1
|
Uchida S, Kagitani F. Influence of age on nicotinic cholinergic regulation of blood flow in rat's olfactory bulb and neocortex. J Physiol Sci 2024; 74:18. [PMID: 38491428 PMCID: PMC10941616 DOI: 10.1186/s12576-024-00913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
The olfactory bulb receives cholinergic basal forebrain inputs as does the neocortex. With a focus on nicotinic acetylcholine receptors (nAChRs), this review article provides an overview and discussion of the following findings: (1) the nAChRs-mediated regulation of regional blood flow in the neocortex and olfactory bulb, (2) the nAChR subtypes that mediate their responses, and (3) their activity in old rats. The activation of the α4β2-like subtype of nAChRs produces vasodilation in the neocortex, and potentiates olfactory bulb vasodilation induced by olfactory stimulation. The nAChR activity producing neocortical vasodilation was similarly maintained in 2-year-old rats as in adult rats, but was clearly reduced in 3-year-old rats. In contrast, nAChR activity in the olfactory bulb was reduced already in 2-year-old rats. Thus, age-related impairment of α4β2-like nAChR function may occur earlier in the olfactory bulb than in the neocortex. Given the findings, the vasodilation induced by α4β2-like nAChR activation may be beneficial for neuroprotection in the neocortex and the olfactory bulb.
Collapse
Affiliation(s)
- Sae Uchida
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Fusako Kagitani
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|
2
|
Brunert D, Quintela RM, Rothermel M. The anterior olfactory nucleus revisited - an emerging role for neuropathological conditions? Prog Neurobiol 2023:102486. [PMID: 37343762 DOI: 10.1016/j.pneurobio.2023.102486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Olfaction is an important sensory modality for many species and greatly influences animal and human behavior. Still, much about olfactory perception remains unknown. The anterior olfactory nucleus is one of the brain's central early olfactory processing areas. Located directly posterior to the olfactory bulb in the olfactory peduncle with extensive in- and output connections and unique cellular composition, it connects olfactory processing centers of the left and right hemispheres. Almost 20 years have passed since the last comprehensive review on the anterior olfactory nucleus has been published and significant advances regarding its anatomy, function, and pathophysiology have been made in the meantime. Here we briefly summarize previous knowledge on the anterior olfactory nucleus, give detailed insights into the progress that has been made in recent years, and map out its emerging importance in translational research of neurological diseases.
Collapse
Affiliation(s)
- Daniela Brunert
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | | | - Markus Rothermel
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany.
| |
Collapse
|
3
|
Carrette LLG, Kimbrough A, Davoudian PA, Kwan AC, Collazo A, George O. Hyperconnectivity of Two Separate Long-Range Cholinergic Systems Contributes to the Reorganization of the Brain Functional Connectivity during Nicotine Withdrawal in Male Mice. eNeuro 2023; 10:ENEURO.0019-23.2023. [PMID: 37295945 PMCID: PMC10306126 DOI: 10.1523/eneuro.0019-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic nicotine results in dependence with withdrawal symptoms on discontinuation of use, through desensitization of nicotinic acetylcholine receptors and altered cholinergic neurotransmission. Nicotine withdrawal is associated with increased whole-brain functional connectivity and decreased network modularity; however, the role of cholinergic neurons in those changes is unknown. To identify the contribution of nicotinic receptors and cholinergic regions to changes in the functional network, we analyzed the contribution of the main cholinergic regions to brain-wide activation of the immediate early-gene Fos during withdrawal in male mice and correlated these changes with the expression of nicotinic receptor mRNA throughout the brain. We show that the main functional connectivity modules included the main long-range cholinergic regions, which were highly synchronized with the rest of the brain. However, despite this hyperconnectivity, they were organized into two anticorrelated networks that were separated into basal forebrain-projecting and brainstem-thalamic-projecting cholinergic regions, validating a long-standing hypothesis of the organization of the brain cholinergic systems. Moreover, baseline (without nicotine) expression of Chrna2, Chrna3, Chrna10, and Chrnd mRNA of each brain region correlated with withdrawal-induced changes in Fos expression. Finally, by mining the Allen Brain mRNA expression database, we were able to identify 1755 gene candidates and three pathways (Sox2-Oct4-Nanog, JAK-STAT, and MeCP2-GABA) that may contribute to nicotine withdrawal-induced Fos expression. These results identify the dual contribution of the basal forebrain and brainstem-thalamic cholinergic systems to whole-brain functional connectivity during withdrawal; and identify nicotinic receptors and novel cellular pathways that may be critical for the transition to nicotine dependence.
Collapse
Affiliation(s)
| | - Adam Kimbrough
- Department of Psychiatry, UC San Diego, California 92093
| | - Pasha A Davoudian
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut 06511
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Alex C Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853
| | - Andres Collazo
- Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | - Olivier George
- Department of Psychiatry, UC San Diego, California 92093
| |
Collapse
|
4
|
Carrette LL, Kimbrough A, Davoudian PA, Kwan AC, Collazo A, George O. Hyperconnectivity of two separate long-range cholinergic systems contributes to the reorganization of the brain functional connectivity during nicotine withdrawal in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534836. [PMID: 37034602 PMCID: PMC10081261 DOI: 10.1101/2023.03.29.534836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Chronic nicotine results in dependence with withdrawal symptoms upon discontinuation of use, through desensitization of nicotinic acetylcholine receptors and altered cholinergic neurotransmission. Nicotine withdrawal is associated with increased whole-brain functional connectivity and decreased network modularity, however, the role of cholinergic neurons in those changes is unknown. To identify the contribution of nicotinic receptors and cholinergic regions to changes in the functional network, we analyzed the contribution of the main cholinergic regions to brain-wide activation of the immediate early-gene FOS during withdrawal in male mice and correlated these changes with the expression of nicotinic receptor mRNA throughout the brain. We show that the main functional connectivity modules included the main long-range cholinergic regions, which were highly synchronized with the rest of the brain. However, despite this hyperconnectivity they were organized into two anticorrelated networks that were separated into basal forebrain projecting and brainstem-thalamic projecting cholinergic regions, validating a long-standing hypothesis of the organization of the brain cholinergic systems. Moreover, baseline (without nicotine) expression of Chrna2 , Chrna3 , Chrna10 , and Chrnd mRNA of each brain region correlated with withdrawal-induced changes in FOS expression. Finally, by mining the Allen Brain mRNA expression database, we were able to identify 1755 gene candidates and three pathways (Sox2-Oct4-Nanog, JAK-STAT, and MeCP2-GABA) that may contribute to nicotine withdrawal-induced FOS expression. These results identify the dual contribution of the basal forebrain and brainstem-thalamic cholinergic systems to whole-brain functional connectivity during withdrawal; and identify nicotinic receptors and novel cellular pathways that may be critical for the transition to nicotine dependence. Significance Statement Discontinuation of nicotine use in dependent users is associated with increased whole-brain activation and functional connectivity and leads to withdrawal symptoms. Here we investigated the contribution of the nicotinic cholinergic receptors and main cholinergic projecting brain areas in the whole-brain changes associated with withdrawal. This not only allowed us to visualize and confirm the previously described duality of the cholinergic brain system using this novel methodology, but also identify nicotinic receptors together with 1751 other genes that contribute, and could thus be targets for treatments against, nicotine withdrawal and dependence.
Collapse
Affiliation(s)
| | - Adam Kimbrough
- Department of Psychiatry, UC San Diego, La Jolla, CA, 92032, United States
| | - Pasha A. Davoudian
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, 06511, United States
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06511, United States
| | - Alex C. Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Andres Collazo
- Beckman Institute, CalTech, Pasadena, CA, 91125, United States
| | - Olivier George
- Department of Psychiatry, UC San Diego, La Jolla, CA, 92032, United States
| |
Collapse
|
5
|
Soma S, Suematsu N, Sato AY, Tsunoda K, Bramian A, Reddy A, Takabatake K, Karube F, Fujiyama F, Shimegi S. Acetylcholine from the nucleus basalis magnocellularis facilitates the retrieval of well-established memory. Neurobiol Learn Mem 2021; 183:107484. [PMID: 34175450 DOI: 10.1016/j.nlm.2021.107484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 01/31/2023]
Abstract
Retrieval deficit of long-term memory is a cardinal symptom of dementia and has been proposed to associate with abnormalities in the central cholinergic system. Difficulty in the retrieval of memory is experienced by healthy individuals and not limited to patients with neurological disorders that result in forgetfulness. The difficulty of retrieving memories is associated with various factors, such as how often the event was experienced or remembered, but it is unclear how the cholinergic system plays a role in the retrieval of memory formed by a daily routine (accumulated experience). To investigate this point, we trained rats moderately (for a week) or extensively (for a month) to detect a visual cue in a two-alternative forced-choice task. First, we confirmed the well-established memory in the extensively trained group was more resistant to the retrieval problem than recently acquired memory in the moderately trained group. Next, we tested the effect of a cholinesterase inhibitor, donepezil, on the retrieval of memory after a long no-task period in extensively trained rats. Pre-administration of donepezil improved performance and reduced the latency of task initiation compared to the saline-treated group. Finally, we lesioned cholinergic neurons of the nucleus basalis magnocellularis (NBM), which project to the entire neocortex, by injecting the cholinergic toxin 192 IgG-saporin. NBM-lesioned rats showed severely impaired task initiation and performance. These abilities recovered as the trials progressed, though they never reached the level observed in rats with intact NBM. These results suggest that acetylcholine released from the NBM contributes to the retrieval of well-established memory developed by a daily routine.
Collapse
Affiliation(s)
- Shogo Soma
- Graduate School of Medicine, Osaka University, Osaka 560-0043, Japan; Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Naofumi Suematsu
- Graduate School of Medicine, Osaka University, Osaka 560-0043, Japan; Center for Sciences Towards Symbiosis Among Human, Machine and Data, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Akinori Y Sato
- Graduate School of Medicine, Osaka University, Osaka 560-0043, Japan; Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Keisuke Tsunoda
- Graduate School of Medicine, Osaka University, Osaka 560-0043, Japan
| | - Allen Bramian
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Anish Reddy
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Koki Takabatake
- College of Arts & Sciences, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Fuyuki Karube
- Graduate School of Brain Science, Doshisha University, Kyoto 619-0225, Japan; Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Fumino Fujiyama
- Graduate School of Brain Science, Doshisha University, Kyoto 619-0225, Japan; Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Satoshi Shimegi
- Graduate School of Medicine, Osaka University, Osaka 560-0043, Japan; Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
6
|
Effects of aging on the cholinergic innervation of the rat ventral tegmental area: A stereological study. Exp Gerontol 2021; 148:111298. [PMID: 33652122 DOI: 10.1016/j.exger.2021.111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022]
Abstract
Dopamine neurons in the ventral tegmental area (VTA) play a main role in processing both rewarding and aversive stimuli, and their response to salient stimuli is significantly shaped by afferents originating in the brainstem cholinergic nuclei. Aging is associated with a decline in dopaminergic activity and reduced response to positive reinforcement. We have used stereological techniques to examine, in adult and aged rats, the dopaminergic neurons and the cholinergic innervation of the VTA, and the cholinergic populations of the pedunculopontine tegmental (PPT) and laterodorsal tegmental (LDT) nuclei, which are the only source of cholinergic inputs to the VTA. In the VTA, there were no age-related variations in the number and size of tyrosine hydroxylase (TH)-immunoreactive neurons, but the density of cholinergic varicosities was reduced in aged rats. The total number of choline acetyltransferase (ChAT)-immunoreactive neurons in the PPT and LDT was unchanged, but their somas were hypertrophied in aged rats. Our results suggest that dysfunction of the cholinergic system might contribute for the age-associated deterioration of the brain reward system.
Collapse
|
7
|
Brunert D, Rothermel M. Extrinsic neuromodulation in the rodent olfactory bulb. Cell Tissue Res 2021; 383:507-524. [PMID: 33355709 PMCID: PMC7873007 DOI: 10.1007/s00441-020-03365-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Evolutionarily, olfaction is one of the oldest senses and pivotal for an individual's health and survival. The olfactory bulb (OB), as the first olfactory relay station in the brain, is known to heavily process sensory information. To adapt to an animal's needs, OB activity can be influenced by many factors either from within (intrinsic neuromodulation) or outside (extrinsic neuromodulation) the OB which include neurotransmitters, neuromodulators, hormones, and neuropeptides. Extrinsic sources seem to be of special importance as the OB receives massive efferent input from numerous brain centers even outweighing the sensory input from the nose. Here, we review neuromodulatory processes in the rodent OB from such extrinsic sources. We will discuss extrinsic neuromodulation according to points of origin, receptors involved, affected circuits, and changes in behavior. In the end, we give a brief outlook on potential future directions in research on neuromodulation in the OB.
Collapse
Affiliation(s)
- Daniela Brunert
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
8
|
Dynamic Impairment of Olfactory Behavior and Signaling Mediated by an Olfactory Corticofugal System. J Neurosci 2020; 40:7269-7285. [PMID: 32817250 DOI: 10.1523/jneurosci.2667-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 01/16/2023] Open
Abstract
Processing of olfactory information is modulated by centrifugal projections from cortical areas, yet their behavioral relevance and underlying neural mechanisms remain unclear in most cases. The anterior olfactory nucleus (AON) is part of the olfactory cortex, and its extensive connections to multiple upstream and downstream brain centers place it in a prime position to modulate early sensory information in the olfactory system. Here, we show that optogenetic activation of AON neurons in awake male and female mice was not perceived as an odorant equivalent cue. However, AON activation during odorant presentation reliably suppressed behavioral odor responses. This AON-mediated effect was fast and constant across odors and concentrations. Likewise, activation of glutamatergic AON projections to the olfactory bulb (OB) transiently inhibited the excitability of mitral/tufted cells (MTCs) that relay olfactory input to the cortex. Single-unit MTC recordings revealed that optogenetic activation of glutamatergic AON terminals in the OB transiently decreased sensory-evoked MTC spiking, regardless of the strength or polarity of the sensory response. The reduction in MTC firing during optogenetic stimulation was confirmed in recordings in awake mice. These findings suggest that glutamatergic AON projections to the OB impede early olfactory signaling by inhibiting OB output neurons, thereby dynamically gating sensory throughput to the cortex.SIGNIFICANCE STATEMENT The anterior olfactory nucleus (AON) as an olfactory information processing area sends extensive projections to multiple brain centers, but the behavioral consequences of its activation have been scarcely investigated. Using behavioral tests in combination with optogenetic manipulation, we show that, in contrast to what has been suggested previously, the AON does not seem to form odor percepts but instead suppresses behavioral odor responses across odorants and concentrations. Furthermore, this study shows that AON activation inhibits olfactory bulb output neurons in both anesthetized as well as awake mice, pointing to a potential mechanism by which the olfactory cortex can actively and dynamically gate sensory throughput to higher brain centers.
Collapse
|
9
|
Complex Movement Control in a Rat Model of Parkinsonian Falls: Bidirectional Control by Striatal Cholinergic Interneurons. J Neurosci 2020; 40:6049-6067. [PMID: 32554512 DOI: 10.1523/jneurosci.0220-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 01/18/2023] Open
Abstract
Older persons and, more severely, persons with Parkinson's disease (PD) exhibit gait dysfunction, postural instability and a propensity for falls. These dopamine (DA) replacement-resistant symptoms are associated with losses of basal forebrain and striatal cholinergic neurons, suggesting that falls reflect disruption of the corticostriatal transfer of movement-related cues and their striatal integration with movement sequencing. To advance a rodent model of the complex movement deficits of Parkinsonian fallers, here we first demonstrated that male and female rats with dual cortical cholinergic and striatal DA losses (DL rats) exhibit cued turning deficits, modeling the turning deficits seen in these patients. As striatal cholinergic interneurons (ChIs) are positioned to integrate movement cues with gait, and as ChI loss has been associated with falls in PD, we next used this task, as well as a previously established task used to reveal heightened fall rates in DL rats, to broadly test the role of ChIs. Chemogenetic inhibition of ChIs in otherwise intact male and female rats caused cued turning deficits and elevated fall rates. Spontaneous turning was unaffected. Furthermore, chemogenetic stimulation of ChIs in DL rats reduced fall rates and restored cued turning performance. Stimulation of ChIs was relatively more effective in rats with viral transfection spaces situated lateral to the DA depletion areas in the dorsomedial striatum. These results indicate that striatal ChIs are essential for the control of complex movements, and they suggest a therapeutic potential of stimulation of ChIs to restore gait and balance, and to prevent falls in PD.SIGNIFICANCE STATEMENT In persons with Parkinson's disease, gait dysfunction and the associated risk for falls do not benefit from dopamine replacement therapy and often result in long-term hospitalization and nursing home placement. Here, we first validated a new task to demonstrate impairments in cued turning behavior in rodents modeling the cholinergic-dopaminergic losses observed in Parkinsonian fallers. We then demonstrated the essential role of striatal cholinergic interneurons for turning behavior as well as for traversing dynamic surfaces and avoiding falls. Stimulation of these interneurons in the rat model rescued turning performance and reduced fall rates. Our findings indicate the feasibility of investigating the neuronal circuitry underling complex movement control in rodents, and that striatal cholinergic interneurons are an essential node of such circuitry.
Collapse
|
10
|
Decker AL, Duncan K. Acetylcholine and the complex interdependence of memory and attention. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Téglás T, Németh Z, Koller Á, Van der Zee EA, Luiten PGM, Nyakas C. Effects of Long-Term Moderate Intensity Exercise on Cognitive Behaviors and Cholinergic Forebrain in the Aging Rat. Neuroscience 2019; 411:65-75. [PMID: 31146009 DOI: 10.1016/j.neuroscience.2019.05.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 12/25/2022]
Abstract
Physical exercise is now generally considered as a strategy to maintain cognitive abilities and to prevent age-related cognitive decline. In the present study, Wistar rats were subjected to moderate intensity treadmill exercise for 6 months prior to sacrifice at 12-, 24- and 32-month of age. This chronic physical intervention was tested on motility in the Open field (OF). Cognitive functions were measured in the Morris water maze (MWM) for spatial learning and in the Novel object recognition (NOR) tests. Since learning and memory are closely associated with cholinergic forebrain function ChAT fiber density after exercise training was assessed in hippocampus, and motor- and somatosensory cortical areas. Furthermore, quantification of ChAT-positive fiber aberrations as a neuropathological marker was also carried out in these brain areas. Our results show that in OF chronic exercise maintained horizontal locomotor activity in all age groups. Rearing activity, MWM and notably NOR performance were improved only in the 32-months old animals. Regarding cholinergic neuronal innervation, apart from a general age-related decline, exercise increased ChAT fiber density in the hippocampus CA1 area and in the motor cortex notably in the 32-months group. Massive ChAT fiber aberrations in all investigated areas which developed in senescence were clearly attenuated by exercise. The results suggest that moderate intensity chronic exercise in the rat is especially beneficial in advanced age. In conclusion, chronic exercise attenuates the age-related decline in cognitive and motor behaviors as well as age-related cholinergic fiber reduction, reduces malformations of cholinergic forebrain innervation.
Collapse
Affiliation(s)
- Tímea Téglás
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary; Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Zoltán Németh
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Ákos Koller
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Eddy A Van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Department of Molecular Neurobiology, University of Groningen, Groningen, the Netherlands
| | - Paul G M Luiten
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Department of Molecular Neurobiology, University of Groningen, Groningen, the Netherlands
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary; Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary; Groningen Institute for Evolutionary Life Sciences (GELIFES), Department of Molecular Neurobiology, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
12
|
Estrous cycle stage gates sex differences in prefrontal muscarinic control of fear memory formation. Neurobiol Learn Mem 2019; 161:26-36. [PMID: 30851433 DOI: 10.1016/j.nlm.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 02/08/2019] [Accepted: 03/05/2019] [Indexed: 11/20/2022]
Abstract
The association of a sensory cue and an aversive footshock that are separated in time, as in trace fear conditioning, requires persistent activity in prelimbic cortex during the cue-shock interval. The activation of muscarinic acetylcholine receptors has been shown to facilitate persistent firing of cortical cells in response to brief stimulation, and muscarinic antagonists in the prefrontal cortex impair working memory. It is unknown, however, if the acquisition of associative trace fear conditioning is dependent on muscarinic signaling in the prefrontal cortex. Here, we delivered the muscarinic receptor antagonist scopolamine to the prelimbic cortex of rats prior to trace fear conditioning and tested their memories of the cue and training context the following day. The effect of scopolamine on working memory performance was also tested using a spatial delayed non-match to sample task. Male and female subjects were included to examine potential sex differences in the modulation of memory formation, as we have previously observed for pituitary adenylate cyclase-activating polypeptide signaling in the prefrontal cortex (Kirry et al., 2018). We found that pre-training administration of intra-prelimbic scopolamine impaired the formation of cued and contextual fear memories in males, but not females at a dose that impairs spatial working memory in both sexes. Fear memory formation in females was impaired by a higher dose of scopolamine and this impairment was gated by estrous cycle stage: scopolamine failed to impair memory in rats in the diestrus or proestrus stages of the estrous cycle. These findings add to the growing body of evidence that the prefrontal cortex is sexually dimorphic in learning and memory and additionally suggest that males and females differentially engage prefrontal neuromodulatory systems in support of learning.
Collapse
|
13
|
Fritz HJ, Ray N, Dyrba M, Sorg C, Teipel S, Grothe MJ. The corticotopic organization of the human basal forebrain as revealed by regionally selective functional connectivity profiles. Hum Brain Mapp 2019; 40:868-878. [PMID: 30311315 PMCID: PMC6865372 DOI: 10.1002/hbm.24417] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/06/2018] [Accepted: 10/01/2018] [Indexed: 12/25/2022] Open
Abstract
The cholinergic basal forebrain (CBF), comprising different groups of cortically projecting cholinergic neurons, plays a crucial role in higher cognitive processes and has been implicated in diverse neuropsychiatric disorders. A distinct corticotopic organization of CBF projections has been revealed in animal studies, but little is known about their organization in the human brain. We explored regional differences in functional connectivity (FC) profiles within the human CBF by applying a clustering approach to resting-state functional magnetic resonance imaging (rs-fMRI) data of healthy adult individuals (N = 85; 19-85 years). We further examined effects of age on FC of the identified CBF clusters and assessed the reproducibility of cluster-specific FC profiles in independent data from healthy older individuals (N = 25; 65-89 years). Results showed that the human CBF is functionally organized into distinct anterior-medial and posterior-lateral subdivisions that largely follow anatomically defined boundaries of the medial septum/diagonal band and nucleus basalis Meynert. The anterior-medial CBF subdivision was characterized by connectivity with the hippocampus and interconnected nodes of an extended medial cortical memory network, whereas the posterior-lateral subdivision was specifically connected to anterior insula and dorsal anterior cingulate components of a salience/attention network. FC of both CBF subdivisions declined with increasing age, but the overall topography of subregion-specific FC profiles was reproduced in independent rs-fMRI data of healthy older individuals acquired in a typical clinical setting. Rs-fMRI-based assessments of subregion-specific CBF function may complement established volumetric approaches for the in vivo study of CBF involvement in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hans‐Christian J. Fritz
- Clinical Dementia Research SectionGerman Center for Neurodegenerative Diseases (DZNE)RostockGermany
- Department of Psychosomatic and Psychotherapeutic MedicineRostock University Medical CenterRostockGermany
| | - Nicola Ray
- Department of PsychologyManchester Metropolitan UniversityManchesterUK
| | - Martin Dyrba
- Clinical Dementia Research SectionGerman Center for Neurodegenerative Diseases (DZNE)RostockGermany
| | - Christian Sorg
- Departments of Neuroradiology and Psychiatry, TUM‐Neuroimaging Center of Klinikum rechts der IsarTechnische Universität München TUMMunichGermany
| | - Stefan Teipel
- Clinical Dementia Research SectionGerman Center for Neurodegenerative Diseases (DZNE)RostockGermany
- Department of Psychosomatic and Psychotherapeutic MedicineRostock University Medical CenterRostockGermany
| | - Michel J. Grothe
- Clinical Dementia Research SectionGerman Center for Neurodegenerative Diseases (DZNE)RostockGermany
| |
Collapse
|
14
|
Galvin VC, Arnsten AFT, Wang M. Evolution in Neuromodulation-The Differential Roles of Acetylcholine in Higher Order Association vs. Primary Visual Cortices. Front Neural Circuits 2018; 12:67. [PMID: 30210306 PMCID: PMC6121028 DOI: 10.3389/fncir.2018.00067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/06/2018] [Indexed: 11/29/2022] Open
Abstract
This review contrasts the neuromodulatory influences of acetylcholine (ACh) on the relatively conserved primary visual cortex (V1), compared to the newly evolved dorsolateral prefrontal association cortex (dlPFC). ACh is critical both for proper circuit development and organization, and for optimal functioning of mature systems in both cortical regions. ACh acts through both nicotinic and muscarinic receptors, which show very different expression profiles in V1 vs. dlPFC, and differing effects on neuronal firing. Cholinergic effects mediate attentional influences in V1, enhancing representation of incoming sensory stimuli. In dlPFC ACh plays a permissive role for network communication. ACh receptor expression and ACh actions in higher visual areas have an intermediate profile between V1 and dlPFC. This changing role of ACh modulation across association cortices may help to illuminate the particular susceptibility of PFC in cognitive disorders, and provide therapeutic targets to strengthen cognition.
Collapse
Affiliation(s)
- Veronica C Galvin
- Department of Neuroscience, Yale University, New Haven, CT, United States
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University, New Haven, CT, United States
| | - Min Wang
- Department of Neuroscience, Yale University, New Haven, CT, United States
| |
Collapse
|
15
|
Uchida S, Kagitani F. Effect of basal forebrain stimulation on extracellular acetylcholine release and blood flow in the olfactory bulb. J Physiol Sci 2018; 68:415-423. [PMID: 28500439 PMCID: PMC10718006 DOI: 10.1007/s12576-017-0542-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/30/2017] [Indexed: 10/19/2022]
Abstract
The olfactory bulb receives cholinergic basal forebrain input, as does the neocortex; however, the in vivo physiological functions regarding the release of extracellular acetylcholine and regulation of regional blood flow in the olfactory bulb are unclear. We used in vivo microdialysis to measure the extracellular acetylcholine levels in the olfactory bulb of urethane-anesthetized rats. Focal chemical stimulation by microinjection of L-glutamate into the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain, which is the main source of cholinergic input to the olfactory bulb, increased extracellular acetylcholine release in the ipsilateral olfactory bulb. When the regional cerebral blood flow was measured using laser speckle contrast imaging, the focal chemical stimulation of the HDB did not significantly alter the blood flow in the olfactory bulb, while increases were observed in the neocortex. Our results suggest a functional difference between the olfactory bulb and neocortex regarding cerebral blood flow regulation through the release of acetylcholine by cholinergic basal forebrain input.
Collapse
Affiliation(s)
- Sae Uchida
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan.
| | - Fusako Kagitani
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| |
Collapse
|
16
|
Huppé-Gourgues F, Jegouic K, Vaucher E. Topographic Organization of Cholinergic Innervation From the Basal Forebrain to the Visual Cortex in the Rat. Front Neural Circuits 2018; 12:19. [PMID: 29662442 PMCID: PMC5890115 DOI: 10.3389/fncir.2018.00019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/19/2018] [Indexed: 12/20/2022] Open
Abstract
Acetylcholine is an important neurotransmitter for the regulation of visual attention, plasticity, and perceptual learning. It is released in the visual cortex predominantly by cholinergic projections from the basal forebrain, where stimulation may produce potentiation of visual processes. However, little is known about the fine organization of these corticopetal projections, such as whether basal forebrain neurons projecting to the primary and secondary visual cortical areas (V1 and V2, respectively) are organized retinotopically. The aim of this study was to map these basal forebrain-V1/V2 projections. Microinjections of the fluorescent retrograde tracer cholera toxin b fragment in different sites within V1 and V2 in Long–Evans rats were performed. Retrogradely labeled cell bodies in the horizontal and vertical limbs of the diagonal band of Broca (HDB and VDB, respectively), nucleus basalis magnocellularis, and substantia innominata (SI), were mapped ex vivo with a computer-assisted microscope stage controlled by stereological software. Choline acetyltranferase immunohistochemistry was used to identify cholinergic cells. Our results showed a predominance of cholinergic projections coming from the HDB. These projections were not retinotopically organized but projections to V1 arised from neurons located in the anterior HDB/SI whereas projections to V2 arised from neurons located throughout the whole extent of HDB/SI. The absence of a clear topography of these projections suggests that BF activation can stimulate visual cortices broadly.
Collapse
Affiliation(s)
- Frédéric Huppé-Gourgues
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montreal, QC, Canada.,École de Psychologie, Université de Moncton, Moncton, NB, Canada
| | - Karim Jegouic
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montreal, QC, Canada
| | - Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
17
|
Obermayer J, Verhoog MB, Luchicchi A, Mansvelder HD. Cholinergic Modulation of Cortical Microcircuits Is Layer-Specific: Evidence from Rodent, Monkey and Human Brain. Front Neural Circuits 2017; 11:100. [PMID: 29276477 PMCID: PMC5727016 DOI: 10.3389/fncir.2017.00100] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/24/2017] [Indexed: 11/17/2022] Open
Abstract
Acetylcholine (ACh) signaling shapes neuronal circuit development and underlies specific aspects of cognitive functions and behaviors, including attention, learning, memory and motivation. During behavior, activation of muscarinic and nicotinic acetylcholine receptors (mAChRs and nAChRs) by ACh alters the activation state of neurons, and neuronal circuits most likely process information differently with elevated levels of ACh. In several brain regions, ACh has been shown to alter synaptic strength as well. By changing the rules for synaptic plasticity, ACh can have prolonged effects on and rearrange connectivity between neurons that outlasts its presence. From recent discoveries in the mouse, rat, monkey and human brain, a picture emerges in which the basal forebrain (BF) cholinergic system targets the neocortex with much more spatial and temporal detail than previously considered. Fast cholinergic synapses acting on a millisecond time scale are abundant in the mammalian cerebral cortex, and provide BF cholinergic neurons with the possibility to rapidly alter information flow in cortical microcircuits. Finally, recent studies have outlined novel mechanisms of how cholinergic projections from the BF affect synaptic strength in several brain areas of the rodent brain, with behavioral consequences. This review highlights these exciting developments and discusses how these findings translate to human brain circuitries.
Collapse
Affiliation(s)
- Joshua Obermayer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| | - Matthijs B Verhoog
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| | - Antonio Luchicchi
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Nagasaka K, Watanabe Y, Takashima I. Topographical projections from the nucleus basalis magnocellularis (Meynert) to the frontal cortex: A voltage-sensitive dye imaging study in rats. Brain Stimul 2017; 10:977-980. [PMID: 28709847 DOI: 10.1016/j.brs.2017.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/31/2017] [Accepted: 06/30/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The nucleus basalis magnocellularis/Meynert (NBM) has been explored as a new target for deep brain stimulation for neurological disorders. Although anatomical studies suggest the existence of cholinergic topographical projections of the NBM, it is still unknown whether NBM subregions differentially activate the frontal cortex. OBJECTIVE To investigate the topography between the NBM and frontal cortex. METHODS Electrical stimulation was applied to the anterior and posterior sites of the NBM in rats, and the evoked frontal activity was investigated using voltage-sensitive dye (VSD) imaging. RESULTS VSD imaging revealed the functional topography of the NBM and frontal cortex: the anteroposterior axis of the NBM corresponded to the mediolateral axis of the dorsal frontal cortex. CONCLUSION The present results suggest site-specific control of frontal neuronal activity by the NBM. These findings have practical implications, as the anterior and posterior parts of the NBM could be targeted to improve cognitive and motor function, respectively.
Collapse
Affiliation(s)
- Kazuaki Nagasaka
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-9577, Japan
| | - Yumiko Watanabe
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Japan
| | - Ichiro Takashima
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-9577, Japan.
| |
Collapse
|
19
|
Selectivity of Neuromodulatory Projections from the Basal Forebrain and Locus Ceruleus to Primary Sensory Cortices. J Neurosci 2017; 36:5314-27. [PMID: 27170128 DOI: 10.1523/jneurosci.4333-15.2016] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/01/2016] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED Acetylcholine and noradrenaline are major neuromodulators that affect sensory processing in the cortex. Modality-specific sensory information is processed in defined areas of the cortex, but it is unclear whether cholinergic neurons in the basal forebrain (BF) and noradrenergic neurons in the locus ceruleus (LC) project to and modulate these areas in a sensory modality-selective manner. Here, we mapped BF and LC projections to different sensory cortices of the mouse using dual retrograde tracing. We found that while the innervation of cholinergic neurons into sensory cortices is predominantly modality specific, the projections of noradrenergic neurons diverge onto multiple sensory cortices. Consistent with this anatomy, optogenetic activation of cholinergic neurons in BF subnuclei induces modality-selective desynchronization in specific sensory cortices, whereas activation of noradrenergic LC neurons induces broad desynchronization throughout multiple sensory cortices. Thus, we demonstrate a clear distinction in the organization and function of cholinergic BF and noradrenergic LC projections into primary sensory cortices: cholinergic BF neurons are highly selective in their projections and modulation of specific sensory cortices, whereas noradrenergic LC neurons broadly innervate and modulate multiple sensory cortices. SIGNIFICANCE STATEMENT Neuromodulatory inputs from the basal forebrain (BF) and locus ceruleus (LC) are widespread in the mammalian cerebral cortex and are known to play important roles in attention and arousal, but little is known about the selectivity of their cortical projections. Using a dual retrobead tracing technique along with optogenetic stimulation, we have identified anatomic and functional differences in the way cholinergic BF neurons and noradrenergic LC neurons project into primary sensory cortices. While BF projections are highly selective to individual sensory cortices, LC projections diverge into multiple sensory cortices. To our knowledge, this is the first definitive proof that BF and LC projections to primary sensory cortices show both anatomic and functional differences in selectivity for modulating cortical activity.
Collapse
|
20
|
Bortz D, Upton B, Mikkelsen J, Bruno J. Positive allosteric modulators of the α7 nicotinic acetylcholine receptor potentiate glutamate release in the prefrontal cortex of freely-moving rats. Neuropharmacology 2016; 111:78-91. [DOI: 10.1016/j.neuropharm.2016.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 12/23/2022]
|
21
|
Sugihara H, Chen N, Sur M. Cell-specific modulation of plasticity and cortical state by cholinergic inputs to the visual cortex. JOURNAL OF PHYSIOLOGY, PARIS 2016; 110:37-43. [PMID: 27840211 PMCID: PMC5769868 DOI: 10.1016/j.jphysparis.2016.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/18/2022]
Abstract
Acetylcholine (ACh) modulates diverse vital brain functions. Cholinergic neurons from the basal forebrain innervate a wide range of cortical areas, including the primary visual cortex (V1), and multiple cortical cell types have been found to be responsive to ACh. Here we review how different cell types contribute to different cortical functions modulated by ACh. We specifically focus on two major cortical functions: plasticity and cortical state. In layer II/III of V1, ACh acting on astrocytes and somatostatin-expressing inhibitory neurons plays critical roles in these functions. Cell type specificity of cholinergic modulation points towards the growing understanding that even diffuse neurotransmitter systems can mediate specific functions through specific cell classes and receptors.
Collapse
Affiliation(s)
- Hiroki Sugihara
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Naiyan Chen
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A(∗)STAR, Republic of Singapore
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
22
|
Kondo H, Zaborszky L. Topographic organization of the basal forebrain projections to the perirhinal, postrhinal, and entorhinal cortex in rats. J Comp Neurol 2016; 524:2503-15. [PMID: 26780730 PMCID: PMC4900916 DOI: 10.1002/cne.23967] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 07/02/2015] [Accepted: 01/13/2016] [Indexed: 11/11/2022]
Abstract
Previous studies have shown that the basal forebrain (BF) modulates cortical activation via its projections to the entire cortical mantle. However, the organization of these projections is only partially understood or, for certain areas, unknown. In this study, we examined the topographic organization of cholinergic and noncholinergic projections from the BF to the perirhinal, postrhinal, and entorhinal cortex by using retrograde tracing combined with choline acetyltransferase (ChAT) immunohistochemistry in rats. The perirhinal and postrhinal cortex receives major cholinergic and noncholinergic input from the caudal BF, including the caudal globus pallidus and substantia innominata and moderate input from the horizontal limb of the diagonal band, whereas the entorhinal cortex receives major input from the rostral BF, including the medial septum and the vertical and horizontal limbs of the diagonal band. In the perirhinal cases, cholinergic projection neurons are distributed more caudally in the caudal globus pallidus than noncholinergic projection neurons. Compared with the perirhinal cases, the distribution of cholinergic and noncholinergic neurons projecting to the postrhinal cortex shifts slightly caudally in the caudal globus pallidus. The distribution of cholinergic and noncholinergic neurons projecting to the lateral entorhinal cortex extends more caudally in the BF than to the medial entorhinal cortex. The ratio of ChAT-positive projection neurons to total projection neurons is higher in the perirhinal/postrhinal cases (26-48%) than in the entorhinal cases (13-30%). These results indicate that the organization of cholinergic and noncholinergic projections from the BF to the parahippocampal cortex is more complex than previously described. J. Comp. Neurol. 524:2503-2515, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hideki Kondo
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
23
|
Hotta H. Neurogenic control of parenchymal arterioles in the cerebral cortex. PROGRESS IN BRAIN RESEARCH 2016; 225:3-39. [DOI: 10.1016/bs.pbr.2016.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Devore S, Pender-Morris N, Dean O, Smith D, Linster C. Basal forebrain dynamics during nonassociative and associative olfactory learning. J Neurophysiol 2015; 115:423-33. [PMID: 26561601 DOI: 10.1152/jn.00572.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/10/2015] [Indexed: 12/28/2022] Open
Abstract
Cholinergic and GABAergic projections from the horizontal diagonal band (HDB) and medial preoptic area (MCPO) of the basal forebrain to the olfactory system are associated with odor discrimination and odor learning, as well as modulation of neural responses in olfactory structures. Whereas pharmacological and lesion studies give insights into the functional role of these modulatory inputs on a slow timescale, the response dynamics of neurons in the HDB/MCPO during olfactory behaviors have not been investigated. In this study we examined how these neurons respond during two olfactory behaviors: spontaneous investigation of odorants and odor-reward association learning. We observe rich heterogeneity in the response dynamics of individual HDB/MCPO neurons, with a substantial fraction of neurons exhibiting task-related modulation. HDB/MCPO neurons show both rapid and transient responses during bouts of odor investigation and slow, long-lasting modulation of overall response rate based on behavioral demands. Specifically, baseline rates were higher during the acquisition phase of an odor-reward association than during spontaneous investigation or the recall phase of an odor reward association. Our results suggest that modulatory projections from the HDB/MCPO are poised to influence olfactory processing on multiple timescales, from hundreds of milliseconds to minutes, and are therefore capable of rapidly setting olfactory network dynamics during odor processing and learning.
Collapse
Affiliation(s)
- Sasha Devore
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York; and
| | | | - Owen Dean
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York; and
| | - David Smith
- Department of Psychology, Cornell University, Ithaca, New York
| | - Christiane Linster
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York; and
| |
Collapse
|
25
|
Topographic mapping between basal forebrain cholinergic neurons and the medial prefrontal cortex in mice. J Neurosci 2015; 34:16234-46. [PMID: 25471564 DOI: 10.1523/jneurosci.3011-14.2014] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The basal forebrain cholinergic innervation of the medial prefrontal cortex (mPFC) is crucial for cognitive performance. However, little is known about the organization of connectivity between the basal forebrain and the mPFC in the mouse. Using focal virus injections inducing Cre-dependent enhanced yellow fluorescent protein expression in ChAT-IRES-Cre mice, we tested the hypothesis that there is a topographic mapping between the basal forebrain cholinergic neurons and their axonal projections to the mPFC. We found that ascending cholinergic fibers to the mPFC follow four pathways and that cholinergic neurons take these routes depending on their location in the basal forebrain. In addition, a general mapping pattern was observed in which the position of cholinergic neurons measured along a rostral to caudal extent in the basal forebrain correlated with a ventral to dorsal and a rostral to caudal shift of cholinergic fiber distribution in mPFC. Finally, we found that neurons in the rostral and caudal parts of the basal forebrain differentially innervate the superficial and deep layers of the ventral regions of the mPFC. Thus, a frontocaudal organization of the cholinergic system exists in which distinct mPFC areas and cortical layers are targeted depending on the location of the cholinergic neuron in the basal forebrain.
Collapse
|
26
|
Nguyen HN, Huppé-Gourgues F, Vaucher E. Activation of the mouse primary visual cortex by medial prefrontal subregion stimulation is not mediated by cholinergic basalo-cortical projections. Front Syst Neurosci 2015; 9:1. [PMID: 25709570 PMCID: PMC4321436 DOI: 10.3389/fnsys.2015.00001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 01/06/2015] [Indexed: 12/21/2022] Open
Abstract
The medial prefrontal cortex (mPFC) exerts top-down control of primary visual cortex (V1) activity. As there is no direct neuronal projection from mPFC to V1, this functional connection may use an indirect route, i.e., via basalo-cortical cholinergic projections. The cholinergic projections to V1 originate from neurons in the horizontal limb of the diagonal band of Broca (HDB), which receive neuronal projections from the ventral part of the mPFC, composed of prelimbic (PrL) and infralimbic cortices (IL). Therefore, the objective of this study was to determine whether electrical stimulation of mice mPFC subregions activate (1) V1 neurons; and (2) HDB cholinergic neurons, suggesting that the HDB serves as a relay point in the mPFC-V1 interaction. Neuronal activation was quantified using c-Fos immunocytochemistry or thallium autometallography for each V1 layer using automated particle analysis tools and optical density measurement. Stimulation of IL and PrL induced significantly higher c-Fos expression or thallium labeling in layers II/III and V of V1 in the stimulated hemisphere only. A HDB cholinergic neuron-specific lesion by saporin administration reduced IL-induced c-Fos expression in layers II/III of V1 but not in layer V. However, there was no c-Fos expression or thallium labeling in the HDB neurons, suggesting that this area was not activated by IL stimulation. Stimulation of another mPFC subarea, the anterior cingulate cortex (AC), which is involved in attention and receives input from V1, activated neither V1 nor HDB. The present results indicate that IL and PrL, but not AC, stimulation activates V1 with the minor involvement of the HDB cholinergic projections. These results suggest a functional link between the ventral mPFC and V1, but this function is only marginally supported by HDB cholinergic neurons and may involve other brain regions.
Collapse
Affiliation(s)
- Hoang Nam Nguyen
- Laboratoire de Neurobiologie de la Cognition Visuelle, École D'optométrie, Université de Montréal Montréal, QC, Canada
| | - Frédéric Huppé-Gourgues
- Laboratoire de Neurobiologie de la Cognition Visuelle, École D'optométrie, Université de Montréal Montréal, QC, Canada
| | - Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École D'optométrie, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
27
|
Lesions of the laterodorsal tegmental nucleus alter the cholinergic innervation and neuropeptide Y expression in the medial prefrontal cortex and nucleus accumbens. Neuroscience 2014; 284:707-718. [PMID: 25451286 DOI: 10.1016/j.neuroscience.2014.10.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 01/25/2023]
Abstract
The effects of the ibotenic acid infused into the area of the laterodorsal tegmental nucleus (LDT) of rats on the expression of cortical and accumbal neuropeptides were assessed. The effects of this manipulation were determined in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) by estimating the numerical density of varicosities immunoreactive for vesicular acetylcholine transporter and the total number of NAc neurons immunoreactive for choline acetyltransferase (ChAT) and neuropeptide Y (NPY) as well as the total number of mPFC neurons immunoreactive for NPY and vasoactive intestinal polypeptide (VIP). In LDT-lesioned rats, the density of the cholinergic varicosities was reduced in the ventral divisions of the mPFC and in all divisions of the NAc. In addition, in these rats, the total number of NPY-immunoreactive neurons was reduced in all subregions of the mPFC and in the NAc. Conversely, the total number of VIP-immunoreactive neurons in the mPFC and of ChAT-immunoreactive neurons in the NAc did not differ between LDT- and sham-lesioned rats. These data provide the first direct evidence for a relationship between selective damage of LDT cholinergic neurons and decreased expression of NPY in the mPFC and NAc. They also reveal that different types of cortical and accumbal interneurons respond differently to the cholinergic denervation induced by LDT lesions.
Collapse
|
28
|
Kang JI, Huppé-Gourgues F, Vaucher E. Boosting visual cortex function and plasticity with acetylcholine to enhance visual perception. Front Syst Neurosci 2014; 8:172. [PMID: 25278848 PMCID: PMC4167004 DOI: 10.3389/fnsys.2014.00172] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/31/2014] [Indexed: 11/29/2022] Open
Abstract
The cholinergic system is a potent neuromodulatory system that plays critical roles in cortical plasticity, attention and learning. In this review, we propose that the cellular effects of acetylcholine (ACh) in the primary visual cortex during the processing of visual inputs might induce perceptual learning; i.e., long-term changes in visual perception. Specifically, the pairing of cholinergic activation with visual stimulation increases the signal-to-noise ratio, cue detection ability and long-term facilitation in the primary visual cortex. This cholinergic enhancement would increase the strength of thalamocortical afferents to facilitate the treatment of a novel stimulus while decreasing the cortico-cortical signaling to reduce recurrent or top-down modulation. This balance would be mediated by different cholinergic receptor subtypes that are located on both glutamatergic and GABAergic neurons of the different cortical layers. The mechanisms of cholinergic enhancement are closely linked to attentional processes, long-term potentiation (LTP) and modulation of the excitatory/inhibitory balance. Recently, it was found that boosting the cholinergic system during visual training robustly enhances sensory perception in a long-term manner. Our hypothesis is that repetitive pairing of cholinergic and sensory stimulation over a long period of time induces long-term changes in the processing of trained stimuli that might improve perceptual ability. Various non-invasive approaches to the activation of the cholinergic neurons have strong potential to improve visual perception.
Collapse
Affiliation(s)
- Jun Il Kang
- École d'optométrie, Université de Montréal Montréal, QC, Canada ; Département de Neuroscience, Université de Montréal Montréal, QC, Canada
| | | | - Elvire Vaucher
- École d'optométrie, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
29
|
Rothermel M, Wachowiak M. Functional imaging of cortical feedback projections to the olfactory bulb. Front Neural Circuits 2014; 8:73. [PMID: 25071454 PMCID: PMC4080262 DOI: 10.3389/fncir.2014.00073] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/12/2014] [Indexed: 11/16/2022] Open
Abstract
Processing of sensory information is substantially shaped by centrifugal, or feedback, projections from higher cortical areas, yet the functional properties of these projections are poorly characterized. Here, we used genetically-encoded calcium sensors (GCaMPs) to functionally image activation of centrifugal projections targeting the olfactory bulb (OB). The OB receives massive centrifugal input from cortical areas but there has been as yet no characterization of their activity in vivo. We focused on projections to the OB from the anterior olfactory nucleus (AON), a major source of cortical feedback to the OB. We expressed GCaMP selectively in AON projection neurons using a mouse line expressing Cre recombinase (Cre) in these neurons and Cre-dependent viral vectors injected into AON, allowing us to image GCaMP fluorescence signals from their axon terminals in the OB. Electrical stimulation of AON evoked large fluorescence signals that could be imaged from the dorsal OB surface in vivo. Surprisingly, odorants also evoked large signals that were transient and coupled to odorant inhalation both in the anesthetized and awake mouse, suggesting that feedback from AON to the OB is rapid and robust across different brain states. The strength of AON feedback signals increased during wakefulness, suggesting a state-dependent modulation of cortical feedback to the OB. Two-photon GCaMP imaging revealed that different odorants activated different subsets of centrifugal AON axons and could elicit both excitation and suppression in different axons, indicating a surprising richness in the representation of odor information by cortical feedback to the OB. Finally, we found that activating neuromodulatory centers such as basal forebrain drove AON inputs to the OB independent of odorant stimulation. Our results point to the AON as a multifunctional cortical area that provides ongoing feedback to the OB and also serves as a descending relay for other neuromodulatory systems.
Collapse
Affiliation(s)
- Markus Rothermel
- Brain Institute and Department of Neurobiology and Anatomy, University of Utah Salt Lake City, UT, USA
| | - Matt Wachowiak
- Brain Institute and Department of Neurobiology and Anatomy, University of Utah Salt Lake City, UT, USA
| |
Collapse
|
30
|
Nicotinic acetylcholine receptors in attention circuitry: the role of layer VI neurons of prefrontal cortex. Cell Mol Life Sci 2014; 71:1225-44. [PMID: 24122021 PMCID: PMC3949016 DOI: 10.1007/s00018-013-1481-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/03/2013] [Accepted: 09/16/2013] [Indexed: 12/15/2022]
Abstract
Cholinergic modulation of prefrontal cortex is essential for attention. In essence, it focuses the mind on relevant, transient stimuli in support of goal-directed behavior. The excitation of prefrontal layer VI neurons through nicotinic acetylcholine receptors optimizes local and top-down control of attention. Layer VI of prefrontal cortex is the origin of a dense feedback projection to the thalamus and is one of only a handful of brain regions that express the α5 nicotinic receptor subunit, encoded by the gene chrna5. This accessory nicotinic receptor subunit alters the properties of high-affinity nicotinic receptors in layer VI pyramidal neurons in both development and adulthood. Studies investigating the consequences of genetic deletion of α5, as well as other disruptions to nicotinic receptors, find attention deficits together with altered cholinergic excitation of layer VI neurons and aberrant neuronal morphology. Nicotinic receptors in prefrontal layer VI neurons play an essential role in focusing attention under challenging circumstances. In this regard, they do not act in isolation, but rather in concert with cholinergic receptors in other parts of prefrontal circuitry. This review urges an intensification of focus on the cellular mechanisms and plasticity of prefrontal attention circuitry. Disruptions in attention are one of the greatest contributing factors to disease burden in psychiatric and neurological disorders, and enhancing attention may require different approaches in the normal and disordered prefrontal cortex.
Collapse
|
31
|
Non-noxious skin stimulation activates the nucleus basalis of Meynert and promotes NGF secretion in the parietal cortex via nicotinic ACh receptors. J Physiol Sci 2014; 64:253-60. [PMID: 24801530 PMCID: PMC4070488 DOI: 10.1007/s12576-014-0313-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/20/2014] [Indexed: 02/01/2023]
Abstract
The effects of non-noxious skin stimulation on nerve growth factor (NGF) secretion in the parietal cortex were examined in anesthetized rats. Innocuous skin stimulation was delivered to the left hindlimb with a soft-hair brush. Extracellular NGF in the right parietal cortex was collected by microdialysis methods using a protein-permeable probe and was measured using an enzyme-linked immune-sorbent assay. Brushing produced a significant increase in extracellular NGF levels. This NGF response was not observed in rats pretreated with a nicotinic ACh receptor (nAChR) antagonist mecamylamine. We further examined whether brushing could activate the basal forebrain nucleus (nucleus basalis of Meynert, NBM), which is the main source of cholinergic fibers in the cerebral cortex, by means of functional MRI. The blood oxygen level-dependent signal in the right NBM was significantly higher during brushing compared to baseline. The results suggest that non-noxious skin stimulation activates NBM and promotes NGF secretion in the parietal cortex via nAChRs.
Collapse
|
32
|
Where attention falls: Increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function. Exp Neurol 2014; 257:120-9. [PMID: 24805070 DOI: 10.1016/j.expneurol.2014.04.032] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 12/13/2022]
Abstract
Falls are a major source of hospitalization, long-term institutionalization, and death in older adults and patients with Parkinson's disease (PD). Limited attentional resources are a major risk factor for falls. In this review, we specify cognitive-behavioral mechanisms that produce falls and map these mechanisms onto a model of multi-system degeneration. Results from PET studies in PD fallers and findings from a recently developed animal model support the hypothesis that falls result from interactions between loss of basal forebrain cholinergic projections to the cortex and striatal dopamine loss. Striatal dopamine loss produces inefficient, low-vigor gait, posture control, and movement. Cortical cholinergic deafferentation impairs a wide range of attentional processes, including monitoring of gait, posture and complex movements. Cholinergic cell loss reveals the full impact of striatal dopamine loss on motor performance, reflecting loss of compensatory attentional supervision of movement. Dysregulation of dorsomedial striatal circuitry is an essential, albeit not exclusive, mediator of falls in this dual-system model. Because cholinergic neuromodulatory activity influences cortical circuitry primarily via stimulation of α4β2* nicotinic acetylcholine receptors, and because agonists at these receptors are known to benefit attentional processes in animals and humans, treating PD fallers with such agonists, as an adjunct to dopaminergic treatment, is predicted to reduce falls. Falls are an informative behavioral endpoint to study attentional-motor integration by striatal circuitry.
Collapse
|
33
|
Modeling fall propensity in Parkinson's disease: deficits in the attentional control of complex movements in rats with cortical-cholinergic and striatal-dopaminergic deafferentation. J Neurosci 2013; 33:16522-39. [PMID: 24133257 DOI: 10.1523/jneurosci.2545-13.2013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cognitive symptoms, complex movement deficits, and increased propensity for falls are interrelated and levodopa-unresponsive symptoms in patients with Parkinson's disease (PD). We developed a test system for the assessment of fall propensity in rats and tested the hypothesis that interactions between loss of cortical cholinergic and striatal dopaminergic afferents increase fall propensity. Rats were trained to traverse stationary and rotating rods, placed horizontally or at inclines, and while exposed to distractors. Rats also performed an operant Sustained Attention Task (SAT). Partial cortical cholinergic and/or caudate dopaminergic deafferentation were produced by bilateral infusions of 192 IgG-saporin (SAP) into the basal forebrain and/or 6-hydroxydopamine (6-OHDA) into the caudate nucleus, respectively, modeling the lesions seen in early PD. Rats with dual cholinergic-dopaminergic lesions (DL) fell more frequently than SAP or 6-OHDA rats. Falls in DL rats were associated with incomplete rebalancing after slips and low traversal speed. Ladder rung walking and pasta handling performance did not indicate sensorimotor deficits. SAT performance was impaired in DL and SAP rats; however, SAT performance and falls were correlated only in DL rats. Furthermore, in DL rats, but not in rats with only dopaminergic lesions, the placement and size of dopaminergic lesion correlated significantly with fall rates. The results support the hypothesis that after dual cholinergic-dopaminergic lesions, attentional resources can no longer be recruited to compensate for diminished striatal control of complex movement, thereby "unmasking" impaired striatal control of complex movements and yielding falls.
Collapse
|
34
|
Hotta H, Masamoto K, Uchida S, Sekiguchi Y, Takuwa H, Kawaguchi H, Shigemoto K, Sudo R, Tanishita K, Ito H, Kanno I. Layer-specific dilation of penetrating arteries induced by stimulation of the nucleus basalis of Meynert in the mouse frontal cortex. J Cereb Blood Flow Metab 2013; 33:1440-7. [PMID: 23756692 PMCID: PMC3764390 DOI: 10.1038/jcbfm.2013.92] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 11/09/2022]
Abstract
To clarify mechanisms through which activation of the nucleus basalis of Meynert (NBM) increases cerebral cortical blood flow, we examined whether cortical parenchymal arteries dilate during NBM stimulation in anesthetized mice. We used two-photon microscopy to measure the diameter of single penetrating arteries at different depths (~800 μm, layers I to V) of the frontal cortex, and examined changes in the diameter during focal electrical stimulation of the NBM (0.5 ms at 30 to 50 μA and 50 Hz) and hypercapnia (3% CO2 inhalation). Stimulation of the NBM caused diameter of penetrating arteries to increase by 9% to 13% of the prestimulus diameter throughout the different layers of the cortex, except at the cortical surface and upper part of layer V, where the diameter of penetrating arteries increased only slightly during NBM stimulation. Hypercapnia caused obvious dilation of the penetrating arteries in all cortical layers, including the surface arteries. The diameters began to increase within 1 second after the onset of NBM stimulation in the upper cortical layers, and later in lower layers. Our results indicate that activation of the NBM dilates cortical penetrating arteries in a layer-specific manner in magnitude and latency, presumably related to the density of cholinergic nerve terminals from the NBM.
Collapse
Affiliation(s)
- Harumi Hotta
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bhattacharyya A, Veit J, Kretz R, Bondar I, Rainer G. Basal forebrain activation controls contrast sensitivity in primary visual cortex. BMC Neurosci 2013; 14:55. [PMID: 23679191 PMCID: PMC3662585 DOI: 10.1186/1471-2202-14-55] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/06/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The basal forebrain (BF) regulates cortical activity by the action of cholinergic projections to the cortex. At the same time, it also sends substantial GABAergic projections to both cortex and thalamus, whose functional role has received far less attention. We used deep brain stimulation (DBS) in the BF, which is thought to activate both types of projections, to investigate the impact of BF activation on V1 neural activity. RESULTS BF stimulation robustly increased V1 single and multi-unit activity, led to moderate decreases in orientation selectivity and a remarkable increase in contrast sensitivity as demonstrated by a reduced semi-saturation contrast. The spontaneous V1 local field potential often exhibited spectral peaks centered at 40 and 70 Hz as well as reliably showed a broad γ-band (30-90 Hz) increase following BF stimulation, whereas effects in a low frequency band (1-10 Hz) were less consistent. The broad γ-band, rather than low frequency activity or spectral peaks was the best predictor of both the firing rate increase and contrast sensitivity increase of V1 unit activity. CONCLUSIONS We conclude that BF activation has a strong influence on contrast sensitivity in V1. We suggest that, in addition to cholinergic modulation, the BF GABAergic projections play a crucial role in the impact of BF DBS on cortical activity.
Collapse
Affiliation(s)
- Anwesha Bhattacharyya
- Department of Medicine, University of Fribourg, Chemin du Musée 5, Fribourg 1700, Switzerland
| | | | | | | | | |
Collapse
|
36
|
The basal forebrain cholinergic system in aging and dementia. Rescuing cholinergic neurons from neurotoxic amyloid-β42 with memantine. Behav Brain Res 2011; 221:594-603. [DOI: 10.1016/j.bbr.2010.05.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 05/19/2010] [Indexed: 01/19/2023]
|
37
|
Shiflett MW, Balleine BW. At the limbic-motor interface: disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation. Eur J Neurosci 2010; 32:1735-43. [PMID: 21044174 DOI: 10.1111/j.1460-9568.2010.07439.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although it has long been hypothesized that the nucleus accumbens (NAc) acts as an interface between limbic and motor regions, direct evidence for this modulatory role on behavior is lacking. Using a disconnection procedure in rats, we found that basolateral amygdala (BLA) input to the core and medial shell of the NAc separately mediate two distinct incentive processes controlling the performance of goal-directed instrumental actions, respectively: (i) the sensitivity of instrumental responding to changes in the experienced value of the goal or outcome, produced by specific satiety-induced outcome devaluation; and (ii) the effect of reward-related cues on action selection, observed in outcome-specific Pavlovian-instrumental transfer. These results reveal, therefore, that dissociable neural circuits involving BLA inputs to the NAc core and medial shell mediate distinct components of the incentive motivational processes controlling choice and decision-making in instrumental conditioning.
Collapse
Affiliation(s)
- Michael W Shiflett
- Department of Psychology and Brain Research Institute, UCLA, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
38
|
Gracia-Llanes FJ, Crespo C, Blasco-Ibáñez JM, Nacher J, Varea E, Rovira-Esteban L, Martínez-Guijarro FJ. GABAergic basal forebrain afferents innervate selectively GABAergic targets in the main olfactory bulb. Neuroscience 2010; 170:913-22. [PMID: 20678549 DOI: 10.1016/j.neuroscience.2010.07.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 06/28/2010] [Accepted: 07/22/2010] [Indexed: 11/27/2022]
Abstract
In this work we have analyzed the targets of the GABAergic afferents to the main olfactory bulb originating in the basal forebrain of the rat. We combined anterograde tracing of 10 kD biotinylated dextran amine (BDA) injected in the region of the horizontal limb of the diagonal band of Broca that projects to the main olfactory bulb, with immunocytochemical detection of GABA under electron microscopy or vesicular GABA transporter (vGABAt) under confocal fluorescent microscopy. GABAergic afferents were identified as double labeled BDA-GABA boutons. Their targets were identified by their ultrastructure and GABA content. We found that GABAergic afferents from the basal forebrain were distributed all over the bulbar lamination, but were more abundant in the glomerular and inframitral layers (i.e. internal plexiform layer and granule cell layer). The fibers had thick varicosities with abundant mitochondria and large perforated synaptic specializations. They contacted exclusively GABAergic cells, corresponding to type 1 periglomerular cells in the glomerular layer, and to granule cells in inframitral layers. This innervation will synchronize the bulbar inhibition and consequently the response of the principal cells to the olfactory input. The effect of the activation of this pathway will produce a disinhibition of the bulbar principal cells. This facilitation might occur at two separate levels: first in the terminal tufts of mitral and tufted cells via inhibition of type 1 periglomerular cells; second at the level of the firing of the principal cells via inhibition of granule cells. The GABAergic projection from the basal forebrain ends selectively on interneurons, specifically on type 1 periglomerular cells and granule cells, and is likely to control the activity of the olfactory bulb via disinhibition of principal cells. Possible similarities of this pathway with the septo-hippocampal loop are discussed.
Collapse
Affiliation(s)
- F J Gracia-Llanes
- Universidad de Valencia, Facultad de Ciencias Biológicas, Departamento de Biología Celular, Unidad de Neurobiología. Str/Dr Moliner, 50. E-46.100 Burjasot (Valencia), Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
Thomsen MS, Hay-Schmidt A, Hansen HH, Mikkelsen JD. Distinct neural pathways mediate α7 nicotinic acetylcholine receptor-dependent activation of the forebrain. ACTA ACUST UNITED AC 2010; 20:2092-102. [PMID: 20051354 DOI: 10.1093/cercor/bhp283] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
alpha(7) nicotinic acetylcholine receptor (nAChR) agonists are candidates for the treatment of cognitive deficits in schizophrenia. Selective alpha(7) nAChR agonists, such as SSR180711, activate neurons in the medial prefrontal cortex (mPFC) and nucleus accumbens shell (ACCshell) in rats, regions important for cognitive function. However, the neural substrates involved in these effects remain elusive. Here we identify cortically projecting cholinergic neurons in the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain (BF) as important targets for alpha(7) nAChR activation, as measured by c-Fos immunoreactivity, a marker of neuronal activation. Selective depletion of these cholinergic neurons abolishes the SSR180711-induced activation of the mPFC but not the ACCshell, demonstrating their critical importance for alpha(7) nAChR-dependent activation of the mPFC. Contrarily, selective depletion of dopaminergic neurons in the ventral tegmental area abolishes the SSR180711-induced activation of the ACCshell but not the mPFC or HDB. These results demonstrate 2 distinct neural pathways activated by SSR180711. The BF and mPFC are important for attentional function and may subserve the procognitive effects of alpha(7) nAChR agonists, whereas activation of the ACCshell is implicated in the beneficial effect of antipsychotics on the positive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Morten S Thomsen
- Neurobiology Research Unit, Copenhagen University Hospital, DK2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
40
|
Vertes RP. Serotonergic Regulation of Rhythmical Activity of the Brain, Concentrating on the Hippocampus. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/s1569-7339(10)70084-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Miasnikov AA, Chen JC, Weinberger NM. Behavioral memory induced by stimulation of the nucleus basalis: effects of contingency reversal. Neurobiol Learn Mem 2009; 91:298-309. [PMID: 19168141 PMCID: PMC2896312 DOI: 10.1016/j.nlm.2008.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/27/2008] [Accepted: 12/24/2008] [Indexed: 11/18/2022]
Abstract
Specific behavioral associative memory induced by stimulation of the cortically-projecting cholinergic nucleus basalis (NB) is dependent on intrinsic acetylcholine and shares with natural memory such features as associativity, specificity, rapid formation, consolidation and long-term retention. Herein, we examined extinction and the effects of stimulus pre-exposure. Two groups of adult male rats (n=4 each) were first tested for behavioral responses (disruption of ongoing respiration) to tones (1-15 kHz), constituting a pre-training behavioral frequency generalization gradient (BFGG). They next received a first session of training, 200 trials of a tone (8.00 kHz, 70 dB, 2 s) either paired with electrical stimulation of the NB (100 Hz, 0.2 s, approximately 67 microA, NBstm) (group IP) or unpaired (group IU). Twenty-four hours later, they were tested for behavioral memory by obtaining post-training BFGGs. Then the contingencies were reversed yet another 24 h later; the IP group received tone and NBstm unpaired and the IU group received them paired. A final set of generalization gradients was obtained the next day. All stimuli were presented with subjects under state control indexed by regular respiration. Tested 24 h post-initial training, the IP group developed specific associative behavioral memory indicated by increased responses only to CS-band frequencies, while the IU group did not. After subsequent training with unpaired stimuli, the IP group exhibited experimental extinction. Furthermore, after initial exposure to the CS and NBstm unpaired, the IU group exhibited a tendency toward reduced conditioning to CS/NBstm pairing and a significant increase in latency of conditioned responses. The present findings provide additional support for the hypothesis that engagement of the NB is sufficient to induce natural associative memory and suggest that activation of the NB may be a normal component in the formation of natural associative memory.
Collapse
Affiliation(s)
- Alexandre A. Miasnikov
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, United States
| | - Jemmy C. Chen
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, United States
| | - Norman M. Weinberger
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, United States
| |
Collapse
|
42
|
Sex-specific 24-h acetylcholine release profile in the medial prefrontal cortex: Simultaneous measurement of spontaneous locomotor activity in behaving rats. Neuroscience 2009; 159:7-15. [DOI: 10.1016/j.neuroscience.2008.12.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 12/23/2008] [Indexed: 11/19/2022]
|
43
|
Miasnikov AA, Chen JC, Weinberger NM. Specific auditory memory induced by nucleus basalis stimulation depends on intrinsic acetylcholine. Neurobiol Learn Mem 2008; 90:443-54. [PMID: 18573347 PMCID: PMC2556567 DOI: 10.1016/j.nlm.2008.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 05/23/2008] [Accepted: 05/27/2008] [Indexed: 10/21/2022]
Abstract
Although the cholinergic system has long been implicated in the formation of memory, there had been no direct demonstration that activation of this system can actually induce specific behavioral memory. We have evaluated the "cholinergic-memory" hypothesis by pairing a tone with stimulation of the nucleus basalis (NB), which provides acetylcholine to the cerebral cortex. We found that such pairing induces behaviorally-validated auditory memory. NB-induced memory has the key features of natural memory: it is associative, highly-specific and rapidly induced. Moreover, the level of NB stimulation controls the amount of detail in memory about the tonal conditioned stimulus. While consistent with the hypothesis that properly-timed release of acetylcholine (ACh) during natural learning is sufficient to induce memory, pharmacological evidence has been lacking. This study asked whether scopolamine, a muscarinic antagonist, impairs or prevents the formation of NB-induced memory. Adult male rats were first tested for responses (disruption of ongoing respiration) to tones (1-15 kHz), constituting a pre-training behavioral frequency generalization gradient (BFGG). Then, they received a single session of 200 trials of a tone (8.00 kHz, 70 dB, 2 s) paired with electrical stimulation of the NB (100 Hz, 0.2 s). Immediately after training, they received either scopolamine (1.0 mg/kg, i.p.) or saline. Twenty-four hours later, they were tested for specific memory by obtaining post-training BFGGs. The saline group developed CS-specific memory, manifested by maximum increase in response specific to the CS frequency band. In contrast, the scopolamine group exhibited no such memory. These findings indicate that NB-induced specific associative behavioral memory requires the action of intrinsic acetylcholine at muscarinic receptors, and supports the hypothesis that natural memory formation engages the nucleus basalis and muscarinic receptors.
Collapse
Affiliation(s)
- Alexandre A Miasnikov
- Center for the Neurobiology of Learning and Memory, 309 Qureshey Research Laboratory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, USA
| | | | | |
Collapse
|
44
|
Parikh V, Sarter M. Cholinergic mediation of attention: contributions of phasic and tonic increases in prefrontal cholinergic activity. Ann N Y Acad Sci 2008; 1129:225-35. [PMID: 18591483 DOI: 10.1196/annals.1417.021] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Contrary to the classic description of acetylcholine (ACh) as a slowly acting neuromodulator that influences arousal states, results from experiments that employed enzyme-selective microelectrodes for the real-time monitoring of ACh release in the cortex of attentional task-performing rats indicate that cholinergic signals manifesting on multiple timescales (seconds, tens of seconds, and minutes) support, and are necessary for, the mediation of defined cognitive operations. Specifically, in the prefrontal cortex, second-based cholinergic signals support the detection of behaviorally significant cues. In contrast to these prefrontal cholinergic transients, performance-associated cholinergic activity that manifested at lower temporal resolution also was observed elsewhere in the cortex. Although tonic cholinergic signal levels were correlated with the amplitudes of cue-evoked cholinergic transients, and the latter with response latencies, the interrelationships and interactions between the multiple cholinergic signaling modes remains unclear. Hypotheses concerning the afferent circuitry contributing to the regulation of second- versus minute-based cholinergic signals are discussed. The discovery of cholinergic transients and their crucial role in cue detection and attentional performance form the basis for new hypotheses about the nature of cholinergic dysfunction in cognitive disorders and offer new targets for the development of treatments for the cognitive symptoms of neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109-1043, USA
| | | |
Collapse
|
45
|
Miasnikov AA, Chen JC, Gross N, Poytress BS, Weinberger NM. Motivationally neutral stimulation of the nucleus basalis induces specific behavioral memory. Neurobiol Learn Mem 2008; 90:125-37. [PMID: 18343695 PMCID: PMC2496874 DOI: 10.1016/j.nlm.2008.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/05/2008] [Accepted: 02/05/2008] [Indexed: 11/28/2022]
Abstract
The cholinergic system has been implicated in learning and memory. The nucleus basalis (NB) provides acetylcholine (ACh) to the cerebral cortex. Pairing a tone with NB stimulation (NBstm) to alter cortical state induces both associative specific tuning plasticity in the primary auditory cortex (A1) and associative specific auditory behavioral memory. NB-induced memory has major features of natural memory that is induced by pairing a tone with motivational reinforcers, e.g., food or shock, suggesting that the cholinergic system may be a "final common pathway" whose activation promotes memory storage. Alternatively, NB stimulation might itself be motivationally significant, either rewarding or punishing. To investigate these alternatives, adult male rats (n=7) first formed a specific NB-induced memory (CS=8.0kHz, 2.0s paired with NBstm, ISI=1.8s, 200 trials), validated by post-training (24h) frequency generalization gradients (1-15kHz) of respiration interruption that were specific to the CS frequency. Thereafter, they received the same level of NBstm that had induced memory, while confined to one quadrant of an arena, and later tested for place-preference, i.e., avoidance or seeking of the quadrant of NBstm. This NBstm group exhibited neither preference for nor against the stimulated quadrant, compared to sham-operated subjects (n=7). The findings indicate that specific associative memory can be induced by direct activation of the NB without detectable motivational effects of NB stimulation. These results are concordant with a memory-promoting role for the nucleus basalis that places it "downstream" of motivational systems, which activate it to initiate the storage of the current state of its cholinergic targets.
Collapse
Affiliation(s)
- Alexandre A Miasnikov
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, USA
| | | | | | | | | |
Collapse
|
46
|
Henny P, Jones BE. Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. Eur J Neurosci 2008; 27:654-70. [PMID: 18279318 DOI: 10.1111/j.1460-9568.2008.06029.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study was undertaken to characterize the pre- and postsynaptic constituents of the basal forebrain (BF) projection to the prefrontal cortex in the rat, and determine whether it includes glutamatergic in addition to established gamma-aminobutyric acid (GABA)ergic and cholinergic elements. BF fibres were labelled by anterograde transport using biotin dextran amine (BDA) and dual-stained for the vesicular transporter proteins (VTPs) for glutamate (VGluT), GABA (VGAT) or acetylcholine (VAChT). Viewed by fluorescence microscopy and estimated by stereology, proportions of BDA-labelled varicosities were found to be stained for VGluT2 (and not VGluT1 or 3), VGAT or VAChT (representing, respectively, approximately 15%, approximately 52% and approximately 19% within the infralimbic cortex). Each type was present in all, though commonly most densely in deep, cortical layers. Material was triple-stained for postsynaptic proteins to examine whether BDA+VTP+ varicosities might form excitatory or inhibitory synapses, respectively, labelled by postsynaptic density-95 kDA (PSD-95) or gephyrin (Geph). Viewed by confocal microscopy, a majority of BDA+/VGluT2+ varicosities were found to be apposed to PSD-95+ elements, and a majority of BDA+/VGAT+ varicosities to be apposed to Geph+ elements. Other series were triple-stained for cell marker proteins to assess whether the varicosities contacted interneurons or pyramidal cells. Viewed by confocal microscopy, BDA-labelled VGluT2+, VGAT+ and VAChT+ BF terminals were all found in contact with calbindin+ interneurons, whereas VGAT+ BF terminals were also seen in contact with parvalbumin+ interneurons and non-phosphorylated neurofilament+ pyramidal cells. Through distinct glutamatergic, GABAergic and cholinergic projections, the BF can thus influence cortical activity in a diverse manner.
Collapse
Affiliation(s)
- Pablo Henny
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4
| | | |
Collapse
|
47
|
Santiago AC, Shammah-Lagnado SJ. Afferent connections of the amygdalopiriform transition area in the rat. J Comp Neurol 2008; 489:349-71. [PMID: 16025448 DOI: 10.1002/cne.20637] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The amygdalopiriform transition area (APir) is often considered part of the lateral entorhinal cortex (Entl). However, in contrast to Entl, APir densely innervates the central extended amygdala (EAc) and does not project to the dentate gyrus. In order to gain a more comprehensive understanding of these territories, the afferent connections of APir were examined in the rat with retrograde (cholera toxin B subunit or FluoroGold) and anterograde tracers (Phaseolus vulgaris leucoagglutinin) and compared to those of the neighboring Entl. The results suggest that APir and Entl are interconnected and receive topographically organized hippocampal projections. Both are targeted by the olfactory bulb, the piriform, posterior agranular insular and perirhinal cortices, the ventral tegmental area, dorsal raphe nucleus, and locus coeruleus. Most importantly, the data reveal that APir and Entl also have specific inputs and should be viewed as separate anatomical entities. The APir receives robust projections from structures affiliated with the EAc, including the anterior basomedial and posterior basolateral amygdaloid nuclei, the gustatory thalamic region, parasubthalamic nucleus, and parabrachial area. The Entl is a major recipient for amygdaloid projections from the medial part of the lateral nucleus and the caudomedial part of the basolateral nucleus. Moreover, the medial septum, subicular complex, nucleus reuniens, supramammillary region, and nucleus incertus, which are associated with the hippocampal system, preferentially innervate the Entl. These data underscore that APir processes olfactory and gustatory information and is tightly linked to EAc operations, suggesting that it may play a role in reward mechanisms, particularly in hedonic aspects of feeding.
Collapse
Affiliation(s)
- Adriana C Santiago
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo SP 05508-900, Brazil
| | | |
Collapse
|
48
|
Ionov ID. Specific mechanism for blood inflow stimulation in brain area prone to Alzheimer's disease lesions. Int J Neurosci 2007; 117:1425-42. [PMID: 17729154 DOI: 10.1080/00207450601125733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present study describes the specific two-stage mechanism that intensifies blood supply to the brain area comprising amygdala, hippocampus, olfactory bulb, entorhinal cortex, and neocortex (AHBC). Cholinergic neurons from the nuclei of basal forebrain induce vasodilatory effect through release of acetylcholine. In physiological aging the efficacy of this neuronal system declines, while intensive formation of amyloidogenic peptides starts. These peptides at low, picomolar concentrations activate alpha7 nicotinic acetylcholine receptors, thus enhancing angiogenesis and in so doing restoring blood supply to the AHBC area.
Collapse
Affiliation(s)
- Ilya D Ionov
- Center on Theoretical Problems in Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
49
|
Vertes RP, Linley SB. Comparison of projections of the dorsal and median raphe nuclei, with some functional considerations. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ics.2007.07.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Hoover WB, Vertes RP. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 2007; 212:149-79. [PMID: 17717690 DOI: 10.1007/s00429-007-0150-4] [Citation(s) in RCA: 963] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 06/04/2007] [Indexed: 11/28/2022]
Abstract
The medial prefrontal cortex (mPFC) has been associated with diverse functions including attentional processes, visceromotor activity, decision making, goal directed behavior, and working memory. Using retrograde tracing techniques, we examined, compared, and contrasted afferent projections to the four divisions of the mPFC in the rat: the medial (frontal) agranular (AGm), anterior cingulate (AC), prelimbic (PL), and infralimbic (IL) cortices. Each division of the mPFC receives a unique set of afferent projections. There is a shift dorsoventrally along the mPFC from predominantly sensorimotor input to the dorsal mPFC (AGm and dorsal AC) to primarily 'limbic' input to the ventral mPFC (PL and IL). The AGm and dorsal AC receive afferent projections from widespread areas of the cortex (and associated thalamic nuclei) representing all sensory modalities. This information is presumably integrated at, and utilized by, the dorsal mPFC in goal directed actions. In contrast with the dorsal mPFC, the ventral mPFC receives significantly less cortical input overall and afferents from limbic as opposed to sensorimotor regions of cortex. The main sources of afferent projections to PL/IL are from the orbitomedial prefrontal, agranular insular, perirhinal and entorhinal cortices, the hippocampus, the claustrum, the medial basal forebrain, the basal nuclei of amygdala, the midline thalamus and monoaminergic nuclei of the brainstem. With a few exceptions, there are few projections from the hypothalamus to the dorsal or ventral mPFC. Accordingly, subcortical limbic information mainly reaches the mPFC via the midline thalamus and basal nuclei of amygdala. As discussed herein, based on patterns of afferent (as well as efferent) projections, PL is positioned to serve a direct role in cognitive functions homologous to dorsolateral PFC of primates, whereas IL appears to represent a visceromotor center homologous to the orbitomedial PFC of primates.
Collapse
Affiliation(s)
- Walter B Hoover
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | |
Collapse
|