1
|
Higgs MH, Beckstead MJ. Impact of Unitary Synaptic Inhibition on Spike Timing in Ventral Tegmental Area Dopamine Neurons. eNeuro 2024; 11:ENEURO.0203-24.2024. [PMID: 38969500 PMCID: PMC11287791 DOI: 10.1523/eneuro.0203-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024] Open
Abstract
Midbrain dopamine neurons receive convergent synaptic input from multiple brain areas, which perturbs rhythmic pacemaking to produce the complex firing patterns observed in vivo. This study investigated the impact of single and multiple inhibitory inputs on ventral tegmental area (VTA) dopamine neuron firing in mice of both sexes using novel experimental measurements and modeling. We first measured unitary inhibitory postsynaptic currents produced by single axons using both minimal electrical stimulation and minimal optical stimulation of rostromedial tegmental nucleus and ventral pallidum afferents. We next determined the phase resetting curve, the reversal potential for GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs), and the average interspike membrane potential trajectory during pacemaking. We combined these data in a phase oscillator model of a VTA dopamine neuron, simulating the effects of unitary inhibitory postsynaptic conductances (uIPSGs) on spike timing and rate. The effect of a uIPSG on spike timing was predicted to vary according to its timing within the interspike interval or phase. Simulations were performed to predict the pause duration resulting from the synchronous arrival of multiple uIPSGs and the changes in firing rate and regularity produced by asynchronous uIPSGs. The model data suggest that asynchronous inhibition is more effective than synchronous inhibition, because it tends to hold the neuron at membrane potentials well positive to the IPSC reversal potential. Our results indicate that small fluctuations in the inhibitory synaptic input arriving from the many afferents to each dopamine neuron are sufficient to produce highly variable firing patterns, including pauses that have been implicated in reinforcement.
Collapse
Affiliation(s)
- Matthew H Higgs
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Michael J Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| |
Collapse
|
2
|
Perez SM, Boley AM, McCoy AM, Lodge DJ. Aberrant Dopamine System Function in the Ferrous Amyloid Buthionine (FAB) Rat Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:7196. [PMID: 37108357 PMCID: PMC10138591 DOI: 10.3390/ijms24087196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Antipsychotics increase the risk of death in elderly patients with Alzheimer's disease (AD). Thus, there is an immediate need for novel therapies to treat comorbid psychosis in AD. Psychosis has been attributed to a dysregulation of the dopamine system and is associated with aberrant regulation by the hippocampus. Given that the hippocampus is a key site of pathology in AD, we posit that aberrant regulation of the dopamine system may contribute to comorbid psychosis in AD. A ferrous amyloid buthionine (FAB) rodent model was used to model a sporadic form of AD. FAB rats displayed functional hippocampal alterations, which were accompanied by decreases in spontaneous, low-frequency oscillations and increases in the firing rates of putative pyramidal neurons. Additionally, FAB rats exhibited increases in dopamine neuron population activity and augmented responses to the locomotor-inducing effects of MK-801, as is consistent with rodent models of psychosis-like symptomatology. Further, working memory deficits in the Y-maze, consistent with an AD-like phenotype, were observed in FAB rats. These data suggest that the aberrant hippocampal activity observed in AD may contribute to dopamine-dependent psychosis, and that the FAB model may be useful for the investigation of comorbid psychosis related to AD. Understanding the pathophysiology that leads to comorbid psychosis in AD will ultimately lead to the discovery of novel targets for the treatment of this disease.
Collapse
Affiliation(s)
- Stephanie M. Perez
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA; (A.M.B.); (D.J.L.)
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| | - Angela M. Boley
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA; (A.M.B.); (D.J.L.)
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| | - Alexandra M. McCoy
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA; (A.M.B.); (D.J.L.)
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| | - Daniel J. Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA; (A.M.B.); (D.J.L.)
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Sabaroedin K, Tiego J, Fornito A. Circuit-Based Approaches to Understanding Corticostriatothalamic Dysfunction Across the Psychosis Continuum. Biol Psychiatry 2023; 93:113-124. [PMID: 36253195 DOI: 10.1016/j.biopsych.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/14/2022] [Accepted: 07/17/2022] [Indexed: 11/28/2022]
Abstract
Dopamine is known to play a role in the pathogenesis of psychotic symptoms, but the mechanisms driving dopaminergic dysfunction in psychosis remain unclear. Considerable attention has focused on the role of corticostriatothalamic (CST) circuits, given that they regulate and are modulated by the activity of dopaminergic cells in the midbrain. Preclinical studies have proposed multiple models of CST dysfunction in psychosis, each prioritizing different brain regions and pathophysiological mechanisms. A particular challenge is that CST circuits have undergone considerable evolutionary modification across mammals, complicating comparisons across species. Here, we consider preclinical models of CST dysfunction in psychosis and evaluate the degree to which they are supported by evidence from human resting-state functional magnetic resonance imaging studies conducted across the psychosis continuum, ranging from subclinical schizotypy to established schizophrenia. In partial support of some preclinical models, human studies indicate that dorsal CST and hippocampal-striatal functional dysconnectivity are apparent across the psychosis spectrum and may represent a vulnerability marker for psychosis. In contrast, midbrain dysfunction may emerge when symptoms warrant clinical assistance and may thus be a trigger for illness onset. The major difference between clinical and preclinical findings is the strong involvement of the dorsal CST in the former, consistent with an increasing prominence of this circuitry in the primate brain. We close by underscoring the need for high-resolution characterization of phenotypic heterogeneity in psychosis to develop a refined understanding of how the dysfunction of specific circuit elements gives rise to distinct symptom profiles.
Collapse
Affiliation(s)
- Kristina Sabaroedin
- Departments of Radiology and Paediatrics, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Jeggan Tiego
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Evans R. Dendritic involvement in inhibition and disinhibition of vulnerable dopaminergic neurons in healthy and pathological conditions. Neurobiol Dis 2022; 172:105815. [PMID: 35820645 PMCID: PMC9851599 DOI: 10.1016/j.nbd.2022.105815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023] Open
Abstract
Dopaminergic neurons in the substantia nigra pars compacta (SNc) differentially degenerate in Parkinson's Disease, with the ventral region degenerating more severely than the dorsal region. Compared with the dorsal neurons, the ventral neurons in the SNc have distinct dendritic morphology, electrophysiological characteristics, and circuit connections with the basal ganglia. These characteristics shape information processing in the ventral SNc and structure the balance of inhibition and disinhibition in the striatonigral circuitry. In this paper, I review foundational studies and recent work comparing the circuitry of the ventral and dorsal SNc neurons and discuss how loss of the ventral neurons early in Parkinson's Disease could affect the overall balance of inhibition and disinhibition of dopamine signals.
Collapse
Affiliation(s)
- R.C. Evans
- Georgetown University Medical Center, Department of Neuroscience, United States of America
| |
Collapse
|
5
|
Perez SM, Elam HB, Lodge DJ. Increased Presynaptic Dopamine Synthesis Capacity Is Associated With Aberrant Dopamine Neuron Activity in the Methylazoxymethanol Acetate Rodent Model Used to Study Schizophrenia-Related Pathologies. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac067. [PMID: 36387971 PMCID: PMC9642313 DOI: 10.1093/schizbullopen/sgac067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aberrant dopamine system function is thought to contribute to the positive symptoms of schizophrenia. Clinical imaging studies have demonstrated that the largest dopamine abnormality in patients appears to be an increase in presynaptic dopamine activity. Indeed, studies utilizing [ 18 F]DOPA positive emission tomography reliably report increases in presynaptic dopamine bioavailability in patients and may serve as a biomarker for treatment response. The mechanisms contributing to this increased presynaptic activity in human patients is not yet fully understood, which necessitates the use of preclinical models. Dopamine system function can be directly examined in experimental animals using in vivo electrophysiology. One consistent finding from preclinical studies in rodent models used to study schizophrenia-like neuropathology is a 2-fold increase in the number of spontaneously active dopamine neurons in the ventral tegmental area (VTA), termed population activity. We posit that increased striatal dopamine synthesis capacity is attributed to an augmented VTA dopamine neuron population activity. Here, we directly test this hypothesis using [3H]DOPA ex vivo autoradiography, to quantify striatal dopamine synthesis capacity, in the methylazoxymethanol acetate (MAM) model, a validated rodent model displaying neurophysiological and behavioral alterations consistent with schizophrenia-like symptomatologies. Consistent with human imaging studies, dopamine synthesis capacity was significantly increased in dorsal and ventral striatal subregionis, including the caudate putamen and nucleus accumbens, of MAM-treated rats and associated with specific increases in dopamine neuron population activity. Taken together, these data provide a link between mechanistic studies in rodent models and clinical studies of increased presynaptic dopamine function in human subjects.
Collapse
Affiliation(s)
- Stephanie M Perez
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX, USA
| | - Hannah B Elam
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX, USA
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX, USA
| |
Collapse
|
6
|
Holly EN, Davatolhagh MF, España RA, Fuccillo MV. Striatal low-threshold spiking interneurons locally gate dopamine. Curr Biol 2021; 31:4139-4147.e6. [PMID: 34302742 DOI: 10.1016/j.cub.2021.06.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/02/2021] [Accepted: 06/25/2021] [Indexed: 11/27/2022]
Abstract
The dorsomedial striatum (DMS) is a central hub supporting goal-directed learning and motor performance. Recent evidence has revealed unexpected roles for local inhibitory GABAergic networks in modulating striatal output and behavior.1 The sparse low-threshold spiking interneuron subtype (LTSI), which exhibits robust reward-circumscribed population activity, is a bidirectional regulator of initial goal-directed learning.2 Striatal dopamine signaling is a central reward-related neuromodulatory system mediating goal-directed action and performance, serving as a teaching signal,3 facilitating synaptic plasticity,4 and invigorating motor behaviors.5 Given the dynamic modulation of LTSIs during goal-directed behavior, we hypothesized that they could provide a novel GABAergic mechanism of local striatal dopaminergic regulation to shape early learning. We provide anatomical evidence for close proximation of LTSI terminals and dopaminergic processes in striatum, suggesting that LTSIs directly control dopaminergic axon activity. Using in vitro fast scan cyclic voltammetry, we demonstrate that LTSIs directly attenuate optogenetically evoked dopamine via GABAB receptor signaling. In vivo, GRABDA dopamine sensor imaging shows that LTSIs strongly modulate striatal dopamine dynamics during operant learning, while pharmacological stabilization of dopamine via intra-striatal aripiprazole microinjection suppresses the effects of LTSI inhibition on learning. Together, these results uncover an unexpected function for LTSIs in gating striatal dopamine to facilitate goal-directed learning.
Collapse
Affiliation(s)
- Elizabeth N Holly
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - M Felicia Davatolhagh
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rodrigo A España
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Marc V Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
De Deurwaerdère P, Chagraoui A, Di Giovanni G. Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 261:161-264. [PMID: 33785130 DOI: 10.1016/bs.pbr.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between serotonin (5-HT) and dopamine (DA) in the central nervous system (CNS) plays an important role in the adaptive properties of living animals to their environment. These are two modulatory, divergent systems shaping and regulating in a widespread manner the activity of neurobiological networks and their interaction. The concept of one interaction linking these two systems is rather elusive when looking at the mechanisms triggered by these two systems across the CNS. The great variety of their interacting mechanisms is in part due to the diversity of their neuronal origin, the density of their fibers in a given CNS region, the distinct expression of their numerous receptors in the CNS, the heterogeneity of their intracellular signaling pathway that depend on the cellular type expressing their receptors, and the state of activity of neurobiological networks, conditioning the outcome of their mutual influences. Thus, originally conceptualized as inhibition of 5-HT on DA neuron activity and DA neurotransmission, this interaction is nowadays considered as a multifaceted, mutual influence of these two systems in the regulation of CNS functions. These new ways of understanding this interaction are of utmost importance to envision the consequences of their dysfunctions underlined in several CNS diseases. It is also essential to conceive the mechanism of action of psychotropic drugs directly acting on their function including antipsychotic, antidepressant, antiparkinsonian, and drug of abuse together with the development of therapeutic strategies of Alzheimer's diseases, epilepsy, obsessional compulsive disorders. The 5-HT/DA interaction has a long history from the serendipitous discovery of antidepressants and antipsychotics to the future, rationalized treatments of CNS disorders.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France.
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
8
|
Drug addiction co-morbidity with alcohol: Neurobiological insights. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 157:409-472. [PMID: 33648675 DOI: 10.1016/bs.irn.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Addiction is a chronic disorder that consists of a three-stage cycle of binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. These stages involve, respectively, neuroadaptations in brain circuits involved in incentive salience and habit formation, stress surfeit and reward deficit, and executive function. Much research on addiction focuses on the neurobiology underlying single drug use. However, alcohol use disorder (AUD) can be co-morbid with substance use disorder (SUD), called dual dependence. The limited epidemiological data on dual dependence indicates that there is a large population of individuals suffering from addiction who are dependent on more than one drug and/or alcohol, yet dual dependence remains understudied in addiction research. Here, we review neurobiological data on neurotransmitter and neuropeptide systems that are known to contribute to addiction pathology and how the involvement of these systems is consistent or divergent across drug classes. In particular, we highlight the dopamine, opioid, corticotropin-releasing factor, norepinephrine, hypocretin/orexin, glucocorticoid, neuroimmune signaling, endocannabinoid, glutamate, and GABA systems. We also discuss the limited research on these systems in dual dependence. Collectively, these studies demonstrate that the use of multiple drugs can produce neuroadaptations that are distinct from single drug use. Further investigation into the neurobiology of dual dependence is necessary to develop effective treatments for addiction to multiple drugs.
Collapse
|
9
|
Rusheen AE, Gee TA, Jang DP, Blaha CD, Bennet KE, Lee KH, Heien ML, Oh Y. Evaluation of electrochemical methods for tonic dopamine detection in vivo. Trends Analyt Chem 2020; 132:116049. [PMID: 33597790 PMCID: PMC7885180 DOI: 10.1016/j.trac.2020.116049] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dysfunction in dopaminergic neuronal systems underlie a number of neurologic and psychiatric disorders such as Parkinson's disease, drug addiction, and schizophrenia. Dopamine systems communicate via two mechanisms, a fast "phasic" release (sub-second to second) that is related to salient stimuli and a slower "tonic" release (minutes to hours) that regulates receptor tone. Alterations in tonic levels are thought to be more critically important in enabling normal motor, cognitive, and motivational functions, and dysregulation in tonic dopamine levels are associated with neuropsychiatric disorders. Therefore, development of neurochemical recording techniques that enable rapid, selective, and quantitative measurements of changes in tonic extracellular levels are essential in determining the role of dopamine in both normal and disease states. Here, we review state-of-the-art advanced analytical techniques for in vivo detection of tonic levels, with special focus on electrochemical techniques for detection in humans.
Collapse
Affiliation(s)
- Aaron E. Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, United States
| | - Taylor A. Gee
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, United States
| | - Dong P. Jang
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Charles D. Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Kevin E. Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
- Division of Engineering, Mayo Clinic, Rochester, MN, 55905, United States
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States
| | - Michael L. Heien
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, United States
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States
| |
Collapse
|
10
|
Sonnenschein SF, Gomes FV, Grace AA. Dysregulation of Midbrain Dopamine System and the Pathophysiology of Schizophrenia. Front Psychiatry 2020; 11:613. [PMID: 32719622 PMCID: PMC7350524 DOI: 10.3389/fpsyt.2020.00613] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/12/2020] [Indexed: 11/25/2022] Open
Abstract
Dysregulation of the dopamine system is central to many models of the pathophysiology of psychosis in schizophrenia. However, emerging evidence suggests that this dysregulation is driven by the disruption of upstream circuits that provide afferent control of midbrain dopamine neurons. Furthermore, stress can profoundly disrupt this regulatory circuit, particularly when it is presented at critical vulnerable prepubertal time points. This review will discuss the dopamine system and the circuits that regulate it, focusing on the hippocampus, medial prefrontal cortex, thalamic nuclei, and medial septum, and the impact of stress. A greater understanding of the regulation of the dopamine system and its disruption in schizophrenia may provide a more complete neurobiological framework to interpret clinical findings and develop novel treatments.
Collapse
Affiliation(s)
- Susan F. Sonnenschein
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Felipe V. Gomes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Kawano T, Oshibuchi H, Kawano M, Muraoka H, Tsutsumi T, Yamada M, Ishigooka J, Nishimura K, Inada K. Diazepam suppresses the stress-induced dopaminergic release in the amygdala of methamphetamine-sensitized rat. Eur J Pharmacol 2018; 833:247-254. [PMID: 29885289 DOI: 10.1016/j.ejphar.2018.05.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
Although the benzodiazepine class of drugs has proven useful in treating anxiety symptoms, recent studies yield no consistent empirical support for their use in treating psychiatric disorders. However, animal studies using a fear conditioning paradigm have suggested that benzodiazepines facilitate fear memory extinction, dependent on treatment timing and subject conditions. However, we have no data on the effect of subject conditions. The purpose of this study was to investigate whether the effect of benzodiazepines depends on hypersensitivity to fear-memory processing. We examined the effect of diazepam, a benzodiazepine, on the extracellular dopamine level in the left amygdala of methamphetamine-sensitized, fear-conditioned model rats, using microdialysis and high-performance liquid chromatography. In this model, the dopamine level in the amygdala excessively increases in response to a fear-conditioned stimulus; the phenomenon has been proposed as a biological marker for hypersensitivity to fear-memory processing. Diazepam inhibited this excessive increase. The extent of the inhibitory effect was greater in the sensitized condition. Diazepam alone increased amygdalar dopamine levels under physiological conditions but not under sensitized conditions. Diazepam did not shorten freezing time in any group. These results suggest that diazepam modulates amygdala dopamine with state dependence and that amygdalar dopamine fine-tuning accounts for part of the therapeutic effect of benzodiazepines on fear memory processing. Further investigation is required to identify patients suitable for treatment with benzodiazepines. This is the first report on the pharmacodynamic effects of benzodiazepine on the amygdalar dopamine basal level and on fear memory processing.
Collapse
Affiliation(s)
- Takaaki Kawano
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Hidehiro Oshibuchi
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Masahiko Kawano
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Hiroyuki Muraoka
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Takahiro Tsutsumi
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Makiko Yamada
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Jun Ishigooka
- CNS Pharmacological Research Institute, 4-26-11, Sendagaya, Shibuya-ku, Tokyo 151-0051, Japan.
| | - Katsuji Nishimura
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Ken Inada
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan.
| |
Collapse
|
12
|
Quraishi SA, Paladini CA. Could GABA, with a side of glycine, control glutamate receptors? Eur J Neurosci 2018; 47:1206-1207. [PMID: 29729221 DOI: 10.1111/ejn.13929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Salma A Quraishi
- Department of Biology, UTSA Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Carlos A Paladini
- Department of Biology, UTSA Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
13
|
Lénárd L, László K, Kertes E, Ollmann T, Péczely L, Kovács A, Kállai V, Zagorácz O, Gálosi R, Karádi Z. Substance P and neurotensin in the limbic system: Their roles in reinforcement and memory consolidation. Neurosci Biobehav Rev 2018; 85:1-20. [DOI: 10.1016/j.neubiorev.2017.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/24/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022]
|
14
|
Nora GJ, Harun R, Fine DF, Hutchison D, Grobart AC, Stezoski JP, Munoz MJ, Kochanek PM, Leak RK, Drabek T, Wagner AK. Ventricular fibrillation cardiac arrest produces a chronic striatal hyperdopaminergic state that is worsened by methylphenidate treatment. J Neurochem 2017; 142:305-322. [PMID: 28445595 DOI: 10.1111/jnc.14058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 01/21/2023]
Abstract
Cardiac arrest survival rates have improved with modern resuscitation techniques, but many survivors experience impairments associated with hypoxic-ischemic brain injury (HIBI). Currently, little is understood about chronic changes in striatal dopamine (DA) systems after HIBI. Given the common empiric clinical use of DA enhancing agents in neurorehabilitation, investigation evaluating dopaminergic alterations after cardiac arrest (CA) is necessary to optimize rehabilitation approaches. We hypothesized that striatal DA neurotransmission would be altered chronically after ventricular fibrillation cardiac arrest (VF-CA). Fast-scan cyclic voltammetry was used with median forebrain bundle (MFB) maximal electrical stimulations (60Hz, 10s) in rats to characterize presynaptic components of DA neurotransmission in the dorsal striatum (D-Str) and nucleus accumbens 14 days after a 5-min VF-CA when compared to Sham or Naïve. VF-CA increased D-Str-evoked overflow [DA], total [DA] released, and initial DA release rate versus controls, despite also increasing maximal velocity of DA reuptake (Vmax ). Methylphenidate (10 mg/kg), a DA transporter inhibitor, was administered to VF-CA and Shams after establishing a baseline, pre-drug 60 Hz, 5 s stimulation response. Methylphenidate increased initial evoked overflow [DA] more-so in VF-CA versus Sham and reduced D-Str Vmax in VF-CA but not Shams; these findings are consistent with upregulated striatal DA transporter in VF-CA versus Sham. Our work demonstrates that 5-min VF-CA increases electrically stimulated DA release with concomitant upregulation of DA reuptake 2 weeks after brief VF-CA insult. Future work should elucidate how CA insult duration, time after insult, and insult type influence striatal DA neurotransmission and related cognitive and motor functions.
Collapse
Affiliation(s)
- Gerald J Nora
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rashed Harun
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David F Fine
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Hutchison
- Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Adam C Grobart
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason P Stezoski
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Miranda J Munoz
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rehana K Leak
- Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Tomas Drabek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Dopamine Inhibition Differentially Controls Excitability of Substantia Nigra Dopamine Neuron Subpopulations through T-Type Calcium Channels. J Neurosci 2017; 37:3704-3720. [PMID: 28264982 DOI: 10.1523/jneurosci.0117-17.2017] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 11/21/2022] Open
Abstract
While there is growing appreciation for diversity among ventral tegmental area dopamine neurons, much less is known regarding functional heterogeneity among the substantia nigra pars compacta (SNc) neurons. Here, we show that calbindin-positive dorsal tier and calbindin-negative ventral tier SNc dopaminergic neurons in mice comprise functionally distinct subpopulations distinguished by their dendritic calcium signaling, rebound excitation, and physiological responses to dopamine D2-receptor (D2) autoinhibition. While dopamine is known to inhibit action potential backpropagation, our experiments revealed an unexpected enhancement of excitatory responses and dendritic calcium signals in the presence of D2-receptor inhibition. Specifically, dopamine inhibition and direct hyperpolarization enabled the generation of low-threshold depolarizations that occurred in an all-or-none or graded manner, due to recruitment of T-type calcium channels. Interestingly, these effects occurred selectively in calbindin-negative dopaminergic neurons within the SNc. Thus, calbindin-positive and calbindin-negative SNc neurons differ substantially in their calcium channel composition and efficacy of excitatory inputs in the presence of dopamine inhibition.SIGNIFICANCE STATEMENT Substantia nigra dopaminergic neurons can be divided into two populations: the calbindin-negative ventral tier, which is vulnerable to neurodegeneration in Parkinson's disease, and the calbindin-positive dorsal tier, which is relatively resilient. Although tonic firing is similar in these subpopulations, we find that their responses to dopamine-mediated inhibition are strikingly different. During inhibition, calbindin-negative neurons exhibit increased sensitivity to excitatory inputs, which can then trigger large dendritic calcium transients due to strong expression of T-type calcium channels. Therefore, SNc neurons differ substantially in their calcium channel composition, which may contribute to their differential vulnerability. Furthermore, T-currents increase excitation efficacy onto calbindin-negative cells during dopamine inhibition, suggesting that shared inputs are differentially processed in subpopulations resulting in distinct downstream dopamine signals.
Collapse
|
16
|
Gomes FV, Rincón-Cortés M, Grace AA. Adolescence as a period of vulnerability and intervention in schizophrenia: Insights from the MAM model. Neurosci Biobehav Rev 2016; 70:260-270. [PMID: 27235082 PMCID: PMC5074867 DOI: 10.1016/j.neubiorev.2016.05.030] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 11/30/2022]
Abstract
Adolescence is a time of extensive neuroanatomical, functional and chemical reorganization of the brain, which parallels substantial maturational changes in behavior and cognition. Environmental factors that impinge on the timing of these developmental factors, including stress and drug exposure, increase the risk for psychiatric disorders. Indeed, antecedents to affective and psychotic disorders, which have clinical and pathophysiological overlap, are commonly associated with risk factors during adolescence that predispose to these disorders. In the context of schizophrenia, psychosis typically begins in late adolescence/early adulthood, which has been replicated by animal models. Rats exposed during gestational day (GD) 17 to the mitotoxin methylazoxymethanol acetate (MAM) exhibit behavioral, pharmacological, and anatomical characteristics consistent with an animal model of schizophrenia. Here we provide an overview of adolescent changes within the dopamine system and the PFC and review recent findings regarding the effects of stress and cannabis exposure during the peripubertal period as risk factors for the emergence of schizophrenia-like deficits. Finally, we discuss peripubertal interventions appearing to circumvent the emergence of adult schizophrenia-like deficits.
Collapse
Affiliation(s)
- Felipe V Gomes
- Departments of Neuroscience, Psychiatry and Psychology, United States
| | | | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, United States.
| |
Collapse
|
17
|
Suzuki K, Harada A, Suzuki H, Miyamoto M, Kimura H. TAK-063, a PDE10A Inhibitor with Balanced Activation of Direct and Indirect Pathways, Provides Potent Antipsychotic-Like Effects in Multiple Paradigms. Neuropsychopharmacology 2016; 41:2252-62. [PMID: 26849714 PMCID: PMC4946053 DOI: 10.1038/npp.2016.20] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/13/2016] [Accepted: 02/01/2016] [Indexed: 01/29/2023]
Abstract
Phosphodiesterase 10A (PDE10A) inhibitors are expected to be novel drugs for schizophrenia through activation of both direct and indirect pathway medium spiny neurons. However, excess activation of the direct pathway by a dopamine D1 receptor agonist SKF82958 canceled antipsychotic-like effects of a dopamine D2 receptor antagonist haloperidol in methamphetamine (METH)-induced hyperactivity in rats. Thus, balanced activation of these pathways may be critical for PDE10A inhibitors. Current antipsychotics and the novel PDE10A inhibitor TAK-063, but not the selective PDE10A inhibitor MP-10, produced dose-dependent antipsychotic-like effects in METH-induced hyperactivity and prepulse inhibition in rodents. TAK-063 and MP-10 activated the indirect pathway to a similar extent; however, MP-10 caused greater activation of the direct pathway than did TAK-063. Interestingly, the off-rate of TAK-063 from PDE10A in rat brain sections was faster than that of MP-10, and a slower off-rate PDE10A inhibitor with TAK-063-like chemical structure showed an MP-10-like pharmacological profile. In general, faster off-rate enzyme inhibitors are more sensitive than slower off-rate inhibitors to binding inhibition by enzyme substrates. As expected, TAK-063 was more sensitive than MP-10 to binding inhibition by cyclic nucleotides. Moreover, an immunohistochemistry study suggested that cyclic adenosine monophosphate levels in the direct pathway were higher than those in the indirect pathway. These data can explain why TAK-063 showed partial activation of the direct pathway compared with MP-10. The findings presented here suggest that TAK-063's antipsychotic-like efficacy may be attributable to its unique pharmacological properties, resulting in balanced activation of the direct and indirect striatal pathways.
Collapse
Affiliation(s)
- Kazunori Suzuki
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Akina Harada
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hirobumi Suzuki
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Maki Miyamoto
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan,Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Haruhide Kimura
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan,Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan, Tel: +81 466321859, Fax: +81 466294468, E-mail:
| |
Collapse
|
18
|
Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 2016; 17:524-32. [PMID: 27256556 PMCID: PMC5166560 DOI: 10.1038/nrn.2016.57] [Citation(s) in RCA: 682] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dopamine system is unique among the brain's modulatory systems in that it has discrete projections to specific brain regions involved in motor behaviour, cognition and emotion. Dopamine neurons exhibit several activity patterns - including tonic and phasic firing - that are determined by a combination of endogenous pacemaker conductances and regulation by multiple afferent systems. Emerging evidence suggests that disruptions in these regulatory systems may underlie the pathophysiology of several psychiatric disorders, including schizophrenia and depression.
Collapse
Affiliation(s)
- Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
19
|
Takahashi YK, Langdon AJ, Niv Y, Schoenbaum G. Temporal Specificity of Reward Prediction Errors Signaled by Putative Dopamine Neurons in Rat VTA Depends on Ventral Striatum. Neuron 2016; 91:182-93. [PMID: 27292535 DOI: 10.1016/j.neuron.2016.05.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/30/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
Dopamine neurons signal reward prediction errors. This requires accurate reward predictions. It has been suggested that the ventral striatum provides these predictions. Here we tested this hypothesis by recording from putative dopamine neurons in the VTA of rats performing a task in which prediction errors were induced by shifting reward timing or number. In controls, the neurons exhibited error signals in response to both manipulations. However, dopamine neurons in rats with ipsilateral ventral striatal lesions exhibited errors only to changes in number and failed to respond to changes in timing of reward. These results, supported by computational modeling, indicate that predictions about the temporal specificity and the number of expected reward are dissociable and that dopaminergic prediction-error signals rely on the ventral striatum for the former but not the latter.
Collapse
Affiliation(s)
| | - Angela J Langdon
- Department of Psychology and Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Yael Niv
- Department of Psychology and Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Geoffrey Schoenbaum
- NIDA Intramural Research Program, Baltimore, MD 21224, USA; Departments of Anatomy & Neurobiology and Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
20
|
Faget L, Osakada F, Duan J, Ressler R, Johnson AB, Proudfoot JA, Yoo JH, Callaway EM, Hnasko TS. Afferent Inputs to Neurotransmitter-Defined Cell Types in the Ventral Tegmental Area. Cell Rep 2016; 15:2796-808. [PMID: 27292633 DOI: 10.1016/j.celrep.2016.05.057] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/07/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022] Open
Abstract
The ventral tegmental area (VTA) plays a central role in the neural circuit control of behavioral reinforcement. Though considered a dopaminergic nucleus, the VTA contains substantial heterogeneity in neurotransmitter type, containing also GABA and glutamate neurons. Here, we used a combinatorial viral approach to transsynaptically label afferents to defined VTA dopamine, GABA, or glutamate neurons. Surprisingly, we find that these populations received qualitatively similar inputs, with dominant and comparable projections from the lateral hypothalamus, raphe, and ventral pallidum. However, notable differences were observed, with striatal regions and globus pallidus providing a greater share of input to VTA dopamine neurons, cortical input preferentially on to glutamate neurons, and GABA neurons receiving proportionally more input from the lateral habenula and laterodorsal tegmental nucleus. By comparing inputs to each of the transmitter-defined VTA cell types, this study sheds important light on the systems-level organization of diverse inputs to VTA.
Collapse
Affiliation(s)
- Lauren Faget
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fumitaka Osakada
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
| | - Jinyi Duan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reed Ressler
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexander B Johnson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - James A Proudfoot
- Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ji Hoon Yoo
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
De Deurwaerdère P, Di Giovanni G. Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog Neurobiol 2016; 151:175-236. [PMID: 27013075 DOI: 10.1016/j.pneurobio.2016.03.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Since their discovery in the mammalian brain, it has been apparent that serotonin (5-HT) and dopamine (DA) interactions play a key role in normal and abnormal behavior. Therefore, disclosure of this interaction could reveal important insights into the pathogenesis of various neuropsychiatric diseases including schizophrenia, depression and drug addiction or neurological conditions such as Parkinson's disease and Tourette's syndrome. Unfortunately, this interaction remains difficult to study for many reasons, including the rich and widespread innervations of 5-HT and DA in the brain, the plethora of 5-HT receptors and the release of co-transmitters by 5-HT and DA neurons. The purpose of this review is to present electrophysiological and biochemical data showing that endogenous 5-HT and pharmacological 5-HT ligands modify the mesencephalic DA systems' activity. 5-HT receptors may control DA neuron activity in a state-dependent and region-dependent manner. 5-HT controls the activity of DA neurons in a phasic and excitatory manner, except for the control exerted by 5-HT2C receptors which appears to also be tonically and/or constitutively inhibitory. The functional interaction between the two monoamines will also be discussed in view of the mechanism of action of antidepressants, antipsychotics, anti-Parkinsonians and drugs of abuse.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5293, 33076 Bordeaux Cedex, France.
| | - Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
22
|
McCollum LA, McCullumsmith RE, Roberts RC. Tyrosine hydroxylase localization in the nucleus accumbens in schizophrenia. Brain Struct Funct 2016; 221:4451-4458. [PMID: 26740229 DOI: 10.1007/s00429-015-1174-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/17/2015] [Indexed: 12/29/2022]
Abstract
The nucleus accumbens (NAcc) has been implicated in schizophrenia (SZ) pathology, based on antipsychotic action therein. However, recent imaging studies suggest that the NAcc may not be a locus of dopamine dysregulation in SZ. This study examined postmortem human tissue to determine if abnormalities are present in dopamine synthesis in the NAcc in SZ. We compared the immunohistochemical localization of tyrosine hydroxylase (TH), the rate-limiting synthesizing enzyme of dopamine, in postmortem tissue from SZ subjects and demographically matched controls. To study the effects of chronic antipsychotic drug (APD) treatment on TH immunolabeling in the NAcc, rats were treated for 6 months with haloperidol or olanzapine. In the NAcc, TH immunolabeling was similar in control and SZ subjects, in both the core and shell. Rats had similar TH optical density levels across treatment groups in both the core and shell. Similar levels of TH suggest DA synthesis may be normal. These findings provide further insight into the role of the NAcc in SZ.
Collapse
Affiliation(s)
- Lesley A McCollum
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 865D, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - Robert E McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, USA
| | - Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 865D, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
23
|
Paladini C, Tepper J. Neurophysiology of Substantia Nigra Dopamine Neurons: Modulation by GABA and Glutamate. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-802206-1.00017-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
24
|
McCollum LA, Roberts RC. Uncovering the role of the nucleus accumbens in schizophrenia: A postmortem analysis of tyrosine hydroxylase and vesicular glutamate transporters. Schizophr Res 2015; 169:369-373. [PMID: 26386900 PMCID: PMC4755276 DOI: 10.1016/j.schres.2015.08.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/26/2015] [Accepted: 08/31/2015] [Indexed: 10/23/2022]
Abstract
The nucleus accumbens (NAcc) is often implicated in schizophrenia (SZ) pathology, but with little evidence to support its role. This study examined postmortem human tissue to determine if abnormalities are present in the dopaminergic or glutamatergic systems in the NAcc in SZ. We compared the protein levels of tyrosine hydroxylase (TH) and vesicular glutamate transporters vGLUT1 and vGLUT2 in control (n=7) and schizophrenia (n=13) subjects using Western blot analysis. The SZ subjects were further divided by treatment status: SZ on-drug (SZ-ON, n=6) and SZ off-drug (SZ-OFF, n=7), to assess the effects of antipsychotic treatment. TH protein levels were similar between control and SZ subjects, and there was no difference between SZ-ON and SZ-OFF subjects. Protein levels of vGLUT1 were similar in control and SZ subjects, and there was no difference in vGLUT1 protein levels between SZ-ON and SZ-OFF subjects. In contrast, vGLUT2 protein levels were significantly elevated in the SZ group (25% increase). Protein levels of vGLUT2 did not differ between SZ-ON and SZ-OFF subjects. Similar levels of TH suggest the presynaptic DA pathway may be normal in the NAcc in SZ. The elevated vGLUT2 protein levels, but not vGLUT1, suggest the NAcc receives increased glutamatergic input in SZ, possibly from thalamic or other subcortical origins. The similarity between SZ-ON and SZ-OFF subjects suggests that the results are not caused by APD treatment. These findings provide further insight into the role of the NAcc in SZ.
Collapse
|
25
|
Paladini C, Roeper J. Generating bursts (and pauses) in the dopamine midbrain neurons. Neuroscience 2014; 282:109-21. [DOI: 10.1016/j.neuroscience.2014.07.032] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 01/01/2023]
|
26
|
Burke MV, Nocjar C, Sonneborn AJ, McCreary AC, Pehek EA. Striatal serotonin 2C receptors decrease nigrostriatal dopamine release by increasing GABA-A receptor tone in the substantia nigra. J Neurochem 2014; 131:432-43. [PMID: 25073477 DOI: 10.1111/jnc.12842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 11/29/2022]
Abstract
Drugs acting at the serotonin-2C (5-HT2C) receptor subtype have shown promise as therapeutics in multiple syndromes including obesity, depression, and Parkinson's disease. While it is established that 5-HT2C receptor stimulation inhibits DA release, the neural circuits and the localization of the relevant 5-HT2C receptors remain unknown. This study used dual-probe in vivo microdialysis to investigate the relative contributions of 5-HT2C receptors localized in the rat substantia nigra (SN) and caudate-putamen (CP) in the control of nigrostriatal DA release. Systemic administration (3.0 mg/kg) of the 5-HT2C receptor selective agonist Ro 60-0175 [(αS)-6-Chloro-5-fluoro-α-methyl-1H-indole-1-ethanamine fumarate] decreased, whereas intrastriatal infusions of the selective 5-HT2C antagonist SB 242084 [6-Chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide; 1.0 μM] increased, basal DA in the CP. Depending on the site within the SN pars reticulata (SNpr), infusions of SB 242084 had more modest but significant effects. Moreover, infusions of the GABA-A receptor agonist muscimol (10 μM) into the SNpr completely reversed the increases in striatal DA release produced by intrastriatal infusions of SB 242084. These findings suggest a role for 5-HT2C receptors regulating striatal DA release that is highly localized. 5-HT2C receptors localized in the striatum may represent a primary site of action that is mediated by the actions on GABAergic activity in the SN. Dopamine (DA) neurons in the substantia nigra pars compacta (SNpc) project to the caudate-putamen (CP; striatum). This circuitry is implicated in numerous pathologies including Parkinson's disease. Using in vivo microdialysis, we demonstrated that blockade of serotonin (5-HT) 2C receptors in the CP increased nigrostriatal DA release. Infusions of a GABA-A agonist into the substantia nigra pars reticulata (SNpr) blocked this increase. This work indicates that striatal serotonin 2C receptors regulate GABAergic tone in the SNpr, which in turn regulates nigrostriatal DA release.
Collapse
Affiliation(s)
- Mary V Burke
- Research, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
27
|
Galaj E, Manuszak M, Arastehmanesh D, Ranaldi R. Microinjections of a dopamine D1 receptor antagonist into the ventral tegmental area block the expression of cocaine conditioned place preference in rats. Behav Brain Res 2014; 272:279-85. [PMID: 25017572 DOI: 10.1016/j.bbr.2014.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/11/2014] [Accepted: 07/03/2014] [Indexed: 11/17/2022]
Abstract
Stimulation of dopamine (DA) D1 receptors in the ventral tegmental area (VTA) is involved in primary rewards. In the current study we investigated whether VTA D1 receptor stimulation likewise plays a role in mediating the rewarding effects of cocaine-associated stimuli, using the cocaine conditioned place preference (CPP) paradigm. Rats were prepared with cannulae so as to allow microinjections in the VTA and later conditioned to a cocaine-associated environment using the CPP paradigm. Prior to each conditioning session rats were injected with either saline or cocaine (10mg/kg, intraperitoneally) and then placed in one of the two sides of the CPP apparatus. Sessions lasted 30min a day over a period of eight days, such that rats alternated daily between consistently experiencing cocaine in one side and saline in the other. On the test day, which was conducted one day after conditioning, rats were given bilateral microinjections of one of four doses of the D1 antagonist, SCH 23390, (0, 2, 4 or 8μg/0.5μl) directly into the VTA and allowed free access to both sides of the apparatus. Preference for either side was measured as time spent in each side and compared to the same measures taken before conditioning. The D1 antagonist produced a dose-related, significant reduction in the preference for the cocaine-paired side compared to vehicle. These data suggest that the expression of cocaine conditioned place preference requires stimulation of VTA D1 receptors and, as such, are the first to suggest a role for VTA dendritically released DA in cocaine-, or other reward-, related learning.
Collapse
Affiliation(s)
- E Galaj
- Graduate Center of City University of New York, NY, United States
| | | | | | - R Ranaldi
- Graduate Center of City University of New York, NY, United States; Queens College, NY, United States.
| |
Collapse
|
28
|
Bonoldi I, Howes OD. Presynaptic dopaminergic function: implications for understanding treatment response in psychosis. CNS Drugs 2014; 28:649-63. [PMID: 24919790 DOI: 10.1007/s40263-014-0177-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
All current antipsychotic drugs block dopamine (DA) receptors, but the nature of the DA dysfunction in schizophrenia has not been clear. However, consistent evidence now shows that presynaptic dopaminergic function is altered in schizophrenia, specifically in terms of increased DA synthesis capacity, baseline synaptic DA levels, and DA release. Furthermore, presynaptic dopaminergic function is already elevated in prodromal patients who later developed the disorder. Currently available antipsychotics act on postsynaptic receptors, not targeting presynaptic DA abnormalities. This has implications for understanding response and developing new treatments. The lack of normalization of the abnormal presynaptic function could explain why discontinuation is likely to lead to relapse, because the major dopaminergic function persists, meaning that once treatment stops there is nothing to oppose the dysregulated dopamine function reinstating symptoms. Furthermore, it suggests that drugs that target presynaptic dopaminergic function may constitute new treatment possibilities for schizophrenic patients, in particular, for those in whom antipsychotics are poorly effective. In addition, the longitudinal changes with the onset of psychosis indicate the potential to target a defined dynamic neurochemical abnormality to prevent the onset of psychosis.
Collapse
Affiliation(s)
- I Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, King's College of London, De Crespigny Park 16, London, SE5 8AF, UK,
| | | |
Collapse
|
29
|
Yetnikoff L, Lavezzi HN, Reichard RA, Zahm DS. An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience 2014; 282:23-48. [PMID: 24735820 DOI: 10.1016/j.neuroscience.2014.04.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/21/2022]
Abstract
This review covers the intrinsic organization and afferent and efferent connections of the midbrain dopaminergic complex, comprising the substantia nigra, ventral tegmental area and retrorubral field, which house, respectively, the A9, A10 and A8 groups of nigrostriatal, mesolimbic and mesocortical dopaminergic neurons. In addition, A10dc (dorsal, caudal) and A10rv (rostroventral) extensions into, respectively, the ventrolateral periaqueductal gray and supramammillary nucleus are discussed. Associated intrinsic and extrinsic connections of the midbrain dopaminergic complex that utilize gamma-aminobutyric acid (GABA), glutamate and neuropeptides and various co-expressed combinations of these compounds are considered in conjunction with the dopamine-containing systems. A framework is provided for understanding the organization of massive afferent systems descending and ascending to the midbrain dopaminergic complex from the telencephalon and brainstem, respectively. Within the context of this framework, the basal ganglia direct and indirect output pathways are treated in some detail. Findings from rodent brain are briefly compared with those from primates, including humans. Recent literature is emphasized, including traditional experimental neuroanatomical and modern gene transfer and optogenetic studies. An attempt was made to provide sufficient background and cite a representative sampling of earlier primary papers and reviews so that people new to the field may find this to be a relatively comprehensive treatment of the subject.
Collapse
Affiliation(s)
- L Yetnikoff
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States.
| | - H N Lavezzi
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - R A Reichard
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - D S Zahm
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States.
| |
Collapse
|
30
|
Rivera-Meza M, Quintanilla ME, Bustamante D, Delgado R, Buscaglia M, Herrera-Marschitz M. Overexpression of hyperpolarization-activated cyclic nucleotide-gated channels into the ventral tegmental area increases the rewarding effects of ethanol in UChB drinking rats. Alcohol Clin Exp Res 2014; 38:911-20. [PMID: 24460767 DOI: 10.1111/acer.12344] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 11/27/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND A number of studies have shown that ethanol (EtOH) activates dopamine neurocircuitries and is self-administered into the ventral tegmental area (VTA) of the rat brain. In vitro and in silico studies have showed that hyperpolarization-activated cyclic nucleotide-gated (HCN) ionic channels on VTA dopamine neurons may constitute a molecular target of EtOH; however, there is no in vivo evidence supporting this assumption. METHODS Wistar-derived University of Chile Drinking (UChB) rats were microinjected into the VTA with a lentiviral vector coding for rat HCN-2 ionic channel or a control vector. Four days after vector administration, daily voluntary EtOH intake was assessed for 30 days under a free-access paradigm to 5% EtOH and water. After EtOH consumption studies, the effect of HCN-2 overexpression was also assessed on EtOH-induced conditioned place preference (CPP); EtOH-induced locomotion, and EtOH-induced dopamine release in the nucleus accumbens (NAcc). RESULTS Rats microinjected with the HCN-2 coding vector into the VTA showed (i) a ~2-fold increase in their voluntary EtOH intake compared to control animals, (ii) lentiviral-HCN-2-treated animals also showed an increased CPP to EtOH (~3-fold), (iii) a significant higher locomotor activity (~2-fold), and (iv) increased dopamine release in NAcc upon systemic administration of EtOH (~2-fold). CONCLUSIONS Overexpression of HCN-2 ionic channel in the VTA of rats results in an increase in voluntary EtOH intake, EtOH-induced CPP, locomotor activity, and dopamine release in NAcc, suggesting that HCN levels in the VTA are relevant for the rewarding properties of EtOH.
Collapse
Affiliation(s)
- Mario Rivera-Meza
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
31
|
Gowrishankar R, Hahn MK, Blakely RD. Good riddance to dopamine: roles for the dopamine transporter in synaptic function and dopamine-associated brain disorders. Neurochem Int 2013; 73:42-8. [PMID: 24231471 DOI: 10.1016/j.neuint.2013.10.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 11/25/2022]
Abstract
The neurotransmitter dopamine (DA) plays a critical role in CNS circuits that provide for attention, executive function, reward responses, motivation and movement. DA is inactivated by the cocaine- and amphetamine-sensitive DA transporter (DAT), a protein that also provides a pathway for non-vesicular DA release. After a brief review of DAT function and psychostimulant actions, we consider the importance DAT in relation to the distinct firing patterns of DA neurons that permit awareness of novelty and reward. Finally, we review recent efforts to gather direct support for DAT-linked disorders, with a specific focus on DAT mutations recently identified in subjects with ADHD.
Collapse
Affiliation(s)
- Raajaram Gowrishankar
- Vanderbilt International Scholars Program, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States
| | - Maureen K Hahn
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States; Department of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States; Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States.
| |
Collapse
|
32
|
Lorenc-Koci E, Czarnecka A, Lenda T, Kamińska K, Konieczny J. Molsidomine, a nitric oxide donor, modulates rotational behavior and monoamine metabolism in 6-OHDA lesioned rats treated chronically with L-DOPA. Neurochem Int 2013; 63:790-804. [PMID: 24090640 DOI: 10.1016/j.neuint.2013.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022]
Abstract
Some biochemical and histological studies of Parkinson's disease patients' brains and 6-OHDA-lesioned rats suggest that dopaminergic dennervation of the striatum leads to the nitrergic system hypofunction in this structure. Hence, recently the modulation of nitric oxide (NO)- soluble guanylyl cyclase-cyclic GMP signaling is considered to be a new target for the treatment of Parkinson's disease. The aim of our study was to examine the impact of chronic combined treatment with low doses of the NO donor molsidomine (2 and 4mg/kg) and L-DOPA (12.5 and 25mg/kg) on rotational behavior and monoamine metabolism in the striatum (STR) and substantia nigra (SN) of unilaterally 6-OHDA-lesioned rats. Chronic administration of molsidomine at a dose of 2mg/kg jointly with 25mg/kg of L-DOPA significantly decreased the number of contralateral rotations when compared to L-DOPA alone. Other combinations of the examined drug doses were less effective. The tissue DA levels in the ipsilateral STR and SN after the last chronic doses of molsidomine (2mg/kg) and L-DOPA (12.5 or 25mg/kg), were significantly higher than after L-DOPA alone. Chronic L-DOPA treatment alone or jointly with a lower dose of molsidomine decreased 5-HT levels and accelerated its catabolism in the examined structures. However, combination of a higher dose of molsidomine with L-DOPA (25mg/kg) did not reduce 5-HT content while its catabolism was less intensive. The obtained results show that low doses of molsidomine can modulate rotational behavior and tissue DA and 5-HT concentrations in the STR and SN of 6-OHDA-lesioned rats treated chronically with L-DOPA.
Collapse
Affiliation(s)
- Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12, Smętna St., PL-31-343 Kraków, Poland.
| | | | | | | | | |
Collapse
|
33
|
Chen L, Lodge DJ. The lateral mesopontine tegmentum regulates both tonic and phasic activity of VTA dopamine neurons. J Neurophysiol 2013; 110:2287-94. [PMID: 24004527 DOI: 10.1152/jn.00307.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anatomic studies have demonstrated that the mesolimbic dopamine system receives a substantial afferent input from a variety of regions ranging from the prefrontal cortex through to the brain stem. However, how these afferents regulate dopamine neuron activity is still largely unknown. The mesopontine tegmentum provides a significant input to ventral tegmental area (VTA) dopamine neurons, and it has been demonstrated that discrete subdivisions within this region differentially alter dopamine neuron activity. Thus the laterodorsal tegmental nucleus provides a tonic input essential for maintaining burst firing of dopamine neurons, whereas the pedunculopontine tegmental (PPTg) nucleus regulates a transition from single-spike firing to burst firing. In contrast, the recently identified rostromedial tegmental nucleus provides an inhibitory input to the VTA and decreases spontaneous dopamine neuron activity. Here, we demonstrate that an area adjacent to the PPTg regulates both population activity as well as burst firing of VTA dopamine neurons. Specifically, N-methyl-d-aspartic acid (NMDA) activation of the lateral mesopontine tegmentum produces an increase in the number of spontaneously active dopamine neurons and an increase in the average percentage of burst firing of dopamine neurons. This increase in neuronal activity was correlated with extracellular dopamine efflux in the nucleus accumbens, as measured by in vivo microdialysis. Taken together, we provide further evidence that the mesopontine tegmentum regulates discrete dopamine neuron activity states that are relevant for the understanding of dopamine system function in both normal and disease states.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacology & Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | | |
Collapse
|
34
|
Yoon JH, Minzenberg MJ, Raouf S, D'Esposito M, Carter CS. Impaired prefrontal-basal ganglia functional connectivity and substantia nigra hyperactivity in schizophrenia. Biol Psychiatry 2013; 74:122-9. [PMID: 23290498 PMCID: PMC3620727 DOI: 10.1016/j.biopsych.2012.11.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/07/2012] [Accepted: 11/19/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND The theory that prefrontal cortex (PFC) dysfunction in schizophrenia leads to excess subcortical dopamine has generated widespread interest because it provides a parsimonious account for two core features of schizophrenia, cognitive deficits and psychosis, respectively. However, there has been limited empirical validation of this model. Moreover, the identity of the specific subcortical brain regions and circuits that may be impaired as a result of PFC dysfunction and mediate its link to psychosis in schizophrenia remains unclear. We undertook this event-related functional magnetic resonance imaging study to test the hypothesis that PFC dysfunction is associated with altered function of and connectivity with dopamine regulating regions of the basal ganglia. METHODS Eighteen individuals with schizophrenia or schizoaffective disorder and 19 healthy control participants completed event-related functional magnetic resonance imaging during working memory. We conducted between-group contrasts of task-evoked, univariate activation maps to identify regions of altered function in schizophrenia. We also compared the groups on the level of functional connectivity between a priori identified PFC and basal ganglia regions to determine if prefrontal disconnectivity in patients was present. RESULTS We observed task-evoked hyperactivity of the substantia nigra that occurred in association with prefrontal and striatal hypoactivity in the schizophrenia group. The magnitude of prefrontal functional connectivity with these dysfunctional basal ganglia regions was decreased in the schizophrenia group. Additionally, the level of nigrostriatal functional connectivity predicted the level of psychosis. CONCLUSIONS These results suggest that functional impairments of the prefrontal striatonigral circuit may be a common pathway linking the pathogenesis of cognitive deficits and psychosis in schizophrenia.
Collapse
Affiliation(s)
- Jong H Yoon
- Department of Psychiatry and Imaging Research Center, University of California Davis, Sacramento, CA 95817, USA.
| | | | | | | | | |
Collapse
|
35
|
Striatal patch compartment lesions alter methamphetamine-induced behavior and immediate early gene expression in the striatum, substantia nigra and frontal cortex. Brain Struct Funct 2013; 219:1213-29. [PMID: 23625147 DOI: 10.1007/s00429-013-0559-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
Abstract
Methamphetamine (METH) induces stereotypy, which is characterized as inflexible, repetitive behavior. Enhanced activation of the patch compartment of the striatum has been correlated with stereotypy, suggesting that stereotypy may be related to preferential activation of this region. However, the specific contribution of the patch compartment to METH-induced stereotypy is not clear. To elucidate the involvement of the patch compartment to the development of METH-induced stereotypy, we determined if destruction of this sub-region altered METH-induced behaviors. Animals were bilaterally infused in the striatum with the neurotoxin dermorphin-saporin (DERM-SAP; 17 ng/μl) to specifically ablate the neurons of the patch compartment. Eight days later, animals were treated with METH (7.5 mg/kg), placed in activity chambers, observed for 2 h and killed. DERM-SAP pretreatment significantly reduced the number and total area of mu-labeled patches in the striatum. DERM-SAP pretreatment significantly reduced the intensity of METH-induced stereotypy and the spatial immobility typically observed with METH-induced stereotypy. In support of this observation, DERM-SAP pretreatment also significantly increased locomotor activity in METH-treated animals. In the striatum, DERM-SAP pretreatment attenuated METH-induced c-Fos expression in the patch compartment, while enhancing METH-induced c-Fos expression in the matrix compartment. DERM-SAP pretreatment followed by METH administration augmented c-Fos expression in the SNpc and reduced METH-induced c-Fos expression in the SNpr. In the medial prefrontal, but not sensorimotor cortex, c-Fos and zif/268 expression was increased following METH treatment in animals pre-treated with DERM-SAP. These data indicate that the patch compartment is necessary for the expression of repetitive behaviors and suggests that alterations in activity in the basal ganglia may contribute to this phenomenon.
Collapse
|
36
|
Tolu S, Eddine R, Marti F, David V, Graupner M, Pons S, Baudonnat M, Husson M, Besson M, Reperant C, Zemdegs J, Pagès C, Hay YAH, Lambolez B, Caboche J, Gutkin B, Gardier AM, Changeux JP, Faure P, Maskos U. Co-activation of VTA DA and GABA neurons mediates nicotine reinforcement. Mol Psychiatry 2013; 18:382-93. [PMID: 22751493 DOI: 10.1038/mp.2012.83] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Smoking is the most important preventable cause of mortality and morbidity worldwide. This nicotine addiction is mediated through the nicotinic acetylcholine receptor (nAChR), expressed on most neurons, and also many other organs in the body. Even within the ventral tegmental area (VTA), the key brain area responsible for the reinforcing properties of all drugs of abuse, nicotine acts on several different cell types and afferents. Identifying the precise action of nicotine on this microcircuit, in vivo, is important to understand reinforcement, and finally to develop efficient smoking cessation treatments. We used a novel lentiviral system to re-express exclusively high-affinity nAChRs on either dopaminergic (DAergic) or γ-aminobutyric acid-releasing (GABAergic) neurons, or both, in the VTA. Using in vivo electrophysiology, we show that, contrary to widely accepted models, the activation of GABA neurons in the VTA plays a crucial role in the control of nicotine-elicited DAergic activity. Our results demonstrate that both positive and negative motivational values are transmitted through the dopamine (DA) neuron, but that the concerted activity of DA and GABA systems is necessary for the reinforcing actions of nicotine through burst firing of DA neurons. This work identifies the GABAergic interneuron as a potential target for smoking cessation drug development.
Collapse
Affiliation(s)
- S Tolu
- Département de Neuroscience, Institut Pasteur, Unité Neurobiologie intégrative des systèmes cholinergiques, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 2012; 74:858-73. [PMID: 22681690 DOI: 10.1016/j.neuron.2012.03.017] [Citation(s) in RCA: 876] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2012] [Indexed: 12/27/2022]
Abstract
Recent studies indicate that dopamine neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) convey distinct signals. To explore this difference, we comprehensively identified each area's monosynaptic inputs using the rabies virus. We show that dopamine neurons in both areas integrate inputs from a more diverse collection of areas than previously thought, including autonomic, motor, and somatosensory areas. SNc and VTA dopamine neurons receive contrasting excitatory inputs: the former from the somatosensory/motor cortex and subthalamic nucleus, which may explain their short-latency responses to salient events; and the latter from the lateral hypothalamus, which may explain their involvement in value coding. We demonstrate that neurons in the striatum that project directly to dopamine neurons form patches in both the dorsal and ventral striatum, whereas those projecting to GABAergic neurons are distributed in the matrix compartment. Neuron-type-specific connectivity lays a foundation for studying how dopamine neurons compute outputs.
Collapse
Affiliation(s)
- Mitsuko Watabe-Uchida
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | |
Collapse
|
38
|
Padgett CL, Lalive AL, Tan KR, Terunuma M, Munoz MB, Pangalos MN, Martínez-Hernández J, Watanabe M, Moss SJ, Luján R, Lüscher C, Slesinger PA. Methamphetamine-evoked depression of GABA(B) receptor signaling in GABA neurons of the VTA. Neuron 2012; 73:978-89. [PMID: 22405207 DOI: 10.1016/j.neuron.2011.12.031] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2011] [Indexed: 01/06/2023]
Abstract
Psychostimulants induce neuroadaptations in excitatory and fast inhibitory transmission in the ventral tegmental area (VTA). Mechanisms underlying drug-evoked synaptic plasticity of slow inhibitory transmission mediated by GABA(B) receptors and G protein-gated inwardly rectifying potassium (GIRK/Kir(3)) channels, however, are poorly understood. Here, we show that 1 day after methamphetamine (METH) or cocaine exposure both synaptically evoked and baclofen-activated GABA(B)R-GIRK currents were significantly depressed in VTA GABA neurons and remained depressed for 7 days. Presynaptic inhibition mediated by GABA(B)Rs on GABA terminals was also weakened. Quantitative immunoelectron microscopy revealed internalization of GABA(B1) and GIRK2, which occurred coincident with dephosphorylation of serine 783 (S783) in GABA(B2), a site implicated in regulating GABA(B)R surface expression. Inhibition of protein phosphatases recovered GABA(B)R-GIRK currents in VTA GABA neurons of METH-injected mice. This psychostimulant-evoked impairment in GABA(B)R signaling removes an intrinsic brake on GABA neuron spiking, which may augment GABA transmission in the mesocorticolimbic system.
Collapse
Affiliation(s)
- Claire L Padgett
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Divergent activation of ventromedial and ventrolateral dopamine systems in animal models of amphetamine sensitization and schizophrenia. Int J Neuropsychopharmacol 2012; 15:69-76. [PMID: 21329556 PMCID: PMC3179552 DOI: 10.1017/s1461145711000113] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aberrant dopamine-mediated behaviours are a hallmark of a number of psychiatric disorders, including substance use disorders and schizophrenia. It has been demonstrated recently that rodent models of these diseases display enhanced dopamine neuron activity throughout the ventral tegmental area (VTA). It is known, however, that the VTA is not a homogeneous structure, and that the dopamine neuron population provides discrete, topographical innervation of nucleus accumbens subregions. In addition, these ventromedial and ventrolateral dopamine systems are known to subserve complementary but distinct aspects of goal-directed behaviour. Using in-vivo extracellular recordings of identified dopamine neurons in chloral hydrate-anaesthetized rats, we examined the level of dopamine neuron population activity across the mediolateral extent of the VTA following amphetamine sensitization or gestational methylazoxymethanol acetate (MAM) treatment, a verified rodent model of schizophrenia. Here we demonstrate that both models display an augmented medial VTA-ventromedial striatal dopamine system function that correlates with the augmented locomotor response to amphetamine observed in both models. In contrast, only MAM-treated rats exhibit an increase in VTA-ventrolateral striatal dopamine system function. This latter finding is consistent with human imaging studies in schizophrenia patients. In summary, we demonstrate that, although a number of disorders involving a hyperdopaminergic state demonstrate an increase in dopamine neuron population activity, there is divergence in the exact populations of neurons affected. This distinction probably underlies the observed differences in disease symptomatology.
Collapse
|
40
|
Morikawa H, Paladini CA. Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms. Neuroscience 2011; 198:95-111. [PMID: 21872647 DOI: 10.1016/j.neuroscience.2011.08.023] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/05/2011] [Accepted: 08/11/2011] [Indexed: 12/23/2022]
Abstract
Although the roles of dopaminergic signaling in learning and behavior are well established, it is not fully understood how the activity of dopaminergic neurons is dynamically regulated under different conditions in a constantly changing environment. Dopamine neurons must integrate sensory, motor, and cognitive information online to inform the organism to pursue outcomes with the highest reward probability. In this article, we provide an overview of recent advances on the intrinsic, extrinsic (i.e., synaptic), and plasticity mechanisms controlling dopamine neuron activity, mostly focusing on mechanistic studies conducted using ex vivo brain slice preparations. We also hope to highlight some unresolved questions regarding information processing that takes place at dopamine neurons, thereby stimulating further investigations at different levels of analysis.
Collapse
Affiliation(s)
- H Morikawa
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology, 2400 Speedway, University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
41
|
Nucleus accumbens medium spiny neurons target non-dopaminergic neurons in the ventral tegmental area. J Neurosci 2011; 31:7811-6. [PMID: 21613494 DOI: 10.1523/jneurosci.1504-11.2011] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The midbrain ventral tegmental area (VTA) projection to the nucleus accumbens (NAc) is implicated in motivation and reinforcement. A significant number of NAc medium spiny neurons (MSNs) project back to the VTA, although the nature of this projection is essentially unknown. For example, do NAc MSNs directly target accumbens-projecting dopamine neurons and do they act via the GABA(A) or GABA(B) receptor? To address these issues, we expressed the light-sensitive channel rhodopsin-2 in the rat NAc and made electrophysiological recordings from VTA neurons ex vivo. We found that the NAc directly targets non-dopaminergic VTA neurons, including some that project back to the NAc. These MSN GABAergic terminals are opioid sensitive and act via GABA(A) receptors.
Collapse
|
42
|
Tateno T, Robinson HPC. The mechanism of ethanol action on midbrain dopaminergic neuron firing: a dynamic-clamp study of the role of I(h) and GABAergic synaptic integration. J Neurophysiol 2011; 106:1901-22. [PMID: 21697445 DOI: 10.1152/jn.00162.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are expressed in dopaminergic (DA) neurons of the ventral tegmental area (VTA) as well as in DA and GABAergic neurons of the substantia nigra (SN). The excitation of DA neurons induced by ethanol has been proposed to result from its enhancing HCN channel current, I(h). Using perforated patch-clamp recordings in rat midbrain slices, we isolated I(h) in these neurons by voltage clamp. We showed that ethanol reversibly increased the amplitude and accelerated the activation kinetics of I(h) and caused a depolarizing shift in its voltage dependence. Using dynamic-clamp conductance injection, we injected artificial I(h) and fluctuating GABAergic synaptic conductance inputs into neurons following block of intrinsic I(h). This demonstrated directly a major role of I(h) in promoting rebound spiking following phasic inhibition, which was enhanced as the kinetics and amplitude of I(h) were changed in the manner induced by ethanol. Similar effects of ethanol were observed on I(h) and firing rate in non-DA, putatively GABAergic interneurons, indicating that in addition to its direct effects on firing, ethanol will produce large changes in the inhibition and disinhibition (via GABAergic interneurons) converging on DA neurons. Thus the overall effects of ethanol on firing of DA cells of the VTA and SN in vivo, and hence on phasic dopamine release in the striatum, appear to be determined substantially by its action on I(h) in both DA cells and GABAergic interneurons.
Collapse
Affiliation(s)
- Takashi Tateno
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | | |
Collapse
|
43
|
Lodge DJ, Grace AA. Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends Pharmacol Sci 2011; 32:507-13. [PMID: 21700346 DOI: 10.1016/j.tips.2011.05.001] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 05/04/2011] [Accepted: 05/06/2011] [Indexed: 01/11/2023]
Abstract
Substantial evidence suggests that psychosis in schizophrenia is associated with dysregulation of subcortical dopamine system function. Here we examine evidence that this dysregulation is secondary to hyperactivity within hippocampal subfields. Enhanced hippocampal activity has been reported in preclinical models and in schizophrenia patients. Moreover, this hippocampal hyperactivity is correlated with enhanced dopamine neuron activity and positive symptoms, respectively. Thus, restoration of hippocampal function could provide a more effective therapeutic approach than current therapeutics based on blockade of dopamine D2 receptors. Indeed, initial studies demonstrate that allosteric modulation of the α5GABA(A) receptor can decrease aberrant dopamine signaling and associated behaviors in a verified rodent model of psychosis.
Collapse
Affiliation(s)
- Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | |
Collapse
|
44
|
Grace AA. Dopamine system dysregulation by the hippocampus: implications for the pathophysiology and treatment of schizophrenia. Neuropharmacology 2011; 62:1342-8. [PMID: 21621548 DOI: 10.1016/j.neuropharm.2011.05.011] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 05/11/2011] [Accepted: 05/13/2011] [Indexed: 11/19/2022]
Abstract
For decades, the predominant hypothesis of schizophrenia centered on dysfunctions of the dopamine system. However, recent evidence now suggests that the dopamine system may be "normal" in its configuration, but instead is regulated abnormally by modulatory processes. Convergent studies in animals and in humans have now focused on the hippocampus as a central component in the generation of psychosis and possibly other symptom states in schizophrenia. Thus, activity in the ventral hippocampus has been shown to regulate dopamine neuron responsivity by controlling the number of dopamine neurons that can be phasically activated by stimuli. In this way, this structure determines the gain of the dopamine signal in response to stimuli. However, in schizophrenia, the hippocampus appears to be hyper-active, possibly due to attenuation of function of inhibitory interneurons. As a result, the dopamine system is driven into an overly responsive state. Current medications have focused on blockade of overstimulated dopamine receptors; however, this now appears to be several synapses downstream from the pathological antecedent. Therapeutic approaches that focus on normalizing hippocampal function may prove to be more effective treatment avenues for the schizophrenia patient.
Collapse
Affiliation(s)
- Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, 458 Crawford Hall, Pittsburgh, PA 15260, USA.
| |
Collapse
|
45
|
Lobb CJ, Troyer TW, Wilson CJ, Paladini CA. Disinhibition bursting of dopaminergic neurons. Front Syst Neurosci 2011; 5:25. [PMID: 21617731 PMCID: PMC3095811 DOI: 10.3389/fnsys.2011.00025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 04/26/2011] [Indexed: 11/21/2022] Open
Abstract
Substantia nigra pars compacta (SNpc) dopaminergic neurons receive strong tonic inputs from GABAergic neurons in the substantia nigra pars reticulata (SNpr) and globus pallidus (GP), and glutamatergic neurons in the subthalamic nucleus. The presence of these tonic inputs raises the possibility that phasic disinhibition may trigger phasic bursts in dopaminergic neurons. We first applied constant NMDA and GABAA conductances onto a two-compartment single cell model of the dopaminergic neuron (Kuznetsov et al., 2006). The model exhibited disinhibition bursting upon stepwise removal of inhibition. A further bifurcation analysis suggests that disinhibition may be more robust than excitation alone in that for most levels of NMDA conductance, the cell remains capable of bursting even after a complete removal of inhibition, whereas too much excitatory input will drive the cell into depolarization block. To investigate the network dynamics of disinhibition, we used a modified version of an integrate-and-fire based model of the basal ganglia (Humphries et al., 2006). Synaptic activity generated in the network was delivered to the two-compartment single cell dopaminergic neuron. Phasic activation of the D1-expressing medium spiny neurons in the striatum (D1STR) produced disinhibition bursts in dopaminergic neurons through the direct pathway (D1STR to SNpr to SNpc). Anatomical studies have shown that D1STR neurons have collaterals that terminate in GP. Adding these collaterals to the model, we found that striatal activation increased the intra-burst firing frequency of the disinhibition burst as the weight of this connection was increased. Our studies suggest that striatal activation is a robust means by which disinhibition bursts can be generated by SNpc dopaminergic neurons, and that recruitment of the indirect pathway via collaterals may enhance disinhibition bursting.
Collapse
Affiliation(s)
- Collin J Lobb
- Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | | | | | | |
Collapse
|
46
|
Lobb CJ, Wilson CJ, Paladini CA. High-frequency, short-latency disinhibition bursting of midbrain dopaminergic neurons. J Neurophysiol 2011; 105:2501-11. [PMID: 21367999 DOI: 10.1152/jn.01076.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During reinforcement and sequence learning, dopaminergic neurons fire bursts of action potentials. Dopaminergic neurons in vivo receive strong background excitatory and inhibitory inputs, suggesting that one mechanism by which bursts may be produced is disinhibition. Unfortunately, these inputs are lost during slice preparation and are not precisely controlled during in vivo experiments. In the present study we show that dopaminergic neurons can be shifted into a balanced state in which constant synaptic N-methyl-d-aspartate (NMDA) and GABA(A) conductances are mimicked either pharmacologically or using dynamic clamp. From this state, a disinhibition burst can be evoked by removing the background inhibitory conductance. We demonstrate three functional characteristics of network-based disinhibition that promote high-frequency, short-latency bursting in dopaminergic neurons. First, we found that increasing the total background NMDA and GABA(A) synaptic conductances increased the intraburst firing frequency and reduced its latency. Second, we found that the disinhibition burst is sensitive to the proportion of background inhibitory input that is removed. In particular, we found that high-frequency, short-latency bursts were enhanced by increasing the degree of disinhibition. Third, the time course over which inhibition is removed had a large effect on the burst, namely, that synchronous removal of weak inhibitory inputs produces bursts of high intraburst frequency and shorter latency. Our results suggest that fast, more precisely timed bursts can be evoked by complete and synchronous disinhibition of dopaminergic neurons in a high-conductance state.
Collapse
Affiliation(s)
- Collin J Lobb
- Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | |
Collapse
|
47
|
Lodge DJ, Grace AA. Developmental pathology, dopamine, stress and schizophrenia. Int J Dev Neurosci 2010; 29:207-13. [PMID: 20727962 DOI: 10.1016/j.ijdevneu.2010.08.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 01/12/2023] Open
Abstract
Psychological stress is a contributing factor for a wide variety of neuropsychiatric diseases including substance use disorders, anxiety, depression and schizophrenia. However, it has not been conclusively determined how stress augments the symptoms of these diseases. Here we review evidence that the ventral hippocampus may be a site of convergence whereby a number of seemingly discrete risk factors, including stress, may interact to precipitate psychosis in schizophrenia. Specifically, aberrant hippocampal activity has been demonstrated to underlie both the elevated dopamine neuron activity and associated behavioral hyperactivity to dopamine agonists in a verified animal model of schizophrenia. In addition, stress, psychostimulant drug use, prenatal infection and select genetic polymorphisms all appear to augment ventral hippocampal function that may therefore exaggerate or precipitate psychotic symptoms. Such information is critical for our understanding into the pathology of psychiatric disease with the ultimate aim being the development of more effective therapeutics.
Collapse
Affiliation(s)
- Daniel J Lodge
- Department of Pharmacology & Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA.
| | | |
Collapse
|
48
|
Lee CR, Tepper JM. Basal ganglia control of substantia nigra dopaminergic neurons. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2010:71-90. [PMID: 20411769 DOI: 10.1007/978-3-211-92660-4_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Although substantia nigra dopaminergic neurons are spontaneously active both in vivo and in vitro, this activity does not depend on afferent input as these neurons express an endogenous calcium-dependent oscillatory mechanism sufficient to drive action potential generation. However, afferents to these neurons, a large proportion of them GABAergic and arising from other nuclei in the basal ganglia, play a crucial role in modulating the activity of dopaminergic neurons. In the absence of afferent activity or when in brain slices, dopaminergic neurons fire in a very regular, pacemaker-like mode. Phasic activity in GABAergic, glutamatergic, and cholinergic inputs modulates the pacemaker activity into two other modes. The most common is a random firing pattern in which interspike intervals assume a Poisson-like distribution, and a less common pattern, often in response to a conditioned stimulus or a reward in which the neurons fire bursts of 2-8 spikes time-locked to the stimulus. Typically in vivo, all three firing patterns are observed, intermixed, in single nigrostriatal neurons varying over time. Although the precise mechanism(s) underlying the burst are currently the focus of intensive study, it is obvious that bursting must be triggered by afferent inputs. Most of the afferents to substantia nigra pars compacta dopaminergic neurons comprise monosynaptic inputs from GABAergic projection neurons in the ipsilateral neostriatum, the globus pallidus, and the substantia nigra pars reticulata. A smaller fraction of the basal ganglia inputs, something less than 30%, are glutamatergic and arise principally from the ipsilateral subthalamic nucleus and pedunculopontine nucleus. The pedunculopontine nucleus also sends a cholinergic input to nigral dopaminergic neurons. The GABAergic pars reticulata projection neurons also receive inputs from all of these sources, in some cases relaying them disynaptically to the dopaminergic neurons, thereby playing a particularly significant role in setting and/or modulating the firing pattern of the nigrostriatal neurons.
Collapse
Affiliation(s)
- Christian R Lee
- Department of Neurosurgery, New York University School of Medicine, 4 New York, NY 10016, USA.
| | | |
Collapse
|
49
|
Lobb CJ, Wilson CJ, Paladini CA. A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J Neurophysiol 2010; 104:403-13. [PMID: 20445035 DOI: 10.1152/jn.00204.2010] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dopaminergic neurons are subject to a significant background GABAergic input in vivo. The presence of this GABAergic background might be expected to inhibit dopaminergic neuron firing. However, dopaminergic neurons are not all silent but instead fire in single-spiking and burst firing modes. Here we present evidence that phasic changes in the tonic activity of GABAergic afferents are a potential extrinsic mechanism that triggers bursts and pauses in dopaminergic neurons. We find that spontaneous single-spiking is more sensitive to activation of GABA receptors than phasic N-methyl-D-aspartate (NMDA)-mediated burst firing in rat slices (P15-P31). Because tonic activation of GABA(A) receptors has previously been shown to suppress burst firing in vivo, our results suggest that the activity patterns seen in vivo are the result of a balance between excitatory and inhibitory conductances that interact with the intrinsic pacemaking currents observed in slices. Using the dynamic clamp technique, we applied balanced, constant NMDA and GABA(A) receptor conductances into dopaminergic neurons in slices. Bursts could be produced by disinhibition (phasic removal of the GABA(A) receptor conductance), and these bursts had a higher frequency than bursts produced by the same NMDA receptor conductance alone. Phasic increases in the GABA(A) receptor conductance evoked pauses in firing. In contrast to NMDA receptor, application of constant AMPA and GABA(A) receptor conductances caused the cell to go into depolarization block. These results support a bidirectional mechanism by which GABAergic inputs, in balance with NMDA receptor-mediated excitatory inputs, control the firing pattern of dopaminergic neurons.
Collapse
Affiliation(s)
- Collin J Lobb
- Neurosciences Institute, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | | | | |
Collapse
|
50
|
Hazy TE, Frank MJ, O’Reilly RC. Neural mechanisms of acquired phasic dopamine responses in learning. Neurosci Biobehav Rev 2010; 34:701-20. [PMID: 19944716 PMCID: PMC2839018 DOI: 10.1016/j.neubiorev.2009.11.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 11/19/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
Abstract
What biological mechanisms underlie the reward-predictive firing properties of midbrain dopaminergic neurons, and how do they relate to the complex constellation of empirical findings understood as Pavlovian and instrumental conditioning? We previously presented PVLV, a biologically inspired Pavlovian learning algorithm accounting for DA activity in terms of two interrelated systems: a primary value (PV) system, which governs how DA cells respond to a US (reward) and; a learned value (LV) system, which governs how DA cells respond to a CS. Here, we provide a more extensive review of the biological mechanisms supporting phasic DA firing and their relation to the spate of Pavlovian conditioning phenomena and their sensitivity to focal brain lesions. We further extend the model by incorporating a new NV (novelty value) component reflecting the ability of novel stimuli to trigger phasic DA firing, providing "novelty bonuses" which encourages exploratory working memory updating and in turn speeds learning in trace conditioning and other working memory-dependent paradigms. The evolving PVLV model builds upon insights developed in many earlier computational models, especially reinforcement learning models based on the ideas of Sutton and Barto, biological models, and the psychological model developed by Savastano and Miller. The PVLV framework synthesizes these various approaches, overcoming important shortcomings of each by providing a coherent and specific mapping to much of the relevant empirical data at both the micro- and macro-levels, and examines their relevance for higher order cognitive functions.
Collapse
Affiliation(s)
- Thomas E. Hazy
- Department of Psychology and Neuroscience University of Colorado Boulder, 345 UCB, Boulder, CO 80309
| | - Michael J. Frank
- Departments of Psychology and Cognitive and Linguistic Sciences Brown University, 190 Thayer Street, Providence, RI 02912
| | - Randall C. O’Reilly
- Department of Psychology and Neuroscience University of Colorado Boulder, 345 UCB, Boulder, CO 80309
| |
Collapse
|