectrometry analysis revealed the formation of sulfenic acids at Cys-298 and Cys-303. These data indicate that reactive oxygen species formed in the ischemic heart activate AR by modifying its cysteine residues to sulfenic acids.
Collapse
Affiliation(s)
- Karin Kaiserova
- Institute of Molecular Cardiology, Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Ramana KV, Chandra D, Srivastava S, Bhatnagar A, Aggarwal BB, Srivastava SK. Aldose reductase mediates mitogenic signaling in vascular smooth muscle cells. J Biol Chem 2002; 277:32063-70. [PMID: 12063254 DOI: 10.1074/jbc.m202126200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abnormal vascular smooth muscle cell (VSMC) proliferation is a key feature of atherosclerosis and restenosis; however, the mechanisms regulating growth remain unclear. Herein we show that inhibition of the aldehyde-metabolizing enzyme aldose reductase (AR) inhibits NF-kappa B activation during restenosis of balloon-injured rat carotid arteries as well as VSMC proliferation due to tumor necrosis factor alpha (TNF-alpha) stimulation. Inhibition of VSMC growth by AR inhibitors was not accompanied by increase in cell death or apoptosis. Inhibition of AR led to a decrease in the activity of the transcription factor NF-kappa B in culture and in the neointima of rat carotid arteries after balloon injury. Inhibition of AR in VSMC also prevented the activation of NF-kappa B by basic fibroblast growth factor (bFGF), angiotensin-II (Ang-II), and platelet-derived growth factor (PDGF-AB). The VSMC treated with AR inhibitors showed decreased nuclear translocation of NF-kappa B and diminished phosphorylation and proteolytic degradation of I kappa B-alpha. Under identical conditions, treatment with AR inhibitors also prevented the activation of protein kinase C (PKC) by TNF-alpha, bFGF, Ang-II, and PDGF-AB but not phorbol esters, indicating that AR inhibitors prevent PKC stimulation or the availability of its activator but not PKC itself. Treatment with antisense AR, which decreased the AR activity by >80%, attenuated PKC activation in TNF-alpha, bFGF, Ang-II, and PDGF-AB-stimulated VSMC and prevented TNF-alpha-induced proliferation. Collectively, these data suggest that inhibition of NF-kappa B may be a significant cause of the antimitogenic effects of AR inhibition and that this may be related to disruption of PKC-associated signaling in the AR-inhibited cells.
Collapse
Affiliation(s)
- Kota V Ramana
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | |
Collapse
|
12
|
Dixit BL, Balendiran GK, Watowich SJ, Srivastava S, Ramana KV, Petrash JM, Bhatnagar A, Srivastava SK. Kinetic and structural characterization of the glutathione-binding site of aldose reductase. J Biol Chem 2000; 275:21587-95. [PMID: 10764810 DOI: 10.1074/jbc.m909235199] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldose reductase (AR), a member of the aldo-keto reductase superfamily, has been implicated in the etiology of secondary diabetic complications. However, the physiological functions of AR under euglycemic conditions remain unclear. We have recently demonstrated that, in intact heart, AR catalyzes the reduction of the glutathione conjugate of the lipid peroxidation product 4-hydroxy-trans-2-nonenal (Srivastava, S., Chandra, A., Wang, L., Seifert, W. E., Jr., DaGue, B. B., Ansari, N. H., Srivastava, S. K., and Bhatnagar, A. (1998) J. Biol. Chem. 273, 10893-10900), consistent with a possible role of AR in the metabolism of glutathione conjugates of aldehydes. Herein, we present several lines of evidence suggesting that the active site of AR forms a specific glutathione-binding domain. The catalytic efficiency of AR in the reduction of the glutathione conjugates of acrolein, trans-2-hexenal, trans-2-nonenal, and trans,trans-2,4-decadienal was 4-1000-fold higher than for the corresponding free alkanal. Alterations in the structure of glutathione diminished the catalytic efficiency in the reduction of the acrolein adduct, consistent with the presence of specific interactions between the amino acid residues of glutathione and the AR active site. In addition, non-aldehydic conjugates of glutathione or glutathione analogs displayed active-site inhibition. Molecular dynamics calculations suggest that the conjugate adopts a specific low energy configuration at the active site, indicating selective binding. These observations support an important role of AR in the metabolism of glutathione conjugates of endogenous and xenobiotic aldehydes and demonstrate, for the first time, efficient binding of glutathione conjugates to an aldo-keto reductase.
Collapse
Affiliation(s)
- B L Dixit
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555-0647, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kawamura M, Eisenhofer G, Kopin IJ, Kador PF, Lee YS, Tsai JY, Fujisawa S, Lizak MJ, Sinz A, Sato S. Aldose reductase, a key enzyme in the oxidative deamination of norepinephrine in rats. Biochem Pharmacol 1999; 58:517-24. [PMID: 10424772 DOI: 10.1016/s0006-2952(99)00121-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The sympathoneural neurotransmitter norepinephrine (NE) is deaminated to 3,4-dihydroxymandelaldehyde (DHMAL) and subsequently converted to either 3,4-dihydroxymandelic acid (DHMA) or 3,4-dihydroxyphenylglycol (DHPG). In this study, we investigated the relative importance of aldose reductase versus aldehyde reductase in the formation of DHPG from DHMAL. The in vitro incubation of NE with aldose reductase in the presence of monoamine oxidase (MAO) resulted in the formation of DHPG, which was confirmed by mass spectrometry. Although aldehyde reductase also generated DHPG, its activity was much lower than that of aldose reductase. With northern blotting, the expression of both aldose reductase and aldehyde reductase was detected in rat superior cervical ganglia. However, with western blotting, only aldose reductase was immunologically detectable. Treatment of rats with aldose reductase inhibitors for 3 days increased the plasma level of DHMA. There was no correlation between the selectivity of inhibitors and effects on NE metabolite levels. A significant decrease in DHPG, however, was obtained only with an extremely high dose (9 mg/kg/day) of the nonselective inhibitor AL 1576. The present study confirmed that aldose reductase generates DHPG from NE in the presence of MAO. In rat sympathetic neurons, aldose reductase appears to be more important than aldehyde reductase for the formation of DHPG. However, when aldose reductase is inhibited, it appears that aldehyde reductase can compensate for the conversion of DHMAL to DHPG, indicating redundancy in the reduction pathway.
Collapse
Affiliation(s)
- M Kawamura
- Clinical Neuroscience Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rittner HL, Hafner V, Klimiuk PA, Szweda LI, Goronzy JJ, Weyand CM. Aldose reductase functions as a detoxification system for lipid peroxidation products in vasculitis. J Clin Invest 1999; 103:1007-13. [PMID: 10194473 PMCID: PMC408253 DOI: 10.1172/jci4711] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Giant cell arteritis (GCA) is a systemic vasculitis preferentially affecting large and medium-sized arteries. Inflammatory infiltrates in the arterial wall induce luminal occlusion with subsequent ischemia and degradation of the elastic membranes, allowing aneurysm formation. To identify pathways relevant to the disease process, differential display-PCR was used. The enzyme aldose reductase (AR), which is implicated in the regulation of tissue osmolarity, was found to be upregulated in the arteritic lesions. Upregulated AR expression was limited to areas of tissue destruction in inflamed arteries, where it was detected in T cells, macrophages, and smooth muscle cells. The production of AR was highly correlated with the presence of 4-hydroxynonenal (HNE), a toxic aldehyde and downstream product of lipid peroxidation. In vitro exposure of mononuclear cells to HNE was sufficient to induce AR production. The in vivo relationship of AR and HNE was explored by treating human GCA temporal artery-severe combined immunodeficiency (SCID) mouse chimeras with the AR inhibitors Sorbinil and Zopolrestat. Inhibition of AR increased HNE adducts twofold and the number of apoptotic cells in the arterial wall threefold. These data demonstrate that AR has a tissue-protective function by preventing damage from lipid peroxidation. We propose that AR is an oxidative defense mechanism able to neutralize the toxic effects of lipid peroxidation and has a role in limiting the arterial wall injury mediated by reactive oxygen species.
Collapse
Affiliation(s)
- H L Rittner
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
15
|
He Q, Khanna P, Srivastava S, van Kuijk FJ, Ansari NH. Reduction of 4-hydroxynonenal and 4-hydroxyhexenal by retinal aldose reductase. Biochem Biophys Res Commun 1998; 247:719-22. [PMID: 9647760 DOI: 10.1006/bbrc.1998.8845] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aldose reductase has been purified to homogeneity from bovine retina. It has an apparent molecular weight of 32,000 daltons and shares immunological and kinetic properties with the much studied aldose reductases purified from various sources. Retinal aldose reductase displays a K(m) of approximately 40 microM with 4-hydroxynonenal and 4-hydroxyhexenal, the oxidation end products of arachidonic and docosahexanoeic acids, respectively. It therefore appears that aldose reductase may constitute a major detoxification route of these toxic aldehydes in the retina.
Collapse
Affiliation(s)
- Q He
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555-0647, USA
| | | | | | | | | |
Collapse
|
16
|
Kamei J, Aoki T, Hitosugi H, Iwamoto Y, Kasuya Y. Effects of a Novel Potent Aldose Reductase Inhibitor, GP-1447, on Aldose Reductase Activity In Vitro and on Diabetic Neuropathy and Cataract Formation in Rats. ACTA ACUST UNITED AC 1997; 60:133-40. [PMID: 1362231 DOI: 10.1254/jjp.60.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The influence of diabetes on the effects of morphine on the responses of ventrobasal (VB) thalamic neurons to mechanical noxious stimuli were studied in chloral hydrate-anesthetized rats. Animals were rendered diabetic by an injection of streptozotocin (60 mg/kg, i.v.). Morphine (0.3 mg/kg), administered i.v., produced a reduction in the responsiveness of VB thalamic neurons to noxious stimulation in control rats. This effect was reversed by naloxone. In contrast, the inhibitory effects of morphine on the nociceptive responses of VB thalamic neurons were significantly attenuated in diabetic rats, as compared with the controls. However, there were no significant differences in inhibitory potency between diabetic and control rats when morphine (30 nM) was administered intrathecally. It seems likely that these changes in the sensitivity of VB thalamic neurons to morphine are, to some extent, the source of the reduction in the analgesic efficacy of morphine in diabetic rats.
Collapse
Affiliation(s)
- J Kamei
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
17
|
Donnelly SM, Zhou XP, Huang JT, Whiteside CI. Prevention of early glomerulopathy with tolrestat in the streptozotocin-induced diabetic rat. Biochem Cell Biol 1996; 74:355-62. [PMID: 8883841 DOI: 10.1139/o96-038] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hyperglycemia is of central importance in the pathogenesis of the complications of diabetes mellitus. Glucose activation of the polyol pathway may lead to renal arteriolar smooth muscle and glomerular mesangial cell hypocontractility. In the streptozotocin-induced diabetic rat, the effect of the aldose reductase inhibitor, tolrestat, in preventing glomerular hyperfiltration, renal hypertrophy, extracellular matrix accumulation, and mesangial cell hypocontractility was addressed. Streptozotocin-induced diabetic rats were followed for 12 weeks and half received tolrestat (25 mg/kg per day). Increased glomerular filtration rate was prevented by tolrestat (3.1 +/- 0.3 vs. 1.8 +/- 0.2 mL/min, diabetes vs. diabetes + tolrestat, p < 0.01), in part by reduction of the filtration fraction (0.39 +/- 0.03 vs. 0.29 +/- 0.01, diabetes vs. diabetes + tolrestat, p < 0.01). Tolrestat prevented the raised albumin excretion rates (3594 +/- 1154 vs. 713 +/- 161 mg/24 h, diabetes vs. diabetes + tolrestat, p < 0.01). Endothelin-1-induced contraction of isolated glomeruli was normal in tolrestat-treated diabetic animals compared with the hypocontractile diabetic glomeruli. Tolrestat prevented glomerular hypertrophy (1.86 +/- 0.10 vs. 1.49 +/- 0.03 microns 2 x 10(5), diabetes vs. diabetes + tolrestat, p < 0.001) and attenuated the accumulation of basement-membrane-like material (50.2 +/- 0.4% vs. 46.4 +/- 0.8%, diabetes vs. diabetes+tolrestat, p < 0.001). Fractional mesangial expansion was unchanged in tolrestat-treated diabetic rats compared with untreated animals. Tolrestat prevents the functional changes of glomerular hyperfiltration, mesangial cell hypocontractility, and increased glomerular permeability to albumin. Polyol accumulation may have differential effects on glomerular growth and extracellular matrix accumulation in early diabetic nephropathy.
Collapse
Affiliation(s)
- S M Donnelly
- Department of Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | | | |
Collapse
|
18
|
Kador PF, Lee YS, Rodriguez L, Sato S, Bartoszko-Malik A, Abdel-Ghany YS, Miller DD. Identification of an aldose reductase inhibitor site by affinity labeling. Bioorg Med Chem 1995; 3:1313-24. [PMID: 8564397 DOI: 10.1016/0968-0896(95)00118-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Animal studies indicate that aldose reductase inhibitors represent a pharmacological method for inhibiting the onset of diabetic complications that is independent of blood sugar control. This has spurred the development of aldose reductase inhibitors (ARIs). To facilitate the rational development of more potent and direct ARIs, more specific knowledge of the structural and pharmacophoric requirements of the site at which ARIs interact are required. Co-crystallization of human placental aldose reductase with the inhibitor zopolrestat has been reported to result in a complex where the inhibitor is almost completely sequestered in the hydrophobic pocket which forms the substrate site. Zopolrestat's observed location, which makes the active site pocket inaccessible to solvent or further productive binding of substrate, is not supported by published inhibitor structure-activity relationships (SAR) studies or kinetic results which indicate that aldose reductase inhibitors such as zopolrestat are either non-competitive or uncompetitive inhibitors. Using a 5-iodoacetamido analog of alrestatin as an affinity labeled aldose reductase inhibitor, an inhibitor binding site on aldose reductase has been located. This inhibitor binding site contains a number of pharmacophoric elements previously proposed for the inhibitor site. Its location and composition is consistent with reported kinetic data, SAR observations, stereochemical requirements, and quantum chemical calculations.
Collapse
Affiliation(s)
- P F Kador
- Laboratory of Ocular Therapeutics, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Coleman MD, Simpson J, Jacobus DP. Reduction of dapsone hydroxylamine to dapsone during methaemoglobin formation in human erythrocytes in vitro. III: Effect of diabetes. Biochem Pharmacol 1994; 48:1341-7. [PMID: 7945431 DOI: 10.1016/0006-2952(94)90555-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The fate of dapsone hydroxylamine has been investigated in diabetic and normal human erythrocytes. In erythrocytes from four type 1 (insulin dependent) diabetic subjects, there was a significant decrease in dapsone hydroxylamine-mediated methaemoglobin formation compared with cells drawn from normal individuals (P < 0.01). However, the ability of the diabetic cells to detoxify the hydroxylamine to dapsone was not correspondingly reduced and was not different to normal cells. The initial rate of the accelerating effect of diethyl dithiocarbamate (DDC) on hydroxylamine-mediated methaemoglobin and dapsone formation was significantly reduced in diabetic compared with normal cells. There was no significant difference in hydroxylamine-dependent methaemoglobin formation between diabetic erythrocytes pretreated with either statil or sorbinil and untreated diabetic cells. Dapsone recovery in diabetic erythrocytes incubated with statil was not significantly different from statil-free incubations. However, in the presence of sorbinil, there was a marked reduction in dapsone formation at all four time points, (P < 0.001 at 15 min). Mean measured levels of glutathione did not differ significantly between the normal (380 +/- 30.9 mg/L; N = 8) and diabetic (349 +/- 58.7 mg/L; N = 8) volunteers. In summary, although diabetic erythrocytes were less sensitive to the effect of dapsone hydroxylamine-mediated methaemoglobin formation in comparison with normal cells, glutathione-dependent hydroxylamine reduction to dapsone was unaffected.
Collapse
Affiliation(s)
- M D Coleman
- Department of Pharmaceutical Sciences, Aston University, Birmingham, U.K
| | | | | |
Collapse
|
20
|
Matsui T, Nakamura Y, Ishikawa H, Matsuura A, Kobayashi F. Pharmacological profiles of a novel aldose reductase inhibitor, SPR-210, and its effects on streptozotocin-induced diabetic rats. JAPANESE JOURNAL OF PHARMACOLOGY 1994; 64:115-24. [PMID: 8028228 DOI: 10.1254/jjp.64.115] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SPR-210 (2-[4-(4,5,7-trifluorobenzothiazol-2-yl)methyl-3-oxo-3,4-dihydro- 2H-1,4-benzothiazin-2-yl] acetic acid), a novel aldose reductase (AR) inhibitor, exhibited highly potent inhibition of partially purified AR from porcine lens (IC50 = 9.5 x 10(-9) M) and human placenta (IC50 = 1.0 x 10(-8) M). On the other hand, very weak inhibition by SPR-210 was observed against human placenta aldehyde reductase, which is the most closely related enzyme to AR, and against several adeninenucleotide-requiring enzymes. SPR-210 showed a noncompetitive mechanism with respect to DL-glyceraldehyde against porcine lens AR. Sorbitol accumulation in isolated human erythrocytes was effectively inhibited by SPR-210 during incubation with 50 mM glucose (IC50 = 1.6 x 10(-8) M). Oral administration of SPR-210 (1-30 mg/kg/day for 5 days) to streptozotocin-induced diabetic rats decreased the sorbitol contents in the sciatic nerve and lens (ED50 = 1.9 and 6.8 mg/kg/day, respectively). SPR-210 had higher potency in the lens than other AR inhibitors. Moreover, the deterioration in motor nerve conduction velocity in diabetic rats was ameliorated by treatment with SPR-210 (1-30 mg/kg/day) accompanying the reduction in sorbitol content in the sciatic nerve. SPR-210 induced the recovery of the delayed peak latency of oscillatory potentials (O1-O4) in the electroretinogram in diabetic rats (10 mg/kg/day). These results suggest that the specific AR inhibitor SPR-210 will be a useful therapeutic agent for preventing and improving some diabetic complications, especially diabetic neuropathy and retinopathy, and therefore, can be discriminated from other AR inhibitors.
Collapse
Affiliation(s)
- T Matsui
- Pharmacology Department, Sapporo Breweries, Ltd., Shizuoka, Japan
| | | | | | | | | |
Collapse
|
21
|
Ward WH, Cook PN, Mirrlees DJ, Brittain DR, Preston J, Carey F, Tuffin DP, Howe R. Inhibition of aldose reductase by (2,6-dimethylphenylsulphonyl)nitromethane: possible implications for the nature of an inhibitor binding site and a cause of biphasic kinetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 328:301-11. [PMID: 8493907 DOI: 10.1007/978-1-4615-2904-0_32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aldose reductase (aldehyde reductase 2, ALR2) is often isolated as a mixture of two forms which are sensitive (ALR2S), or insensitive (ALR2I), to inhibitors. We show that ICI 215918 ((2-6-dimethylphenylsulphonyl)-nitromethane) follows either noncompetitive, or uncompetitive kinetics with respect to aldehyde for ALR2S, or the closely related enzyme, aldehyde reductase (aldehyde reductase 1, ALR1). Similar behaviour is exhibited by two other structural types of aldose reductase inhibitor (ARI), spirohydantoins and acetic acids, when either aldehyde, or NADPH is varied. For ALR2S, we have demonstrated kinetic competition between a sulphonylnitromethane, an acetic acid and a spirohydantoin. Thus, different ARIs probably have overlapping binding sites. Published studies imply that ALR2 follows an ordered mechanism where coenzyme binds first and induces a reversible conformation change (E.NADPH-->E*.NADPH). Reduction of aldehyde appears rate-limited by the step E*.NADP+-->E.NADP+. Spontaneous activation converts ALR2S into ALR2I and increases kcat. This must be associated with acceleration of the rate-determining step. We now propose the following hypothesis to explain characteristics of ARIs. (1) Inhibitors preferentially bind to the E* conformation. (2) The ARI binding site contains residues in common with that for aldehyde substrates. When aldehyde is varied, uncompetitive inhibition arises from association at the site for alcohol product in the E*.NADP+ complex which has little affinity for the substrate. Any competitive inhibition arises from use of the aldehyde site in the E*.NADPH complex. (3) Acceleration of the E*.NADP+-->E.NADP+ step upon activation of ALR2 reduces steady state levels of E* and so decreases sensitivity to ARIs.
Collapse
Affiliation(s)
- W H Ward
- ICI Pharmaceuticals, Macclesfield, Cheshire, U.K
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bohren KM, Gabbay KH. Cys298 is responsible for reversible thiol-induced variation in aldose reductase activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 328:267-77. [PMID: 8493903 DOI: 10.1007/978-1-4615-2904-0_29] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- K M Bohren
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
23
|
Liu SQ, Bhatnagar A, Srivastava SK. Does sorbinil bind to the substrate binding site of aldose reductase? Biochem Pharmacol 1992; 44:2427-9. [PMID: 1472112 DOI: 10.1016/0006-2952(92)90693-d] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
With benzyl alcohol as the varied substrate, sorbinil was found to be a competitive inhibitor of aldose reductase, an enzyme implicated in the etiology of secondary diabetic complications. The K(is sorbinil) and the Vmax/Km (V/K) benzyl alcohol decreased at low pH with a pK of 7.5 and 7.7, respectively. These observations suggest that both sorbinil and benzyl alcohol bind to the same site on the enzyme. Active site inhibition by sorbinil is consistent with non-competitive inhibition patterns of sorbinil with nucleotide coenzyme or aldehyde as the varied substrate in the direction of aldehyde reduction.
Collapse
Affiliation(s)
- S Q Liu
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555
| | | | | |
Collapse
|
24
|
Involvement of cysteine residues in catalysis and inhibition of human aldose reductase. Site-directed mutagenesis of Cys-80, -298, and -303. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35839-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Bhatnagar A, Srivastava SK. Aldose reductase: congenial and injurious profiles of an enigmatic enzyme. BIOCHEMICAL MEDICINE AND METABOLIC BIOLOGY 1992; 48:91-121. [PMID: 1419150 DOI: 10.1016/0885-4505(92)90055-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- A Bhatnagar
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
26
|
Wilson DK, Bohren KM, Gabbay KH, Quiocho FA. An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications. Science 1992; 257:81-4. [PMID: 1621098 DOI: 10.1126/science.1621098] [Citation(s) in RCA: 348] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aldose reductase, which catalyzes the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of a wide variety of aromatic and aliphatic carbonyl compounds, is implicated in the development of diabetic and galactosemic complications involving the lens, retina, nerves, and kidney. A 1.65 angstrom refined structure of a recombinant human placenta aldose reductase reveals that the enzyme contains a parallel beta 8/alpha 8-barrel motif and establishes a new motif for NADP-binding oxidoreductases. The substrate-binding site is located in a large, deep elliptical pocket at the COOH-terminal end of the beta barrel with a bound NADPH in an extended conformation. The highly hydrophobic nature of the active site pocket greatly favors aromatic and apolar substrates over highly polar monosaccharides. The structure should allow for the rational design of specific inhibitors that might provide molecular understanding of the catalytic mechanism, as well as possible therapeutic agents.
Collapse
Affiliation(s)
- D K Wilson
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030
| | | | | | | |
Collapse
|
27
|
Liu SQ, Bhatnagar A, Srivastava SK. Carboxymethylation-induced activation of bovine lens aldose reductase. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1120:329-36. [PMID: 1576159 DOI: 10.1016/0167-4838(92)90256-d] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carboxymethylation of bovine lens aldose reductase with 10 mM iodoacetate for 1 h at 25 degrees C led to a more than 4-fold increase in kcat. Carboxymethylation led to a 3- to 5-fold increase in Km NADPH and Km D-glyceraldehyde, whereas Km L-glyceraldehyde increased approx. 30-fold. Activation of the enzyme on carboxymethylation was accompanied by a decrease in the sensitivity of the enzyme to inhibition by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), sorbinil (Kii increased from 0.4 to 109 microM) and NADP (Kis increased from 0.01 to 0.03 mM), but not tolrestat. Activation of the enzyme was almost completely prevented by NADPH and to a lesser extent by DL-glyceraldehyde. Carboxymethylation of the enzyme did not result in the generation of several partially oxidized enzyme species, indicating the absence of partially carboxymethylated forms. Primary deuterium isotope effects on the reduced enzyme were consistent with a preferred ordered kinetic reaction scheme, in which hydride transfer is not rate limiting. The hydride transfer step does not seem to be significantly affected by carboxymethylation, nor do changes in the substrate binding steps seem to contribute to the observed rate enhancement. Increase in the turnover number of the enzyme on carboxymethylation appears to be due to facilitation of the isomerization of the E:NADP binary complex. The differential effect of carboxymethylation on sorbinil and tolrestat suggests distinct inhibitor sites on the enzyme, an S-site that binds sorbinil and a T-site that binds tolrestat.
Collapse
Affiliation(s)
- S Q Liu
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|
28
|
Abstract
In tissues susceptible to damage from chronic diabetes, excess glucose is metabolized by aldose reductase (AR) to sorbitol. Originally, AR-catalyzed sorbitol formation (and accumulation) was found in the diabetic lens; the cataractogenicity of this process was proven by preventing cataract formation with an AR inhibitor (ARI). These findings were extended to the hypothesis that, in diabetic tissues, excessive intracellular sorbitol formation initiates a cascade of metabolic abnormalities which gradually progress to loss of functional and structural integrity. The pivotal role of AR as a trigger for such abnormalities was established by preventing their occurrence in diabetic animals treated with an ARI. By inference, this led to the concept that inhibition of AR should prevent, arrest, and, possibly, reverse the development of late diabetic sequelae. In addition to motivating drug-oriented research, the ARI concept provided a rationale for the use of ARIs as experimental tools to probe the pathogenesis of diabetic complications. By helping to elucidate the metabolic, functional, and structural ramifications of the AR-catalyzed disposal of excess glucose in diabetic schemes, and in addition, by helping to define the applicability of animal models for the study of early functional pathogenic alterations occurring in diabetic subjects, ARIs may enable the discrimination in diabetic tissue of arrestible and reversible from the irreversible abnormalities.
Collapse
Affiliation(s)
- D Dvornik
- Wyeth Ayerst CR&D (Corporate Research & Development), St. Davids, PA 19087
| |
Collapse
|
29
|
Ward WH, Cook PN, Mirrlees DJ, Brittain DR, Preston J, Carey F, Tuffin DP, Howe R. (2,6-Dimethylphenylsulphonyl)nitromethane: a new structural type of aldose reductase inhibitor which follows biphasic kinetics and uses an allosteric binding site. Biochem Pharmacol 1991; 42:2115-23. [PMID: 1958230 DOI: 10.1016/0006-2952(91)90346-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many of the complications of diabetes seem to be due to aldose reductase (aldehyde reductase 2, ALR2) catalysing the increased conversion of glucose to sorbitol. Therapy with aldose reductase inhibitors (ARIs) could, therefore, decrease the development of diabetic complications. (2,6-Dimethylphenylsulphonyl)nitromethane (ICI 215918) is an example from a newly discovered class of ARIs, and we here describe its kinetic properties. Preparations of bovine lens ALR2 exhibit biphasic kinetics with respect to glucose and various inhibitors including ICI 215918. The inhibitor sensitive form (ALR2S) has a higher affinity for glucose than does the inhibitor insensitive form (ALR2I). Only ALR2S was characterized in detail because ALR2I activity is very low at physiological levels of glucose and is difficult to measure with accuracy. Aldehyde reductase (ALR1) is the most closely related enzyme to ALR2. Inhibition of ALR1 was, therefore, investigated in order to assess the specificity of ICI 215918. The values of Ki and Kies (dissociation constants for inhibitor from enzyme-inhibitor and enzyme-inhibitor-substrate complexes, respectively) for ICI 215918 with bovine kidney ALR1 and bovine lens ALR2S have been determined. When glucose is varied, the compound is an uncompetitive inhibitor of ALR2S (Kies = 0.10 microM and Ki is much greater than Kies), indicating that ICI 215918 associates with an allosteric site on the enzyme. These kinetic characteristics would cause a decrease in the concentration required to give 50% inhibition when glucose levels rise during hyperglycaemia. ICI 215918 is a mixed noncompetitive inhibitor of ALR1 (Ki = 10 microM and Kies = 1.8 microM) when glucuronate is varied. Thus, the compound has up to 100-fold specificity in favour of ALR2S relative to ALR1. Therapeutic interest has now centred upon at least three distinct structural types of ARIs: spirohydantoins, acetic acids and sulphonylnitromethanes. Using one representative of each type, we have demonstrated kinetic competition for inhibition of ALR2S. This observation strongly suggests that the different inhibitors use overlapping binding sites.
Collapse
Affiliation(s)
- W H Ward
- ICI Pharmaceuticals, Macclesfield, Cheshire, U.K
| | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Bhatnagar A, Das B, Liu SQ, Srivastava SK. Human liver aldehyde reductase: pH dependence of steady-state kinetic parameters. Arch Biochem Biophys 1991; 287:329-36. [PMID: 1654814 DOI: 10.1016/0003-9861(91)90486-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The pH dependence of steady-state parameters for aldehyde reduction and alcohol oxidation were determined in the human liver aldehyde reductase reaction. The maximum velocity of aldehyde reduction with NADPH or 3-acetyl pyridine adenine dinucleotide phosphate (3-APADPH) was pH independent at low pH but decreased at high pH with a pK of 8.9-9.6. The V/K for both nucleotides decreased below a pK of 5.7-6.2, as did the pKi of competitive inhibitors NADP and ATP-ribose, suggesting that the 2'-phosphate of the nucleotide has to be deprotonated for binding to the enzyme. The pK of the 2'-phosphate of NADPH appears to be perturbed in the ternary complexes to 5.2-5.4. The V/K for NADPH, the V/K for 3-APADPH, and the pKi of ATP-ribose also decreased above a pK of 9-10, suggesting interaction of the 2'-phosphate of the nucleotide with a protonated base, perhaps lysine. Since protonation of a residue with a pK of 8 (evident in V/K for DL-glyceraldehyde and V/K for L-gulonate versus pH profiles) appears to be essential for aldehyde reduction, and deprotonation for alcohol oxidation, this residue appears to act as a general acid-base catalyst. An additional anion binding site with a pK of 9.94 facilitates the binding of carboxylic substrates such as D-glucuronate. With NADPH as the coenzyme the primary deuterium isotope effects on V and V/K for NADPH were close to unity and pH independent, suggesting that the hydride transfer step is not rate determining over the experimental pH range. With 3-APADPH as the coenzyme, the maximum velocity, relative to NADPH was three- to four-fold lower. Isotope effects on V, V/K for 3-APADPH, and V/K for D-glucuronate were pH independent and equal to 2.2-2.8, indicating that the chemical step of the reaction is relatively insensitive to pH. These data suggest that substrates bind to both the protonated and the deprotonated forms of the enzyme, though only the protonated enzyme catalyzes aldehyde reduction and the deprotonated enzyme catalyzes alcohol oxidation. On the basis of these results a scheme for the chemical mechanism of aldehyde reductase is postulated.
Collapse
Affiliation(s)
- A Bhatnagar
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550
| | | | | | | |
Collapse
|
32
|
Bhatnagar A, Liu SQ, Srivastava SK. Structure-activity correlations in human kidney aldehyde reductase-catalyzed reduction of para-substituted benzaldehyde by 3-acetyl pyridine adenine dinucleotide phosphate. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1077:180-6. [PMID: 2015291 DOI: 10.1016/0167-4838(91)90056-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Steady-state kinetic parameters of the human kidney aldehyde reductase-catalyzed reduction of para-substituted benzaldehydes by 3-acetyl pyridine dinucleotide phosphate (3-APADPH) were determined. The kcat of aldehyde reduction by 3-APADPH was 2- to 4-fold lower than by NADPH. The dissociation constant of 3-APADPH from the enzyme-coenzyme complex was higher (77 microM) than that of NADPH (5.3 microM). Primary deuterium kinetic isotope effects on both kcat and kcat/Km for para-substituted benzaldehyde reduction by 3-APADPH (with the exception of para-carboxybenzaldehyde) were equal and on average 2.82 +/- 0.21, suggesting that these reactions follow a rapid equilibrium-ordered reaction scheme in which the hydride transfer step is rate-limiting. Multiple regression analysis of the data suggests that benzaldehyde reduction depends upon electronic substituent effects, characterized by a rho value of 0.5. These data are consistent with a transition state in which the charge on the aldehyde carbonyl increases relative to the charge on this group in the ground state. A positive deviation of para-carboxybenzaldehyde from the linear correlation between other benzaldehydes and the substituent constant sigma + suggests a specific interaction of the carboxyl substituent of the substrate with the enzyme.
Collapse
Affiliation(s)
- A Bhatnagar
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|