1
|
Giacci MK, Bartlett CA, Huynh M, Kilburn MR, Dunlop SA, Fitzgerald M. Three dimensional electron microscopy reveals changing axonal and myelin morphology along normal and partially injured optic nerves. Sci Rep 2018; 8:3979. [PMID: 29507421 PMCID: PMC5838102 DOI: 10.1038/s41598-018-22361-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/22/2018] [Indexed: 12/21/2022] Open
Abstract
Following injury to the central nervous system, axons and myelin distinct from the initial injury site undergo changes associated with compromised function. Quantifying such changes is important to understanding the pathophysiology of neurotrauma; however, most studies to date used 2 dimensional (D) electron microscopy to analyse single sections, thereby failing to capture changes along individual axons. We used serial block face scanning electron microscopy (SBF SEM) to undertake 3D reconstruction of axons and myelin, analysing optic nerves from normal uninjured female rats and following partial optic nerve transection. Measures of axon and myelin dimensions were generated by examining 2D images at 5 µm intervals along the 100 µm segments. In both normal and injured animals, changes in axonal diameter, myelin thickness, fiber diameter, G-ratio and percentage myelin decompaction were apparent along the lengths of axons to varying degrees. The range of values for axon diameter along individual reconstructed axons in 3D was similar to the range from 2D datasets, encompassing reported variation in axonal diameter attributed to retinal ganglion cell diversity. 3D electron microscopy analyses have provided the means to demonstrate substantial variability in ultrastructure along the length of individual axons and to improve understanding of the pathophysiology of neurotrauma.
Collapse
Affiliation(s)
- Marcus K Giacci
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Minh Huynh
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, City Road, Sydney, 2006, New South Wales, Australia
| | - Matt R Kilburn
- Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Sarah A Dunlop
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia. .,Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia. .,Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute, 8 Verdun St, Nedlands, 6009, Western Australia, Australia.
| |
Collapse
|
2
|
Seidl AH. Regulation of conduction time along axons. Neuroscience 2013; 276:126-34. [PMID: 23820043 DOI: 10.1016/j.neuroscience.2013.06.047] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 11/17/2022]
Abstract
Timely delivery of information is essential for proper functioning of the nervous system. Precise regulation of nerve conduction velocity is needed for correct exertion of motor skills, sensory integration and cognitive functions. In vertebrates, the rapid transmission of signals along nerve fibers is made possible by the myelination of axons and the resulting saltatory conduction in between nodes of Ranvier. Myelin is a specialization of glia cells and is provided by oligodendrocytes in the central nervous system. Myelination not only maximizes conduction velocity, but also provides a means to systematically regulate conduction times in the nervous system. Systematic regulation of conduction velocity along axons, and thus systematic regulation of conduction time in between neural areas, is a common occurrence in the nervous system. To date, little is understood about the mechanism that underlies systematic conduction velocity regulation and conduction time synchrony. Node assembly, internode distance (node spacing) and axon diameter - all parameters determining the speed of signal propagation along axons - are controlled by myelinating glia. Therefore, an interaction between glial cells and neurons has been suggested. This review summarizes examples of neural systems in which conduction velocity is regulated by anatomical variations along axons. While functional implications in these systems are not always clear, recent studies on the auditory system of birds and mammals present examples of conduction velocity regulation in systems with high temporal precision and a defined biological function. Together these findings suggest an active process that shapes the interaction between axons and myelinating glia to control conduction velocity along axons. Future studies involving these systems may provide further insight into how specific conduction times in the brain are established and maintained in development. Throughout the text, conduction velocity is used for the speed of signal propagation, i.e. the speed at which an action potential travels. Conduction time refers to the time it takes for a specific signal to travel from its origin to its target, i.e. neuronal cell body to axonal terminal.
Collapse
Affiliation(s)
- A H Seidl
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA; Department of Otolaryngology - Head & Neck Surgery, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Kimura F, Itami C. Myelination and isochronicity in neural networks. Front Neuroanat 2009; 3:12. [PMID: 19597561 PMCID: PMC2708965 DOI: 10.3389/neuro.05.012.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 06/23/2009] [Indexed: 11/13/2022] Open
Abstract
Our brain contains a multiplicity of neuronal networks. In many of these, information sent from presynaptic neurons travels through a variety of pathways of different distances, yet arrives at the postsynaptic cells at the same time. Such isochronicity is achieved either by changes in the conduction velocity of axons or by lengthening the axonal path to compensate for fast conduction. To regulate the conduction velocity, a change in the extent of myelination has recently been proposed in thalamocortical and other pathways. This is in addition to a change in the axonal diameter, a previously identified, more accepted mechanism. Thus, myelination is not a simple means of insulation or acceleration of impulse conduction, but it is rather an exquisite way of actively regulating the timing of communication among various neuronal connections with different length.
Collapse
Affiliation(s)
- Fumitaka Kimura
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine Japan
| | | |
Collapse
|
4
|
Kaplan S, Odaci E, Unal B, Sahin B, Fornaro M. Chapter 2 Development of the Peripheral Nerve. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:9-26. [DOI: 10.1016/s0074-7742(09)87002-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Howe CL. Coated Glass and Vicryl Microfibers as Artificial Axons. Cells Tissues Organs 2006; 183:180-94. [PMID: 17159344 DOI: 10.1159/000096509] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2006] [Indexed: 11/19/2022] Open
Abstract
The complex interactions that occur between oligodendrocytes and axons during the process of central nervous system myelination and remyelination remain unclear. Elucidation of the cell-biological and -biochemical mechanisms supporting myelin production and elaboration requires a robust in vitro system that recapitulates the relationship between axons and oligodendrocytes in a manner that is open to molecular dissection. We provide evidence for an artificial axon culture system in which we observed oligodendrocytes extending large plasma membrane projections that frequently completely ensheathed fibers coated with a variety of extracellular matrix molecules. These membrane projections varied in extent and thickness depending upon the substrate and upon the diameter of the coated fiber. Matrigel-coated glass microfibers were found to support the development of thick membrane sheaths that extended for hundreds of microns and exhibited many features suggestive of the potential for true myelin deposition. Likewise, Matrigel-coated Vicryl fibers supported plasma membrane extensions that covered extremely large surface areas and occasionally wrapped the coated Vicryl fibers in more than one membrane layer. Our findings suggest that the deposition of molecular cues onto glass or polymer fibers either via adsorption or chemical modification may be a useful tool for the discovery or validation of axonal factors critical for myelination and remyelination. Herein, we provide evidence that polyglactin 910 and glass microfibers coated with adhesion factors may provide a reasonable system for the in vitro analysis of myelination, and may eventually serve a role in engineering artificial systems for neural repair.
Collapse
Affiliation(s)
- Charles L Howe
- Department of Neuroscience and Neurology, Mayo Clinic College of Medicine, Rochester, Minn, USA.
| |
Collapse
|
6
|
Yang P, Baker KA, Hagg T. The ADAMs family: coordinators of nervous system development, plasticity and repair. Prog Neurobiol 2006; 79:73-94. [PMID: 16824663 DOI: 10.1016/j.pneurobio.2006.05.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 05/18/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
A disintegrin and metalloprotease (ADAM) transmembrane proteins have metalloprotease, integrin-binding, intracellular signaling and cell adhesion activities. In contrast to other metalloproteases, ADAMs are particularly important for cleavage-dependent activation of proteins such as Notch, amyloid precursor protein (APP) and transforming growth factor alpha (TGFalpha), and can bind integrins. Not surprisingly, ADAMs have been shown or suggested to play important roles in the development of the nervous system, where they regulate proliferation, migration, differentiation and survival of various cells, as well as axonal growth and myelination. On the eleventh anniversary of the naming of this family of proteins, the relatively unknown ADAMs are emerging as potential therapeutic targets for neural repair. For example, over-expression of ADAM10, one of the alpha-secretases for APP, can prevent amyloid formation and hippocampal defects in an Alzheimer mouse model. Another example of this potential neural repair role is the finding that ADAM21 is uniquely associated with neurogenesis and growing axons of the adult brain. This comprehensive review will discuss the growing literature about the roles of ADAMs in the developing and adult nervous system, and their potential roles in neurological disorders. Most excitingly, the expanding understanding of their normal roles suggests that they can be manipulated to promote neural repair in the degenerating and injured adult nervous system.
Collapse
Affiliation(s)
- Peng Yang
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, Louisville, KY 40292, USA
| | | | | |
Collapse
|
7
|
Hoang TX, Nieto JH, Dobkin BH, Tillakaratne NJK, Havton LA. Acute implantation of an avulsed lumbosacral ventral root into the rat conus medullaris promotes neuroprotection and graft reinnervation by autonomic and motor neurons. Neuroscience 2006; 138:1149-60. [PMID: 16446042 DOI: 10.1016/j.neuroscience.2005.11.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 11/17/2005] [Accepted: 11/21/2005] [Indexed: 11/19/2022]
Abstract
Trauma to the conus medullaris and cauda equina may result in autonomic, sensory, and motor dysfunctions. We have previously developed a rat model of cauda equina injury, where a lumbosacral ventral root avulsion resulted in a progressive and parallel death of motoneurons and preganglionic parasympathetic neurons, which are important for i.e. bladder control. Here, we report that an acute implantation of an avulsed ventral root into the rat conus medullaris protects preganglionic parasympathetic neurons and motoneurons from cell death as well as promotes axonal regeneration into the implanted root at 6 weeks post-implantation. Implantation resulted in survival of 44+/-4% of preganglionic parasympathetic neurons and 44+/-4% of motoneurons compared with 22% of preganglionic parasympathetic neurons and 16% of motoneurons after avulsion alone. Retrograde labeling from the implanted root at 6 weeks showed that 53+/-13% of surviving preganglionic parasympathetic neurons and 64+/-14% of surviving motoneurons reinnervated the graft. Implantation prevented injury-induced atrophy of preganglionic parasympathetic neurons and reduced atrophy of motoneurons. Light and electron microscopic studies of the implanted ventral roots demonstrated a large number of both myelinated axons (79+/-13% of the number of myelinated axons in corresponding control ventral roots) and unmyelinated axons. Although the diameter of myelinated axons in the implanted roots was significantly smaller than that of control roots, the degree of myelination was appropriate for the axonal size, suggesting normal conduction properties. Our results show that preganglionic parasympathetic neurons have the same ability as motoneurons to survive and reinnervate implanted roots, a prerequisite for successful therapeutic strategies for autonomic control in selected patients with acute conus medullaris and cauda equina injuries.
Collapse
Affiliation(s)
- T X Hoang
- Department of Neurology and Brain Research Institute, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | | | | | | | | |
Collapse
|
8
|
Elder GA, Friedrich VL, Lazzarini RA. Schwann cells and oligodendrocytes read distinct signals in establishing myelin sheath thickness. J Neurosci Res 2001; 65:493-9. [PMID: 11550217 DOI: 10.1002/jnr.1179] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Schwann cells and oligodendrocytes produce myelin sheaths of widely varying sizes. How these cells determine the size of myelin sheath for a particular axon is incompletely understood. Axonal diameter has long been suspected to be a signal in this process. We have analyzed myelin sheath thickness in L5 lumbar root and spinal cord white matter of a series of mouse mutants with diminished axonal calibers resulting from a deficiency of neurofilaments (NFs). In the PNS, average axonal diameters were reduced by 20-37% in the NF mutants. Remarkably, the average myelin sheath thickness remained unchanged from control values, and regression analysis showed sheaths abnormally thick for a given size of axon. These data show that a genetically induced reduction in axonal caliber does not cause a reduction in myelin sheath thickness in PNS and indicate that Schwann cells read some intrinsic signal on axons that can be uncoupled from axonal diameter. Interestingly, myelin sheaths in the spinal cord of these animals were not abnormally thick, arguing that axonal diameter may contribute directly to the regulation of myelination in the CNS and that oligodendrocytes and Schwann cells use different cues to set myelin sheath thickness.
Collapse
Affiliation(s)
- G A Elder
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
9
|
Fraher JP, O'Sullivan AW. Interspecies variation in axon-myelin relationships. Cells Tissues Organs 2000; 167:206-13. [PMID: 10971044 DOI: 10.1159/000016783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The primary objective of this paper was to determine the extent and nature of interspecies differences in axon calibre and myelin sheath thickness and in the various relationships between these. Morphometric analysis of the axon perimeter-myelin sheath thickness relationship was performed on an equivalent nerve fibre population in a mammal, the rat, a bird, the chicken, an amphibian, the frog, a bony fish, the trout, and a cartilaginous fish, the dogfish. The abducent nerve was studied. It is especially suitable for this purpose because its fibres are closely similar in type and in peripheral distribution across the species studied. The relationship differed substantially between species. Differences were present in its setting, as described by the positions of the scatterplots, in the g ratio and in the regression and correlation data relating the parameters. Both parameters were markedly larger in the fish species than in all of the others. In addition, in rat, chicken, frog and trout, where large and small fibre classes could be differentiated clearly, the setting of the relationship between the two parameters was different for the two classes. In the main, variation in each of the parameters was greater between than within species. The larger fibres in the fish species were closely similar in axon perimeter and sheath thickness despite their long evolutionary separation. From this study and from others in the series, it may be concluded that there is no fixed or constant relationship between axon calibre and the thickness of the surrounding myelin sheath. Each nerve tends to have its own particular relationship and this differs between species.
Collapse
Affiliation(s)
- J P Fraher
- Anatomy Department, National University of Ireland, Cork, Ireland.
| | | |
Collapse
|
10
|
Sadahiro S, Yoshikawa H, Yagi N, Yamamoto Y, Yanagihara T, Kimura M, Sakoda S. Morphometric analysis of the myelin-associated oligodendrocytic basic protein-deficient mouse reveals a possible role for myelin-associated oligodendrocytic basic protein in regulating axonal diameter. Neuroscience 2000; 98:361-7. [PMID: 10854769 DOI: 10.1016/s0306-4522(00)00111-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myelin-associated oligodendrocytic basic protein is a member of the proteins constituting the central nervous system myelin. By morphometric analysis, we demonstrated that axons of myelin-associated oligodendrocytic basic protein-deficient mice had larger diameters and more myelin lamellae as compared to those of wild-type mice at the same age. It is known that the number of myelin lamellae increases linearly with axonal diameter, and that the rate of radial axonal growth is the factor controlling the rate of myelin formation. In line with these observations, we found that the regression line for axonal diameter and the number of myelin lamellae in myelin-associated oligodendrocytic basic protein-deficient mice appeared to be identical to that in wild-type mice, indicating that the increase in the number of myelin lamellae was the result of the increase in axonal diameter. Furthermore, we generated myelin basic protein/myelin-associated oligodendrocytic basic protein-double-deficient mice through mating myelin-associated oligodendrocytic basic protein-deficient mice with shiverer mice, an autosomal recessive mutant characterized by a lack of all isoforms of myelin basic protein. With these knock-out mice, we showed that axons of the double-deficient mice had larger diameters and smaller form factor, an index of the deformation of the fiber contour, in ensheathed fibers than those of shiverer mice, although there was no difference in axonal diameter of unmyelinated fibers between them. Taken together, myelin-associated oligodendrocytic basic protein seemed to play a role in controlling axonal diameter and in keeping axons round.
Collapse
Affiliation(s)
- S Sadahiro
- Department of Neurology (D-4), Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Fraher J, Dockery P. A strong myelin thickness-axon size correlation emerges in developing nerves despite independent growth of both parameters. J Anat 1998; 193 ( Pt 2):195-201. [PMID: 9827635 PMCID: PMC1467839 DOI: 10.1046/j.1469-7580.1998.19320195.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The axon determines whether or not it is myelinated by the Schwann cell. At maturity there is a positive correlation between sheath thickness and axon calibre. This correlation is initially very low or absent, but gradually strengthens during development. This increase could come about because the axon continuously controls Schwann cell myelinating activity, so that a given axon calibre is associated with a particular myelin sheath thickness, an interaction which would entail the Schwann cell continuously monitoring and responding to axon size. This seems unnecessarily complex. This theoretical study shows that the strong correlation between the 2 parameters within a given myelinated fibre population may come about in a much simpler way than outlined above. This is demonstrated by modelling the growth and myelination of a hypothetical population, utilising data from earlier studies on cervical ventral motoneuron axon development. The hypothesis tested shows that the only instructive interactions by the axon on the Schwann cell necessary for the strong correlation between the 2 parameters to emerge are for the initiation of myelination, its continuation and its termination. These could result from a single stimulus being switched on, persisting for a time and being switched off. Under this influence, the Schwann cell is assumed to proceed to form the myelin sheath at a constant rate which it itself inherently determines, in the absence of any quantitative influence exerted by the axon. This continues until the stimulus for myelination ceases to emanate from the axon. The validity of the hypothesis is demonstrated, because the resulting myelin-axon relationships correspond closely to those observed during development.
Collapse
Affiliation(s)
- J Fraher
- Department of Anatomy, University College, Cork, Ireland.
| | | |
Collapse
|
12
|
Salgado-Ceballos H, Guizar-Sahagun G, Feria-Velasco A, Grijalva I, Espitia L, Ibarra A, Madrazo I. Spontaneous long-term remyelination after traumatic spinal cord injury in rats. Brain Res 1998; 782:126-35. [PMID: 9519256 DOI: 10.1016/s0006-8993(97)01252-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The capability of the central nervous system to remyelinate axons after a lesion has been well documented, even though it had been described as an abortive and incomplete process. At present there are no long-term morphometric studies to assess the spinal cord (S.C.) remyelinative capability. With the purpose to understand this phenomenon better, the S.C. of seven lesionless rats and the S.C. of 21 rats subjected to a severe weight-drop contusion injury were evaluated at 1, 2, 4, 6, and 12 months after injury. The axonal diameter and the myelination index (MI = axolemmal perimeter divided by myelinated fiber perimeter) were registered in the outer rim of the cord at T9 SC level using a transmission electron microscope and a digitizing computer system. The average myelinated fiber loss was 95.1%. One month after the SC, 64% of the surviving fibers were demyelinated while 12 months later, only 30% of the fibers had no myelin sheath. The MI in the control group was 0.72 +/- 0.07 (X +/- S.D.). In the experimental groups, the greatest demyelination was observed two months after the lesion (MI = 0.90 +/- 0.03), while the greatest myelination was observed 12 months after the injury (MI = 0.83 +/- 0.02). There was a statistical difference (p < 0.02) in MI between 2 and 12 months which means that remyelination had taken place. Remyelination was mainly achieved because of Schwann cells. The proportion of small fibers (diameter = 0.5 micron or less) considered as axon collaterals, increased from 18.45% at 1 month to 27.66% a year after the contusion. Results suggest that remyelination is not an abortive phenomenon but in fact a slow process occurring parallel to other tissue plastic phenomena, such as the emission of axon collaterals.
Collapse
Affiliation(s)
- H Salgado-Ceballos
- Unit of Medical Research in Neurological Diseases, Instituto Mexicano del Seguro Social, México, DF, México
| | | | | | | | | | | | | |
Collapse
|
13
|
Iannuzzelli PG, Murray M, Murphy EH. Regenerative axonal sprouting in the cat trochlear nerve. J Comp Neurol 1995; 354:229-40. [PMID: 7782500 DOI: 10.1002/cne.903540206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Following peripheral trochlear nerve axotomy in the cat, the normal number of myelinated axons is restored despite significant motor neuron death, suggesting regulation of the number of myelinated axons in the regenerated nerve. In this study we used light and electron microscopy to examine the production and maintenance of axonal sprouts at different locations in the nerve and at different postoperative intervals. Despite proliferative sprouting and an overproduction of nonmyelinated axons in the regenerating trochlear nerve, the number of myelinated axons was strictly regulated. Only approximately 1,000 regenerated axons were eventually remyelinated, but many nonmyelinated axons were still present 6-8 months postaxotomy. Regenerated axons were remyelinated in a proximal-to-distal direction between 3 and 4 weeks postaxotomy. We also examined the maturation of regenerated myelinated axons by measuring axon diameter and myelin index (an expression of myelin thickness). Mean myelinated axon diameter remained significantly below normal in long-term regenerated nerves. Mean myelin index was not different from normal at 4 weeks postaxotomy but was significantly decreased at long postoperative intervals, reflecting a slightly thicker myelin sheath relative to the axon diameter. This relative increase in mean myelin thickness could serve to restore normal conduction velocity despite the decrease in mean axon diameter. We suggest that the regulation of the number of myelinated axons at the normal number despite cell death and the increase in mean myelin thickness may both be compensatory mechanisms that function to restore preoperative conditions and maximize functional recovery.
Collapse
Affiliation(s)
- P G Iannuzzelli
- Department of Anatomy and Neurobiology, Medical College of Pennsylvania/EPPI, Philadelphia 19129, USA
| | | | | |
Collapse
|
14
|
Fernández E, Cuenca N, De Juan J. A useful programme in BASIC for axonal morphometry with introduction of new cytoskeletal parameters. J Neurosci Methods 1991; 39:271-89. [PMID: 1787747 DOI: 10.1016/0165-0270(91)90106-a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Interest in the structure of axons and quantification of their components has been growing over the last years. However, the existing literature contains few reports of available computer programmes to facilitate such studies. This paper presents a fully comprehensive BASIC programme for the morphometric analysis of electron micrographs of cross-sectional nerve fibres. From drawings of fibre and axonal contours and dots of the microtubules and neurofilaments, the programme calculates the following parameters: area, diameter and form factor of the fibres and axons, number and density of microtubules and neurofilaments, proportion between microtubules and neurofilaments (R-proportion), myelin thickness and the diameter of the axon relative to its sheath (g-ratio). The programme also introduces three new parameters to analyse the degree of uniformity of microtubule and neurofilament distribution: distances between microtubules and between neurofilaments, equilateral index and cytoskeletal intermingling index. The programme is written in Microsoft BASIC Interpreter for Apple Macintosh (Microsoft Corporation) but can be used on other computers. Although the programme has been tested on adult rat optic nerve fibres, it can be used for different projects concerning axonal morphometry.
Collapse
Affiliation(s)
- E Fernández
- Departamento de Histología, Facultad de Medicina, Universidad de Alicante, Spain
| | | | | |
Collapse
|
15
|
Fraher JP, Rossiter JP. Myelin-axon relationships established by rat vagal Schwann cells deep to the brainstem surface. J Comp Neurol 1991; 304:253-60. [PMID: 2016420 DOI: 10.1002/cne.903040208] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The central-peripheral transitional zones of rat dorsolateral vagal rootlets are highly complex. Peripheral nervous tissue extends centrally for up to several hundred micrometers deep to the brainstem surface along these rootlets. In some instances this peripheral nervous tissue lacks continuity with the peripheral nervous system (PNS) and so forms an island within the central nervous system (CNS). In conformity with the resulting complexity of the CNS-PNS interface, segments of vagal axons lying deep to the brainstem surface are myelinated by one or more intercalated Schwann cells, contained in peripheral tissue insertions or islands, at either end of which they traverse an astroglial barrier. Intercalated Schwann cells are thus isolated from contact or contiguity with the Schwann cells of the PNS generally. They are short, having a mean internodal length of around 60% of that of the most proximal Schwann cells of the PNS proper, which lie immediately distal to the CNS-PNS interface and which are termed transitional Schwann cells. The thickness of the myelin sheaths produced by intercalated Schwann cells is intermediate between that of transitional Schwann cells and that of oligodendrocytes myelinating vagal axons of the same calibre distribution. This is not due to limited blood supply or to insufficient numbers of intercalated Schwann cells, the density of which is greater than that of transitional Schwann cells. These factors are unlikely to restrict expression of their myelinogenic potential. Nevertheless, the regression data show that the setting of the myelin-axon relationship differs significantly between the two categories of Schwann cell. Thus, the myelinogenic response of Schwann cells to stimuli emanating from the same axons may differ between levels along one and the same nerve bundle. Mean myelin periodicity was found to differ between sheaths produced by intercalated and by transitional Schwann cells.
Collapse
Affiliation(s)
- J P Fraher
- Anatomy Department, University College, Cork, Ireland
| | | |
Collapse
|
16
|
Phillips DE, Krueger SK, Rydquist JE. Short- and long-term effects of combined pre- and postnatal ethanol exposure (three trimester equivalency) on the development of myelin and axons in rat optic nerve. Int J Dev Neurosci 1991; 9:631-47. [PMID: 1725086 DOI: 10.1016/0736-5748(91)90025-h] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This study evaluated the effects of a combined gestational and 10 day postnatal alcohol exposure (human three trimester equivalency) on the development of myelin and axons in rat optic nerve. Rats were exposed during gestation via liquid diet, then their artificially reared pups were further exposed for 10 postnatal days via an ethanol-containing diet fed by gastrostomy. Control animals from pair-fed dams were artificially reared for 10 days on pair-fed isocaloric diets. Anesthetized animals were perfused with fixative on gestational days (G) 15 and 20 and postnatal days (P) 5, 10, 15, 20, and 90, then optic nerve tissues prepared for electron microscopy. Optic nerve cross-sectional areas were generally less from G20 through P90 in ethanol exposed animals. Counts of the number of myelinated nerve fibers per unit area and of the numbers of fibers in different stages of myelin development revealed that alcohol exposure caused a delay in myelin acquisition at 10 and 15 days that was compensated for at 20 and 90 days. Myelin thickness as a function of axon diameter was decreased in the alcohol exposed animals from 10 through 90 days, indicating a permanent reduction in the relative thickness of myelin. These results show that alcohol exposure for all of gestation and 10 postnatal days in the rat (human three trimester equivalency) causes a permanent reduction in myelin thickness along with a delay in myelin acquisition in the optic nerve. Such alterations in developing and adult myelin could help to explain some of the neurological and visual dysfunctions associated with developmental alcohol exposures.
Collapse
Affiliation(s)
- D E Phillips
- Department of Biology, Montana State University, Bozeman 59717-0346
| | | | | |
Collapse
|
17
|
Guy J, Ellis EA, Kelley K, Hope GM. Spectra of G ratio, myelin sheath thickness, and axon and fiber diameter in the guinea pig optic nerve. J Comp Neurol 1989; 287:446-54. [PMID: 2794129 DOI: 10.1002/cne.902870404] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The spectra of fiber and axon diameter, myelin sheath thickness, fiber density, and g ratio of the optic nerve were analyzed for the strain-13 guinea pig, an animal extensively utilized in the investigation of experimental disorders of demyelination. Our detailed analytical study of the normal guinea pig optic nerve provides the basis for comparison to disease states and the morphology of other species. As in the rat, mouse, and chipmunk, fiber diameters in the guinea pig were unimodal, but dissimilar to the trimodal fiber spectra of the cat and primate. The predominance of medium-sized fibers (0.80-2.00 microns), common to most species, contributed to the larger mean fiber diameter (1.45 microns) of the guinea pig optic nerve, in which small fibers (0.50 microns or less) were infrequent and fibers larger than 5.00 microns in diameter, seen in the cat and primate, were absent. While myelin sheath thickness increased with axon diameter in the guinea pig, as in other species, a g ratio of 0.81 in the guinea pig was greater than in most mammals. Since conduction velocity is dependent on axon size, as well as myelin properties, the relatively larger mean axon diameter of the guinea pig optic nerve (1.18 microns) may compensate for the decrease in its myelination.
Collapse
Affiliation(s)
- J Guy
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville 32610
| | | | | | | |
Collapse
|
18
|
Fraher JP. Axon-myelin relationships in rat cranial nerves III, IV, and VI: a morphometric study of large- and small-fibre classes. J Comp Neurol 1989; 286:384-90. [PMID: 2768565 DOI: 10.1002/cne.902860308] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The primary objectives of this study were to determine (1) if quantitative axon-myelin relationships are similar for large- and for small-fibre classes within individual nerves and (2) if the same axon-myelin relationships hold for equivalent fibre classes in closely similar nerves. The oculomotor, trochlear, and abducent nerves of the rat were examined since they each contain distinct large- and small-fibre classes and are similar in a wide range of anatomical and developmental respects. Accordingly, morphometric analyses of axon-myelin relationships were performed separately on large and small fibres of each of the three nerves. Within each nerve, the setting of the relationship between the two parameters was found to be different for the two fibre classes: Scatterplots relating sheath thickness to axon perimeter for large fibres were shifted upwards relative to those for small fibres. These differences were also reflected in the positions of the regression lines fitted to the plots and in the g-ratios. Significant differences were found between nerves in relation to their large fibres: Those of the abducent nerve had significantly thicker sheaths, those of the oculomotor nerve had significantly smaller axon perimeters, and the myelin sheath-axon perimeter relationship of the abducent nerve differed significantly from that of the other two. This study therefore shows that morphometric axon-myelin relationships may differ significantly between equivalent fibre classes of nerves that are closely similar in respect of morphological class, central origin, peripheral distribution, developmental environment, and function.
Collapse
Affiliation(s)
- J P Fraher
- Department of Anatomy, University College, Cork, Ireland
| |
Collapse
|
19
|
Hahn AF, Chang Y, Webster HD. Development of myelinated nerve fibers in the sixth cranial nerve of the rat: a quantitative electron microscope study. J Comp Neurol 1987; 260:491-500. [PMID: 3611408 DOI: 10.1002/cne.902600403] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Myelination was studied quantitatively in the sixth cranial nerves of rats by counting and measuring all myelinated fibers during the first three postnatal weeks. In transverse semithin and thin sections cut serially at a well-defined anatomical site in the midsphenoid region, only a few axons (mean 12) were myelinated at birth. On days 2, 4, and 8, counts of myelinated fibers were respectively 5 times (mean 57), 20 times (mean 230), and 24 times (mean 273) the number seen at birth. During the second postnatal week, the number of myelinated fibers remained constant, whereas growth of axons and their myelin sheaths continued. By 15 days these fibers were large and relatively uniform in size; they had compact, circular myelin sheaths. During the third postnatal week, myelination of previously unmyelinated, smaller axons began. The number of myelinated fibers increased again and the size distribution of myelinated fibers became bimodal. Axon diameters, fiber diameters, and myelin sheath dimensions for all fibers were calculated from measurements made on electron micrographs. The transverse length of the myelin membrane increased exponentially with time. The growth increased rapidly during the formation of the first 20 spiral layers and remained relatively constant during the subsequent enlargement of the compact sheath. The association of axon diameter and myelin sheath thickness was poor at young ages, but it improved progressively with maturation of the sheath. The results show that myelination begins around axons that have a wide range of diameters. Also, the first axons to be myelinated become the large myelinated fibers of the sixth nerve. The small myelinated fibers originate from axons that do not become myelinated until the third postnatal week. Myelination, though differing in onset by 2 weeks, appeared to be similar in both populations as judged by similarity of sheath morphology and growth rates. It is of interest that at the level studied, the sixth nerve also contains a fascicle of unmyelinated cranial sympathetic fibers.
Collapse
|
20
|
Knapp PE, Bartlett WP, Skoff RP. Cultured oligodendrocytes mimic in vivo phenotypic characteristics: cell shape, expression of myelin-specific antigens, and membrane production. Dev Biol 1987; 120:356-65. [PMID: 2435591 DOI: 10.1016/0012-1606(87)90238-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Primary cultures of neonatal mouse cerebra were maintained for up to 4 weeks in the absence of neurons. Oligodendrocytes in these cultures pass through a sequence of cytoarchitectural change and antigen expression which mimics the differentiation of oligodendrocytes in vivo. The cell bodies and processes of oligodendrocytes first express the myelin-specific antigen galactocerebroside (GC) by 2 days in vitro. Myelin basic protein (MBP) appears several days later. The majority of oligodendrocytes then proceed to elaborate large sheets of membranous material from the tips and lengths of cell processes. These membranous sheets, which contain GC and MBP, are reminiscent of unwrapped myelin profiles in vivo. As with the cell bodies and processes, GC is inserted into the sheets several days before MBP. Our results establish that oligodendrocytes cultured without neurons are able to produce extensive membranes containing myelin-specific antigens. They also suggest that oligodendrocyte shape and membrane production are, in part, regulated from within the oligodendrocyte itself.
Collapse
|
21
|
Abstract
The recovery of axons regenerated through silicone tube splices was studied with electron microscopic and morphometric methods. Regenerated nerves contained both myelinated and unmyelinated axons of near normal morphology. The number and diameter of axons increased with postoperative time, and size-frequency histograms demonstrated that regeneration occurred in all major fiber groups. Remyelination occurred between about 4 and 6 weeks. Some of the smallest regenerated axons had unusually thick myelin sheaths, but overall regenerated axons had a slightly thinner sheath compared with similar-size normal fibers, although the ratio of sheath thickness to axon size was within the normal limits of g = 0.65 to 0.8 by 6 weeks. Axons did not, however, regain their normal size within 10 months of surgery. This deficit was apparently the primary factor limiting conduction velocity in these regenerated axons.
Collapse
|
22
|
Moll C, Meier C. The central-peripheral transition zone of cervical spinal nerve roots in Jimpy mutant and normal mice. Light- and electron-microscopic study. Acta Neuropathol 1983; 60:241-51. [PMID: 6613534 DOI: 10.1007/bf00691872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Comparative morphological and ultrastructural investigations on the cervical dorsal and ventral central-peripheral transition zones (CPTZs) of Jimpys and control mice have been performed at early and advanced myelination stages. After postnatal development a characteristic cone-shaped glial outgrowth extends into the proximal part of the dorsal roots, while the ventral roots exhibit short Schwann cell and peripheral nervous tissue invaginations into the spinal cord at the ventral root-spinal cord junction in both animal groups. In Jimpys, although there is marked central myelin deficiency and absence of oligodendroglial development on the CNS side, the normal general aspect of the CPTZs is maintained. Previously postulated astrocytic and neuroaxonal abnormalities in the mutants do not alter the central-peripheral borderline, and Schwann cell migration from the spinal nerve roots into the cord does not occur.
Collapse
|
23
|
Abstract
Samples of S1 dorsal root nerve fibers from cats of different pre- and postnatal ages were examined electron microscopically with regard to axon caliber and number of myelin lamellae. Each root was examined at four different cross-sectional levels. Two levels were situation close to the spinal cord entrance on each side of the peripheral (PNS) and central nervous system (CNS) border. The third and fourth levels were located more distally. The first compact myelin lamella was observed in the CNS part of the root in a 47-day-old fetus. In the 53-day-old fetus the degree of myelination was the same in the CNS as distal in the PNS part of the root. Surprisingly, all axons appeared unmyelinated close to the PNS-CNS border and remained so for a further 10-day period. After this time lag, this part of the root became myelinated and showed a rapid increase in myelin sheath thickness. Calculations of axonal growth, mesaxonal length, and myelin volume indicated a maturation process that progressed discontinuously. Myelination did not proceed in a strict somatofugal direction, but was a regionally differentiated process. The maximal myelin production, expressed as the increase in myelin volume per Schwann cell, was found during the second to fourth postnatal months, i.e., very late in development.
Collapse
|
24
|
Abstract
The significance of internode length for sheath thickness was analyzed by electron microscopic morphometry in isolated internodes from the human roots C3 and S1. These populations differ in length but have similar caliber. The amount of myelin per internode was in linear relation with the product of axon circumference and the length of the ensheathed axon segment. Neither one of these two vectors was in a statistically significant relationship with sheath thickness. The ratio between the axolemmal area covered by the Schwann cell and the area of the myelin leaflet averaged 1:163 for human root fibers. It was 1:177 for previous data from canine sciatic nerve. The proportions of an internode were defined by an 1/d-quotient, expressing its length as multiples of axon diameter. Relative sheath thickness (g-ratio: diameter axon/diameter fiber) relates inversely with the 1/d-quotient. For a given axon caliber, the g-ratio (sheath thickness) decreases by 0.006 for every 10.0 increase in 1/d-quotient (relative internode length). Thus, internodes relatively long for axon caliber possess slightly thicker sheaths than internodes short for axon caliber. Axon caliber and relative internode length emerge as the two key factors determining the amount of myelin in a sheath.
Collapse
|
25
|
Abstract
The BASIC program developed for use on a M.S.I. 6800 microprocessor analyses cross-sectional measurements of fibre (D) and axon (d) calibre made on electron micrographs of suitable magnification. Data input routines cover measurements of area and diameter, made manually or presented as fully computed values printed out by a M.O.P. Separate sub-routines input digitized data from a digitizer tablet coupled to the microprocessor. Myelin sheath thickness (2M) (D-d), or area and 'g' (d/D) are derived. The two analytical programs provide either frequency distributions, with associated statistics for each parameter, or analyses of the relationships (D:d), (d:2M) and (D:g). The highly structured nature of the program permits it to be edited or extended according to the project. The main programme controls the overall flow of analysis; discrete subprograms inserted into the main program perform the data input, parameter derivations, data checks and analyses. This system offers maximum flexibility and is suitable for most morphometric investigations involving peripheral nerves.
Collapse
|
26
|
Abstract
A study of the regions of myelination of spiral ganglion cell bodies at birth in the kitten revealed that the first myelination occurred before birth. A quantitative analysis of myelinated versus unmyelinated cells, and the distribution of myelin lamellae of the ganglion cell sheath reflect the kinetics of the later stages of cochlear maturation. The onset of the final maturation process begins in the basal region of the first turn, which is 20% of the length of the spiral lamina measured from the basal extremity of the cochlea. This maturation proceeds in an orderly manner from the lower half of the first turn to the apex, but also develops to a smaller degree toward the hook region. Results are compared with previous findings.
Collapse
|
27
|
Persson LA. Growth of nerve-cell body and myelinogenesis in mouse trigemnal ganglion and root: a combined cytofluorometric and morphometric study. JOURNAL OF NEUROCYTOLOGY 1981; 10:169-82. [PMID: 7310449 DOI: 10.1007/bf01257965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Postnatal growth of mouse trigeminal ganglion cells and myelinogenesis in the central and peripheral portions of the trigeminal root were studied in animals aged 0-120 days. The trigeminal ganglion cells were dispersed into single cell suspensions. The growth of individual nerve cells was quantitated by measuring total protein content with a new cytofluorometric method based on o-phthaldialdehyde binding to cells fixed in a mixture of ethanol and acetic acid. White matter from the C.N.S. protrudes from the brainstem into the trigeminal root, comes into direct contact with the P.N.S. in a transitional region. C.N.S. and P.N.S. and myelinogenesis were studied in the same population of trigeminal sensory nerve fibres. Myelinogenesis was quantitated at the ultrastuctural level by morphometric techniques. A prominent peak in nerve cell body growth occurred between 3 and 6 days. Myelinogenesis in terms of established contacts between axons and their myelinating cells started at the same time in C.N.S. and P.N.S. and the transformation from nonmyelinated to promyelinated and myelinated fibres occurred concurrently in the central and peripheral parts of the trigeminal root. The growth of the myelin sheath, that is, the addition of myelin lamellae, was faster and more intense in P.N.S. than in C.N.S. This could reflect the fact that a Schwann cell myelinates only one internode, whereas an oligodendrocyte provides myelin for several internodes in different axons. These results support the concept of a common 'signal' for myelinogenesis in C.N.S. and P.N.S.
Collapse
|
28
|
Abstract
A morphometric analysis of postnatal differentiation in the rat trochlear nerve was studied by light and electron microscopy as an initial basis for understanding motor unit heterogeneity in the extraocular muscles (EOM). A total of 35 animals were examined 7--90 days postnatal (dpn). The mean number of fibers increased from 222 to 7 dpn to 274 in the adult and the size distribution became bimodal at 21 dpn. In the adult 17% of the myelinated fibers had a mean diameter of 2.5 micrometer and 83% were 7.3 micrometer. The estimated number of unmyelinated axons decreased from about 40% at 7 dpn to 20% at 14 dpn and 16% in the adult. The myelinated fiber diameter was more highly correlated with age and body weight than was fiber number. Certain organelles characteristic of active membrane growth were present in the Schwann cell cytoplasm at the paranode region. Redundant loops were prominent at 10 dpn, when many axons were still in Schwann cell bundles. During the third postnatal week a number of alterations were noted which may reflect a loss of polyneuronal innervation. These included thicker myelin sheaths and ultrastructural evidence of axonal degeneration. Branching of myelinated fibers was limited to the intramuscular portions of the nerve at 18 dpn. The g-ratio of the largest fibers at selected ages was nearly constant at .71 and was correlated with fiber diameters (r = 0.40), except at 14 dpn. The periodicity of the myelin sheath had either an inverse or constant relationship to the number of lamellae. The significance of the results is discussed in relation to postnatal development, the size principle and heterogeneity in the EOM motor units.
Collapse
|
29
|
Abstract
The anterior funiculus of the spinal cervical cord of post-natal rats was examined ultrastructurally. The myelinating cells found one day after brith contained a large amount of evenly distributed ribosomes up to the outer tongue of mesaxons, representing the cytoplasmic density. These cells were separated by astrocytic processes from the pial basement membrane, even when they were located on the pial surface. Astrocytes contained glial fibrils from one day onwards and often attached their processes to the pial basement membrane. Although the cytoplasmic processes of astrocytes occasionally wrapped axons, they were never shown to form the initial layer of myelin sheaths. However, the tenuous processes of the sub-pial astrocytes were occasionally rolled in myelin lamellae, as if a part of the myelin sheaths was constructed by astrocytic processes. The interpretation for this finding is discussed in relation to function and potency of the astrocytes, and variations and anomalies of nervous ontogeny.
Collapse
|
30
|
Hildebrand C, Hahn R. Relation between myelin sheath thickness and axon size in spinal cord white matter of some vertebrate species. J Neurol Sci 1978; 38:421-34. [PMID: 310448 DOI: 10.1016/0022-510x(78)90147-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The relation between number of myelin lamellae and axon size in the CNS was examined by electron microscopy of spinal cord white matter fibres in different vertebrate species (cat, rabbit, guinea pig, rat, mouse, frog and perch). The results show that the number of myelin lamellae increases with increasing axon size in a non-linear fashion. Below an axon size of 4--5 micron the relation follows a fairly straight line but above this size rectilinearity is lost. The mouse and the frog differ from the pattern shared by the other animals. In the mouse the lamellar number increases more slowly with axon size and the relation is close to linear. In the frog the number of lamellae increases very slowly with axon size and the relation is markedly curvilinear. Measurements of the myelin repeating period show that in the mammals and the frog the average period of thick sheaths is about 85% of that in thin sheaths, in accordance with previous findings in the cat. In the perch a clearcut difference in this respect between thick and thin sheaths is not found. Calculations of the g-ratio on the basis of the findings indicate that it increases with increasing fibre size. This is most pronounced in the perch and the frog in which the g-ratio for the largest fibres far exceeds the functionally optimal value defined in theoretical analyses on impulse propagation.
Collapse
|
31
|
Fraher JP. The maturation of the ventral root-spinal cord transitional zone. An ultrastructural study. J Neurol Sci 1978; 36:427-49. [PMID: 681973 DOI: 10.1016/0022-510x(78)90049-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Initially, ventral motoneurone axons in the transitional zone are closely apposed to one another. They subsequently become progressively separated by astrocyte processes which grow into the axon bundles. These processes become progressively more numerous and project into the ventral rootlet as a glial dome. This disappears with maturation, the surface of the transitional zone becoming level with that of the surrounding cord. At first, a considerable length of the axon in and deep to, the transitional zone is covered only by astrocyte processes. The sleeve of oligodendrocytic cytoplasm myelinating the axon extends distally along it towards the cord surface, thus decreasing the length of axon covered by astrocyte processes. Concurrently, the Schwann cell myelinating the most proximal peripheral internode becomes invaginated into the cord over lengths of 50 micrometer or more. Finger-like processes stem from its central end and abut on the nodal axolemma, as in peripheral nodes. However, a few astrocyte processes remain closely applied to the nodal axolemma, even at maturity. In the adult, the attachment zone consists of closely packed invaginations, each containing the central end of a Schwann cell and its myelin sheath, presenting a honeycomb appearance.
Collapse
|
32
|
Cullheim S, Kellerth JO. A morphological study of the axons and recurrent axon collaterals of cat sciatic alpha-motoneurons after intracellular staining with horseradish peroxidase. J Comp Neurol 1978; 178:537-57. [PMID: 77281 DOI: 10.1002/cne.901780309] [Citation(s) in RCA: 141] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Utilizing the centrifugal neuronal transport of intracellularly injected horseradish peroxidase (HRP), we have performed a light microscopic (LM) investigation of the intramedullary parts of the axons and axon collaterals of sciatic alpha-motoneurons in the adult cat. The intramedullary parts of the alpha-motor axons had comparatively short internodes (down to 75 microns) and were thinner than reported in earlier studies on the ventral root. Positive correlations were obtained when relating nodal diameters (2.8-7.8 micron) or the mean diameters of the motor axons in the white matter (4.4-9.0 micron) to the diameters of the initial axonal segments (2.3-4.9 micron). Eighty percent of the motor axons gave off one to five collaterals. There was no correlation between the numbers of collaterals and the lengths of the parent motor axons in the gray matter. The branching patterns of the axon collaterals showed considerable variation and the number of end branches from a single collateral ranged between 1 and 39. The rostro-caudal distribution of the collateral end branches was arranged symmetrically within a narrow space (+/- 300 micron) around the origins of the first order collaterals. Outbulgings of the motor axon collaterals, interpreted as synaptic terminals, were found along (59%) or at the ends (41%) of the collateral branches, and were located 200-700 micron away from the origin of the first order collateral. No characteristic LM feature of the outbulgings was distinguished.
Collapse
|