1
|
Scott-Solomon E, Hsu YC. Neurobiology, Stem Cell Biology, and Immunology: An Emerging Triad for Understanding Tissue Homeostasis and Repair. Annu Rev Cell Dev Biol 2022; 38:419-446. [PMID: 36201298 PMCID: PMC10085582 DOI: 10.1146/annurev-cellbio-120320-032429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The peripheral nervous system (PNS) endows animals with the remarkable ability to sense and respond to a dynamic world. Emerging evidence shows the PNS also participates in tissue homeostasis and repair by integrating local changes with organismal and environmental changes. Here, we provide an in-depth summary of findings delineating the diverse roles of peripheral nerves in modulating stem cell behaviors and immune responses under steady-state conditions and in response to injury and duress, with a specific focus on the skin and the hematopoietic system. These examples showcase how elucidating neuro-stem cell and neuro-immune cell interactions provides a conceptual framework that connects tissue biology and local immunity with systemic bodily changes to meet varying demands. They also demonstrate how changes in these interactions can manifest in stress, aging, cancer, and inflammation, as well as how these findings can be harnessed to guide the development of new therapeutics.
Collapse
Affiliation(s)
- Emily Scott-Solomon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA; ,
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA; ,
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Cobo R, García‐Mesa Y, Cárcaba L, Martin‐Cruces J, Feito J, García‐Suárez O, Cobo J, García‐Piqueras J, Vega JA. Verification and characterisation of human digital Ruffini's sensory corpuscles. J Anat 2021; 238:13-19. [PMID: 32864772 PMCID: PMC7754963 DOI: 10.1111/joa.13301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023] Open
Abstract
Ruffini's corpuscles are present as long fusiform encapsulated sensory structures in different tissues including the skin. Although physiological analyses strongly suggest their existence in glabrous digital skin, such localisation remains unconfirmed. Here, we have investigated the occurrence of typical Ruffini's corpuscles in 372 sections of human digital skin obtained from 186 subjects of both sexes and different ages (19-92 years). S100 protein, neuron-specific enolase and neurofilament proteins were detected, and the basic immunohistochemical profile of these corpuscles was analysed. Fewer than 0.3 Ruffini's corpuscles/mm2 were detected, with density distribution across the fingers being F4 > F3 > F2 > F1 > F5 and absolute values being F2 > F1 > F3 > F4 > F5. Axons displayed neuron-specific enolase immunoreactivity, glial cells forming the core contained S100 protein, and the capsule was positive for CD34 but not Glut1, demonstrating an endoneurial origin. Present results demonstrate the existence of Ruffini's corpuscles in human glabrous digital skin at very low densities. Moreover, the identified Ruffini's corpuscles share the basic immunohistochemical characteristics of other dermal sensory corpuscles.
Collapse
Affiliation(s)
- Ramón Cobo
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - Yolanda García‐Mesa
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - Lucía Cárcaba
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - José Martin‐Cruces
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - Jorge Feito
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain,Servicio de Anatomía PatológicaComplejo Hospitalario Universitario de SalamancaSalamancaSpain
| | - Olivia García‐Suárez
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - Juan Cobo
- Departamento de Cirugía y Especialidades Médico‐QuirúrgicasUniversidad de OviedoOviedoSpain,Instituto Asturiano de OdontologíaOviedoSpain
| | - Jorge García‐Piqueras
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain
| | - José A. Vega
- Departamento de Morfología y Biología CelularGrpo SINPOSUniversidad de OviedoOviedoSpain,Facultad de Ciencias de la SaludUniversidad Autónoma de ChileSantiagoChile
| |
Collapse
|
3
|
Elofsson R, Kröger RHH. A new type of somatosensory organ in the nasolabial skin of the dog. J Morphol 2020; 281:413-419. [DOI: 10.1002/jmor.21108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/07/2020] [Accepted: 01/19/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Rolf Elofsson
- Unit of Functional Zoology, Department of BiologyLund University Lund Sweden
| | - Ronald H. H. Kröger
- Unit of Functional Zoology, Department of BiologyLund University Lund Sweden
| |
Collapse
|
4
|
Piancino MG, Isola G, Cannavale R, Cutroneo G, Vermiglio G, Bracco P, Anastasi GP. From periodontal mechanoreceptors to chewing motor control: A systematic review. Arch Oral Biol 2017; 78:109-121. [PMID: 28226300 DOI: 10.1016/j.archoralbio.2017.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/29/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE This critical review summarizes the current knowledge of the structural and functional characteristics of periodontal mechanoreceptors, and understands their role in the signal pathways and functional motor control. METHOD A systematic review of the literature was conducted. Original articles were searched through Pubmed, Cochrane Central database and Embase until january 2016. RESULT 1466 articles were identified through database searching and screened by reviewing the abstracts. 160 full-text were assessed for eligibility, and after 109 exclusion, 51 articles were included in the review process. Studies selected by the review process were mainly divided in studies on animal and studies on humans. Morphological, histological, molecular and electrophysiological studies investigating the periodontal mechanoreceptors in animals and in humans were included, evaluated and described. CONCLUSION Our knowledge of the periodontal mechanoreceptors, let us conclude that they are very refined neural receptors, deeply involved in the activation and coordination of the masticatory muscles during function. Strictly linked to the rigid structure of the teeth, they determine all the functional physiological and pathological processes of the stomatognathic system. The knowledge of their complex features is fundamental for all dental professionists. Further investigations are of utmost importance for guiding the technological advances in the respect of the neural control in the dental field.
Collapse
Affiliation(s)
- Maria Grazia Piancino
- Department of Orthodontics and Gnathology-Masticatory Function, Turin University, Italy.
| | - Gaetano Isola
- Department of Orthodontics and Gnathology-Masticatory Function, Turin University, Italy
| | - Rosangela Cannavale
- Department of Orthodontics and Gnathology-Masticatory Function, Turin University, Italy
| | - Giuseppina Cutroneo
- Department of Biomedical Sciences and Morphological and Functional Images, Messina University, Italy
| | - Giovanna Vermiglio
- Department of Biomedical Sciences and Morphological and Functional Images, Messina University, Italy
| | - Pietro Bracco
- Department of Orthodontics and Gnathology-Masticatory Function, Turin University, Italy
| | - Giuseppe Pio Anastasi
- Department of Biomedical Sciences and Morphological and Functional Images, Messina University, Italy
| |
Collapse
|
5
|
Schober J, Aardsma N, Mayoglou L, Pfaff D, Martín-Alguacil N. Terminal innervation of female genitalia, cutaneous sensory receptors of the epithelium of the labia minora. Clin Anat 2015; 28:392-8. [DOI: 10.1002/ca.22502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/11/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Justine Schober
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
- UPMC Hamot; Erie Pennsylvania
| | - Nathan Aardsma
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
- Lake Erie College of Osteopathic Medicine; Erie Pennsylvania
| | - Lazarus Mayoglou
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
- UPMC Hamot; Erie Pennsylvania
| | - Donald Pfaff
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
| | - Nieves Martín-Alguacil
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
- Department of Anatomy and Embryology; School of Veterinary Medicine, Universidad Complutense de Madrid; Madrid Spain
| |
Collapse
|
6
|
Martín-Alguacil N, Cooper RS, Aardsma N, Mayoglou L, Pfaff D, Schober J. Terminal innervation of the male genitalia, cutaneous sensory receptors of the male foreskin. Clin Anat 2015; 28:385-91. [DOI: 10.1002/ca.22501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/05/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Nieves Martín-Alguacil
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
- Department of Anatomy and Embryology; School of Veterinary Medicine, Universidad Complutense de Madrid; Madrid Spain
| | - R. Scott Cooper
- UPMC Hamot; Erie Pennsylvania
- Lake Erie College of Osteopathic Medicine; Erie Pennsylvania
| | - Nathan Aardsma
- UPMC Hamot; Erie Pennsylvania
- Lake Erie College of Osteopathic Medicine; Erie Pennsylvania
| | - Lazarus Mayoglou
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
- UPMC Hamot; Erie Pennsylvania
| | - Donald Pfaff
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
| | - Justine Schober
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
- UPMC Hamot; Erie Pennsylvania
| |
Collapse
|
7
|
Abstract
The skin is our largest sensory organ, transmitting pain, temperature, itch, and touch information to the central nervous system. Touch sensations are conveyed by distinct combinations of mechanosensory end organs and the low-threshold mechanoreceptors (LTMRs) that innervate them. Here we explore the various structures underlying the diverse functions of cutaneous LTMR end organs. Beyond anchoring of LTMRs to the surrounding dermis and epidermis, recent evidence suggests that the non-neuronal components of end organs play an active role in signaling to LTMRs and may physically gate force-sensitive channels in these receptors. Combined with LTMR intrinsic properties, the balance of these factors comprises the response properties of mechanosensory neurons and, thus, the neural encoding of touch.
Collapse
Affiliation(s)
- Amanda Zimmerman
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ling Bai
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Fleming MS, Luo W. The anatomy, function, and development of mammalian Aβ low-threshold mechanoreceptors. ACTA ACUST UNITED AC 2013; 8. [PMID: 24376457 DOI: 10.1007/s11515-013-1271-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Touch sensation is critical for our social and environmental interactions. In mammals, most discriminative light touch sensation is mediated by the Aβ low-threshold mechanoreceptors. Cell bodies of Aβ low-threshold mechanoreceptors are located in the dorsal root ganglia and trigeminal ganglia, which extend a central projection innervating the spinal cord and brain stem and a peripheral projection innervating the specialized mechanosensory end organs. These specialized mechanosensory end organs include Meissner's corpuscles, Pacinian corpuscles, lanceolate endings, Merkel cells, and Ruffini corpuscles. The morphologies and physiological properties of these mechanosensory end organs and their innervating neurons have been investigated for over a century. In addition, recent advances in mouse genetics have enabled the identification of molecular mechanisms underlying the development of Aβ low-threshold mechanoreceptors, which highlight the crucial roles of neurotrophic factor signaling and transcription factor activity in this process. Here, we will review the anatomy, physiological properties, and development of mammalian low-threshold Aβ mechanoreceptors.
Collapse
Affiliation(s)
- Michael S Fleming
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Wenqin Luo
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA
| |
Collapse
|
9
|
SUZUKI M, EBARA S, KOIKE T, TONOMURA S, KUMAMOTO K. How many hair follicles are innervated by one afferent axon? A confocal microscopic analysis of palisade endings in the auricular skin of thy1-YFP transgenic mouse. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:583-95. [PMID: 23229751 PMCID: PMC3552048 DOI: 10.2183/pjab.88.583] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Hairs are known as a sensory apparatus for touch. Their follicles are innervated predominantly by palisade endings composed of longitudinal and circumferential lanceolate endings. However, little is known as to how their original primary neurons make up a part of the ending. In this study, innervation of the palisade endings was investigated in the auricular skin of thy1-YFP transgenic mouse. Major observations were 1) Only a small portion of PGP9.5-immunopositive axons showed YFP-positivity, 2) All of thy1-YFP-positive sensory axons were thick and myelinated, 3) Individual thy1-YFP-positive trunk axons innervated 4-54 hair follicles, 4) Most palisade endings had a gap of lanceolate ending arrangement, 5) PGP9.5-immunopositive 10-32 longitudinal lanceolate endings were closely arranged. Only a part of them were thy1-YFP-positive axons that originated from 1-3 afferents, and 6) Single nerve bundles of the dermal nerve network included both bidirectional afferents. Palisade endings innervated by multiple sensory neurons might be highly sensitive to hair movement.
Collapse
Affiliation(s)
- Maasa SUZUKI
- Department of Anatomy, Meiji University of Integrative Medicine, Kyoto, Japan
| | - Satomi EBARA
- Department of Anatomy, Meiji University of Integrative Medicine, Kyoto, Japan
- Correspondence should be addressed: S. Ebara, Department of Anatomy, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-city, Kyoto 629-0392, Japan (e-mail: )
| | - Taro KOIKE
- Department of Anatomy and Cell Science, Kansai Medical University, Osaka, Japan
| | - Sotatsu TONOMURA
- Department of Anatomy, Meiji University of Integrative Medicine, Kyoto, Japan
| | - Kenzo KUMAMOTO
- Department of Anatomy, Meiji University of Integrative Medicine, Kyoto, Japan
| |
Collapse
|
10
|
Ohishi M, Harada F, Rahman F, Saito I, Kawano Y, Nozawa-Inoue K, Maeda T. GDNF Expression in Terminal Schwann Cells Associated With the Periodontal Ruffini Endings of the Rat Incisors During Nerve Regeneration. Anat Rec (Hoboken) 2009; 292:1185-91. [DOI: 10.1002/ar.20931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Iizuka N, Suzuki A, Nozawa-Inoue K, Kawano Y, Nandasena BGTL, Okiji T, Maeda T. Differential cell-specific location of Cav-1 and Ca(2+)-ATPase in terminal Schwann cells and mechanoreceptive Ruffini endings in the periodontal ligament of the rat incisor. J Anat 2009; 214:267-74. [PMID: 19207988 DOI: 10.1111/j.1469-7580.2008.01029.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Caveolae are involved in clathrin-independent endocytosis, transcytosis, signal transduction, and tumor suppression - all of which depend on their main constituent protein caveolin families. The periodontal Ruffini ending has been reported to develop a caveola-like structure on the cell membrane of both the axon terminals and Schwann sheaths, suggesting the existence of an axon-Schwann cell interaction in the periodontal Ruffini endings. However, little information is available concerning the functional significance of these caveolae. The present study was undertaken to examine the immunolocalization of caveolin-1, -3 (Cav-1, Cav-3) and Ca(2+)-ATPase in the periodontal Ruffini endings of the rat incisor. Decalcified sections of the upper jaws were processed for immunocytochemistry at the levels of light and electron microscopy. Some immunostained sections were treated with histochemistry for nonspecific cholinesterase (nChE) activity. Observations showed the periodontal Ruffini endings were immunopositive for Cav-1, but not Cav-3. Immunoreactive products for Cav-1 were confined to caveola-like structures in the cell membranes of the cytoplasmic extensions and cell bodies of the terminal Schwann cells associated with the periodontal Ruffini endings. However, the axonal membranes of the terminals did not express any Cav-1 immunoreaction. Double staining with Ca(2+)-ATPase and either protein gene product 9.5 (PGP 9.5) or S-100 protein disclosed the co-localization of immunoreactions in the axonal branches of the periodontal Ruffini endings, but not in the terminal Schwann cells. As Ca(2+) plays an important role in mechanotransduction, these characteristic immunolocalizations show Cav-1/Ca(2+)-ATPase might be involved in the quick elimination of intracellular Ca(2+) in mechanotransduction.
Collapse
Affiliation(s)
- Naoyuki Iizuka
- Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Maruyama Y, Harada F, Jabbar S, Saito I, Aita M, Kawano Y, Suzuki A, Nozawa-Inoue K, Maeda T. Neurotrophin-4/5-depletion induces a delay in maturation of the periodontal Ruffini endings in mice. ACTA ACUST UNITED AC 2009; 68:267-88. [PMID: 16477147 DOI: 10.1679/aohc.68.267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neurotrophin-4/5 (NT-4/5) - a member of the neurotrophic factors - is a ligand for TrkB, which has been reported to be expressed in the mechanoreceptive Ruffini endings of the periodontal ligament. The present study examined developmental changes in the terminal morphology and neural density in homozygous mice with a targeted disruption of the nt-4/5 gene and wild-type mice by immunohistochemistry for protein gene product 9.5 (PGP 9.5), a general neuronal marker, and by quantitative analysis using an image analyzer. Postnatal development of terminal Schwann cells was also investigated by enzymatic histochemistry for non-specific cholinesterase activity (ChE). Furthermore, the immuno-expression of TrkB and low affinity nerve growth factor receptor (p75-NGFR) was surveyed in the periodontal Ruffini endings as well as trigeminal ganglion. At postnatal 1 week, the lingual periodontal ligament of both types of mice contained PGP 9.5-positive nerve fibers showing a tree-like ramification with axonal swellings in their course. In both types of mice at 2 weeks of age, comparatively thick nerve fibers with a smooth outline increased in number, and frequently ramified to form nerve terminals with dendritic profiles. However, no typical Ruffini endings with irregular outlines observed in the adult wild-type mice were found in the periodontal ligament at this stage. At postnatal 3 weeks, typical Ruffini endings with irregular outlines were discernable in the periodontal ligament of the wild-type mice while the dendritic endings showing smooth outlines were restricted to the homozygous mice. After postnatal 8 weeks, both types of mice showed an increase in the number of Ruffini endings, but the morphology differed between the wild-type and NT-4/5 homozygous mice. In the wild-type mice, a major population of the Ruffini endings expanded their axonal branches and developed many microprojections, resulting in a reduction of endings with smooth outlines. In contrast, we failed to find such typical Ruffini endings in the periodontal ligament of the homozygous mice: A majority of the periodontal Ruffini endings continued to show smooth outlines at postnatal 12 weeks. Quantitative analysis on neural density demonstrated a reduction in the homozygous mice with a significant difference by postnatal 8 weeks. Enzymatic histochemistry for non-specific ChE did not exhibit a distinct difference in the distribution and density of terminal Schwann cells between wild-type and homozygous mice. Furthermore, TrkB and p75-NGFR mRNA and proteins did not differ in the trigeminal ganglion between the two types. The periodontal Ruffini endings also displayed immunoreactivities for TrkB and p75- NGFR in both phenotypes. These findings suggest that the nt-4/5 gene depletion caused a delay in the formation and maturation of the periodontal Ruffini endings in the mice by inhibiting the growth of the periodontal nerves at an early stage, and indicate that multiple neurotrophins such as NT- 4/5 and BDNF might play roles in the development and/or maturation of the periodontal Ruffini endings.
Collapse
Affiliation(s)
- Yuko Maruyama
- Divisions of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Czech NU, Klauer G, Dehnhardt G, Siemers BM. Fringe for foraging? Histology of the bristle-like hairs on the tail membrane of the gleaning bat, Myotis nattereri. ACTA CHIROPTEROLOGICA 2008. [DOI: 10.3161/150811008x414872] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Higuchi K, Santiwong P, Tamaki H, Terashima T, Nakayama H, Notani T, Iseki H, Baba O, Takano Y. Development and terminal differentiation of pulp and periodontal nerve elements in subcutaneous transplants of molar tooth germs and incisors of the rat. Eur J Oral Sci 2008; 116:324-33. [DOI: 10.1111/j.1600-0722.2008.00546.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
McIlwrath SL, Lawson JJ, Anderson CE, Albers KM, Koerber HR. Overexpression of neurotrophin-3 enhances the mechanical response properties of slowly adapting type 1 afferents and myelinated nociceptors. Eur J Neurosci 2008; 26:1801-12. [PMID: 17897394 DOI: 10.1111/j.1460-9568.2007.05821.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Constitutive overexpression of neurotrophin-3 (NT3) in murine skin results in an increased number of sensory neurons within the dorsal root ganglia, an increase of myelinated axons in cutaneous nerves, hyperinnervation of the skin, and an increased number of Merkel cells found in flank skin. Here we used a saphenous skin/nerve preparation to determine if these anatomical changes affect the functional response characteristics of cutaneous sensory neurons. Overexpression of NT3 significantly increased the responses of slowly adapting type 1 (SA1) low-threshold mechanoreceptors and Adelta high-threshold mechanoreceptors to suprathreshold mechanical stimulation. It also resulted in significantly faster conduction velocities of SA1 fibers. In contrast to earlier findings in flank skin, no differences were noted in the numbers of Merkel cells in the touch domes in hindlimb skin of NT3-overexpressing mice. In addition, the number of dermal Merkel cells, located around hair follicles on the dorsum of the foot, was reduced by 55%. The increase in mechanical sensitivity was found to correlate with significant increases in the expression of acid-sensing ion channels (ASIC) 1 and 3. Additional experiments using intracellular recordings and staining procedures confirmed that at least some cutaneous myelinated nociceptors and SA1 mechanoreceptors stained positively for both trkC and ASIC3. These results indicate that cutaneous NT3 overexpression alters the response properties of specific cutaneous sensory neurons, and that these changes may be due to the modulation of putative mechanosensitive ion channels.
Collapse
Affiliation(s)
- Sabrina L McIlwrath
- Department of Neurobiology, School of Medicine, University of Pittsburgh, 3500 Terrace St, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
16
|
Nandasena BGTL, Suzuki A, Aita M, Kawano Y, Nozawa-Inoue K, Maeda T. Immunolocalization of aquaporin-1 in the mechanoreceptive Ruffini endings in the periodontal ligament. Brain Res 2007; 1157:32-40. [PMID: 17553469 DOI: 10.1016/j.brainres.2007.04.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Revised: 04/11/2007] [Accepted: 04/11/2007] [Indexed: 10/23/2022]
Abstract
Previous ultrastructural studies have suggested an axon-Schwann cell interaction in the periodontal Ruffini ending, a primary mechanoreceptor. However, no information is available on the transport mechanism between them. The present study examined the immunolocalization of aquaporin-1 (AQP1) and -4 (AQP4), a member of the water-selective channel, in the periodontal Ruffini endings of the rat incisors and trigeminal ganglion. In addition, the expression of mRNA for AQP1 and 4 was detected in the trigeminal ganglion by a RT-PCR technique. A single PCR product of the sizes anticipated for AQP1 and 4 was detectable in a reverse transcripted cDNA sample from the trigeminal ganglion, whose neurons innervate the periodontal Ruffini endings. An AQP1 immunoreaction was recognizable in the axon terminals of the periodontal Ruffini endings as well as their associated terminal Schwann cells, as confirmed with a double staining with AQP1 and either PGP9.5 or S-100 protein. However, no immunoreaction for AQP4 was found in periodontal Ruffini endings. Although the AQP4 immunoreaction was localized in some satellite cells - but never in neurons - of the trigeminal ganglion, 16.1% trigeminal neurons showed the AQP1 immunoreaction. Furthermore, the AQP1 immunoreaction was found in certain satellite cells which surrounded AQP1-positive or -negative neurons. An analysis of a cross-sectional area of these positive neurons demonstrated that approximately 66.9% of the positive neurons were 400-1000 microm2 (671.4+/-172.4 microm2), indicating that they could be categorized as medium-sized neurons which mediate mechanotransduction. These findings suggest that AQP1 controls water transport in the periodontal Ruffini endings.
Collapse
|
17
|
Jabbar S, Harada F, Aita M, Ohishi M, Saito I, Kawano Y, Suzuki A, Nozawa-Inoue K, Maeda T. Involvement of neurotrophin-4/5 in regeneration of the periodontal Ruffini endings at the early stage. J Comp Neurol 2007; 501:400-12. [PMID: 17245704 DOI: 10.1002/cne.21256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Little is known about the role of neurotrophin-4/5 (NT-4/5) in the regeneration of mechanoreceptors. Therefore, the present study examined the regeneration process of Ruffini endings in the periodontal ligament in nt-4/5-deficient and wildtype mice following transection of the inferior alveolar nerve by immunohistochemistry for protein gene product 9.5 (PGP 9.5), a general neuronal marker, and by computer-assisted quantitative image analysis. Furthermore, rescue experiments by a continuous administration of recombinant NT-4/5 were performed and analyzed quantitatively. At postoperative day 3 (PO 3d), almost all PGP 9.5-positive neural elements had disappeared; they began to appear in both types of animals at PO 7d. At PO 10d, almost all nerve fibers showed a beaded appearance, with fewer ramifications in both types of mice. Although the regeneration proceeded in the wildtype, a major population of the periodontal Ruffini endings continued to display smooth outlines at PO 28d in the nt-4/5 homozygous mice. The reduction ratio of neural density reached a maximum at PO 3d, decreased at PO 10d, and later showed a plateau. In a rescue experiment, an administration of NT-4/5 showed an acceleration of nerve regeneration in the homozygous mice. These findings indicate that the nt-4/5-depletion causes a delay in the regeneration of the periodontal Ruffini endings, but the delay is shortened by an exogenous administration of NT-4/5. Combined with our previous findings of bdnf-deficient mice (Harada et al. [2003] Arch Histol Cytol 66:183-194), these morphological and numerical data suggest that multiple neurotrophins such as NT-4/5 and brain-derived neurotrophic factor (BDNF) play roles in their regeneration in a stage-specific manner.
Collapse
Affiliation(s)
- Shahiqul Jabbar
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shi L, Kodama Y, Atsumi Y, Honma S, Wakisaka S. Requirement of occlusal force for maintenance of the terminal morphology of the periodontal Ruffini endings. ACTA ACUST UNITED AC 2005; 68:289-99. [PMID: 16477148 DOI: 10.1679/aohc.68.289] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study examined whether mechanical stimulation is required for morphological maintenance of the Ruffini endings--primary mechanoreceptors in the periodontal ligament of the rat incisors, using a hypofunctional model by immunohistochemistry for protein gene product 9.5. The periodontal Ruffini endings of adult rats were observed to be restricted to the alveolar half of the lingual ligament where they displayed a dendritic arborization of expanded axon terminals with threadlike microprojections. In the experimental group, the tips of the upper and lower incisors were unilaterally ground to reduce mechanical stimulation of the ligament, i.e. occlusal force. A reduction in the occlusal force induced morphological changes in the terminal morphology of the periodontal Ruffini endings: they became smooth, unlike the irregular profiles exclusively observed in the control group. Quantitative analysis demonstrated significantly lower percentages of immunoreactive areas in the restricted portion on the ground sides than in normal animals. When incisor occlusion was re-established, the terminal portions of the Ruffini endings returned to their normal appearance, and the percentages of immunoreactive areas also recovered. The present results confirm the reduced size and number of axon terminals of periodontal Ruffini endings following reduced occlusal force and restoration of the morphological alteration after the re-establishment of incisor occlusion, indicating that proper mechanical stimulation is an important factor for maintaining the morphology of mechanoreceptors.
Collapse
Affiliation(s)
- Lei Shi
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Suita, Japan
| | | | | | | | | |
Collapse
|
19
|
KINOSHITA-KAWANO S, KAWANO Y, NODA T, MAEDA T. Immunolocalization of corticosteroid hormone receptors in the mechanoreceptors in rat oral tissues. Biomed Res 2004. [DOI: 10.2220/biomedres.25.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Imai T, Atsumi Y, Matsumoto K, Yura Y, Wakisaka S. Regeneration of periodontal Ruffini endings of rat lower incisors following nerve cross-anastomosis with mental nerve. Brain Res 2003; 992:20-9. [PMID: 14604769 DOI: 10.1016/j.brainres.2003.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study utilized protein gene product 9.5 (PGP 9.5) and S-100 protein immunohistochemistry to examine if Ruffini endings, the primary mechanoreceptors in periodontal ligaments, can regenerate following nerve cross-anastomosis with an inappropriate nerve. Normally, axon terminals of periodontal Ruffini endings are extensively ramified, and terminal Schwann cells, identified by their S-100 immunoreactivity, are associated with axon terminals. Schwann cells are restricted to the alveolus-related part (ARP), but not tooth-related part (TRP) or the shear zone at the border between the ARP and the TRP of the lingual periodontal ligament of the lower incisor. When the central portion of the mental nerve (MN) was connected with the peripheral portion of the inferior alveolar nerve (IAN), regenerating MN fibers invaded the IAN around postoperative day 5 (PO 5). During the postoperative period, numerous S-100-immunoreactive (IR) cells, presumably terminal Schwann cells, began to migrate to the shear zone and the TRP. PGP 9.5-IR elements reappeared at PO 7 and gradually increased in number. Around PO 28, the terminal portion of the regenerating Ruffini endings appeared dendritic, but less expanded, and the rearrangement of terminal Schwann cells was noted. Regenerated periodontal Ruffini endings were slightly smaller in number. The number of trigeminal ganglion neurons sending peripheral processes beyond the site of injury was smaller compared to those of normal MN, but their cross-sectional areas were almost comparable. Expressions of calbindin D28k and calretinin, normally localized in axonal elements in Ruffini endings, were first detected around PO 56. The present results show that parts of periodontal Ruffini endings can regenerate following nerve cross-anastomosis with mental nerve.
Collapse
Affiliation(s)
- Takumi Imai
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
21
|
Hoshino N, Harada F, Alkhamrah BA, Aita M, Kawano Y, Hanada K, Maeda T. Involvement of brain-derived neurotrophic factor (BDNF) in the development of periodontal Ruffini endings. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 274:807-16. [PMID: 12923891 DOI: 10.1002/ar.a.10094] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The periodontal Ruffini ending has been reported to show immunoreactivity for tyrosine kinase B (trkB), the high-affinity receptor for brain-derived neurotrophic factor (BDNF), in the periodontal ligament of the rat incisor. Furthermore, adult heterozygous BDNF-mutant mice showed malformation and reduction of the periodontal Ruffini endings. To investigate further roles of BDNF in these structures, the development, distribution, and terminal morphology of Ruffini endings were examined in the incisor periodontal ligament of heterozygous and homozygous BDNF mutant mice, as well as in the wild-type littermate by immunohistochemistry for protein gene product (PGP) 9.5, a general neuronal marker. A similar distribution and terminal formation of PGP 9.5-immunoreactive nerve fibers was recognized in the periodontal ligament of all phenotypes at postnatal week (PW) 1. At this stage, the nerve fibers had a beaded appearance, but did not form the periodontal Ruffini endings. At PW2, the heterozygous and wild-type mice started to show ramified nerve fibers resembling the mature shape of periodontal Ruffini endings. At PW3, the Ruffini endings occurred in the periodontal ligament of the wild-type and heterozygous mice. While the Ruffini endings of the wild-type mice appeared either ruffled or smooth, as reported previously, most of these structures showed a smooth outline in the heterozygous mice. The homozygous mice lacked the typical Ruffini endings at PW3. In the quantitative analysis, homozygous mice had the smallest percentages of PGP 9.5-immunoreactive areas at the same postnatal periods, but there were no significant differences between wild-type and heterozygous mice during PW1-3. These findings suggest a possible involvement of BDNF during the postnatal development and, in particular, the maturation of periodontal Ruffini endings. Furthermore, other neurotrophins may play a role in the development and/or early maturation of the periodontal nerve fibers, as indicated by the presence of nerve fibers in the BDNF-homozygous mice.
Collapse
Affiliation(s)
- Natalia Hoshino
- Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Harada F, Hoshino N, Hanada K, Kawano Y, Atsumi Y, Wakisaka S, Maeda T. The involvement of brain-derived neurotrophic factor (BDNF) in the regeneration of periodontal Ruffini endings following transection of the inferior alveolar nerve. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2003; 66:183-94. [PMID: 12846558 DOI: 10.1679/aohc.66.183] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study employed immunohistochemistry for protein gene product 9.5 (PGP 9.5) to examine the regeneration process of Ruffini endings, the primary mechanoreceptor in the periodontal ligament, in heterozygous mice with targeted disruption of the brain-derived neurotrophic factor (BDNF) gene and their littermates, following transection of the inferior alveolar nerve. When immunostained for PGP 9.5, periodontal Ruffini endings appeared densely distributed in the periodontal ligament of the heterozygous mice, but the density of the positively stained nerve fibers in the ligament was 20% lower than that in the control littermates. At 3 days after surgery, the PGP 9.5-positive neural elements had disappeared; they began to appear in the periodontal ligament of both animals at 7 days. However, the recovery pattern of the PGP 9.5-positive nerves differed between heterozygous and wild type mice, typical periodontal Ruffini endings morphologically identical to those in the control group appeared in the wild-type mice at 7 days, whereas such Ruffini endings were detectable in the heterozygous mice at 28 days, though much smaller in number. On day 28, when PGP 9.5-positive nerves were largely regenerated in wild type mice, their distribution was much less dense in the ligament of the heterozygous mice than in the non-treated heterozygous mice. The density of PGP 9.5-positive nerve fibers was significantly lower in the heterozygous mice than in wild type mice at any stage examined. These data showing that a reduced expression of BDNF causes delayed regeneration of the periodontal Ruffini endings suggest the involvement of BDNF in the regeneration process of these mechanoreceptors.
Collapse
Affiliation(s)
- Fumiko Harada
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Wakisaka S, Atsumi Y. Regeneration of periodontal Ruffini endings in adults and neonates. Microsc Res Tech 2003; 60:516-27. [PMID: 12619127 DOI: 10.1002/jemt.10292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We reviewed the regeneration of periodontal Ruffini endings, primary mechanoreceptors in the periodontal ligament, following injury to the inferior alveolar nerve (IAN) in adult and neonatal rats. Morphologically, mature Ruffini endings are characterized by an extensive arborization of axonal terminals and association with specialized Schwann cells, called lamellar or terminal Schwann cells. Following injury to IAN in the adult, the periodontal Ruffini endings of the rat lower incisor ligament regenerate more rapidly than Ruffini endings in other tissues. During regeneration, terminal Schwann cells migrate into regions where they are never found under normal conditions. The development of periodontal Ruffini endings of the rat incisor is closely associated with the eruption of the teeth; the morphology and distribution of the terminal Schwann cells became almost identical to those in adults during postnatal days 15-18 (PN 15-18d) when the first molars appear in the oral cavity, while the axonal elements showed extensive ramification around PN 28d when the functional occlusion commences. When the IAN was injured in neonates, the regeneration of periodontal Ruffini endings was delayed compared with the adults. The migration of terminal Schwann cells is also observed following IAN injury, after which the distribution of terminal Schwann cells became almost identical to that of the adults, i.e., PN 14d. Since the interaction between axon and Schwann cell is important during regeneration and development, further studies are required to elucidate its molecular mechanism during the regeneration as well as the development of the periodontal Ruffini endings.
Collapse
Affiliation(s)
- Satoshi Wakisaka
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Japan.
| | | |
Collapse
|
24
|
Alkhamrah BA, Hoshino N, Kawano Y, Harada F, Hanada K, Maeda T. The periodontal Ruffini endings in brain derived neurotrophic factor (BDNF) deficient mice. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2003; 66:73-81. [PMID: 12703556 DOI: 10.1679/aohc.66.73] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Innervation and terminal morphology in the lingual periodontal ligament of the incisor were investigated in brain derived neurotrophic factor (BDNF) heterozygous mice and littermate wild-type mice (aged two months) using immunohistochemistry for protein gene product 9.5 (PGP 9.5), a general neuronal marker. In addition, computer-assisted quantitative analysis was performed for a comparison of neuronal density in the periodontal ligament between heterozygous and wild-type mice. In wild-type mice, the periodontal ligament was found to be richly innervated by the mechanoreceptive Ruffini endings and nociceptive free nerve endings in the alveolus-related part of the periodontal ligament. The periodontal Ruffini endings in the wild-type mice incisor ligament were classified into two types: type I with ruffled outlines, and type II with a smooth outline. BDNF heterozygous mice showed malformations of the type I Ruffini endings which included fewer nerve fibers and fewer ramifications than those in wild-type mice as well as smooth outlines of the axon terminals. Quantitative analysis under a confocal microscope showed a roughly 18% reduction in neuronal density in the periodontal ligament of the heterozygous mice. These findings suggest that the development and maturation of the periodontal Ruffini endings require BDNF.
Collapse
Affiliation(s)
- Bashar Anas Alkhamrah
- Divisions of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Gakkocho-dori, Niigata, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Ebara S, Kumamoto K, Matsuura T, Mazurkiewicz JE, Rice FL. Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopic study. J Comp Neurol 2002; 449:103-19. [PMID: 12115682 DOI: 10.1002/cne.10277] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Our confocal three-dimensional analyses revealed substantial differences in the innervation to vibrissal follicle-sinus complexes (FSCs) in the rat and cat. This is the first study using anti-protein gene product 9.5 (PGP9.5) immunolabeling and confocal microscopy on thick sections to examine systematically the terminal arborizations of the various FSC endings and to compare them between two species, the rat and the cat, that have similar-appearing FSCs but different exploratory behaviors, such as existence or absence of whisking. At least eight distinct endings were clearly discriminated three dimensionally in this study: 1) Merkel endings at the rete ridge collar, 2) circumferentially oriented lanceolate endings, 3) Merkel endings at the level of the ring sinus, 4) longitudinally oriented lanceolate endings, 5) club-like ringwulst endings, 6) reticular endings, 7) spiny endings, and 8) encapsulated endings. Of particular contrast, each nerve fiber that innervates Merkel cells at the level of the ring sinus in the rat usually terminates as a single, relatively small cluster of endings, whereas in the cat they terminate en passant as several large clusters of endings. Also, individual arbors of reticular endings in the rat ramify parallel to the vibrissae and distribute over wide, overlapping territories, whereas those in the cat ramify perpendicular and terminate in tightly circumscribed territories. Otherwise, the inner conical body of rat FSCs contains en passant, circumferentially oriented lanceolate endings that are lacking in the cat, whereas the cavernous sinus of the cat has en passant corpuscular endings that are lacking in the rat. Surprisingly, the one type of innervation that is the most similar in both species is a major set of simple, club-like endings, located at the attachment of the ringwulst, that had not previously been recognized as a morphologically unique type of innervation. Although the basic structure of the FSCs is similar in the rat and cat, the numerous differences in innervation suggest that these species would have different tactile capabilities and perceptions possibly related to their different vibrissa-related exploratory behaviors.
Collapse
Affiliation(s)
- Satomi Ebara
- Department of Anatomy, Meiji University of Oriental Medicine, Hiyoshi-cho, Funai-gun, Kyoto 629-0392, Japan.
| | | | | | | | | |
Collapse
|
26
|
Matsuo S, Ichikawa H, Henderson TA, Silos-Santiago I, Barbacid M, Arends JJ, Jacquin MF. trkA modulation of developing somatosensory neurons in oro-facial tissues: tooth pulp fibers are absent in trkA knockout mice. Neuroscience 2001; 105:747-60. [PMID: 11516838 DOI: 10.1016/s0306-4522(01)00223-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To investigate the nerve growth factor requirement of developing oro-facial somatosensory afferents, we have studied the survival of sensory fibers subserving nociception, mechanoreception or proprioception in receptor tyrosine kinase (trkA) knockout mice using immunohistochemistry. trkA receptor null mutant mice lack nerve fibers in tooth pulp, including sympathetic fibers, and showed only sparse innervation of the periodontal ligament. Ruffini endings were formed definitively in the periodontal ligament of the trkA knockout mice, although calcitonin gene-related peptide- and substance P-immunoreactive fibers were reduced in number or had disappeared completely. trkA gene deletion had also no obvious effect on the formation of Meissner corpuscles in the palate. In the vibrissal follicle, however, some mechanoreceptive afferents were sensitive for trkA gene deletion, confirming a previous report [Fundin et al. (1997) Dev. Biol. 190, 94-116]. Moreover, calretinin-positive fibers innervating longitudinal lanceolate endings were completely lost in trkA knockout mice, as were the calretinin-containing parent cells in the trigeminal ganglion.These results indicate that trkA is indispensable for developing nociceptive neurons innervating oral tissues, but not for developing mechanoreceptive neurons innervating oral tissues (Ruffini endings and Meissner corpuscles), and that calretinin-containing, trkA dependent neurons in the trigeminal ganglion normally participate in mechanoreception through longitudinal lanceolate endings of the vibrissal follicle.
Collapse
Affiliation(s)
- S Matsuo
- Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Yamamoto H, Hayashi S, Nakakura-Ohshima K, Kawano Y, Nozawa-Inoue K, Ohshima H, Maeda T. Immunocytochemical detection of superoxide dismutases (SODs) in the periodontal Ruffini endings of the rat incisor. Brain Res 2001; 905:232-5. [PMID: 11423099 DOI: 10.1016/s0006-8993(01)02458-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The expression of immunoreactivities for superoxide dismutases (SODs), Mn-SOD and Cu/Zn-SOD, was immunohistochemically investigated in the lingual periodontal ligament and toe pads of adult rats. Immunocytochemistry for SODs revealed that the axon terminals of both the periodontal Ruffini endings and cutaneous Meissner's corpuscles showed mitochondrial Mn-SOD immunoreactivity, but not cytosolic Cu/Zn-SOD immunoreactivity, indicating Mn-SOD is a useful marker for identifying the mechanoreceptors. It is likely that Mn-SOD in the axon terminals of mechanoreceptors exerts protective action against nerve injury and neuronal death under severe conditions, serving to scavenge free radicals from the axon terminals.
Collapse
Affiliation(s)
- H Yamamoto
- Division of Oral and Maxillofacial Anatomy, Department of Oral Biological Science, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Niigata 951-8514, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Wakisaka S, Atsumi Y, Youn SH, Maeda T. Morphological and cytochemical characteristics of periodontal Ruffini ending under normal and regeneration processes. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2000; 63:91-113. [PMID: 10885447 DOI: 10.1679/aohc.63.91] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Current knowledge on the Ruffini endings, primary mechanoreceptors in the periodontal ligament is reviewed with special reference to their cytochemical features and regeneration process. Morphologically, they are characterized by extensive ramifications of expanded axonal terminals and an association with specialized Schwann cells, called lamellar or terminal Schwann cells, which are categorized, based on their histochemical properties, as non-myelin-forming Schwann cells. Following nerve injury, the periodontal Ruffini endings of the rat incisor ligament can regenerate more rapidly than Ruffini endings in other tissues. During regeneration, terminal Schwann cells associated with the periodontal Ruffini endings migrate into regions where they are never found under normal conditions. Also during regeneration, alterations in the expression level of various bioactive substances occur in both axonal and Schwann cell elements in the periodontal Ruffini endings. Neuropeptide Y, which is not detected in intact periodontal Ruffini endings, is transiently expressed in their regenerating axons. Growth-associated protein-43 (GAP-43) is expressed transiently in both axonal and Schwann cell elements during regeneration, while this protein is localized in the Schwann sheath of periodontal Ruffini endings under normal conditions. The expression of calbindin D28k and calretinin, both belonging to the buffering type of calcium-binding proteins, was delayed in periodontal Ruffini endings, compared to their morphological regeneration. As the importance of axon-Schwann cell interactions has been proposed, further investigations are needed to elucidate their molecular mechanism particularly the contribution of growth factors during the regeneration as well as development of the periodontal Ruffini endings.
Collapse
Affiliation(s)
- S Wakisaka
- Department of Oral Anatomy and Developmental Biology, Osaka University Faculty of Dentistry, Suita, Japan.
| | | | | | | |
Collapse
|
29
|
Maeda T, Ochi K, Nakakura-Ohshima K, Youn SH, Wakisaka S. The Ruffini ending as the primary mechanoreceptor in the periodontal ligament: its morphology, cytochemical features, regeneration, and development. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:307-27. [PMID: 10759411 DOI: 10.1177/10454411990100030401] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The periodontal ligament receives a rich sensory nerve supply and contains many nociceptors and mechanoreceptors. Although its various kinds of mechanoreceptors have been reported in the past, only recently have studies revealed that the Ruffini endings--categorized as low-threshold, slowly adapting, type II mechanoreceptors--are the primary mechanoreceptors in the periodontal ligament. The periodontal Ruffini endings display dendritic ramifications with expanded terminal buttons and, furthermore, are ultrastructurally characterized by expanded axon terminals filled with many mitochondria and by an association with terminal or lamellar Schwann cells. The axon terminals of the periodontal Ruffini endings have finger-like projections called axonal spines or microspikes, which extend into the surrounding tissue to detect the deformation of collagen fibers. The functional basis of the periodontal Ruffini endings has been analyzed by histochemical techniques. Histochemically, the axon terminals are reactive for cytochrome oxidase activity, and the terminal Schwann cells have both non-specific cholinesterase and acid phosphatase activity. On the other hand, many investigations have suggested that the Ruffini endings have a high potential for neuroplasticity. For example, immunoreactivity for p75-NGFR (low-affinity nerve growth factor receptor) and GAP-43 (growth-associated protein-43), both of which play important roles in nerve regeneration/development processes, have been reported in the periodontal Ruffini endings, even in adult animals (though these proteins are usually repressed or down-regulated in mature neurons). Furthermore, in experimental studies on nerve injury to the inferior alveolar nerve, the degeneration of Ruffini endings takes place immediately after nerve injury, with regeneration beginning from 3 to 5 days later, and the distribution and terminal morphology returning to almost normal at around 14 days. During regeneration, some regenerating Ruffini endings expressed neuropeptide Y, which is rarely observed in normal animals. On the other hand, the periodontal Ruffini endings show stage-specific configurations which are closely related to tooth eruption and the addition of occlusal forces to the tooth during postnatal development, suggesting that mechanical stimuli due to tooth eruption and occlusion are a prerequisite for the differentiation and maturation of the periodontal Ruffini endings. Further investigations are needed to clarify the involvement of growth factors in the molecular mechanisms of the development and regeneration processes of the Ruffini endings.
Collapse
Affiliation(s)
- T Maeda
- Department of Oral Anatomy, Niigata University School of Dentistry, Japan
| | | | | | | | | |
Collapse
|
30
|
Tamai M, Okajima S, Fushiki S, Hirasawa Y. Quantitative analysis of neural distribution in human coracoacromial ligaments. Clin Orthop Relat Res 2000:125-34. [PMID: 10810469 DOI: 10.1097/00003086-200004000-00015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study investigated sensory nerve distribution in 27 human coracoacromial ligaments by immunohistochemical methods using antiprotein gene product 9.5 antibody and anticalcitonin gene related peptide antibody. Mean nerve densities were compared among three areas (acromion side, center, and coracoid side) in two groups (patients with rotator cuff tears and patients with shoulder dislocations). In all three areas of both groups, many nerve fibers immunoreactive to antiprotein gene product 9.5 antibody were observed in the periligamentous bursal tissue. However, in the ligament parenchyma, nerve fibers immunoreactive to antiprotein gene product 9.5 antibody were recognized only around blood vessels. Nerve fibers immunoreactive to anticalcitonin gene related peptide antibody were recognized in the periligamentous bursal tissue. However, in the ligament parenchyma, there were no nerve fibers immunoreactive to anticalcitonin gene related peptide antibody. Nerve density of the rotator cuff tear group, as revealed by both immunostainings, showed a significant increase compared with that of the shoulder dislocation group in all three areas. The results of this study show that it is possible the increase in sensory nociceptive nerve fibers in the coracoacromial ligaments may be one of the causes for pain in patients with rotator cuff tears.
Collapse
Affiliation(s)
- M Tamai
- Department of Orthopaedic Surgery, Kyoto Prefectural University of Medicine, Japan
| | | | | | | |
Collapse
|
31
|
Abstract
The innervation of the digits on the raccoon forepaw was examined by using immunochemistry for protein gene product 9.5, calcitonin-gene related peptide, substance P, neuropeptide-Y, tyrosine hydroxylase, and neurofilament protein. The larger-caliber axons in the ventral glabrous skin terminate as Pacinian corpuscles deep in the dermis, small corpuscles and Merkel endings around the base of dermal papillae, and Merkel endings on rete pegs in dermal papillae. Extensive fine-caliber innervation terminates in the epidermis and on the microvasculature. The innervation is more dense in the distal than in the proximal volar pads. Pacinian endings are also concentrated in the transverse crease separating the distal and proximal pads. In the dorsal hairy skin, hair follicles are well innervated with piloneural complexes. Merkel innervation is located under slight epidermal elevations and in some large Merkel rete pegs located at the apex of transverse skin folds just proximal to the claw. No cutaneous Ruffini corpuscles were found anywhere on the digit. The claw is affiliated with dense medial and lateral beds of Pacinian endings, bouquets of highly branched Ruffini-like endings at the transition from the distal phalanx and unmyelinated innervation in the skin around the perimeter. Encapsulated endings are located at the lateral edge of the articular surface of the distal phalanx. Extensive fine-caliber innervation is affiliated with sweat glands and with the vasculature and is especially dense at presumptive arteriovenous sphincters. Virtually all of the sweat gland and vascular innervation is peptidergic, whereas most of the unmyelinated epidermal innervation is nonpeptidergic.
Collapse
Affiliation(s)
- F L Rice
- Center for Neuropharmacology and Neuroscience, Albany Medical College, New York 12208, USA.
| | | |
Collapse
|
32
|
Matsuo S, Ichikawa H, Silos-Santiago I, Arends JJ, Henderson TA, Kiyomiya K, Kurebe M, Jacquin MF. Proprioceptive afferents survive in the masseter muscle of trkC knockout mice. Neuroscience 2000; 95:209-16. [PMID: 10619477 DOI: 10.1016/s0306-4522(99)00424-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peripheral innervation patterns of proprioceptive afferents from dorsal root ganglia and the mesencephalic trigeminal nucleus were assessed in trkC-deficient mice using immunohistochemistry for protein gene product 9.5 and parvalbumin. In trkC knockout mice, spinal proprioceptive afferents were completely absent in the limb skeletal muscles, M. biceps femoris and M. gastrocnemius, as previously reported. In these same animals, however, proprioceptive afferents from mesencephalic trigeminal nucleus innervated masseter muscles and formed primary endings of muscle spindles. Three wild-type mice averaged 35.7 spindle profiles (range: 31-41), six heterozygotes averaged 32.3 spindles (range: 27-41), and four homozygotes averaged 32.8 spindles (range: 26-42). Parvalbumin and Nissl staining of the brain stem showed approximately 50% surviving mesencephalic trigeminal sensory neurons in trkC-deficient mice. TrkC-/- mice (n = 5) had 309.4 +/- 15.9 mesencephalic trigeminal sensory cells versus 616.5 +/- 26.3 the sensory cells in trkC+/+ mice (n = 4). These data indicate that while mesencephalic trigeminal sensory neurons are significantly reduced in number by trkC deletion, they are not completely absent. Furthermore, unlike their spinal counterparts, trigeminal proprioceptive afferents survive and give rise to stretch receptor complexes in masseter muscles of trkC knockout mice. This indicates that spinal and mesencephalic trigeminal proprioceptive afferents have different neurotrophin-supporting system during survival and differentiation. It is likely that one or more other neurotrophin receptors expressed in mesencephalic trigeminal proprioceptive neurons of trkC knockout mice compensate for the lack of normal neurotrophin-3 signaling through trkC.
Collapse
Affiliation(s)
- S Matsuo
- Department of Toxicology, School of Veterinary Medicine, Osaka Prefecture University, Sakai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Asahito T, Ohshima H, Hanada K, Wakisaka S, Maeda T. Postnatal expression of calretinin-immunoreactivity in periodontal Ruffini endings in the rat incisor: a comparison with protein gene product 9.5 (PGP 9.5)-immunoreactivity. ARCHIVES OF HISTOLOGY AND CYTOLOGY 1999; 62:57-69. [PMID: 10223743 DOI: 10.1679/aohc.62.57] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The postnatal expression of immunoreactivity for calretinin, one of the calcium binding proteins, and for protein gene product 9.5 (PGP 9.5), a general neuronal marker, was investigated in mechanoreceptive Ruffini endings in the periodontal ligament of the rat incisor. Age-related changes in the expression of these two proteins in periodontal nerves were further quantified with a computerized image analysis. At 1 day after birth, a few PGP 9.5-immunoreactive nerve fibers and a still smaller number of calretinin-positive fibers were found in the periodontal ligament: they were thin and beaded in appearance and no specialized nerve terminals were recognized. Tree-like terminals, reminiscent of immature Ruffini endings, were recognizable in 4-day-old rats by PGP 9.5-immunohistochemistry, while calretinin-immunostaining failed to reveal these specialized endings. At postnatal 7-11 days when PGP 9.5-immunostaining could demonstrate typical Ruffini endings, calretinin-immunopositive nerve fibers merely tapered off without forming the Ruffini type endings. A small number of Ruffini endings showing calretinin-immunoreactivity began to occur in the periodontal ligament at 24-26 days after birth when the occlusion of the first molars had been established. At the functional occlusion stage (60-80 days after birth), the Ruffini endings showing calretinin-immunoreactivity drastically increased in number and density, but less so than those positive for PGP 9.5-immunoreaction. The delayed expression of calretinin suggests that the function of the periodontal Ruffini endings is established after the completion of terminal formation because Ca2+, which binds to calcium binding proteins including calretinin with high affinity, plays an important role in mechano-electric transduction.
Collapse
Affiliation(s)
- T Asahito
- Department of Oral Anatomy, Niigata University School of Dentistry, Japan
| | | | | | | | | |
Collapse
|
34
|
Youn SH, Maeda T, Kurisu K, Wakisaka S. Growth-associated protein-43 (GAP-43) in the regenerating periodontal Ruffini endings of the rat incisor following injury to the inferior alveolar nerve. Brain Res 1998; 787:41-8. [PMID: 9518545 DOI: 10.1016/s0006-8993(97)01450-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alterations in the levels of growth-associated protein 43 (GAP-43)-like immunoreactivity (-LI) were examined in the lingual periodontal ligament of the rat incisor following two types of injury (resection and crush) to the inferior alveolar nerve (IAN). In normal animals, GAP-43-like immunoreactive (IR) structures were observed as tree-like ramifications in the alveolar half of the lingual periodontal ligament of incisors. Under immunoelectron microscopy, GAP-43-LI appeared in the Schwann sheaths associated with periodontal Ruffini endings; neither cell bodies of the terminal Schwann cells nor axonal profiles showed GAP-43-LI. During regeneration of the periodontal Ruffini endings following resection of the IAN, GAP-43-LI appeared in the cytoplasm of the terminal Schwann cell bodies and axoplasm of the terminals. The distribution of GAP-43-LI in the Ruffini endings returned to almost normal levels on days 28 and 56 following the injury. The changes in the distribution of GAP-43-LI following the crush injury were similar to those following resection; however, expression of GAP-43-LI was slightly higher for the entire experimental period compared with the resection. The transient expression of GAP-43 in the terminal Schwann cells and axonal profiles of the periodontal Ruffini endings following nerve injury suggests that GAP-43 is closely associated with axon-Schwann cells interactions during regeneration.
Collapse
Affiliation(s)
- S H Youn
- Department of Oral Anatomy and Developmental Biology, Osaka University Faculty of Dentistry, Suita, Osaka 565, Japan
| | | | | | | |
Collapse
|
35
|
Kobayashi H, Ochi K, Saito I, Hanada K, Maeda T. Alterations in ultrastructural localization of growth-associated protein-43 (GAP-43) in periodontal Ruffini endings of rat molars during experimental tooth movement. J Dent Res 1998; 77:503-17. [PMID: 9496924 DOI: 10.1177/00220345980770031001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is known that orthodontic forces induce discomfort and/or abnormal sensation after application of an orthodontic appliance in patients, suggesting the adaptation of periodontal neural elements to environmental changes. However, no morphological data have been provided. The present study investigated, by immunoelectron microscopy, the localization of growth-associated protein-43 (GAP-43) in periodontal Ruffini endings in rat molars during experimental tooth movement. In the untreated control group, immunoelectron microscopy demonstrated that GAP-43-like immunoreactivity in the Ruffini endings was confined to the Schwann sheaths around the axon terminals, and was in neither the cell bodies of terminal Schwann cells nor the axon terminals themselves. Immunoelectron microscopic observation revealed alterations in the localization of GAP-43-like immunoreactivity in the periodontal Ruffini endings during experimental tooth movement. After 1 day of treatment, the cell bodies of the terminal Schwann cells associated with Ruffini endings appeared to contain immunoreaction products for GAP-43, and retained GAP-43-like immunoreactivity during tooth movement. From 5 to 7 days, a major population of the axoplasm of the periodontal Ruffini endings, which was immunonegative in control, filled the GAP-43 immunoreactions, showing a tendency to decrease in number later, and disappeared completely at 14 days. These findings suggest that orthodontic forces easily induce the remodeling of the mechanoreceptive Ruffini endings as well as the active tissue remodeling in a close relationship. Since the ultrastructural localization of GAP-43-like immunoreactivity was drastically changed in the Ruffini endings during tooth movement, GAP-43 functions as one of the key molecules in the remodeling of mechanoreceptive Ruffini endings during tooth movement.
Collapse
Affiliation(s)
- H Kobayashi
- Department of Orthodontics, Niigata University School of Dentistry, Japan
| | | | | | | | | |
Collapse
|
36
|
Takahashi-Iwanaga H, Maeda T, Abe K. Scanning and transmission electron microscopy of Ruffini endings in the periodontal ligament of rat incisors. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19971208)389:1<177::aid-cne13>3.0.co;2-i] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Goodwin AW, Macefield VG, Bisley JW. Encoding of object curvature by tactile afferents from human fingers. J Neurophysiol 1997; 78:2881-8. [PMID: 9405508 DOI: 10.1152/jn.1997.78.6.2881] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Isolated responses were recorded from fibers in the median nerves of human subjects by using microneurography. Mechanoreceptive afferent fibers with receptive fields on the fingerpads were selected. The fingers were immobilized and spherical stimuli were applied passively to the receptive field with a contact force of 40-, 60-, or 80-g weight. The radii of the spheres were 1.92, 2.94, 5.81, or 12.4 mm or infinity (flat); the corresponding curvatures, given by the reciprocal of the radii, were 694, 340, 172, 80.6, or 0 m-1, respectively. When the spheres were applied to the receptive field center of slowly adapting type I afferents (SAIs), the response increased as the curvature of the sphere increased and also increased as the contact force increased. All SAIs behaved in the same way except for a scaling factor proportional to the sensitivity of the afferent. When a sphere was located at different positions in the receptive field, the shape of the resulting response profile reflected the shape of the sphere; for more curved spheres the profile was higher and narrower (increased peak and decreased width). Slowly adapting type II afferents (SAIIs) showed different response characteristics from the SAIs when spheres were applied to their receptive field centers. As the curvature of the stimulus increased from 80.6 to 172 m-1, the response increased. However, further increases in curvature did not result in further increases in response. An increase in contact force resulted in an increase in the response of SAIIs; this increase was proportionately greater than it was for SAIs. For SAIIs, the shape of the receptive field profile did not change when the curvature of the stimulus changed. For fast-adapting type I afferents (FAIs), the responses were small and did not change systematically with changes in curvature or contact force. Fast-adapting type II afferents (FAIIs) did not respond to our stimuli. Human SAIs, FAIs, and FAIIs behaved like monkey SAIs, FAIs, and FAIIs, respectively. The response of the SAI population contains accurate information about the shape of the sphere and its position of contact on the finger and also indicates contact force. Conversely, whereas SAIIs possess a greater capacity to encode changes in contact force, they provide only coarse information on local shape.
Collapse
Affiliation(s)
- A W Goodwin
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
38
|
Fundin BT, Silos-Santiago I, Ernfors P, Fagan AM, Aldskogius H, DeChiara TM, Phillips HS, Barbacid M, Yancopoulos GD, Rice FL. Differential dependency of cutaneous mechanoreceptors on neurotrophins, trk receptors, and P75 LNGFR. Dev Biol 1997; 190:94-116. [PMID: 9331334 DOI: 10.1006/dbio.1997.8658] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The impact of null mutations of the genes for the NGF family of neurotrophins and their receptors was examined among the wide variety of medium to large caliber myelinated mechanoreceptors which have a highly specific predictable organization in the mystacial pad of mice. Immunofluorescence with anti-protein gene product 9.5, anti-200-kDa neurofilament protein (RT97), and anti-calcitonin gene-related product was used to label innervation in mystacial pads from mice with homozygous null mutations for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), the three tyrosine kinase receptors (trkA, trkB, trkC), and the low-affinity nerve growth factor receptor p75. Specimens were sacrificed at birth and at 1, 2, and 4 weeks for each type of mutation as well as at 11 weeks and 1 year for p75 and trkC mutations, respectively. Our results demonstrate several major concepts about the role of neurotrophins in the development of cutaneous mechanoreceptors that are supplied by medium to large caliber myelinated afferents. First, each of the high-affinity tyrosine kinase receptors, trkA, trkB, and trkC, as well as the low-affinity p75 receptor has an impact on at least one type of mechanoreceptor. Second, consistent with the various affinities for particular trk receptors, the elimination of NGF, BDNF, and NT-3 has an impact comparable to or more complex than the absence of their most specific high-affinity receptors: trkA, trkB, and trkC, respectively. These complexities include potential NT-3 signaling through trkA and trkB to support some neuronal survival. Third, most types of afferents are dependent on a different combination of neurotrophins and receptors for their survival: reticular and transverse lanceolate afferents are dependent upon NT-3, NGF, and trkA; Ruffini afferents upon BDNF and trkB; longitudinal lanceolate afferents upon NGF, trkA, BDNF, and trkB; and Merkel afferents on NGF, trkA, NT-3, trkC, and p75. NT-4 has no obvious detrimental impact on the mechanoreceptor development in the presence of BDNF. Fourth, NT-4 and BDNF signaling through trkB may suppress Merkel innervation and NT-3 signaling through trkC may suppress Ruffini innervation. Finally, regardless of the neurotrophin/receptor dependency for afferent survival and neurite outgrowth, NT-3 has an impact on the formation of all the sensory endings. In the context of these findings, indications of competitive and suppressive interactions that appear to regulate the balance of innervation density among the various sets of innervation were evident.
Collapse
Affiliation(s)
- B T Fundin
- Department of Anatomy, Uppsala University, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Botchkarev VA, Eichmüller S, Johansson O, Paus R. Hair cycle-dependent plasticity of skin and hair follicle innervation in normal murine skin. J Comp Neurol 1997; 386:379-95. [PMID: 9303424 DOI: 10.1002/(sici)1096-9861(19970929)386:3<379::aid-cne4>3.0.co;2-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The innervation of normal, mature mammalian skin is widely thought to be constant. However, the extensive skin remodeling accompanying the transformation of hair follicles from resting stage through growth and regression back to resting (telogen-anagen-catagen-telogen) may also be associated with alteration of skin innervation. We, therefore, have investigated the innervation of the back skin of adolescent C57BL/6 mice at various stages of the depilation-induced hair cycle. By using antisera against neuronal (protein gene product 9.5 [PGP 9.5], neurofilament 150) and Schwann cell (S-100, myelin basic protein) markers, as well as against neural cell adhesion molecule (NCAM) and growth-associated protein-43 (GAP-43), we found a dramatic increase of single fibers within the dermis and subcutis during early anagen. This was paralleled by an increase in the number of anastomoses between the cutaneous nerve plexuses and by distinct changes in the nerve fiber supply of anagen vs. telogen hair follicles. The follicular isthmus, including the bulge, the seat of epithelial follicle stem cells, was found to be the most densely innervated skin area. Here, a defined subpopulation of nerve fibers increased in number during anagen and declined during catagen, accompanied by dynamic alterations in the expression of NCAM and GAP-43. Thus, our study provides evidence for a surprising degree of plasticity of murine skin innervation. Because hair cycle-associated tissue remodeling evidently is associated with tightly regulated sprouting and regression of nerve fibers, hair cycle-dependent alterations in murine skin and hair follicle innervation offer an intriguing model for studying the controlled rearrangement of neuronal networks in peripheral tissues under physiological conditions.
Collapse
Affiliation(s)
- V A Botchkarev
- Department of Dermatology, Charité, Humboldt-Universität zu Berlin, Germany
| | | | | | | |
Collapse
|
40
|
Ochi K, Wakisaka S, Youn SH, Hanada K, Maeda T. Calretinin-like immunoreactivity in the Ruffini endings, slowly adapting mechanoreceptors, of the periodontal ligament of the rat incisor. Brain Res 1997; 769:183-7. [PMID: 9374289 DOI: 10.1016/s0006-8993(97)00847-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The distribution and ultrastructural localization of calretinin (CR)-like immunoreactivity (-LI) were investigated in the lingual periodontal ligament of rat incisors. Some thick nerve fibers within the nerve bundle displayed CR-LI; these CR-like immunoreactive (-IR) nerve fibers entered the alveolar half of the lingual periodontal ligament of the incisor where dendritic terminal arborization was exhibited. Thin and beaded CR-IR nerve fibers were rarely observed in the periodontal ligament. Observations of adjacent sections immunostained with protein gene-product 9.5 (PGP 9.5) revealed that most, if not all, PGP 9.5-IR nerve terminals showing a dendritic arborization expressed CR-LI. Immunoelectron microscopic observations showed that electron-opaque immunoreaction products were localized in the axoplasm of the axon terminals, except for the mitochondria, which were surrounded by Schwann sheaths and multiple-layered basal lamina. Neither cell bodies, the cytoplasmic extension of terminal Schwann cells, nor other cellular elements such as periodontal fibroblasts exhibited CR-LI. The present findings suggest that Ruffini endings, an essential mechanoreceptor in the periodontal ligament and categorized as a slowly adapting mechanoreceptor, express CR-LI, and that CR may participate in the Ca2+ homeostasis against external stimuli in the periodontal Ruffini endings.
Collapse
Affiliation(s)
- K Ochi
- Department of Oral Anatomy, Niigata University School of Dentistry, Japan.
| | | | | | | | | |
Collapse
|
41
|
Fundin BT, Arvidsson J, Aldskogius H, Johansson O, Rice SN, Rice FL. Comprehensive immunofluorescence and lectin binding analysis of intervibrissal fur innervation in the mystacial pad of the rat. J Comp Neurol 1997; 385:185-206. [PMID: 9268123 DOI: 10.1002/(sici)1096-9861(19970825)385:2<185::aid-cne2>3.0.co;2-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The innervation of the intervibrissal fur in the mystacial pad of the rat and mouse was examined by immunofluorescence with a wide variety of antibodies for neuronal related structural proteins, enzymes, and peptides as well as for lectin binding histofluorescence with Griffonia simplicifolia (GSA). Anti-protein gene product 9.5 (PGP) immunofluorescence labeled all sets of axons and endings. The innervation in the upper dermis and epidermis was distributed through a four tiered dermal plexus. From deep to superficial, the second tier was the source of all apparent myelinated mechanoreceptors, the third tier of nearly all the peptidergic and GSA binding innervation, and the fourth tier of nonpeptidergic GSA negative innervation (peptide-/GSA-). Three types of mechanoreceptors-Merkel, transverse lanceolate, and longitudinal lanceolate endings-innervated guard hair follicles. All had similar labeling characteristics for 160 kDa and 200 kDa neurofilament subunits, peripherin, carbonic anhydrase, synaptophysin, and S100. Palisades of longitudinal lanceolate endings were part of piloneural complexes along circumferentially oriented sets of transverse lanceolate endings, peptidergic free nerve endings (FNEs), and peptide-/GSA- FNEs. The longitudinal lanceolate endings were the only mechanoreceptors in the mystacial pad that had detectable calcitonin gene-related peptide. The epidermis contained four types of unmyelinated endings: simple free nerve endings (FNEs), penicillate endings, cluster endings and bush endings. Only the simple FNEs were clearly peptidergic. Virtually all others were peptide-/ GSA-. Each bush ending was actually an intermingled cluster of endings formed by several unmyelinated axons and occasionally an Adelta axon. In contrast to the other unmyelinated innervation to the epidermis, bush endings labeled with an antibody against the Schwann cell protein S100. The necks and mouths of follicles, as well as superficial vasculature, were innervated by a mixture of unmyelinated peptidergic and/or GSA labeled sensory and sympathetic axons. Small presumptive sweat glands were innervated by three sets of peptidergic axons of which one was immunoreactive for somatostatin. Potential functions of the various sets of innervation are discussed.
Collapse
Affiliation(s)
- B T Fundin
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
42
|
Rice FL, Fundin BT, Arvidsson J, Aldskogius H, Johansson O. Comprehensive immunofluorescence and lectin binding analysis of vibrissal follicle sinus complex innervation in the mystacial pad of the rat. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970825)385:2<149::aid-cne1>3.0.co;2-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Abstract
The skin of macroscopically distinct regions (hairy skin, vibrissal fields, buccal ridge, and rhinarium) of the head of the blind mole-rat, Spalax ehrenbergi, was studied by routine histological methods. Few guard and several soft vellus hairs are organized into tufts that grow from a group of hair follicles localized in an invaginated compound cavity. We suggest that this hair arrangement may be a burrowing adaptation to match frictional resistance. The follicles and the compound cavity possess either well developed complex striated musculature or errector pili muscles. There are no structural specializations (sweat glands, glomus bodies) to enhance thermoregulatory (heat dissipative) capacities in the hairy skin of the head. Vibrissae penetrate the epidermal surface as single hairs. They are microscopically normally developed and arranged in vibrissal fields according to a basal mammalian pattern. Most of them are, however, relatively short and inconspicuous. The mystacial vibrissal field is horizontally divided by a prominent buccal ridge which is probably involved in bulldozing. The hairs in the ridge leave the compound cavity singularly. The follicles of guard hairs and bristles are equipped with well developed pilo-Ruffini complexes indicating that the buccal ridge may serve also as a tactile organ. The glabrous skin of the rhinarium has a highly interdigitated dermal-epidermal interface. The dermal papillae possess simple lamellated and/or simple Meissner's corpuscles and few Merkel cell-axon-complexes indicating that the skin of the rhinarium may be particularly sensitive to perception of vibrations.
Collapse
Affiliation(s)
- G Klauer
- Zentrum der Morphologie, J. W. Goethe-Universität, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
44
|
Regeneration of periodontal primary afferents of the rat incisor following injury of the inferior alveolar nerve with special reference to neuropeptide Y-like immunoreactive primary afferents. Brain Res 1997. [DOI: 10.1016/s0006-8993(96)01451-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Yamamoto Y, Hosono I, Atoji Y, Suzuki Y. Morphological study of the vagal afferent nerve endings in the laryngeal mucosa of the dog. Ann Anat 1997; 179:65-73. [PMID: 9059742 DOI: 10.1016/s0940-9602(97)80138-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The afferent nerve endings in the laryngeal mucosa of the dog were investigated by immunohistochemical staining specific for neurofilament protein of whole-mount preparation. In the laryngeal mucosa, two kinds of nerve endings, namely, laminar and glomerular endings, were observed. The laminar endings were distributed on the laryngeal side of the epiglottis, the mucosa overlying the arytenoid cartilage and the vocalis muscle. The laminar endings were 100-350 microns long and 60-200 microns wide. Some axons gave rise to a single ending while others continued to two endings. The terminal portions were round, oval or triangular in shape, and occasionally had an immunopositive rim with a negative center. Cryostat sections revealed that the laminar endings were located immediately beneath the laryngeal epithelium. The endings were flattened and extended in two dimensions. The glomerular endings could be divided into two subtypes, large ones and small ones. The large ones were 150-250 microns long and 90-200 microns wide, and they were distributed in the mucosa of the intercartilaginous part of the glottis and the laryngeal side of the epiglottis. Several nerve fibers were gathered in the subepithelial region and arranged in a glomerular pattern. In some large glomerular endings, the terminal portions formed laminar arborizations. The small glomerular endings were 100-200 microns long and 40-120 microns wide, and their distribution was restricted to the mucosa of the corniculate process of the arytenoid cartilage. They were simple in terms of shape and were also located in the subepithelial region. Some small endings were accompanied by mucosal protrusions and were located near taste buds. Dogs that had been subjected to surgical denervation of the internal branch of the cranial (superior) laryngeal nerve suggested that both the laminar and the glomerular endings were mainly derived from this branch of ipsilateral side.
Collapse
Affiliation(s)
- Y Yamamoto
- Department of Veterinary Science, Gifu University, Japan
| | | | | | | |
Collapse
|
46
|
Wakisaka S, Youn S, Maeda T, Kurisu K. Immunoelectron microscopic study on neuropeptide Y in the periodontal ligament of the incisor following peripheral nerve injury to the inferior alveolar nerve in the rat. Brain Res 1996. [DOI: 10.1016/0006-8993(96)00570-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Affiliation(s)
- L Malinovský
- Department of Cardiovascular and Respiratory Sciences, University La Sapienza, Rome, Italy
| |
Collapse
|
48
|
Wakisaka S, Youn SH, Kato J, Takemura M, Kurisu K. Neuropeptide Y-immunoreactive primary afferents in the dental pulp and periodontal ligament following nerve injury to the inferior alveolar nerve in the rat. Brain Res 1996; 712:11-8. [PMID: 8705292 DOI: 10.1016/0006-8993(95)01421-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The distribution of neuropeptide Y (NPY)-immunoreactive (IR) primary afferents in the dental pulp and periodontal ligament of the rat mandible were examined following combined chronic constriction injury (CCI) of the inferior alveolar nerve (IAN) and sympathectomy of the superior cervical ganglion (SCG). NPY-IR nerve fibers were observed around the blood vessels in the trigeminal ganglion, dental pulp and periodontal ligament in normal animals. Following combined CCI of the IAN and sympathectomy of SCG (SCGx), perivascular NPY-IR nerve fibers originating from SCG disappeared completely, but many NPY-IR nerve fibers coming from the trigeminal ganglion appeared in the dental pulp and periodontal ligament. In the molar dental pulp, thick NPY-IR nerve fibers were observed within the nerve bundle, and some thin NPY-IR nerve fibers ran towards the odontoblast layer; very few NPY-IR nerve fibers were observed in the incisor pulp. In the periodontal ligament of molar, thick NPY-IR nerve fibers appeared at the alveolar part following combined CCI of IAN and SCGx. In the lingual portion of the periodontal ligament of the incisor, many thick NPY-IR nerve fibers were observed. These occasionally showed a tree-like appearance, resembling immature Ruffini endings; slowly adapting mechanoreceptors. The present results indicate that periodontal mechanoreceptors are among the main targets of injury-evoked NPY following IAN injury.
Collapse
Affiliation(s)
- S Wakisaka
- Department of Oral Anatomy and Developmental Biology, Osaka University Faculty of Dentistry, Japan.
| | | | | | | | | |
Collapse
|
49
|
Nakakura-Ohshima K, Maeda T, Ohshima H, Noda T, Takano Y. Postnatal development of periodontal ruffini endings in rat incisors: an immunoelectron microscopic study using protein gene product 9.5 (PGP 9.5) antibody. J Comp Neurol 1995; 362:551-64. [PMID: 8636467 DOI: 10.1002/cne.903620409] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Postnatal development of Ruffini endings was ultrastructurally investigated in the upper incisors of the rat from 1 day to 60 days after birth by means of protein gene product 9.5 (PGP 9.5) immunocytochemistry. The immunostaining with PGP 9.5 antibody clearly demonstrated chronological alterations of the distribution and ultrastructure of the Ruffini endings during postnatal development. At 1 day after birth, the PGP 9.5-positive nerve terminals contained a few mitochondria and vesicles immunonegative for PGP 9.5. Dendritic terminals appeared at 4 days after birth, with a small number of expanded or bulbous portions. These expanded portions possessed morphological features similar to those of the growth cone: several mitochondria and various kinds of vesicles. Typical Ruffini endings with dendritic ramification and expanded portions appeared 7-11 days after birth. At this stage, parts of the axon terminals extended through the slits of Schwann cell covering and formed finger-like projections called axonal spines. These Ruffini endings increased dramatically in number after 24-26 days and were identical in density and morphology to those seen in adult rats. After the commencement of the occlusion between the incisors, the number of large mitochondria increased, in contrast to the decrease of the vesicles in the axon terminals. Moreover, the axonal spines increased both in number and in length. Thus, the periodontal nerve endings showed stage-specific morphological features intimately related in timing to tooth eruption and occlusion. Functional stimuli possibly contribute to the final differentiation and maturation of the periodontal Ruffini endings.
Collapse
Affiliation(s)
- K Nakakura-Ohshima
- Department of Pediatric Dentistry, Niigata University School of Dentistry, Japan
| | | | | | | | | |
Collapse
|
50
|
|