1
|
Ehinger Y, Laguesse S, Phamluong K, Salvi A, Hoisington ZW, Soneja D, Sei YJ, Nakamura K, Ron D. Paradoxical mTORC1-Dependent microRNA-mediated Translation Repression in the Nucleus Accumbens of Mice Consuming Alcohol Attenuates Glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569312. [PMID: 38076984 PMCID: PMC10705386 DOI: 10.1101/2023.11.29.569312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
mTORC1 promotes protein translation, learning and memory, and neuroadaptations that underlie alcohol use and abuse. We report that activation of mTORC1 in the nucleus accumbens (NAc) of mice consuming alcohol promotes the translation of microRNA (miR) machinery components and the upregulation of microRNAs (miRs) expression including miR34a-5p. In parallel, we detected a paradoxical mTORC1-dependent repression of translation of transcripts including Aldolase A, an essential glycolytic enzyme. We found that miR34a-5p in the NAc targets Aldolase A for translation repression and promotes alcohol intake. Our data further suggest that glycolysis is inhibited in the NAc manifesting in an mTORC1-dependent attenuation of L-lactate, the end product of glycolysis. Finally, we show that systemic administration of L-lactate attenuates mouse excessive alcohol intake. Our data suggest that alcohol promotes paradoxical actions of mTORC1 on translation and glycolysis which in turn drive excessive alcohol use. Abstract Figure
Collapse
|
2
|
Gorina YV, Salmina AB, Erofeev AI, Gerasimov EI, Bolshakova AV, Balaban PM, Bezprozvanny IB, Vlasova OL. Astrocyte Activation Markers. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:851-870. [PMID: 36180985 DOI: 10.1134/s0006297922090012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
Astrocytes are the most common type of glial cells that provide homeostasis and protection of the central nervous system. Important specific characteristic of astrocytes is manifestation of morphological heterogeneity, which is directly dependent on localization in a particular area of the brain. Astrocytes can integrate into neural networks and keep neurons active in various areas of the brain. Moreover, astrocytes express a variety of receptors, channels, and membrane transporters, which underlie their peculiar metabolic activity, and, hence, determine plasticity of the central nervous system during development and aging. Such complex structural and functional organization of astrocytes requires the use of modern methods for their identification and analysis. Considering the important fact that determining the most appropriate marker for polymorphic and multiple subgroups of astrocytes is of decisive importance for studying their multifunctionality, this review presents markers, modern imaging techniques, and identification of astrocytes, which comprise a valuable resource for studying structural and functional properties of astrocytes, as well as facilitate better understanding of the extent to which astrocytes contribute to neuronal activity.
Collapse
Affiliation(s)
- Yana V Gorina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia.
- Research Institute of Molecular Medicine and Pathobiochemistry, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Alla B Salmina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
- Laboratory of Neurobiology and Tissue Engineering, Brain Institute, Research Center of Neurology, Moscow, 105064, Russia
| | - Alexander I Erofeev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Evgeniy I Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Anastasia V Bolshakova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Pavel M Balaban
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity, Moscow, 117485, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Olga L Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| |
Collapse
|
3
|
Chou PC, Liu CM, Weng CH, Yang KC, Cheng ML, Lin YC, Yang RB, Shyu BC, Shyue SK, Liu JD, Chen SP, Hsiao M, Hu YF. Fibroblasts Drive Metabolic Reprogramming in Pacemaker Cardiomyocytes. Circ Res 2022; 131:6-20. [PMID: 35611699 DOI: 10.1161/circresaha.121.320301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The sinoatrial node (SAN) is characterized by the microenvironment of pacemaker cardiomyocytes (PCs) encased with fibroblasts. An altered microenvironment leads to rhythm failure. Operable cell or tissue models are either generally lacking or difficult to handle. The biological process behind the milieu of SANs to evoke pacemaker rhythm is unknown. We explored how fibroblasts interact with PCs and regulate metabolic reprogramming and rhythmic activity in the SAN. METHODS Tbx18 (T-box transcription factor 18)-induced PCs and fibroblasts were used for cocultures and engineered tissues, which were used as the in vitro models to explore how fibroblasts regulate the functional integrity of SANs. RNA-sequencing, metabolomics, and cellular and molecular techniques were applied to characterize the molecular signals underlying metabolic reprogramming and identify its critical regulators. These pathways were further validated in vivo in rodents and induced human pluripotent stem cell-derived cardiomyocytes. RESULTS We observed that rhythmicity in Tbx18-induced PCs was regulated by aerobic glycolysis. Fibroblasts critically activated metabolic reprogramming and aerobic glycolysis within PCs, and, therefore, regulated pacemaker activity in PCs. The metabolic reprogramming was attributed to the exclusive induction of Aldoc (aldolase c) within PCs after fibroblast-PC integration. Fibroblasts activated the integrin-dependent mitogen-activated protein kinase-E2F1 signal through cell-cell contact and turned on Aldoc expression in PCs. Interruption of fibroblast-PC interaction or Aldoc knockdown nullified electrical activity. Engineered Tbx18-PC tissue sheets were generated to recapitulate the microenvironment within SANs. Aldoc-driven rhythmic machinery could be replicated within tissue sheets. Similar machinery was faithfully validated in de novo PCs of adult mice and rats, and in human PCs derived from induced pluripotent stem cells. CONCLUSIONS Fibroblasts drive Aldoc-mediated metabolic reprogramming and rhythmic regulation in SANs. This work details the cellular machinery behind the complex milieu of vertebrate SANs and opens a new direction for future therapy.
Collapse
Affiliation(s)
- Pei-Chun Chou
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Chih-Min Liu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (C.-M.L., Y.-F.H.)
| | - Ching-Hui Weng
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Kai-Chien Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.).,Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei (K.-C.Y.)
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan (M.-L.C.)
| | - Yuh-Charn Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.).,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan (Y.-C.L.)
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Bai-Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Jin-Dian Liu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Shih-Pin Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taiwan. (S.-P.C.)
| | - Michael Hsiao
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan (M.H.)
| | - Yu-Feng Hu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.).,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (C.-M.L., Y.-F.H.)
| |
Collapse
|
4
|
Loss of the transcriptional repressor Rev-erbα upregulates metabolism and proliferation in cultured mouse embryonic fibroblasts. Sci Rep 2021; 11:12356. [PMID: 34117285 PMCID: PMC8196003 DOI: 10.1038/s41598-021-91516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 05/19/2021] [Indexed: 12/04/2022] Open
Abstract
The transcriptional repressor Rev-erbα is known to down-regulate fatty acid metabolism and gluconeogenesis gene expression. In animal models, disruption of Rev-erbα results in global changes in exercise performance, oxidative capacity, and blood glucose levels. However, the complete extent to which Rev-erbα-mediated transcriptional repression of metabolism impacts cell function remains unknown. We hypothesized that loss of Rev-erbα in a mouse embryonic fibroblast (MEF) model would result in global changes in metabolism. MEFs lacking Rev-erbα exhibited a hypermetabolic phenotype, demonstrating increased levels of glycolysis and oxidative phosphorylation. Rev-erbα deletion increased expression of hexokinase II, transketolase, and ribose-5-phosphate isomerase genes involved in glycolysis and the pentose phosphate pathway (PPP), and these effects were not mediated by the transcriptional activator BMAL1. Upregulation of oxidative phosphorylation was not accompanied by an increase in mitochondrial biogenesis or numbers. Rev-erbα repressed proliferation via glycolysis, but not the PPP. When treated with H2O2, cell viability was reduced in Rev-erbα knockout MEFs, accompanied by increased ratio of oxidized/reduced NADPH, suggesting that perturbation of the PPP reduces capacity to mount an antioxidant defense. These findings uncover novel mechanisms by which glycolysis and the PPP are modulated through Rev-erbα, and provide new insights into how Rev-erbα impacts proliferation.
Collapse
|
5
|
Cellular Prion Protein (PrPc): Putative Interacting Partners and Consequences of the Interaction. Int J Mol Sci 2020; 21:ijms21197058. [PMID: 32992764 PMCID: PMC7583789 DOI: 10.3390/ijms21197058] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023] Open
Abstract
Cellular prion protein (PrPc) is a small glycosylphosphatidylinositol (GPI) anchored protein most abundantly found in the outer leaflet of the plasma membrane (PM) in the central nervous system (CNS). PrPc misfolding causes neurodegenerative prion diseases in the CNS. PrPc interacts with a wide range of protein partners because of the intrinsically disordered nature of the protein’s N-terminus. Numerous studies have attempted to decipher the physiological role of the prion protein by searching for proteins which interact with PrPc. Biochemical characteristics and biological functions both appear to be affected by interacting protein partners. The key challenge in identifying a potential interacting partner is to demonstrate that binding to a specific ligand is necessary for cellular physiological function or malfunction. In this review, we have summarized the intracellular and extracellular interacting partners of PrPc and potential consequences of their binding. We also briefly describe prion disease-related mutations at the end of this review.
Collapse
|
6
|
Fujiwara K, Tsukada T, Horiguchi K, Fujiwara Y, Takemoto K, Nio-Kobayashi J, Ohno N, Inoue K. Aldolase C is a novel molecular marker for folliculo-stellate cells in rodent pituitary. Cell Tissue Res 2020; 381:273-284. [DOI: 10.1007/s00441-020-03200-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/03/2020] [Indexed: 12/31/2022]
|
7
|
Yang Y, Ren J, Sun Y, Xue Y, Zhang Z, Gong A, Wang B, Zhong Z, Cui Z, Xi Z, Yang GY, Sun Q, Bian L. A connexin43/YAP axis regulates astroglial-mesenchymal transition in hemoglobin induced astrocyte activation. Cell Death Differ 2018; 25:1870-1884. [PMID: 29880858 DOI: 10.1038/s41418-018-0137-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 04/12/2018] [Accepted: 05/16/2018] [Indexed: 01/05/2023] Open
Abstract
Reactive astrogliosis is a common response to insults to the central nervous system, but the mechanism remains unknown. In this study, we found the temporal and spatial differential expression of glial fibrillary acidic protein (GFAP) and Vimentin in the intracerebral hemorrhage (ICH) mouse brain, indicating that the de-differentiation and astroglial-mesenchymal transition (AMT) of astrocytes might be an early event in reactive astrogliosis. Further we verified the AMT finding in purified astrocyte cultures exposed to hemoglobin (Hb). Additionally, Connexin 43 (Cx43) downregulation and YAP nuclear translocation were observed in Hb-activated astrocytes. Knocking down Cx43 by siRNA triggered YAP nuclear translocation. Cx43 and YAP were physically associated as determined by immunofluorescence and co-immunoprecipitation. We propose that astrocytes undergo AMT during Hb-induced activation where Cx43 downregulation facilitates YAP nuclear translocation is a novel mechanism involved in this process. Cx43-YAP interaction may represent a potential therapeutic target for modulating astrocyte activation.
Collapse
Affiliation(s)
- Yong Yang
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jie Ren
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yuan Xue
- Zhenjiang Center for Disease Control and Prevention, Zhenjiang, 212000, China
| | - Zhijian Zhang
- Basic Medical Science Research Center, School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Aihua Gong
- Basic Medical Science Research Center, School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhihong Zhong
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhenwen Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zhiyu Xi
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China. .,Department of Neurosurgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
8
|
Davalieva K, Maleva Kostovska I, Dwork AJ. Proteomics Research in Schizophrenia. Front Cell Neurosci 2016; 10:18. [PMID: 26909022 PMCID: PMC4754401 DOI: 10.3389/fncel.2016.00018] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/18/2016] [Indexed: 11/29/2022] Open
Abstract
Despite intense scientific efforts, the neuropathology and pathophysiology of schizophrenia are poorly understood. Proteomic studies, by testing large numbers of proteins for associations with disease, may contribute to the understanding of the molecular mechanisms of schizophrenia. They may also indicate the types and locations of cells most likely to harbor pathological alterations. Investigations using proteomic approaches have already provided much information on quantitative and qualitative protein patterns in postmortem brain tissue, peripheral tissues and body fluids. Different proteomic technologies such as 2-D PAGE, 2-D DIGE, SELDI-TOF, shotgun proteomics with label-based (ICAT), and label-free (MSE) quantification have been applied to the study of schizophrenia for the past 15 years. This review summarizes the results, mostly from brain but also from other tissues and bodily fluids, of proteomics studies in schizophrenia. Emphasis is given to proteomics platforms, varying sources of material, proposed candidate biomarkers emerging from comparative proteomics studies, and the specificity of the putative markers in terms of other mental illnesses. We also compare proteins altered in schizophrenia with reports of protein or mRNA sequences that are relatively enriched in specific cell types. While proteomic studies of schizophrenia find abnormalities in the expression of many proteins that are not cell type-specific, there appears to be a disproportionate representation of proteins whose synthesis and localization are highly enriched in one or more brain cell type compared with other types of brain cells. Two of the three proteins most commonly altered in schizophrenia are aldolase C and glial fibrillary acidic protein, astrocytic proteins with entirely different functions, but the studies are approximately evenly divided with regard to the direction of the differences and the concordance or discordance between the two proteins. Alterations of common myelin-associated proteins were also frequently observed, and in four studies that identified alterations in at least two, all differences were downwards in schizophrenia, consistent with earlier studies examining RNA or targeting myelin-associated proteins.
Collapse
Affiliation(s)
- Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov," Macedonian Academy of Sciences and Arts Skopje, Republic of Macedonia
| | - Ivana Maleva Kostovska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov," Macedonian Academy of Sciences and Arts Skopje, Republic of Macedonia
| | - Andrew J Dwork
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric InstituteNew York, NY, USA; Departments of Psychiatry and Pathology and Cell Biology, College of Physicians and Surgeons of Columbia UniversityNew York, NY, USA; Macedonian Academy of Sciences and ArtsSkopje, Republic of Macedonia
| |
Collapse
|
9
|
Alfarouk KO, Verduzco D, Rauch C, Muddathir AK, Adil HHB, Elhassan GO, Ibrahim ME, David Polo Orozco J, Cardone RA, Reshkin SJ, Harguindey S. Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncoscience 2014; 1:777-802. [PMID: 25621294 PMCID: PMC4303887 DOI: 10.18632/oncoscience.109] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/14/2014] [Indexed: 12/15/2022] Open
Abstract
Cancer cells acquire an unusual glycolytic behavior relative, to a large extent, to their intracellular alkaline pH (pHi). This effect is part of the metabolic alterations found in most, if not all, cancer cells to deal with unfavorable conditions, mainly hypoxia and low nutrient supply, in order to preserve its evolutionary trajectory with the production of lactate after ten steps of glycolysis. Thus, cancer cells reprogram their cellular metabolism in a way that gives them their evolutionary and thermodynamic advantage. Tumors exist within a highly heterogeneous microenvironment and cancer cells survive within any of the different habitats that lie within tumors thanks to the overexpression of different membrane-bound proton transporters. This creates a highly abnormal and selective proton reversal in cancer cells and tissues that is involved in local cancer growth and in the metastatic process. Because of this environmental heterogeneity, cancer cells within one part of the tumor may have a different genotype and phenotype than within another part. This phenomenon has frustrated the potential of single-target therapy of this type of reductionist therapeutic approach over the last decades. Here, we present a detailed biochemical framework on every step of tumor glycolysis and then proposea new paradigm and therapeutic strategy based upon the dynamics of the hydrogen ion in cancer cells and tissues in order to overcome the old paradigm of one enzyme-one target approach to cancer treatment. Finally, a new and integral explanation of the Warburg effect is advanced.
Collapse
Affiliation(s)
| | | | - Cyril Rauch
- University of Nottingham, Sutton Bonington, Leicestershire, Nottingham, UK
| | | | | | - Gamal O. Elhassan
- Unizah Pharmacy Collage, Qassim University, Unizah, AL-Qassim, King of Saudi Arabia
- Omdurman Islamic University, Omdurman, Sudan
| | | | | | | | | | | |
Collapse
|
10
|
Sandoval M, Luarte A, Herrera-Molina R, Varas-Godoy M, Santibáñez M, Rubio FJ, Smit AB, Gundelfinger ED, Li KW, Smalla KH, Wyneken U. The glycolytic enzyme aldolase C is up-regulated in rat forebrain microsomes and in the cerebrospinal fluid after repetitive fluoxetine treatment. Brain Res 2013; 1520:1-14. [PMID: 23688545 DOI: 10.1016/j.brainres.2013.04.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 03/22/2013] [Accepted: 04/24/2013] [Indexed: 01/21/2023]
Abstract
The antidepressant drug fluoxetine is widely used for the treatment of a broad range of psychiatric disorders. Its mechanism of action is thought to involve cellular adaptations that are induced with a slow time course after initiation of treatment. To gain insight into the signaling pathways underlying such changes, the expression levels of proteins in a microsomal sub-fraction enriched in intracellular membranes from the rat forebrain was analyzed after two weeks of treatment with fluoxetine. Proteins were separated by two-dimensional gel electrophoresis, and the differentially regulated protein spots were identified by mass spectrometry. Protein network analysis suggested that most of the identified proteins could potentially be regulated by the insulin family of proteins. Among them, Fructose-bisphosphate aldolase C (AldoC), a glycolytic/gluconeogenic enzyme primarily expressed in forebrain astrocytes, was up-regulated 7.6-fold. An immunohistochemical analysis of the dorsal hippocampus revealed a robust decrease (43±2%) in the co-localization of AldoC and the astrocyte marker GFAP and a diffuse staining pattern, compatible with AldoC secretion into the extracellular space. Consistently, AldoC, contained in an exosome-like fraction in astrocyte conditioned medium, increased significantly in the cerebrospinal fluid. Our findings strongly favor a non-canonic signaling role for AldoC in cellular adaptations induced by repetitive fluoxetine treatment.
Collapse
Affiliation(s)
- Mauricio Sandoval
- Laboratorio de Neurociencias, Universidad de Los Andes, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nieznanski K. Interactions of prion protein with intracellular proteins: so many partners and no consequences? Cell Mol Neurobiol 2010; 30:653-66. [PMID: 20041289 DOI: 10.1007/s10571-009-9491-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
Prion protein (PrP) plays a key role in the pathogenesis of transmissible spongiform encephalopathies (TSEs)--fatal diseases of the central nervous system. Its physiological function as well as exact role in neurodegeneration remain unclear, hence screens for proteins interacting with PrP seem to be the most promising approach to elucidating these issues. PrP is mostly a plasma membrane-anchored extracellular glycoprotein and only a small fraction resides inside the cell, yet the number of identified intracellular partners of PrP is comparable to that of its membranal or extracellular interactors. Since some TSEs are accompanied by significantly increased levels of cytoplasmic PrP and this fraction of the protein has been found to be neurotoxic, it is of particular interest to characterize the intracellular interactome of PrP. It seems reasonable that at elevated cytoplasmic levels, PrP may exert cytotoxic effect by affecting the physiological functions of its intracellular interactors. This review is focused on the cytoplasmic partners of PrP along with possible consequences of their binding.
Collapse
Affiliation(s)
- Krzysztof Nieznanski
- Department of Biochemistry, Polish Academy of Sciences, Nencki Institute of Experimental Biology, 3 Pasteur St, Warsaw 02093, Poland.
| |
Collapse
|
12
|
Day IN, Thompson RJ. UCHL1 (PGP 9.5): Neuronal biomarker and ubiquitin system protein. Prog Neurobiol 2010; 90:327-62. [DOI: 10.1016/j.pneurobio.2009.10.020] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/18/2009] [Accepted: 10/21/2009] [Indexed: 12/16/2022]
|
13
|
Abstract
Under normal physiological conditions, the brain utilizes only a small number of carbon sources for energy. Recently, there is growing molecular and biochemical evidence that other carbon sources, including fructose, may play a role in neuro-energetics. Fructose is the number one commercial sweetener in Western civilization with large amounts of fructose being toxic, yet fructose metabolism remains relatively poorly characterized. Fructose is purportedly metabolized via either of two pathways, the fructose-1-phosphate pathway and/or the fructose-6-phosphate pathway. Many early metabolic studies could not clearly discriminate which of these two pathways predominates, nor could they distinguish which cell types in various tissues are capable of fructose metabolism. In addition, the lack of good physiological models, the diet-induced changes in gene expression in many tissues, the involvement of multiple genes in multiple pathways involved in fructose metabolism, and the lack of characterization of some genes involved in fructose metabolism have complicated our understanding of the physiological role of fructose in neuro-energetics. A recent neuro-metabolism study of the cerebellum demonstrated fructose metabolism and co-expression of the genes specific for the fructose 1-phosphate pathway, GLUT5 (glut5) and ketohexokinase (khk), in Purkinje cells suggesting this as an active pathway in specific neurons? Meanwhile, concern over the rapid increase in dietary fructose, particularly among children, has increased awareness about how fructose is metabolized in vivo and what effects a high fructose diet might have. In this regard, establishment of cellular and molecular studies and physiological characterization of the important and/or deleterious roles fructose plays in the brain is critical. This review will discuss the status of fructose metabolism in the brain with special reference to the cerebellum and the physiological roles of the different pathways.
Collapse
Affiliation(s)
- Vincent A Funari
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
14
|
Linke S, Goertz P, Baader SL, Gieselmann V, Siebler M, Junghans U, Kappler J. Aldolase C/Zebrin II is Released to the Extracellular Space after Stroke and Inhibits the Network Activity of Cortical Neurons. Neurochem Res 2006; 31:1297-303. [PMID: 17053973 DOI: 10.1007/s11064-006-9169-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 09/13/2006] [Indexed: 01/01/2023]
Abstract
Cell death after stroke involves apoptotic, autophagocytic and necrotic mechanisms which may cause the release of cytosolic proteins to the extracellular space. Aldolase C (AldC) is the brain specific isoform of the glycolytic enzyme fructose-1,6-bisphosphate aldolase. According to its characteristic striped expression pattern in the adult cerebellum AldC is also termed zebrin II. Here, we demonstrate release of AldC into the cerebrospinal fluid (CSF) after stroke in vivo. Studies with cell cultures confirmed that AldC is released to the extracellular space after hypoxia. Moreover, addition of purified recombinant AldC to networks of cortical neurons plated on multielectrode arrays reversibly inhibited the spontaneous generation of action potentials at AldC concentrations which can be expected to occur after lesions of the human cerebral cortex. This mechanism could be relevant in the pathogenesis of the electrophysiological changes in the penumbra region after stroke.
Collapse
Affiliation(s)
- Stephanie Linke
- Institut für Physiologische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, D-53115, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Novikova SI, He F, Cutrufello NJ, Lidow MS. Identification of protein biomarkers for schizophrenia and bipolar disorder in the postmortem prefrontal cortex using SELDI-TOF-MS ProteinChip profiling combined with MALDI-TOF-PSD-MS analysis. Neurobiol Dis 2006; 23:61-76. [PMID: 16549361 DOI: 10.1016/j.nbd.2006.02.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/17/2006] [Accepted: 02/08/2006] [Indexed: 11/25/2022] Open
Abstract
This paper describes the high-throughput proteomic analysis of the dorsolateral prefrontal cortex (DLPFC) from schizophrenia (SCHIZ), bipolar (BD), and normal control cohorts from the Harvard Brain Tissue Resource Center performed using ProteinChip technology based on the surface-enhanced laser desorption/ionization time of flight mass spectrometry (SELDI-TOF-MS). The resultant profiles were utilized in classification-tree algorithms for selection of protein biomarker peaks contributing maximally to the differentiation between the examined diagnostic cohorts. Twenty-four such protein biomarker peaks were identified. All of them had lower levels in the SCHIZ cohort as compared to the BD cohort. Also, 21 of these peaks were down-regulated in the SCHIZ cohort vs. the control cohort, and 7 peaks were up-regulated in the BD cohort vs. the control cohort. The proteins constituting these biomarker peaks were recognized via matrix-assisted laser desorption time of flight/postsource decay mass spectrometry (MALDI-TOF-PSD-MS). These proteins represent a wide range of functional groups involved in cell metabolism, signaling cascades, regulation of gene transcription, protein and RNA chaperoning, and other aspects of cellular homeostasis. Finally, after statistical evaluation suggesting that the selected protein biomarkers are not significantly impacted by epidemiological/tissue storage parameters (although, influence of antipsychotic and mood stabilizing drugs could not be fully excluded), the ProteinChip-based profiling was engaged again to demonstrate that the detected SCHIZ-associated changes in the levels of our protein biomarkers could also be seen in DLPFC samples from the brain collection of the Mount Sinai Medical School/Bronx Veteran Affairs Medical Center. This study demonstrates the usefulness of ProteinChip-based SELDI-TOF protein profiling in gaining insight into the molecular pathology of SCHIZ and BD as it points to changes in protein levels characterizing these diseases.
Collapse
Affiliation(s)
- Svetlana I Novikova
- Dept. of Biomedical Sciences, University of Maryland, HHH, 5-A-12, 666 W. Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
16
|
Regenold WT, Phatak P, Kling MA, Hauser P. Post-mortem evidence from human brain tissue of disturbed glucose metabolism in mood and psychotic disorders. Mol Psychiatry 2004; 9:731-3. [PMID: 15098005 DOI: 10.1038/sj.mp.4001517] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Phan-Dinh-Tuy F, Souil E, Kahn A, Skala-Rubinson H. Neuronal expression of enhanced green fluorescent protein directed by 5' flanking sequences of the rat aldolase C gene in transgenic mice. Biotech Histochem 2004; 78:179-85. [PMID: 14714881 DOI: 10.1080/10570290310001594035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The rat aldolase C gene encodes a glycolytic enzyme strongly expressed in adult brain. We previously reported that a combination of distal and proximal 5' flanking sequences, the A + C + 0.8 kilobase (kb) pairs fragments, ensured high brain-specific expression in vivo (Skala et al. 1998). We show here that the expression pattern conferred by these sequences, when placed in front of the chloramphenicol acetyltransferase (CAT) or the enhanced green fluorescent protein (EGFP) reporter genes in transgenic mice, is similar to the distribution of the endogenous mRNA and protein. Double immunostaining for neuronal or glial cell-specific markers and for the EGFP protein indicates that the A + C + 0.8 kb genomic sequences from the rat aldolase C gene direct a predominant expression in neuronal cells of adult brain.
Collapse
Affiliation(s)
- F Phan-Dinh-Tuy
- Department of Genetics, Development and Molecular Pathology, Cochin Institute, INSERM, CNRS, René Descartes University, 24, rue du faubourg Saint Jacques, 75014 Paris, France
| | | | | | | |
Collapse
|
18
|
Marshall CAG, Suzuki SO, Goldman JE. Gliogenic and neurogenic progenitors of the subventricular zone: who are they, where did they come from, and where are they going? Glia 2003; 43:52-61. [PMID: 12761867 DOI: 10.1002/glia.10213] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The subventricular zone (SVZ) of the perinatal forebrain gives rise to both neurons and glia. The mechanisms governing the phenotypic specification of progenitors within this heterogeneous germinal zone are unclear. However, the characterization of subpopulations of SVZ cells has given us a better understanding of the basic architecture of the SVZ and presents us with the opportunity to ask more detailed questions regarding phenotype specification and cell fate. Recent work demonstrating the embryonic origins of SVZ cells is summarized, and a model describing the formation of the perinatal SVZ, noting contributions of cells from pallial as well as subpallial germinal zones, is presented. We further address differences among classes of SVZ cells based on molecular profile, phenotype, and migration behavior and present a model summarizing the organization of perinatal SVZ cells along coronal, sagittal, and horizontal axes. A detailed description of the SVZ in the adult, outlining classes of cells based on morphology, molecular profile, and proliferative behavior, was recently reported by Doetsch et al. (Proc Natl Acad Sci USA 93:14895-14900, 1997). Potential relationships among cells within the perinatal and adult SVZ will be discussed. GLIA 43:52-61, 2003.
Collapse
Affiliation(s)
- Christine A G Marshall
- Center for Neurobiology and Behavior, Division of Neuropathology, Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Satoshi O Suzuki
- Center for Neurobiology and Behavior, Division of Neuropathology, Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, New York
| | - James E Goldman
- Center for Neurobiology and Behavior, Division of Neuropathology, Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, New York
| |
Collapse
|
19
|
Subpallial dlx2-expressing cells give rise to astrocytes and oligodendrocytes in the cerebral cortex and white matter. J Neurosci 2002. [PMID: 12427838 DOI: 10.1523/jneurosci.22-22-09821.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The precise origins of postnatal subventricular zone (SVZ) cells are not known. Furthermore, the gliogenic potential of progenitors expressing Dlx genes that migrate ventrodorsally from the ganglionic eminences has not been explored in vivo. Here, we identify the embryonic origins of two distinct populations of postnatal SVZ cells: SVZ border cells, which express Zebrin II, and migratory cells in the central SVZ, which are generally devoid of Zebrin II expression (Staugaitis et al., 2001). Zebrin II is expressed by all cells of the telencephalic primordium, with its expression becoming restricted to astrocytes in the mature telencephalon. As the neuroepithelium folds during corticostriatal sulcus formation (embryonic day 13-15), a wedge of Zebrin II+ cells is created at the presumptive site of the dorsolateral SVZ. At this time, Dlx2-expressing cells and their progeny begin to migrate ventrodorsally along a medial path from the ganglionic eminences. These migratory subpallial cells invade the wedge of Zebrin II+ cells to form the central region of the SVZ. We used a Dlx2/tauLacZ knock-in to perform a short-term lineage analysis of Dlx2-expressing cells throughout SVZ formation and the postnatal peak of gliogenesis. Dlx2/tauLacZ [beta-galactosidase (beta-gal)]-expressing cells populate the central SVZ, whereas Zebrin II-expressing cells form its borders. Furthermore, beta-gal expression demonstrates a lineage relationship between Dlx2-expressing cells and glia residing in the dorsal telencephalon. We propose a model for the formation of the postnatal SVZ and demonstrate that subpallium-derived Dlx2-expressing cells give rise to astrocytes and oligodendrocytes in the white matter and cerebral cortex.
Collapse
|
20
|
Aldolase C/zebrin II expression in the neonatal rat forebrain reveals cellular heterogeneity within the subventricular zone and early astrocyte differentiation. J Neurosci 2001. [PMID: 11487642 DOI: 10.1523/jneurosci.21-16-06195.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During late gestational and early postnatal development, proliferating cells in the subventricular zones of the lateral ventricles (SVZ) migrate into the gray and white matter of the forebrain and differentiate into astrocytes and oligodendrocytes. Because the cellular composition and structure of the neonatal SVZ is poorly understood, we performed a differential display PCR screen to identify genes preferentially expressed therein. One highly expressed gene encoded aldolase C. We used a specific monoclonal antibody, aldolase C/zebrin II (ALDC/ZII), in combination with markers of glial lineage and proliferation, to characterize the cells that express this gene. In the neonatal SVZ, ALDC/ZII-positive cells, which are generally polygonal and display several processes, have a nonuniform spatial distribution. They do not express vimentin, GFAP, or NG2. A subset of ALDC/ZII-positive cells incorporates bromodeoxyuridine, but progenitors identified by beta-galactosidase expression after infection with recombinant BAG virus do not show ALDC/ZII immunoreactivity. Outside of the SVZ, beta-galactosidase-positive/ALDC/ZII-positive cells have an astrocytic phenotype, suggesting that immunoreactivity was acquired after exit from the SVZ. These studies demonstrate that the neonatal SVZ is composed of different populations of cells that can be characterized by their antigenic phenotype, their proliferative capacity, and their spatial distributions. Nonrandom distributions of different cell types within the SVZ may permit the formation of microenvironments that stimulate the production of cells with specific potentials at appropriate points in development. Analysis of ALDC/ZII expression by astrocyte lineage cells in the neonatal cerebral cortex and white matter may reveal insights into the phenotype and behavior of undifferentiated astrocyte progenitors.
Collapse
|
21
|
Skala H, Porteu A, Thomas M, Szajnert MF, Okazawa H, Kahn A, Phan-Dinh-Tuy F. Upstream elements involved in vivo in activation of the brain-specific rat aldolase C gene. Role of binding sites for POU and winged helix proteins. J Biol Chem 1998; 273:31806-14. [PMID: 9822647 DOI: 10.1074/jbc.273.48.31806] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rat aldolase C gene encodes a glycolytic enzyme strongly expressed in adult brain. We previously reported that a 115-base pair (bp) promoter fragment was able to ensure the brain-specific expression of the chloramphenicol acetyltransferase (CAT) reporter gene in transgenic mice, but only at a low level (Thomas, M., Makeh, I., Briand, P., Kahn, A., and Skala, H. (1993) Eur. J. Biochem. 218, 143-151). Here we show that in vivo activation of this promoter at a high level requires cooperation between an upstream 0.6-kilobase pair (kb) fragment and far upstream sequences. In the 0.6-kb region, a 28-bp DNA element is shown to include overlapping in vitro binding sites for POU domain regulatory proteins and for the Winged Helix hepatocyte nuclear factor-3beta factor. An hepatocyte nuclear factor-3beta-binding site previously described in the short proximal promoter fragment is also shown to interact in vitro with POU proteins, although with a lower affinity than the 28-bp motif. Additional binding sites for POU factors were detected in the upstream 0.6-kb sequences. Progressive deletion in this region resulted in decreased expression levels of the transgenes in mice, suggesting synergistic interactions between these multiple POU-binding sites. We propose that DNA elements characterized by a dual binding specificity for both POU domain and Winged Helix transcription factors could play an essential role in the brain-specific expression of the aldolase C gene and other neuronal genes.
Collapse
Affiliation(s)
- H Skala
- Institut Cochin de Génétique Moléculaire, INSERM U129, Université René Descartes, 75014 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Walther EU, Dichgans M, Maricich SM, Romito RR, Yang F, Dziennis S, Zackson S, Hawkes R, Herrup K. Genomic sequences of aldolase C (Zebrin II) direct lacZ expression exclusively in non-neuronal cells of transgenic mice. Proc Natl Acad Sci U S A 1998; 95:2615-20. [PMID: 9482935 PMCID: PMC19434 DOI: 10.1073/pnas.95.5.2615] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aldolase C is regarded as the brain-specific form of fructose-1, 6-bisphosphate aldolase whereas aldolase A is regarded as muscle-specific. In situ hybridization of mouse central nervous system using isozyme-specific probes revealed that aldolase A and C are expressed in complementary cell types. With the exception of cerebellar Purkinje cells, aldolase A mRNA is found in neurons; aldolase C message is detected in astrocytes, some cells of the pia mater, and Purkinje cells. We isolated aldolase C genomic clones that span the entire protein coding region from 1.5 kb 5' to the transcription start site to 0.5 kb 3' to the end of the last exon. The bacterial gene, lacZ, was inserted in two different locations and the constructs tested in transgenic mice. When the protein coding sequences were replaced with lacZ, three of five transgenic lines expressed beta-galactosidase only in cells of the pia mater; one line also expressed in astrocyte-like cells. When lacZ was inserted into the final exon (and all structural gene sequences were retained) transgene expression was observed in astrocytes in all regions of the central nervous system as well as in pial cells. Thus, with the exception of Purkinje cell expression, the behavior of the full-length transgene mimics the endogenous aldolase C gene. The results with the shorter transgene suggest that additional enhancer elements exist within the intragenic sequences. The absence of Purkinje cell staining suggests that the cis elements required for this expression must be located outside of the sequences used in this study.
Collapse
Affiliation(s)
- E U Walther
- Neurologische Klinik, Marchioninstrasse 15, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Arai Y, Kajihara S, Masuda J, Ohishi S, Zen K, Ogata J, Mukai T. Position-independent, high-level, and correct regional expression of the rat aldolase C gene in the central nervous system of transgenic mice. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 221:253-60. [PMID: 8168514 DOI: 10.1111/j.1432-1033.1994.tb18736.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aldolase C is mainly expressed in the central nervous system (CNS). To clarify the regulatory mechanisms for the CNS-specific expression, transgenic mice were created using two constructs of the rat aldolase C gene. A fusion gene comprising the 5' regulatory region of the aldolase C gene was expressed in a CNS-specific manner. However, the expression levels and the cellular localization of the gene varied among transgenic mice. The other construct, including both 5' and 3' regulatory regions of the gene, showed position-independent and high-level expression as well as the correct regional distribution in the CNS. These results indicate that the 13-kb sequence of the rat aldolase C gene contains sufficient information for faithful expression of the gene.
Collapse
Affiliation(s)
- Y Arai
- National Cardiovascular Center Research Institute, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Analysis of a brain-specific isozyme. Expression and chromatin structure of the rat aldolase C gene and transgenes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41762-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Mukai T, Yatsuki H, Masuko S, Arai Y, Joh K, Hori K. The structure of the brain-specific rat aldolase C gene and its regional expression. Biochem Biophys Res Commun 1991; 174:1035-42. [PMID: 1993044 DOI: 10.1016/0006-291x(91)91523-f] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The rat aldolase C gene was isolated from a rat genomic DNA library. This gene comprises 9 exons and spans 3590 base pairs. A single copy of the gene occurs per haploid rat genome. The initiation of transcription occurs at two different sites. The cellular localization of aldolase C mRNA was determined in the central nervous system along with aldolase A mRNA by in situ hybridization. The result indicates the predominant expression of this gene in Purkinje cells of the cerebellar cortex, where aldolase A mRNA was rather repressed.
Collapse
Affiliation(s)
- T Mukai
- Department of Bioscience, National Cardiovascular Center Research Institute, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Buono P, Mancini FP, Izzo P, Salvatore F. Characterization of the transcription-initiation site and of the promoter region within the 5' flanking region of the human aldolase C gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:805-11. [PMID: 2209624 DOI: 10.1111/j.1432-1033.1990.tb19294.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Several aldolase C clones from a human genomic library have been identified using a mouse aldolase C cDNA as a hybridization probe. The most complete fragment of the clones identified is 14 kb long and contains the complete aldolase C gene. The nucleotide sequence analysis of more than 5 kb includes the intron/exon organization structure of the gene and the 3' and 5' flanking regions. Although no human cDNA is yet available, a canonical polyadenylation signal at the 3' end of the gene indicates the proximity of the poly(A) addition site. We have analyzed the 5' noncoding region by S1 mapping and primer-extension experiments. The transcription-initiation sites for the human aldolase C gene in brain tissue was located about 1300 bp upstream from the methionine initiation codon. Preliminary functional assays of the promoter by transfection into rat glioma cells have indicated that promoter elements lie between positions -161 and -416 from the start point of transcription.
Collapse
Affiliation(s)
- P Buono
- Dipartimento di Biochimica e Biotecnologie Mediche, II Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli, Italy
| | | | | | | |
Collapse
|
27
|
Popovici T, Berwald-Netter Y, Vibert M, Kahn A, Skala H. Localization of aldolase C mRNA in brain cells. FEBS Lett 1990; 268:189-93. [PMID: 2384155 DOI: 10.1016/0014-5793(90)81005-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The expression of aldolase C and aldolase A mRNA was assessed by Northern blot hybridization using RNAs purified from cultured rat and mouse brain neurons and astroglial cells. Neurons were found to contain about 4-fold more aldolase C mRNA and about twice as much aldolase A mRNA than astroglia. Analysis of the cellular localization of aldolase C mRNA by in situ hybridization to brain slices showed a predominantly neuronal labeling with an irregular distribution. A strong signal was observed in Purkinje cell somata and a weaker signal in subpopulations of neurons in cerebral cortex, striatum, hippocampus, hypothalamic nuclei and primary olfactory cortex.
Collapse
|
28
|
Zimmer DB, Van Eldik LJ. Analysis of the calcium-modulated proteins, S100 and calmodulin, and their target proteins during C6 glioma cell differentiation. J Cell Biol 1989; 108:141-51. [PMID: 2910876 PMCID: PMC2115359 DOI: 10.1083/jcb.108.1.141] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have analyzed the levels, subcellular distribution, and target proteins of two calcium-modulated proteins, S100 and calmodulin, in differentiated and undifferentiated rat C6 glioma cells. Undifferentiated and differentiated C6 cells express primarily the S100 beta polypeptide, and the S100 beta levels are four-fold higher in differentiated compared to undifferentiated cells. Double fluorescent labeling studies of undifferentiated cells demonstrated that S100 beta staining localized to a small region of the perinuclear cytoplasm and colocalized with the microtubule organizing center and Golgi apparatus. Analysis of differentiated C6 cells demonstrated that S100 beta distribution and S100 beta-binding protein profile changed significantly upon differentiation. In addition, the brain-specific isozyme of one S100-binding protein, fructose-1,6-bisphosphate aldolase C, can be detected in differentiated but not undifferentiated C6 cells. While changes in the subcellular distribution of calmodulin were not observed during differentiation, calmodulin levels and calmodulin-binding protein profiles did change. Altogether these data suggest that S100 beta and calmodulin regulate different processes in glial cells and that the regulation of the expression, subcellular distribution, and target proteins of S100 beta and calmodulin during differentiation is a complex process which involves multiple mechanisms.
Collapse
Affiliation(s)
- D B Zimmer
- Department of Cell Biology, Howard Hughes Medical Institute, Vanderbilt University, Nashville, Tennessee 37232
| | | |
Collapse
|
29
|
Inagaki H, Haimoto H, Hosoda S, Kato K. Aldolase C is localized in neuroendocrine cells. EXPERIENTIA 1988; 44:749-51. [PMID: 3046960 DOI: 10.1007/bf01959149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To elucidate the localization of the subunit C of aldolase (aldolase C) in peripheral neuroendocrine cells, we made an immunohistochemical study with monospecific antibodies against human aldolase C. Aldolase C was found to be localized in various types of neuroendocrine cells; in the pituitary gland, thyroid, pancreas, adrenal gland, bronchus, and gastrointestinal tract.
Collapse
Affiliation(s)
- H Inagaki
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | | | | | | |
Collapse
|
30
|
Kukita A, Mukai T, Miyata T, Hori K. The structure of brain-specific rat aldolase C mRNA and the evolution of aldolase isozyme genes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 171:471-8. [PMID: 2831050 DOI: 10.1111/j.1432-1033.1988.tb13813.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cDNA clones for rat aldolase C mRNA having the nearly complete length were isolated from a rat brain cDNA library and sequenced. The nucleotide sequence of pRAC2-1, a cDNA clone having the largest cDNA insert, indicates that the cDNA is composed of a 105-base-pair 5'-noncoding sequence, a 1089-base-pair coding-sequence and a 382-base-pair 3'-noncoding sequence. The amino acid sequence of aldolase C deduced from a possible open reading frame was composed of 362 residues having a relative molecular mass of 39,164 excluding the initiating methionine, one amino acid shorter than aldolases A and B. The length of aldolase c mRNA was 1750 residues, somewhat longer than that of the aldolase A and B transcripts. The aldolase C mRNA was distributed mainly in the brain, some in ascites hepatoma and fetal liver. Comparison of the amino acid sequences of rat aldolase C with those for rat aldolase A and B [Joh et al. (1985) Gene 39, 17-24; Tsutsumi et al. (1984) J. Biol. Chem. 259, 14572-14575], which have been determined previously, shows the existence of highly conserved stretches of amino acid among the three isozymic forms throughout their sequences. The extent of the homology between aldolases A and C is 81%, while those between aldolases A and B, and B and C are 70%, respectively. The analysis of amino acid substitution among aldolases A, B and C from several species suggests that the isozyme genes diverged much earlier than animal species appeared and that the aldolase C gene has evolved from the aldolase A gene after aldolase A and B genes diverged.
Collapse
Affiliation(s)
- A Kukita
- Department of Biochemistry, Saga Medical School, Japan
| | | | | | | |
Collapse
|
31
|
Royds JA, Ironside JW, Warnaar SO, Taylor CB, Timperley WR. Monoclonal antibody to aldolase C: a selective marker for Purkinje cells in the human cerebellum. Neuropathol Appl Neurobiol 1987; 13:11-21. [PMID: 3553977 DOI: 10.1111/j.1365-2990.1987.tb00167.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A monoclonal antibody to the glycolytic enzyme aldolase C was used in an immunoperoxidase technique on unfixed and formalin-fixed paraffin-embedded tissues from the human central nervous system (CNS) and other tissues. No staining outside the CNS was detected. In the central nervous system the antibody gave a selective and intense staining of Purkinje cell perikarya, axons and dendrites in both fixed and unfixed tissues. In the human fetal brain, positive staining of Purkinje cells was seen from 35-36 weeks' gestation onwards. This coincides with the conversion of Purkinje cells to a tetraploid state, and may reflect increased glycolytic activity accompanying the rapid dendritic growth at this stage of development. Preliminary investigations on a variety of disease states suggest that this antibody may be useful in studies of ischaemic damage, congenital abnormalities and degenerative conditions affecting the cerebellum.
Collapse
|
32
|
Paolella G, Buono P, Mancini FP, Izzo P, Salvatore F. Structure and expression of mouse aldolase genes. Brain-specific aldolase C amino acid sequence is closely related to aldolase A. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 156:229-35. [PMID: 3009179 DOI: 10.1111/j.1432-1033.1986.tb09572.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Brain-specific aldolase C amino acid sequence (greater than 75% of the coding region) was determined for the first time. Two cDNA clones, pAM1 and pAM2, were identified, from a mouse brain library, by using human aldolase B cDNA as a probe. The larger one, pAM2, identified as a cDNA for aldolase C, has been completely sequenced and covers the 5'-untranslated region of the mRNA and the codons for amino acids 1-227 of the protein. The sequence indicates that aldolase C is more akin to aldolase A than to aldolase B. A cDNA library from mouse muscle was also screened, allowing the identification of clones pAM3 and pAM4, which contain cDNAs for aldolase A. The sequence obtained from pAM3 covers 70% of the coding sequence (amino acids 99-355) from the -COOH part of the protein. The cDNAs for the three aldolases, A, B and C, have been hybridized to RNA from various rat tissues. The results confirm the tissue specificity of the expression of the mRNA for the different isoenzymes and support the hypothesis that aldolase C expression, as aldolase A and B, is regulated at the transcriptional level or, in any case, via mRNA concentration.
Collapse
|
33
|
Abstract
A sensitive sandwich-type enzyme immunoassay for brain-type isozyme of human aldolase C4 was developed using purified antibodies specific to the C subunit. The antibodies were raised in rabbits by injecting the purified aldolase C4, and purified by means of immunoaffinity chromatography on a column of aldolase C4-coupled Sepharose. The assay system consisted of polystyrene balls with immobilized antibody F(ab')2 fragments and the same antibody Fab' fragments labelled with beta-D-galactosidase from Escherichia coli. The assay was highly sensitive and the minimum detection limit of aldolase C4 was 3 pg/tube. The assay was specific to the C subunit of aldolase (aldolase C). It cross-reacted about 60% with aldolase AC3, 30% with aldolase A2C2, and 4% with aldolase A3C, but showed no cross-reactivity with aldolase A4, the muscle-type isozyme. Coefficients of variation in within-run and between-run precision studies for serum aldolase C were less than or equal to 11%. Serum aldolase C levels in healthy adults of various ages (16-59 yr old) and both sexes ranged from 8.74-18.9 ng/ml. Immunoreactive aldolase C in the extracts of various human tissues was determined. It was distributed at high concentrations in the central nervous tissue and heart and at significant levels in liver, adrenal glands and testis. The assay of aldolase C in cerebrospinal fluid or serum by employing this sensitive immunoassay might be useful in the diagnosis of neurological disorders or acute myocardial damage.
Collapse
|
34
|
Kumanishi T, Watabe K, Washiyama K. An immunohistochemical study of aldolase C in normal and neoplastic nervous tissues. Acta Neuropathol 1985; 67:309-14. [PMID: 4050347 DOI: 10.1007/bf00687817] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cellular localization of aldolase C isozyme was examined in the normal human brain and in nervous tissue tumors by the indirect immunoperoxidase method using an antibody to aldolase C. In normal brain tissues, staining was most prominent in astrocytes and Purkinje cells, although faint staining was also occasionally observed in some other neurons. Oligodendroglia and ependymal cells showed no distinct staining. The nervous tissue tumors we examined included 34 gliomas (ten astrocytomas and 24 anaplastic gliomas), 30 medulloblastomas, and seven neuronal tumors. Positive staining was observed in some gliomas, but not in the medulloblastomas and neuronal tumors examined. In gliomas, nine of ten astrocytomas and six of 24 anaplastic gliomas showed positive staining in their main constituent cells. In the remaining gliomas, most constituent cells were unstained or positive cells were only sporadically present. These findings indicated that aldolase C was expressed in some of astrocytic glioma cells as in the normal counterpart, more frequently in more differentiated form.
Collapse
|
35
|
Day IN, Thompson RJ. Levels of immunoreactive aldolase C, creatine kinase-BB, neuronal and non-neuronal enolase, and 14-3-3 protein in circulating human blood cells. Clin Chim Acta 1984; 136:219-28. [PMID: 6692576 DOI: 10.1016/0009-8981(84)90295-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Five proteins found in the human nervous system have been measured by radioimmunoassay in human red cells, platelets, and lymphocytes. Two neuronal proteins (neurone-specific enolase and 14-3-3 protein) occur in platelets at levels equivalent to their concentration in brain, and in erythrocytes at levels approximately 10% of the level in brain. Two proteins characteristic of astrocytes in the cerebral cortex (creatine kinase BB and aldolase C) occur at low levels in platelets and are virtually undetectable in erythrocytes and lymphocytes. The more widely distributed non-neuronal enolase is present in erythrocytes, platelets and lymphocytes. The neurone-specific enolase and 14-3-3 protein immunoreactivities found in circulating blood cells have been characterised in terms of molecular mass, charge, and dilution characteristics in the respective radioimmunoassay and in each case appears to represent the intact protein. Controlled lysis of erythrocytes releases neurone-specific enolase and 14-3-3 protein in parallel with haemoglobin. The occurrence of brain proteins in circulating blood cells (which appears to be a species-dependent phenomenon) has the practical clinical consequence that minor degrees of especially red cell lysis can produce high serum levels of immunoreactivity. This represents a pitfall in the measurement of these proteins in serum as tumour markers or as indices of damage to the central nervous system.
Collapse
|