1
|
Charron C, Schock SC, Proulx G, Thompson CS, Hakim AM, Plamondon H. Protection conferred by Corticotropin-releasing hormone in rat primary cortical neurons against chemical ischemia involves opioid receptor activation. Brain Res 2008; 1257:117-27. [PMID: 19146834 DOI: 10.1016/j.brainres.2008.12.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/12/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
Different studies have supported neuroprotective effects of Corticotropin-releasing hormone (CRH) against various excitotoxic and oxidative insults in vitro. However, the physiological mechanisms involved in this protection remain largely unknown. The present study was undertaken to determine the impact of CRH administration (at concentrations ranging from 200 fmol to 2 nmol) before and at delayed time intervals following potassium cyanide (KCN)-induced insult in rat primary cortical neurons. A second objective aimed to determine whether kappa and delta opioid receptor (KOR and DOR) blockade, using nor-binaltorphimine and naltrindole respectively (10 microM), could alter CRH-induced cellular protection. Our findings revealed that CRH treatments before or 3 and 8 h following KCN insult conferred significant protection against cortical injury, an effect blocked in cultures treated with alpha-helical CRH (9-41) prior to KCN administration. In addition, KOR and DOR blockade significantly reduced CRH-induced neuronal protection observed 3 but not 8 h post-KCN insult. Using western blotting, we demonstrated increased dynorphin, enkephalin, DOR and KOR protein expression in CRH-treated primary cortical neurons, and immunocytochemistry revealed the presence of opioid peptides and receptors in cortical neurons. These findings suggest protective effects of CRH against KCN-induced neuronal damage, and the contribution of the opioid system in modulating CRH actions.
Collapse
Affiliation(s)
- Charlaine Charron
- School of Psychology, University of Ottawa, 11, Marie Curie, Vanier 204, Ottawa, ON, Canada
| | | | | | | | | | | |
Collapse
|
2
|
Engström L, Mackerlova L, Blomqvist A. Lipopolysaccharide induces preproenkephalin transcription in hypophysiotropic neurons of the rat paraventricular hypothalamic nucleus suggesting a neuroendocrine role for enkephalins during immune stress. Neuroscience 2006; 142:781-8. [PMID: 16949213 DOI: 10.1016/j.neuroscience.2006.06.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 06/21/2006] [Accepted: 06/27/2006] [Indexed: 11/18/2022]
Abstract
Opioids have impact on stress responses and possess immune modulatory functions. We have previously shown that immune stress elevates the levels of preproenkephalin transcript in a variety of autonomic structures in the rat brain, including the paraventricular hypothalamic nucleus. By using in situ hybridization with an intronic probe recognizing the preproenkephalin heteronuclear RNA combined with retrograde tract tracing, we examined the efferent target of the enkephalinergic neurons in the paraventricular hypothalamic nucleus that display induced transcriptional activity during immune challenge. Rats were first given i.p. injections of the tracer substance Fluoro-Gold, which following this route of administration is taken up only by nerve terminals residing outside the blood-brain barrier, and were then given an i.v. injection of lipopolysaccharide. Neuronal cell bodies retrogradely labeled with Fluoro-Gold were detected by immunohistochemistry, and-using a dual-labeling approach-the same cells were then examined for their expression of preproenkephalin heteronuclear RNA. We found that over 90% of the neurons that expressed preproenkephalin heteronuclear RNA also contained Fluoro-Gold. In addition, approximately 40% of the neurons expressing preproenkephalin heteronuclear RNA co-expressed mRNA for corticotropin-releasing hormone, the main adrenocorticotropic hormone secretagogue. These data show that the paraventricular hypothalamic neurons that display induced preproenkephalin transcription following immune challenge are almost exclusively hypophysiotropic neurons, indicating a role for enkephalin in the hypothalamic control of hormone release during infectious and inflammatory conditions.
Collapse
Affiliation(s)
- L Engström
- Department of Biomedicine and Surgery, Division of Cell Biology, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | | | | |
Collapse
|
3
|
Salio C, Lossi L, Ferrini F, Merighi A. Neuropeptides as synaptic transmitters. Cell Tissue Res 2006; 326:583-98. [PMID: 16847638 DOI: 10.1007/s00441-006-0268-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 05/31/2006] [Indexed: 12/20/2022]
Abstract
Neuropeptides are small protein molecules (composed of 3-100 amino-acid residues) that have been localized to discrete cell populations of central and peripheral neurons. In most instances, they coexist with low-molecular-weight neurotransmitters within the same neurons. At the subcellular level, neuropeptides are selectively stored, singularly or more frequently in combinations, within large granular vesicles. Release occurs through mechanisms different from classical calcium-dependent exocytosis at the synaptic cleft, and thus they account for slow synaptic and/or non-synaptic communication in neurons. Neuropeptide co-storage and coexistence can be observed throughout the central nervous system and are responsible for a series of functional interactions that occur at both pre- and post-synaptic levels. Thus, the subcellular site(s) of storage and sorting mechanisms into different neuronal compartments are crucial to the mode of release and the function of neuropeptides as neuronal messengers.
Collapse
Affiliation(s)
- Chiara Salio
- Dipartimento di Morfofisiologia Veterinaria and Rita Levi Montalcini Center for Brain Repair, Via Leonardo da Vinci 44, 10095, Grugliasco (TO), Italy
| | | | | | | |
Collapse
|
4
|
Rivalland ETA, Iqbal J, Clarke IJ, Turner AI, Tilbrook AJ. Co-localization and distribution of corticotrophin-releasing hormone, arginine vasopressin and enkephalin in the paraventricular nucleus of sheep: A sex comparison. Neuroscience 2005; 132:755-66. [PMID: 15837136 DOI: 10.1016/j.neuroscience.2005.01.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2005] [Indexed: 11/30/2022]
Abstract
The paraventricular nucleus (PVN) is integral to regulation of the hypothalamo-pituitary-adrenal (HPA) axis and contains cells producing corticotrophin-releasing hormone (CRH), arginine vasopressin (AVP) and enkephalin. We used immunohistochemistry to map these peptides and to resolve the extent of co-localization within PVN cells in intact and gonadectomized male and female sheep. Immunoreactive (ir) CRH, AVP and enkephalin cells were mapped in two rams and two ewes at 180 mum intervals throughout the rostro-caudal extent of the PVN. Similar distributions of AVP-ir cells occurred in both sexes whereas CRH-ir and enkephalin-ir cells extended more rostrally in rams. In groups (n=4) of intact and gonadectomized sheep of both sexes, co-localization and distribution of neuropeptides was influenced by sex and gonadectomy. Males had more AVP and CRH cells than females. Intact animals had more AVP cells than gonadectomized animals. There were no differences between groups in the number or percentage of cells that stained for both CRH and AVP or in the number of cells that stained for both CRH and enkephalin. Differences were observed in the percentage of enkephalin cells that contained CRH with males having a greater percentage of co-localized cells than did females. Differences were also observed in the number and percentage of cells that stained for both enkephalin and AVP; the number of cells that stained for both neuropeptides was greater in males than in females and greater in intact animals than in gonadectomized animals. Differences were observed in the percentage of AVP cells that contained enkephalin, and in the percentage of enkephalin cells that contained AVP with males having a greater percentage of co-localized cells than did females. We conclude that sex and gonadal status affect peptide distribution in the PVN of the sheep which may provide an anatomical basis for sex differences in HPA axis responses to stress.
Collapse
Affiliation(s)
- E T A Rivalland
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
5
|
Bouret S, Prevot V, Croix D, Jégou S, Vaudry H, Stefano GB, Beauvillain JC, Mitchell V. Mu-opioid receptor mRNA expression in proopiomelanocortin neurons of the rat arcuate nucleus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 70:155-8. [PMID: 10381554 DOI: 10.1016/s0169-328x(99)00132-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been previously demonstrated that the activity of proopiomelanocortin (POMC)-containing neurons in the rat arcuate nucleus is regulated by opiates, but the expression of opioid receptors in POMC neurons has never been reported. In the present study, we have applied a double-labeling in situ hybridization technique to investigate the occurrence of mu-opioid receptor mRNA on POMC neurons. We have found that 20+/-3% of arcuate POMC neurons express mu-opioid receptor mRNA and that the proportion of POMC neurons expressing mu-opioid receptor is higher in the caudal than in the rostral portion of the arcuate nucleus. Our data suggest that POMC neurons might be both auto-regulated by beta-endorphin, and regulated by enkephalins.
Collapse
Affiliation(s)
- S Bouret
- INSERM U 422, IFR 22, Neuroendocrinologie et Physiopathologie Neuronale, place de Verdun, Lille Cedex 59045, France.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Like non-peptidergic transmitters, neuropeptides and their receptors display a wide distribution in specific cell types of the nervous system. The peptides are synthesized, typically as part of a larger precursor molecule, on the rough endoplasmic reticulum in the cell body. In the trans-Golgi network, they are sorted to the regulated secretory pathway, packaged into so-called large dense-core vesicles, and concentrated. Large dense-core vesicles are preferentially located at sites distant from active zones of synapses. Exocytosis may occur not only at synaptic specializations in axonal terminals but frequently also at nonsynaptic release sites throughout the neuron. Large dense-core vesicles are distinguished from small, clear synaptic vesicles, which contain "classical' transmitters, by their morphological appearance and, partially, their biochemical composition, the mode of stimulation required for release, the type of calcium channels involved in the exocytotic process, and the time course of recovery after stimulation. The frequently observed "diffuse' release of neuropeptides and their occurrence also in areas distant to release sites is paralleled by the existence of pronounced peptide-peptide receptor mismatches found at the light microscopic and ultrastructural level. Coexistence of neuropeptides with other peptidergic and non-peptidergic substances within the same neuron or even within the same vesicle has been established for numerous neuronal systems. In addition to exerting excitatory and inhibitory transmitter-like effects and modulating the release of other neuroactive substances in the nervous system, several neuropeptides are involved in the regulation of neuronal development.
Collapse
Affiliation(s)
- G K Zupanc
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Physikalische Biologie, Tübingen, Germany.
| |
Collapse
|
7
|
Affiliation(s)
- F J Tilders
- Graduate School Neurosciences Amsterdam, The Netherlands
| | | | | |
Collapse
|
8
|
Milner TA, Reis DJ, Pickel VM, Aicher SA, Giuliano R. Ultrastructural localization and afferent sources of corticotropin-releasing factor in the rat rostral ventrolateral medulla: implications for central cardiovascular regulation. J Comp Neurol 1993; 333:151-67. [PMID: 7688383 DOI: 10.1002/cne.903330203] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We investigated the ultrastructural localization, afferent sources, and arterial pressure effects of corticotropin-releasing factor (CRF) in the nucleus reticularis rostroventrolateralis (RVL), a region of the ventrolateral medulla containing C1 adrenergic neurons and sympatho-excitatory reticulospinal afferents to sympathetic preganglionic neurons. A polyclonal antibody to CRF was localized in acrolein-fixed sections through the rat RVL by the peroxidase-antiperoxidase (PAP) method. Light microscopy showed that 1-7 perikarya/30 micron section and numerous varicose processes contained CRF-like immunoreactivity (CRF-LI). By electron microscopy, CRF-LI was most intensely localized to large (80-100 nm) dense-core vesicles within numerous terminals and a few perikarya and large dendrites. Approximately half of the terminals containing CRF-LI were in direct contact with unlabeled perikarya or dendrites; the remainder were in apposition to either unlabeled terminals or astrocytes. Most synaptic specializations were asymmetric synapses on small, unlabeled dendrites. To examine potential extrinsic sources of CRF-containing terminals in the C1 area of the RVL, PAP immunocytochemical localization of CRF was combined with retrograde transport of wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP). In all cases examined, a number of dually labeled neurons were found in the paraventricular nucleus (PVN) of the hypothalamus and a few dually labeled neurons were observed in the nuclei of the solitary tract; these labeled neurons were ipsilateral to the unilateral injection of WGA-HRP into the C1 area. Fewer dually labeled perikarya were detected in the lateral hypothalamic area and the lateral parabrachial nuclei, ipsilateral to the WGA-HRP injection. Additional physiological studies showed that bilateral microinjections of CRF into the C1 area of the RVL of urethane-anesthetized rats elicited a dose-related increase in arterial pressure. The results suggest that within the C1 area of the RVL, CRF released from terminals, arising predominantly from the PVN of the hypothalamus and probably from local neurons as well, may excite sympathoexcitatory reticulospinal neurons.
Collapse
Affiliation(s)
- T A Milner
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021
| | | | | | | | | |
Collapse
|
9
|
Kita A, Imano K, Nakamura H. Involvement of corticotropin-releasing factor in the antinociception produced by interleukin-1 in mice. Eur J Pharmacol 1993; 237:317-22. [PMID: 8365458 DOI: 10.1016/0014-2999(93)90284-o] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recombinant human interleukin-1 alpha (rHu-IL-1 alpha) has been indicated to produce central antinociception in the mouse phenylquinone writhing test, the antinociception being unaffected by naloxone. Because interleukin-1 has been demonstrated to be a potent releaser of corticotropin-releasing factor (CRF) from the hypothalamus, we were interested to see whether CRF is involved in the antinociception induced by rHu-IL-1 alpha. In the present study, we examined this question using the mouse phenylquinone writhing test, in which mice were injected with various doses of CRF and/or alpha-helical CRF-(9-41), a CRF antagonist. CRF inhibited writhing responses after i.v. and intracisternal (i.c.) administration. The antinociception elicited by i.v. administered CRF was antagonized by i.v. injection, but not by i.c. injection, of alpha-helical CRF-(9-41). The antinociception elicited by i.e. administered CRF was antagonized by i.c. injection of alpha-helical CRF-(9-41) and s.c. treatment of opioid antagonists. rHu-IL-1 alpha-induced antinociception was attenuated by i.v. injection, but not by i.c. injection, of alpha-helical CRF-(9-41). These findings suggest that CRF possesses antinociceptive efficacy by both peripheral and central mechanisms, and that the antinociception induced by rHu-IL-1 alpha is mediated, at least in part, by the peripheral action of CRF.
Collapse
Affiliation(s)
- A Kita
- Department of Pharmacology, Dainippon Pharmaceutical Co., Ltd., Osaka, Japan
| | | | | |
Collapse
|
10
|
Shippenberg TS, Herz A, Nikolarakis K. Prolonged inflammatory pain modifies corticotropin-releasing factor-induced opioid peptide release in the hypothalamus. Brain Res 1991; 563:209-14. [PMID: 1686211 DOI: 10.1016/0006-8993(91)91535-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The influence of prolonged pain upon hypothalamic opioid peptide release in vitro was examined in rats subjected to Freund's adjuvant (FA)-induced unilateral inflammation of the hindlimb. Basal release of enkephalin (ENK) but not beta-endorphin (END) or dynorphin (DYN) was increased 10 days following FA treatment. Superfusion of corticotropin-releasing factor (CRF; 10(-8) M) stimulated the release of opioid peptides in control hypothalami. CRF, however, failed to modify beta-END and DYN release in hypothalami of FA-treated rats, whereas ENK release was markedly reduced. In contrast, KCl-stimulated opioid peptide release did not differ between FA and control hypothalami. These data demonstrate that prolonged inflammatory pain alters the responsiveness of hypothalamic opioid systems to CRF. It is suggested that this effect is mediated at the level of the CRF neuron or its receptor.
Collapse
Affiliation(s)
- T S Shippenberg
- Department of Neuropharmacology, Max-Planck-Institute for Psychiatry, Martinsried, F.R.G
| | | | | |
Collapse
|
11
|
Ceccatelli S, Cortés R, Hökfelt T. Effect of reserpine and colchicine on neuropeptide mRNA levels in the rat hypothalamic paraventricular nucleus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1991; 9:57-69. [PMID: 1850078 DOI: 10.1016/0169-328x(91)90130-p] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using in situ hybridization and immunohistochemistry, we have studied mRNA and peptide levels in the hypothalamic paraventricular nucleus (PVN) 24 h after a single large dose of reserpine (10 mg/kg, i.p.) and 24 h after an intraventricular (i.c.v.) injection of colchicine (120 microliters/20 microliters saline). Sections of the PVN were hybridized using synthetic oligonucleotide probes complementary to mRNA for corticotropin-releasing hormone (CRH), neurotensin (NT), enkephalin (ENK), vasoactive intestinal polypeptide (VIP) and thyrotropin-releasing hormone (TRH). For immunohistochemistry rabbit antisera to CRH, NT, ENK, VIP and TRH were used. In situ hybridization showed a clear increase in CRH mRNA as compared to control rats after both treatments. Also NT and VIP mRNA could be seen in parvocellular neurons in reserpine and in colchicine-treated rats, whereas we so far have not been able to demonstrate these mRNAs in untreated rats. No changes in TRH mRNA could be detected after reserpine of colchicine. These results provide final evidence that subpopulations of parvocellular PVN neurons can synthesize not only CRH and ENK, but also NT and VIP, in agreement with earlier immunohistochemical results. With immunochemistry, after reserpine, many CRH-, but no NT- or VIP- positive neurons could be observed in the parvoecellular part of the PVN. The present results demonstrate that treatment with two drugs, the monoamine depleting drug reserpine and the mitosis inhibitor colchicine, causes increased levels of mRNA for several peptides in neurons of the PVN, located almost exclusively in its parvocellular part and being part of the hypothalamo-pituitary adrenal axis.
Collapse
Affiliation(s)
- S Ceccatelli
- Department of Histology and Neurobiology, Karolinska Institutet, Stockholm
| | | | | |
Collapse
|
12
|
Reiner A, Anderson KD. The patterns of neurotransmitter and neuropeptide co-occurrence among striatal projection neurons: conclusions based on recent findings. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1990; 15:251-65. [PMID: 1981156 DOI: 10.1016/0165-0173(90)90003-7] [Citation(s) in RCA: 246] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The neurotransmitter organization of striatal projection neurons appears to be less complex than once thought. Only 4 major evolutionarily conserved populations appear to be present. The neurons of two of these populations contain SP, DYN and GABA, with one of these two populations consisting of striatonigral projection neurons and the other of striatopallidal projection neurons. The two additional major populations of striatal projection neurons consist of striatopallidal and striato-nigral neurons that both contain both ENK and GABA. Although these conclusions greatly simplify the understanding of the organization of striatal projection neurons by suggesting that only a few major populations are present, these conclusions complicate understanding of neurotransmission between these neurons and their target areas by suggesting that each neuron utilizes multiple neuroactive substances to influence target neurons. Further studies will therefore be required to explore the mechanisms of neurotransmission by which striatal neurons communicate with their target areas.
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, University of Tennessee-Memphis 38163
| | | |
Collapse
|
13
|
Jennes L. Corticotropin-releasing factor. Ann N Y Acad Sci 1990; 597:231-8. [PMID: 1974755 DOI: 10.1111/j.1749-6632.1990.tb16171.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- L Jennes
- Department of Anatomy, School of Medicine, Wright State University, Dayton, Ohio 45435
| |
Collapse
|
14
|
Anderson KD, Reiner A. Extensive co-occurrence of substance P and dynorphin in striatal projection neurons: an evolutionarily conserved feature of basal ganglia organization. J Comp Neurol 1990; 295:339-69. [PMID: 1693632 DOI: 10.1002/cne.902950302] [Citation(s) in RCA: 165] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A number of different neuroactive substances have been found in striatal projection neurons and in fibers and terminals in their target areas, including substance P (SP), enkephalin (ENK), and dynorphin (DYN). In a preliminary report on birds and reptiles, we have suggested that SP and DYN are to a large extent found in the same striatal projection neurons and that ENK is found in a separate population of striatal projection neurons. In the present study, we have examined this issue in more detail in pigeons and turtles. Further, we have also explored this issue in rats to determine whether this is a phylogenetically conserved feature of basal ganglia organization. Simultaneous immunofluorescence double-labeling procedures were employed to explore the colocalization of SP and DYN, SP and ENK, and ENK and DYN in striatal neurons and in striatal, nigral, and pallidal fibers in pigeons, turtles, and rats. To guard against possible cross-reactivity of DYN and ENK antisera with each others' antigens, separate double-label studies were carried out with several different antisera that were specific for DYN peptides (e.g., dynorphin A 1-17, dynorphin B, leumorphin) or ENK peptides (leucine-enkephalin, metenkephalin-arg6-gly7-leu8, methionine-enkephalin-arg6-phe7). The results showed that SP and DYN co-occur extensively in specific populations of striatal projection neurons, whereas ENK typically is present in different populations of striatal projection neurons. In pigeons, 95-99% of all striatal neurons containing DYN were found to contain SP and vice versa. In contrast, only 1-3% of the SP+ striatal neurons and no DYN neurons contained ENK. Similarly, in turtles, greater than 75% of the SP+ neurons were DYN+ and vice versa, whereas ENK was observed in fewer than 5% of the SP+ neurons and 2% of the DYN+ neurons. Finally, in rats, more than 70% of the SP+ neurons contained DYN and vice versa, but ENK was found in only 5% of the SP+ neurons and in none of the DYN+ perikarya. Fiber double-labeling in the striatum and its target areas (the pallidum and substantia nigra) was also consonant with these observations in pigeons, turtles, and rats. These results, in conjunction with studies in cats by M.-J. Besson, A.M. Graybiel, and B. Quinn (1986; Soc Neurosci. Abs. 12:876) strongly indicate that the co-occurrence of SP and DYN in large numbers of striatonigral and striatopallidal projection neurons in a phylogenetically widespread, and therefore evolutionarily conserved, feature of basal ganglia organization.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K D Anderson
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis 38163
| | | |
Collapse
|
15
|
Pretel S, Piekut D. Coexistence of corticotropin-releasing factor and enkephalin in the paraventricular nucleus of the rat. J Comp Neurol 1990; 294:192-201. [PMID: 2332527 DOI: 10.1002/cne.902940204] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Corticotropin-releasing factor and enkephalin-containing neurons are found in the paraventricular nucleus of the rat hypothalamus. Their immunocytochemical distribution suggests that a subpopulation of neurons of the paraventricular nucleus might contain both peptides. The present study describes the coexistence of corticotropin-releasing factor and enkephalin in parvicellular neurons of the paraventricular nucleus. Immunocytochemical labeling of peptides was combined with in situ hybridization of mRNA to visualize peptide and mRNA labeling in the same tissue section. This resulted in several observations: (1) neurons labeling for the peptide corticotropin-releasing factor also contain the mRNA to synthesize corticotropin-releasing factor, (2) neurons labeling for the peptide enkephalin also contain the mRNA to synthesize the peptide enkephalin, (3) a subpopulation of corticotropin-releasing factor neurons contains the mRNA to synthesize enkephalin, and (4) a subpopulation of enkephalin neurons contains the mRNA to synthesize corticotropin-releasing factor. A large percentage of enkephalin immunoreactive neurons contains corticotropin-releasing factor mRNA, whereas a smaller percentage of corticotropin-releasing factor immunoreactive neurons contains enkephalin mRNA. These double-labeled neurons are present throughout the rostral-caudal extent of the paraventricular nucleus; the majority of these neurons is present in the medial parvicellular paraventricular nucleus.
Collapse
Affiliation(s)
- S Pretel
- Neuroendocrine Unit, School of Medicine and Dentistry, University of Rochester, New York 14642
| | | |
Collapse
|
16
|
Ayesta FJ, Nikolarakis KE. Peripheral but not intracerebroventricular corticotropin-releasing hormone (CRH) produces antinociception which is not opioid mediated. Brain Res 1989; 503:219-24. [PMID: 2605516 DOI: 10.1016/0006-8993(89)91667-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Corticotropin-releasing hormone and endogenous opioid peptide systems are both activated during stress. An elevation of the pain threshold also occurs under conditions of stress. In the present study the effects of CRH antinociception were examined. Rats were treated with CRH either centrally (i.c.v.) or peripherally (intracardially; i.c.) and their tail-flick latencies were measured. Central application of CRH (0-30 micrograms) was without effect on the analgesic test, while after peripheral application (0-32 micrograms) CRH produced a dose-dependent increase in tail-flick latencies. In a subsequent experiment we examined the possible involvement of endogenous opioids in the peripheral CRH-induced antinociceptive effects. To this end, two approaches were used: animals were either acutely treated with the opioid antagonist naloxone (3 or 6 mg/kg), or they were rendered tolerant to morphine, and then tested with CRH. In both cases, CRH effects on the tail-flick latencies were not modified. Our findings suggest that: (a) CRH may modulate pain sensitivity during stress; (b) opioids do not mediate this effect; and (c) brain CRH receptors are probably not involved in these processes.
Collapse
Affiliation(s)
- F J Ayesta
- Department of Neuropharmacology, Max Planck Institute for Psychiatry, Planegg-Martinsried, F.R.G
| | | |
Collapse
|
17
|
Nikolarakis KE, Pfeiffer A, Stalla GK, Herz A. Facilitation of ACTH secretion by morphine is mediated by activation of CRF releasing neurons and sympathetic neuronal pathways. Brain Res 1989; 498:385-8. [PMID: 2551464 DOI: 10.1016/0006-8993(89)91122-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Exogenously applied opioid agonists have a stimulatory effect on adrenocorticotropic hormone (ACTH) secretion. The present experiments were designed to examine the mechanisms involved in the stimulatory effect of the mu-receptor agonist morphine on ACTH release in chronically cannulated, freely moving, non-stressed rats. Morphine (7.5 mg/kg, i.v.) treatment was followed by a significant increase in plasma levels of ACTH. Pretreatment with the peripheral ganglionic blocker chlorisondamine (3 mg/kg, i.p.) attenuated the response to morphine. The morphine stimulatory effect was also partially inhibited if the rats were pretreated with a specific antiserum to corticotropin-releasing factor (CRF). In rats given both CRF antiserum and chlorisondamine, the plasma ACTH levels remained unchanged after morphine application. These findings indicate that morphine stimulates the release of ACTH by activating both CRF-secretion and peripheral sympathetic neuronal pathways.
Collapse
Affiliation(s)
- K E Nikolarakis
- Department of Neuropharmacology, Max-Planck-Institut für Psychiatrie, Planegg-Martinsrie, F.R.G
| | | | | | | |
Collapse
|
18
|
Sirinathsinghji DJ, Nikolarakis KE, Herz A. Corticotropin-releasing factor stimulates the release of methionine-enkephalin and dynorphin from the neostriatum and globus pallidus of the rat: in vitro and in vivo studies. Brain Res 1989; 490:276-91. [PMID: 2569903 DOI: 10.1016/0006-8993(89)90245-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study examined the changes in the in vitro and in vivo release of methionine-enkephalin (Met-enkephalin), and dynorphin from the rat neostriatum in response to corticotropin-releasing factor (CRF). The levels of each opioid peptide were measured in the same sample collected at each time interval by specific radioimmunoassay methods. The in vitro release experiments were conducted using neostriatal slices (250 microns) obtained from adult male Wistar rats whereas in the in vivo studies, the release of both Met-enkephalin and dynorphin were assessed in push-pull perfusates of the caudate nucleus (containing both Met-enkephalin and dynorphin cell bodies/fibres) and the globus pallidus (containing Met-enkephalin and dynorphin terminals) of chloral hydrate-anaesthetised adult male Wistar rats. In the in vitro studies, CRF (10(-12), 10(-10) and 10(-8) M) (applied in pulses of 75 min) stimulated both Met-enkephalin and dynorphin release from the neostriatal slices in a dose-related manner; in the presence of the CRF receptor antagonist, alpha-helical CRF9-41 (10(-6) M) the release of both Met-enkephalin and dynorphin in response to CRF (10(-8) M) were completely blocked. Push-pull perfusion experiments conducted in both the caudate nucleus and the globus pallidus, also demonstrated a dose-related increase in the release of both Met-enkephalin and dynorphin in response to CRF (10(-12), 10(-10) and 10(-8) M) applied in 60-min pulses. In addition, in each of the two brain sites, the release of both Met-enkephalin and dynorphin in response to CRF (10(-8) M) was completely blocked by alpha-helical CRF9-41 (10(-6) M). Both the in vitro and in vivo studies thus demonstrate that CRF can exert potent effects on Met-enkephalin and dynorphin release within the neostriatum-pallidum of the rat and that such effects are mediated via receptors specific for CRF, probably located on both the cell bodies and terminals of these opioid-containing neurones. The data obtained in this study thus substantiate the view that CRF, in addition to its regulation of pituitary opioid peptides, can communicate to opioid-containing neurones within the central nervous system and that many of the effects elicited by CRF may be ascribed to the opioid peptide released by CRF.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D J Sirinathsinghji
- Department of Neuroendocrinology, AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, U.K
| | | | | |
Collapse
|
19
|
Lightman SL, Young WS. Influence of steroids on the hypothalamic corticotropin-releasing factor and preproenkephalin mRNA responses to stress. Proc Natl Acad Sci U S A 1989; 86:4306-10. [PMID: 2786213 PMCID: PMC287441 DOI: 10.1073/pnas.86.11.4306] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have used in situ hybridization histochemistry to investigate the influence of both circulating corticosteroids and the stress paradigm of i.p. hypertonic saline on the levels of mRNAs encoding corticotropin-releasing factor (CRF) and preproenkephalin in parvocellular neurons of the rat hypothalamus. Stress increased both CRF and preproenkephalin mRNAs, whereas adrenalectomy increased only CRF mRNA. After adrenalectomy, even when CRF mRNA had reached peak levels, stress still further increased CRF mRNA and caused an exaggerated rise in preproenkephalin mRNA. Dexamethasone administration in the fast or intermediate-feedback time domains had no effect on CRF or preproenkephalin mRNA responses to stress; however, when administered over a longer period of time in the slow-feedback time domain dexamethasone reduced basal CRF mRNA levels and the stress-stimulated levels of CRF and preproenkephalin mRNA. These results show that different stimuli to the parvocellular paraventricular hypothalamus differentially regulate CRF transcript levels. Furthermore, in spite of the lack of any detectable effect of changes in circulating glucocorticoid levels on basal levels of preproenkephalin mRNA, glucocorticoids markedly alter the preproenkephalin mRNA response to stress.
Collapse
Affiliation(s)
- S L Lightman
- Laboratory of Cell Biology, National Institute of Mental Health, Bethesda, MD 20892
| | | |
Collapse
|
20
|
Nikolarakis KE, Almeida OF, Herz A. Multiple factors influencing the in vitro release of [Met5]-enkephalin from rat hypothalamic slices. J Neurochem 1989; 52:428-32. [PMID: 2783452 DOI: 10.1111/j.1471-4159.1989.tb09138.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study examined several in vivo and in vitro factors which influence the release of [Met5]-enkephalin (Met-ENK) from male rat hypothalamic slices superfused in vitro. Met-ENK release was significantly stimulated by corticotropin-releasing hormone (CRH; 10(-12)-10(-8) M), an effect which was abolished in the presence of the CRH-receptor antagonist, alpha-helical CRF9-41 (10(-6) M). The amount of Met-ENK release diminished with time in experiments in which the slices were continuously exposed to CRH. The opioid receptor antagonist naloxone (10(-6) M) stimulated Met-ENK release, even in the presence of the Na+ -channel blocker tetrodotoxin (10(-6) M), a result indicating presynaptic opioid feedback inhibition of Met-ENK release. The role of gonadal steroids in the control of Met-ENK release in vitro was also examined. It was found that the basal and CRH-induced release of Met-ENK was not changed 1 week after castration. However, a significant increase in the basal release of this peptide was observed 4 weeks after gonadectomy, and the Met-ENK-releasing efficacy of CRH was found to be reduced. The Met-ENK content of hypothalami from 1-week castrates was not significantly changed from control levels, but was significantly reduced in those from 4-week castrates. These long-term effects of castration could be overcome by the subcutaneous implantation of testosterone-containing capsules at the time of castration.
Collapse
Affiliation(s)
- K E Nikolarakis
- Department of Neuropharmacology, Max-Planck-Institut für Psychiatrie, Planegg-Martinsried, F.R.G
| | | | | |
Collapse
|
21
|
Daikoku S, Hisano S, Kawano H, Tsuruo Y, Zhang RJ, Kagotani Y. Immunohistochemical approach to the functional morphology of the hypothalamic-hypophysial system. Brain Dev 1989; 11:73-9. [PMID: 2565692 DOI: 10.1016/s0387-7604(89)80073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Immunohistochemical studies at the light and electron microscopic levels have provided much information on functional morphology in the hypothalamic-hypophysial system. The present paper describes the immunohistochemical techniques available at present and their use to determine the localizations of neurons containing hypophysiotrophic substances, the co-storage of plural signals in these neurons, and the synaptic regulation of these neurons in rats.
Collapse
Affiliation(s)
- S Daikoku
- Department of Anatomy, School of Medicine, University of Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Sakanaka M, Magari S, Shibasaki T. Fine structures of nerve fibers with corticotropin-releasing factor-like immunoreactivity in the rat lateral septum. Neurosci Lett 1988; 93:23-7. [PMID: 3264895 DOI: 10.1016/0304-3940(88)90006-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The fine structures of nerve fibers with corticotropin-releasing factor (CRF)-like immunoreactivity in the rat lateral septum were investigated by means preembedding immunoelectron microscopy. A number of CRF axon terminals formed synapses with cell bodies of non-immunoreactive septal neurons. They occasionally had broad terminal bulges whose subregions showed little or no immunoreactivity for CRF. CRF axon terminals were also in synaptic contact with non-immunoreactive dendrites or dendritic spines. Some dendrites with CRF were postsynaptic to non-immunoreactive axon terminals.
Collapse
Affiliation(s)
- M Sakanaka
- Department of Anatomy, Osaka Medical College, Japan
| | | | | |
Collapse
|
23
|
Daikoku S, Chikamori-Aoyama M, Tokuzen M, Okamura Y, Kagotani Y. Development of hypothalamic neurons in intraventricular grafts: expression of specific transmitter phenotypes. Dev Biol 1988; 126:382-93. [PMID: 2895028 DOI: 10.1016/0012-1606(88)90148-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The anlages of the medial-basal hypothalamus (MBH), septopreoptic area (POA), Rathke's pouch, and the parietal cortex (CC) of rats (at 12.5, 14.5 and 16.5 days of gestation) were transplanted singly or in combination into the third ventricle of adult female rats, and the development of neurons in the grafts was investigated immunohistochemically with the use of antisera to tyrosine hydroxylase (TH), somatostatin (SRIH), ACTH, methionine enkephalin-Arg6-Gly7-Leu8 (Enk-8), rat corticotropin-releasing factor (rCRF), rat hypothalamic growth hormone-releasing factor (rhGRF), and luteinizing hormone-releasing hormone (LHRH). TH and all the peptides examined except LHRH were detected in distinct neurons in MBH grafts and in cografts of MBH plus Rathke's pouch from 12.5-day-old embryos. SRIH, rCRF, Enk-8, and TH were found in POA grafts from embryos of the same age. Although immunoreactive LHRH was first detected in neurons in POA grafts from 16.5-day-old embryos, it appeared in cografts of POA and MBH from 12.5-day-old embryos. The immunoreactive fibers developed in the grafts expressed the same characteristic behaviors as in intact brain; the fibers containing hormonal substances formed complexes with the vasculature like in the organum vasculosum laminae terminalis (OVLT) or in the median eminence, while the fibers containing neurotropic signals formed fiber networks surrounding other nerve cell bodies as if they synaptically associate. In CC grafts, the neurons contained TH, SRIH, rCRF, or Enk-8, and their axonal processes formed fiber networks. These findings suggest that all the hypothalamic neurons examined are committed by 12.5 days of gestation to develop maintaining transmitter phenotype and target recognition capacity.
Collapse
Affiliation(s)
- S Daikoku
- Department of Anatomy, School of Medicine, University of Tokushima, Japan
| | | | | | | | | |
Collapse
|
24
|
Abstract
Immunocytochemical techniques were applied to brain and pituitary sections of eleven teleost species. A corticotropin-releasing factor (CRF)-antiserum allowed the identification of a CRF-like system in these species. Perikarya were labeled in the preoptic nucleus. Labeled fibers were traced laterally, then ventrally close to the optic chiasma, forming two symmetrical tracts running through the basal hypothalamus. These ended in the rostral neurohypophysis (NH) close to ACTH cells as shown by double immunostaining. Other fibers, often more variquous, ended in the caudal NH close to melanocorticotropic cells. In Salmo fario, small perikarya also stained in the nucleus lateralis tuberis. The CRF-like system appears distinct from that of somatostatin. In Anguilla, adjacent sections stained with CRF- and vasotocin (AVT)-antisera respectively showed that these two peptides coexist in some perikarya. As few fibers containing only AVT end in the rostral NH, they probably do not control ACTH cells directly. AVT fibers terminate mostly in the caudal NH close to melanocorticotropic cells. Some extra-hypothalamic fibers suggest that CRF may also act as a neurotransmitter. The plurality of hormones showing a CRF-like activity in teleosts is considered.
Collapse
Affiliation(s)
- M Olivereau
- Laboratoire de Physiologie, Institut Océanographique, Paris, France
| | | |
Collapse
|
25
|
Hisano S, Tsuruo Y, Katoh S, Daikoku S, Yanaihara N, Shibasaki T. Intragranular colocalization of arginine vasopressin and methionine-enkephalin-octapeptide in CRF-axons in the rat median eminence. Cell Tissue Res 1987; 249:497-507. [PMID: 3499227 DOI: 10.1007/bf00217321] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ultrastructural appearances of axonal terminals containing corticoliberin (CRF) were examined in the rat median eminence prepared by a freeze-drying procedure. Immunolabeling was performed by using 5-, 8-, or 15-nm gold-antibody complexes for CRF, arginine vasopressin (VP) and methionine-enkephalin-octapeptide (Enk-8), singly or in combination. In intact animals, the CRF-containing secretory granules were only slightly labeled with gold-anti-VP or -Enk-8. In adrenalectomized rats, granules within single axons appeared to be labeled with all the immunogold complexes. This intragranular colocalization of the three antigens was confirmed by using three neighboring sections of the same axon terminals which were stained separately with each one of the antibodies and visualized with the avidin-biotin-peroxidase complex method. The granules labeled for CRF had decreased 9 days after adrenalectomy but had increased again by day 21, while those labeled for VP steadily increased after adrenalectomy. However, this did not correspond with the appearances of cell bodies in the paraventricular nucleus; the cell bodies labeled for both CRF and VP steadily increased in number and in stainability. By contrast, Enk-8 immunoreactivity in the axonal terminals and cell bodies was not affected by adrenalectomy. These findings suggest that although the three peptides could be released simultaneously from the axonal terminals, VP may play some special role in the expression of CRF activity.
Collapse
Affiliation(s)
- S Hisano
- Department of Anatomy, University of Tokushima, Japan
| | | | | | | | | | | |
Collapse
|