1
|
Ingram R, Volianskis A. Promiscuous involvement of metabotropic glutamate receptors in the storage of N-methyl-d-aspartate receptor-dependent short-term potentiation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230445. [PMID: 38853548 PMCID: PMC11343307 DOI: 10.1098/rstb.2023.0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 06/11/2024] Open
Abstract
Short- and long-term forms of N-methyl-d-aspartate receptor (NMDAR)-dependent potentiation (most commonly termed short-term potentiation (STP) and long-term potentiation (LTP)) are co-induced in hippocampal slices by theta-burst stimulation, which mimics naturally occurring patterns of neuronal activity. While NMDAR-dependent LTP (NMDAR-LTP) is said to be the cellular correlate of long-term memory storage, NMDAR-dependent STP (NMDAR-STP) is thought to underlie the encoding of shorter-lasting memories. The mechanisms of NMDAR-LTP have been researched much more extensively than those of NMDAR-STP, which is characterized by its extreme stimulation dependence. Thus, in the absence of low-frequency test stimulation, which is used to test the magnitude of potentiation, NMDAR-STP does not decline until the stimulation is resumed. NMDAR-STP represents, therefore, an inverse variant of Hebbian synaptic plasticity, illustrating that inactive synapses can retain their strength unchanged until they become active again. The mechanisms, by which NMDAR-STP is stored in synapses without a decrement, are unknown and we report here that activation of metabotropic glutamate receptors may be critical in maintaining the potentiated state of synaptic transmission. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Rachael Ingram
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, LondonE1 2AT, UK
| | - Arturas Volianskis
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, LondonE1 2AT, UK
- School of Biosciences, Cardiff University, Museum Avenue, CardiffCF10 3AX, UK
| |
Collapse
|
2
|
Kourosh-Arami M, Komaki A, Gholami M, Marashi SH, Hejazi S. Heterosynaptic plasticity-induced modulation of synapses. J Physiol Sci 2023; 73:33. [PMID: 38057729 PMCID: PMC10717068 DOI: 10.1186/s12576-023-00893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Plasticity is a common feature of synapses that is stated in different ways and occurs through several mechanisms. The regular action of the brain needs to be balanced in several neuronal and synaptic features, one of which is synaptic plasticity. The different homeostatic processes, including the balance between excitation/inhibition or homeostasis of synaptic weights at the single-neuron level, may obtain this. Homosynaptic Hebbian-type plasticity causes associative alterations of synapses. Both homosynaptic and heterosynaptic plasticity characterize the corresponding aspects of adjustable synapses, and both are essential for the regular action of neural systems and their plastic synapses.In this review, we will compare homo- and heterosynaptic plasticity and the main factors affecting the direction of plastic changes. This review paper will also discuss the diverse functions of the different kinds of heterosynaptic plasticity and their properties. We argue that a complementary system of heterosynaptic plasticity demonstrates an essential cellular constituent for homeostatic modulation of synaptic weights and neuronal activity.
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Gholami
- Department of Physiology, Medical College, Arak University of Medical Sciences, Arak, Iran
| | | | - Sara Hejazi
- Department of Industrial Engineering & Management Systems, University of Central Florida, Orlando, USA
| |
Collapse
|
3
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
4
|
Sadeghian A, Salari Z, Azizi H, Raoufy MR, Shojaei A, Kosarmadar N, Zare M, Rezaei M, Barkley V, Javan M, Fathollahi Y, Mirnajafi-Zadeh J. The role of dopamine D 2-like receptors in a "depotentiation-like effect" of deep brain stimulation in kindled rats. Brain Res 2020; 1738:146820. [PMID: 32251663 DOI: 10.1016/j.brainres.2020.146820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 01/12/2023]
Abstract
The mechanisms involved in the anti-seizure effects of low-frequency stimulation (LFS) have not been completely determined. However, Gi-protein-coupled receptors, including D2-like receptors, may have a role in mediating these effects. In the present study, the role of D2-like receptors in LFS' anti-seizure action was investigated. Rats were kindled with semi-rapid (6 stimulations per day), electrical stimulation of the hippocampal CA1 area. In LFS-treated groups, subjects received four trials of LFS at 5 min, 6 h, 24 h, and 30 h following the last kindling stimulation. Each LFS set occurred at 5 min intervals, and consisted of 4 trains. Each train contained 200, 0/1 ms long, monophasic square wave pulses at 1 Hz. Haloperidol (D2-like receptors antagonist, 2 µm) and/or bromocriptine (D2-like receptors agonist 2 µg/µlit) were microinjected into the lateral ventricle immediately after the last kindling, before applying LFS. Obtained results showed that applying LFS in fully-kindled subjects led to a depotentiation-like decrease in kindling-induced potentiation and reduced the amplitude and rise slope of excitatory and inhibitory post-synaptic currents in whole-cell recordings from CA1 pyramidal neurons. In addition, LFS restored the kindling-induced, spatial learning and memory impairments in the Barnes maze test. A D2-like receptor antagonist inhibited these effects of LFS, while a D2-like receptor agonist mimicked these effects. In conclusion, a depotentiation-like mechanism may be involved in restoring LFS' effects on learning and memory, and synaptic plasticity. These effects depend on D2-like receptors activity.
Collapse
Affiliation(s)
- Azam Sadeghian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Salari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nastaran Kosarmadar
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Meysam Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmoud Rezaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Cicvaric A, Sachernegg HM, Stojanovic T, Symmank D, Smani T, Moeslinger T, Uhrin P, Monje FJ. Podoplanin Gene Disruption in Mice Promotes in vivo Neural Progenitor Cells Proliferation, Selectively Impairs Dentate Gyrus Synaptic Depression and Induces Anxiety-Like Behaviors. Front Cell Neurosci 2020; 13:561. [PMID: 32009902 PMCID: PMC6974453 DOI: 10.3389/fncel.2019.00561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Podoplanin (Pdpn), a brain-tumor-related glycoprotein identified in humans and animals, is endogenously expressed in several organs critical for life support such as kidney, lung, heart and brain. In the brain, Pdpn has been identified in proliferative nestin-positive adult neural progenitor cells and in neurons of the neurogenic hippocampal dentate gyrus (DG), a structure associated to anxiety, critical for learning and memory functions and severely damaged in people with Alzheimer's Disease (AD). The in vivo role of Pdpn in adult neurogenesis and anxiety-like behavior remained however unexplored. Using mice with disrupted Pdpn gene as a model organism and applying combined behavioral, molecular biological and electrophysiological assays, we here show that the absence of Pdpn selectively impairs long-term synaptic depression in the neurogenic DG without affecting the CA3-Schaffer's collateral-CA1 synapses. Pdpn deletion also enhanced the proliferative capacity of DG neural progenitor cells and diminished survival of differentiated neuronal cells in vitro. In addition, mice with podoplanin gene disruption showed increased anxiety-like behaviors in experimentally validated behavioral tests as compared to wild type littermate controls. Together, these findings broaden our knowledge on the molecular mechanisms influencing hippocampal synaptic plasticity and neurogenesis in vivo and reveal Pdpn as a novel molecular target for future studies addressing general anxiety disorder and synaptic depression-related memory dysfunctions.
Collapse
Affiliation(s)
- Ana Cicvaric
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannah M. Sachernegg
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Tamara Stojanovic
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Dörte Symmank
- Center for Physiology and Pharmacology, Institute for Physiology, Medical University of Vienna, Vienna, Austria
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville (IBiS)/University of Seville/CIBERCV, Seville, Spain
| | - Thomas Moeslinger
- Center for Physiology and Pharmacology, Institute for Physiology, Medical University of Vienna, Vienna, Austria
| | - Pavel Uhrin
- Center for Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Francisco J. Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Faldini E, Ahmed T, Bueé L, Blum D, Balschun D. Tau- but not Aß -pathology enhances NMDAR-dependent depotentiation in AD-mouse models. Acta Neuropathol Commun 2019; 7:202. [PMID: 31815648 PMCID: PMC6902514 DOI: 10.1186/s40478-019-0813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/22/2019] [Indexed: 11/10/2022] Open
Abstract
Many mouse models of Alzheimer's disease (AD) exhibit impairments in hippocampal long-term-potentiation (LTP), seemingly corroborating the strong correlation between synaptic loss and cognitive decline reported in human studies. In other AD mouse models LTP is unaffected, but other defects in synaptic plasticity may still be present. We recently reported that THY-Tau22 transgenic mice, that overexpress human Tau protein carrying P301S and G272 V mutations and show normal LTP upon high-frequency-stimulation (HFS), develop severe changes in NMDAR mediated long-term-depression (LTD), the physiological counterpart of LTP. In the present study, we focused on putative effects of AD-related pathologies on depotentiation (DP), another form of synaptic plasticity. Using a novel protocol to induce DP in the CA1-region, we found in 11-15 months old male THY-Tau22 and APPPS1-21 transgenic mice that DP was not deteriorated by Aß pathology while significantly compromised by Tau pathology. Our findings advocate DP as a complementary form of synaptic plasticity that may help in elucidating synaptic pathomechanisms associated with different types of dementia.
Collapse
|
7
|
Rathour RK, Narayanan R. Degeneracy in hippocampal physiology and plasticity. Hippocampus 2019; 29:980-1022. [PMID: 31301166 PMCID: PMC6771840 DOI: 10.1002/hipo.23139] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/27/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
Degeneracy, defined as the ability of structurally disparate elements to perform analogous function, has largely been assessed from the perspective of maintaining robustness of physiology or plasticity. How does the framework of degeneracy assimilate into an encoding system where the ability to change is an essential ingredient for storing new incoming information? Could degeneracy maintain the balance between the apparently contradictory goals of the need to change for encoding and the need to resist change towards maintaining homeostasis? In this review, we explore these fundamental questions with the mammalian hippocampus as an example encoding system. We systematically catalog lines of evidence, spanning multiple scales of analysis that point to the expression of degeneracy in hippocampal physiology and plasticity. We assess the potential of degeneracy as a framework to achieve the conjoint goals of encoding and homeostasis without cross-interferences. We postulate that biological complexity, involving interactions among the numerous parameters spanning different scales of analysis, could establish disparate routes towards accomplishing these conjoint goals. These disparate routes then provide several degrees of freedom to the encoding-homeostasis system in accomplishing its tasks in an input- and state-dependent manner. Finally, the expression of degeneracy spanning multiple scales offers an ideal reconciliation to several outstanding controversies, through the recognition that the seemingly contradictory disparate observations are merely alternate routes that the system might recruit towards accomplishment of its goals.
Collapse
Affiliation(s)
- Rahul K. Rathour
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| | - Rishikesh Narayanan
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| |
Collapse
|
8
|
Qi Y, Klyubin I, Hu NW, Ondrejcak T, Rowan MJ. Pre-plaque Aß-Mediated Impairment of Synaptic Depotentiation in a Transgenic Rat Model of Alzheimer's Disease Amyloidosis. Front Neurosci 2019; 13:861. [PMID: 31474823 PMCID: PMC6702302 DOI: 10.3389/fnins.2019.00861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
How endogenously produced soluble amyloid ß-protein (Aß) affects synaptic plasticity in vulnerable circuits should provide insight into early Alzheimer's disease pathophysiology. McGill-R-Thy1-APP transgenic rats, modeling Alzheimer's disease amyloidosis, exhibit an age-dependent soluble Aß-mediated impairment of the induction of long-term potentiation (LTP) by 200 Hz conditioning stimulation at apical CA3-to-CA1 synapses. Here, we investigated if synaptic weakening at these synapses in the form of activity-dependent persistent reversal (depotentiation) of LTP is also altered in pre-plaque rats in vivo. In freely behaving transgenic rats strong, 400 Hz, conditioning stimulation induced stable LTP that was NMDA receptor- and voltage-gated Ca2+ channel-dependent. Surprisingly, the ability of novelty exploration to induce depotentiation of 400 Hz-induced LTP was impaired in an Aß-dependent manner in the freely behaving transgenic rats. Moreover, at apical synapses, low frequency conditioning stimulation (1 Hz) did not trigger depotentiation in anaesthetized transgenic rats, with an age-dependence similar to the LTP deficit. In contrast, at basal synapses neither LTP, induced by 100 or 200 Hz, nor novelty exploration-induced depotentiation was impaired in the freely behaving transgenic rats. These findings indicate that activity-dependent weakening, as well as strengthening, is impaired in a synapse- and age-dependent manner in this model of early Alzheimer's disease amyloidosis.
Collapse
Affiliation(s)
- Yingjie Qi
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Neng-Wei Hu
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,Department of Physiology and Neurobiology, Zhengzhou University School of Medicine, Zhengzhou, China
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Park P, Sanderson TM, Bortolotto ZA, Georgiou J, Zhuo M, Kaang BK, Collingridge GL. Differential sensitivity of three forms of hippocampal synaptic potentiation to depotentiation. Mol Brain 2019; 12:30. [PMID: 30943994 PMCID: PMC6446328 DOI: 10.1186/s13041-019-0451-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/18/2019] [Indexed: 12/02/2022] Open
Abstract
Theta-burst stimulation (TBS) induces short-term potentiation (STP) plus two types of transcriptionally-independent forms of long-term potentiation (LTP), termed LTP1 and LTP2. We have compared the susceptibility of these three types of synaptic plasticity to depotentiation, induced by low frequency stimulation (LFS; 2 Hz for 10 min) at the Schaffer collateral-commissural pathway in area CA1 of adult rat hippocampal slices. In interleaved experiments, STP and LTP were induced by three episodes of either compressed or spaced TBS (cTBS or sTBS). LFS had a more pronounced effect on the LTP induced by the cTBS. One traditional interpretation of these results is a difference in the time-dependent immunity against depotentiation. We suggest an alternative explanation: LFS rapidly reverses STP to reveal a slowly developing LTP. The cTBS protocol induces LTP1 that is moderately sensitive to depotentiation. The sTBS induces an additional component of LTP (LTP2) that is resistant to depotentiation.
Collapse
Affiliation(s)
- Pojeong Park
- Department of Biological Sciences and Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, Korea.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.,Centre for Synaptic Plasticity, School of Physiology and Pharmacology and Neuroscience, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Thomas M Sanderson
- Department of Biological Sciences and Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, Korea.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.,Centre for Synaptic Plasticity, School of Physiology and Pharmacology and Neuroscience, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Zuner A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology and Neuroscience, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Min Zhuo
- Department of Biological Sciences and Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, Korea.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Bong-Kiun Kaang
- Department of Biological Sciences and Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, Korea
| | - Graham L Collingridge
- Department of Biological Sciences and Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, Korea. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada. .,Centre for Synaptic Plasticity, School of Physiology and Pharmacology and Neuroscience, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK.
| |
Collapse
|
10
|
Human Depotentiation following Induction of Spike Timing Dependent Plasticity. Biomedicines 2018; 6:biomedicines6020071. [PMID: 29912149 PMCID: PMC6027207 DOI: 10.3390/biomedicines6020071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/17/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022] Open
Abstract
Depotentiation (DP) is a crucial mechanism for the tuning of memory traces once LTP (Long Term Potentiation) has been induced via learning, artificial procedures, or other activities. Putative unuseful LTP might be abolished via this process. Its deficiency is thought to play a role in pathologies, such as drug induced dyskinesia. However, since it is thought that it represents a mechanism that is linked to the susceptibility to interference during consolidation of a memory trace, it is an important process to consider when therapeutic interventions, such as psychotherapy, are administered. Perhaps a person with an abnormal depotentiation is prone to lose learned effects very easily or on the other end of the spectrum is prone to overload with previously generated unuseful LTP. Perhaps this process partly explains why some disorders and patients are extremely resistant to therapy. The present study seeks to quantify the relationship between LTP and depotentiation in the human brain by using transcranial magnetic stimulation (TMS) over the cortex of healthy participants. The results provide further evidence that depotentiation can be quantified in humans by use of noninvasive brain stimulation techniques. They provide evidence that a nonfocal rhythmic on its own inefficient stimulation, such as a modified thetaburst stimulation, can depotentiate an associative, focal spike timing-dependent PAS (paired associative stimulation)-induced LTP. Therefore, the depotentiation-like process does not seem to be restricted to specific subgroups of synapses that have undergone LTP before. Most importantly, the induced LTP seems highly correlated with the amount of generated depotentiation in healthy individuals. This might be a phenomenon typical of health and might be distorted in brain pathologies, such as dystonia, or dyskinesias. The ratio of LTP/DP might be a valuable marker for potential distortions of persistence versus deletion of memory traces represented by LTP-like plasticity.
Collapse
|
11
|
Vogel Ciernia A, Kramár EA, Matheos DP, Havekes R, Hemstedt TJ, Magnan CN, Sakata K, Tran A, Azzawi S, Lopez A, Dang R, Wang W, Trieu B, Tong J, Barrett RM, Post RJ, Baldi P, Abel T, Lynch G, Wood MA. Mutation of neuron-specific chromatin remodeling subunit BAF53b: rescue of plasticity and memory by manipulating actin remodeling. Learn Mem 2017; 24:199-209. [PMID: 28416631 PMCID: PMC5397687 DOI: 10.1101/lm.044602.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/28/2017] [Indexed: 12/21/2022]
Abstract
Recent human exome-sequencing studies have implicated polymorphic Brg1-associated factor (BAF) complexes (mammalian SWI/SNF chromatin remodeling complexes) in several intellectual disabilities and cognitive disorders, including autism. However, it remains unclear how mutations in BAF complexes result in impaired cognitive function. Post-mitotic neurons express a neuron-specific assembly, nBAF, characterized by the neuron-specific subunit BAF53b. Subdomain 2 of BAF53b is essential for the differentiation of neuronal precursor cells into neurons. We generated transgenic mice lacking subdomain 2 of Baf53b (BAF53bΔSB2). Long-term synaptic potentiation (LTP) and long-term memory, both of which are associated with phosphorylation of the actin severing protein cofilin, were assessed in these animals. A phosphorylation mimic of cofilin was stereotaxically delivered into the hippocampus of BAF53bΔSB2 mice in an effort to rescue LTP and memory. BAF53bΔSB2 mutant mice show impairments in phosphorylation of synaptic cofilin, LTP, and memory. Both the synaptic plasticity and memory deficits are rescued by overexpression of a phosphorylation mimetic of cofilin. Baseline physiology and behavior were not affected by the mutation or the experimental treatment. This study suggests a potential link between nBAF function, actin cytoskeletal remodeling at the dendritic spine, and memory formation. This work shows that a targeted manipulation of synaptic function can rescue adult plasticity and memory deficits caused by manipulations of nBAF, and thereby provides potential novel avenues for therapeutic development for multiple intellectual disability disorders.
Collapse
Affiliation(s)
- Annie Vogel Ciernia
- Department of Medical Microbiology and Immunology, University of California, Davis, California 95656, USA
| | - Enikö A Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Dina P Matheos
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Robbert Havekes
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9712, The Netherlands
| | - Thekla J Hemstedt
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Christophe N Magnan
- Department of Computer Science, University of California, Irvine, California 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, California 92697, USA
| | - Keith Sakata
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Ashley Tran
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Soraya Azzawi
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Alberto Lopez
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Richard Dang
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Weisheng Wang
- Department of Computer Science, University of California, Irvine, California 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, California 92697, USA
| | - Brian Trieu
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697, USA
| | - Joyce Tong
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Ruth M Barrett
- Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Rebecca J Post
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Pierre Baldi
- Department of Computer Science, University of California, Irvine, California 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, California 92697, USA
| | - Ted Abel
- Departments of Molecular Physiology and Biophysics, Psychiatry, and Biochemistry, Iowa Neuroscience Institute, Iowa City, Iowa 50309, USA
| | - Gary Lynch
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, California 92697, USA
| |
Collapse
|
12
|
Di Mauro M, Tozzi A, Calabresi P, Pettorossi VE, Grassi S. Different synaptic stimulation patterns influence the local androgenic and estrogenic neurosteroid availability triggering hippocampal synaptic plasticity in the male rat. Eur J Neurosci 2017; 45:499-509. [DOI: 10.1111/ejn.13455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Michela Di Mauro
- Dipartimento di Medicina Sperimentale Sezione di Fisiologia e Biochimica Università di Perugia Via Gambuli 06156 Perugia Italy
| | - Alessandro Tozzi
- Dipartimento di Medicina Sperimentale Sezione di Fisiologia e Biochimica Università di Perugia Via Gambuli 06156 Perugia Italy
- Fondazione Santa Lucia – I.R.C.C.S. Rome Italy
| | - Paolo Calabresi
- Fondazione Santa Lucia – I.R.C.C.S. Rome Italy
- Dipartimento di Medicina Clinica Neurologica Università di Perugia Perugia Italy
| | - Vito Enrico Pettorossi
- Dipartimento di Medicina Sperimentale Sezione di Fisiologia e Biochimica Università di Perugia Via Gambuli 06156 Perugia Italy
| | - Silvarosa Grassi
- Dipartimento di Medicina Sperimentale Sezione di Fisiologia e Biochimica Università di Perugia Via Gambuli 06156 Perugia Italy
| |
Collapse
|
13
|
Abstract
Memory is fundamentally important to everyday life, and memory loss has devastating consequences to individuals and society. Understanding the neurophysiological and cellular basis of memory paves the way for gaining insights into the molecular steps involved in memory formation, thereby revealing potential therapeutic targets for neurological diseases. For three decades, long-term potentiation (LTP) has been the gold standard synaptic model for mammalian memory mechanisms, in large part because of its long-lasting nature. Here, the authors summarize the characteristics of LTP persistence in the dentate gyrus of the hippocampus, comparing this with other hippocampal subregions and neocortex. They consider how long LTP can last and how its persistence is affected by subsequent behavioral experiences. Next, they review the molecular mechanisms known to contribute to LTP induction and persistence, in particular the role of new gene expression and protein synthesis and how they may be associated with potential structural reorganization of the synapse. A temporal schema for the processes important for consolidating LTP into a persistent form is presented. The parallels between the molecular aspects of LTP and memory strongly support the continuation with LTP as a model system for studying the mechanisms underlying long-term memory consolidation and retention.
Collapse
Affiliation(s)
- Wickliffe C Abraham
- Department of Psychology, Box 56, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
14
|
Almaguer-Melian W, Mercerón-Martínez D, Delgado-Ocaña S, Pavón-Fuentes N, Ledón N, Bergado JA. EPO induces changes in synaptic transmission and plasticity in the dentate gyrus of rats. Synapse 2016; 70:240-52. [PMID: 26860222 DOI: 10.1002/syn.21895] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/24/2022]
Abstract
Erythropoietin has shown wide physiological effects on the central nervous system in animal models of disease, and in healthy animals. We have recently shown that systemic EPO administration 15 min, but not 5 h, after daily training in a water maze is able to induce the recovery of spatial memory in fimbria-fornix chronic-lesioned animals, suggesting that acute EPO triggers mechanisms which can modulate the active neural plasticity mechanism involved in spatial memory acquisition in lesioned animals. Additionally, this EPO effect is accompanied by the up-regulation of plasticity-related early genes. More remarkably, this time-dependent effects on learning recovery could signify that EPO in nerve system modulate specific living-cellular processes. In the present article, we focus on the question if EPO could modulate the induction of long-term synaptic plasticity like LTP and LTD, which presumably could support our previous published data. Our results show that acute EPO peripheral administration 15 min before the induction of synaptic plasticity is able to increase the magnitude of the LTP (more prominent in PSA than fEPSP-Slope) to facilitate the induction of LTD, and to protect LTP from depotentiation. These findings showing that EPO modulates in vivo synaptic plasticity sustain the assumption that EPO can act not only as a neuroprotective substance, but is also able to modulate transient neural plasticity mechanisms and therefore to promote the recovery of nerve function after an established chronic brain lesion. According to these results, EPO could be use as a molecular tool for neurorestaurative treatments.
Collapse
Affiliation(s)
| | | | | | - Nancy Pavón-Fuentes
- Centro Internacional De Restauración Neurológica (CIREN), La Habana 11300, Cuba
| | - Nuris Ledón
- Centro De Inmunología Molecular, Playa, 11600, La Habana, Cuba
| | - Jorge A Bergado
- Centro Internacional De Restauración Neurológica (CIREN), La Habana 11300, Cuba
| |
Collapse
|
15
|
Twarkowski H, Hagena H, Manahan-Vaughan D. The 5-hydroxytryptamine4 receptor enables differentiation of informational content and encoding in the hippocampus. Hippocampus 2016; 26:875-91. [PMID: 26800645 PMCID: PMC5067691 DOI: 10.1002/hipo.22569] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 11/10/2022]
Abstract
Long‐term synaptic plasticity, represented by long‐term depression (LTD) and long‐term potentiation (LTP) comprise cellular processes that enable memory. Neuromodulators such as serotonin regulate hippocampal function, and the 5‐HT4‐receptor contributes to processes underlying cognition. It was previously shown that in the CA1‐region, 5‐HT4‐receptors regulate the frequency‐response relationship of synaptic plasticity: patterned afferent stimulation that has no effect on synaptic strength (i.e., a θm‐frequency), will result in LTP or LTD, when given in the presence of a 5‐HT4‐agonist, or antagonist, respectively. Here, we show that in the dentate gyrus (DG) and CA3 regions of freely behaving rats, pharmacological manipulations of 5‐HT4‐receptors do not influence responses generated at θm‐frequencies, but activation of 5‐HT4‐receptors prevents persistent LTD in mossy fiber (mf)‐CA3, or perforant path‐DG synapses. Furthermore, the regulation by 5‐HT4‐receptors of LTP is subfield‐specific: 5‐HT4‐receptor‐activation prevents mf‐CA3‐LTP, but does not strongly affect DG‐potentiation. These data suggest that 5‐HT4‐receptor activation prioritises information encoding by means of LTP in the DG and CA1 regions, and suppresses persistent information storage in mf‐CA3 synapses. Thus, 5‐HT4‐receptors serve to shape information storage across the hippocampal circuitry and specify the nature of experience‐dependent encoding. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hannah Twarkowski
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Hardy Hagena
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
16
|
Status Epilepticus Enhances Depotentiation after Fully Established LTP in an NMDAR-Dependent but GluN2B-Independent Manner. Neural Plast 2016; 2016:6592038. [PMID: 26881126 PMCID: PMC4735914 DOI: 10.1155/2016/6592038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/26/2015] [Accepted: 11/01/2015] [Indexed: 11/22/2022] Open
Abstract
N-Methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) can be reversed by low-frequency stimulation (LFS) referred to as depotentiation (DP). We previously found GluN2B upregulated in CA1 neurons from post-status epilepticus (post-SE) tissue associated with an enhanced LTP. Here, we tested whether LFS-induced DP is also altered in pathological GluN2B upregulation. Although LTP was enhanced in post-SE tissue, LTP was significantly reversed in this tissue, but not in controls. We next tested the effect of the GluN2B subunit-specific blocker Ro 25-6981 (1 μM) on LFS-DP. As expected, LFS had no effect on synaptic strength in the presence of the GluN2B blocker in control tissue. In marked contrast, LFS-DP was also attained in post-SE tissue indicating that GluN2B was obviously not involved in depotentiation. To test for NMDA receptor-dependence, we applied the NMDA receptor antagonist D-AP5 (50 μM) prior to LFS and observed that DP was abolished in both control and post-SE tissue confirming NMDA receptor involvement. These results indicate that control Schaffer collateral-CA1 synapses cannot be depotentiated after fully established LTP, but LFS was able to reverse LTP significantly in post-SE tissue. However, while LFS-DP clearly required NMDA receptor activation, GluN2B-containing NMDA receptors were not involved in this form of depotentiation.
Collapse
|
17
|
Di Mauro M, Tozzi A, Calabresi P, Pettorossi VE, Grassi S. Neo-synthesis of estrogenic or androgenic neurosteroids determine whether long-term potentiation or depression is induced in hippocampus of male rat. Front Cell Neurosci 2015; 9:376. [PMID: 26483631 PMCID: PMC4591489 DOI: 10.3389/fncel.2015.00376] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/08/2015] [Indexed: 11/17/2022] Open
Abstract
Estrogenic and androgenic steroids synthesized in the brain may rapidly modulate synaptic plasticity interacting with specific membrane receptors. We explored by electrophysiological recordings in hippocampal slices of male rat the influence of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) neo-synthesis on the synaptic changes induced in the CA1 region. Induction of long-term depression (LTD) and depotentiation (DP) by low frequency stimulation (LFS, 15 min-1 Hz) and of long-term potentiation (LTP) by high frequency stimulation (HFS, 1 s-100 Hz), medium (MFS, 1 s-50 Hz), or weak (WFS, 1 s-25 Hz) frequency stimulation was assayed under inhibitors of enzymes converting testosterone (T) into DHT (5α-reductase) and T into E2 (P450-aromatase). We found that LFS-LTD depends on DHT synthesis, since it was fully prevented under finasteride, an inhibitor of DHT synthesis, and rescued by exogenous DHT, while the E2 synthesis was not involved. Conversely, the full development of HFS-LTP requires the synthesis of E2, as demonstrated by the LTP reduction observed under letrozole, an inhibitor of E2 synthesis, and its full rescue by exogenous E2. For intermediate stimulation protocols DHT, but not E2 synthesis, was involved in the production of a small LTP induced by WFS, while the E2 synthesis was required for the MFS-dependent LTP. Under the combined block of DHT and E2 synthesis all stimulation frequencies induced partial LTP. Overall, these results indicate that DHT is required for converting the partial LTP into LTD whereas E2 is needed for the full expression of LTP, evidencing a key role of the neo-synthesis of sex neurosteroids in determining the direction of synaptic long-term effects.
Collapse
Affiliation(s)
- Michela Di Mauro
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy
| | - Alessandro Tozzi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy ; Fondazione Santa Lucia - I.R.C.C.S. Roma, Italy
| | - Paolo Calabresi
- Fondazione Santa Lucia - I.R.C.C.S. Roma, Italy ; Dipartimento di Medicina, Clinica Neurologica, Università di Perugia Perugia, Italy
| | - Vito Enrico Pettorossi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy
| | - Silvarosa Grassi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy
| |
Collapse
|
18
|
Trieu BH, Kramár EA, Cox CD, Jia Y, Wang W, Gall CM, Lynch G. Pronounced differences in signal processing and synaptic plasticity between piriform-hippocampal network stages: a prominent role for adenosine. J Physiol 2015; 593:2889-907. [PMID: 25902928 DOI: 10.1113/jp270398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/17/2015] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Extended trains of theta rhythm afferent activity lead to a biphasic response facilitation in field CA1 but not in the lateral perforant path input to the dentate gyrus. Processes that reverse long-term potentiation in field CA1 are not operative in the lateral perforant path: multiple lines of evidence indicate that this reflects differences in adenosine signalling. Adenosine A1 receptors modulate baseline synaptic transmission in the lateral olfactory tract but not the associational afferents of the piriform cortex. Levels of ecto-5'-nucleotidase (CD73), an enzyme that converts extracellular ATP into adenosine, are markedly different between regions and correlate with adenosine signalling and the efficacy of theta pulse stimulation in reversing long-term potentiation. Variations in transmitter mobilization, CD73 levels, and afferent divergence result in multivariate differences in signal processing through nodes in the cortico-hippocampal network. ABSTRACT The present study evaluated learning-related synaptic operations across the serial stages of the olfactory cortex-hippocampus network. Theta frequency stimulation produced very different time-varying responses in the Schaffer-commissural projections than in the lateral perforant path (LPP), an effect associated with distinctions in transmitter mobilization. Long-term potentiation (LTP) had a higher threshold in LPP field potential studies but not in voltage clamped neurons; coupled with input/output relationships, these results suggest that LTP threshold differences reflect the degree of input divergence. Theta pulse stimulation erased LTP in CA1 but not in the dentate gyrus (DG), although adenosine eliminated potentiation in both areas, suggesting that theta increases extracellular adenosine to a greater degree in CA1. Moreover, adenosine A1 receptor antagonism had larger effects on theta responses in CA1 than in the DG, and concentrations of ecto-5'-nucleotidase (CD73) were much higher in CA1. Input/output curves for two connections in the piriform cortex were similar to those for the LPP, whereas adenosine modulation again correlated with levels of CD73. In sum, multiple relays in a network extending from the piriform cortex through the hippocampus can be differentiated along three dimensions (input divergence, transmitter mobilization, adenosine modulation) that potently influence throughput and plasticity. A model that incorporates the regional differences, supplemented with data for three additional links, suggests that network output goes through three transitions during the processing of theta input. It is proposed that individuated relays allow the circuit to deal with different types of behavioural problems.
Collapse
Affiliation(s)
- Brian H Trieu
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Enikö A Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Yousheng Jia
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Weisheng Wang
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
19
|
Wójtowicz T, Mozrzymas JW. Diverse impact of neuronal activity at θ frequency on hippocampal long-term plasticity. J Neurosci Res 2015; 93:1330-44. [PMID: 25789967 DOI: 10.1002/jnr.23581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/05/2015] [Accepted: 02/10/2015] [Indexed: 12/29/2022]
Abstract
Brain oscillatory activity is considered an essential aspect of brain function, and its frequency can vary from <1 Hz to >200 Hz, depending on the brain states and projection. Episodes of rhythmic activity accompany hippocampus-dependent learning and memory in vivo. Therefore, long-term synaptic potentiation (LTP) and long-term depression, which are considered viable substrates of learning and memory, are often experimentally studied in paradigms of patterned high-frequency (>50 Hz) and low-frequency (<5 Hz) stimulation. However, the impact of intermediate frequencies on neuronal plasticity remains less well understood. In particular, hippocampal neurons are specifically tuned for activity at θ frequency (4-8 Hz); this band contributes significantly to electroencephalographic signals, and it is likely to be involved in shaping synaptic strength in hippocampal circuits. Here, we review in vitro and in vivo studies showing that variation of θ-activity duration may affect long-term modification of synaptic strength and neuronal excitability in the hippocampus. Such θ-pulse-induced neuronal plasticity 1) is long-lasting, 2) may be built on previously stabilized potentiation in the synapse, 3) may produce opposite changes in synaptic strength, and 4) requires complex molecular machinery. Apparently innocuous episodes of low-frequency synaptic activity may have a profound impact on network signaling, thereby contributing to information processing in the hippocampus and beyond. In addition, θ-pulse-induced LTP might be an advantageous protocol in studies of specific molecular mechanisms of synaptic plasticity.
Collapse
Affiliation(s)
- Tomasz Wójtowicz
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
20
|
Migliore M, De Simone G, Migliore R. Effect of the initial synaptic state on the probability to induce long-term potentiation and depression. Biophys J 2015; 108:1038-46. [PMID: 25762316 PMCID: PMC4375721 DOI: 10.1016/j.bpj.2014.12.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/03/2014] [Accepted: 12/10/2014] [Indexed: 12/28/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are the two major forms of long-lasting synaptic plasticity in the mammalian neurons, and are directly related to higher brain functions such as learning and memory. Experimentally, they are characterized by a change in the strength of a synaptic connection induced by repetitive and properly patterned stimulation protocols. Although many important details of the molecular events leading to LTP and LTD are known, experimenters often report problems in using standard induction protocols to obtain consistent results, especially for LTD in vivo. We hypothesize that a possible source of confusion in interpreting the results, from any given experiment on synaptic plasticity, can be the intrinsic limitation of the experimental techniques, which cannot take into account the actual state and peak conductance of the synapses before the conditioning protocol. In this article, we investigate the possibility that the same experimental protocol may result in different consequences (e.g., LTD instead of LTP), according to the initial conditions of the stimulated synapses, and can generate confusing results. Using biophysical models of synaptic plasticity and hippocampal CA1 pyramidal neurons, we study how, why, and to what extent the phenomena observed at the soma after induction of LTP/LTD reflects the actual (local) synaptic state. The model and the results suggest a physiologically plausible explanation for why LTD induction is experimentally difficult to obtain. They also suggest experimentally testable predictions on the stimulation protocols that may be more effective.
Collapse
Affiliation(s)
- Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy.
| | - Giada De Simone
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Rosanna Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
21
|
GIRK Channels: A Potential Link Between Learning and Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:239-77. [PMID: 26422987 DOI: 10.1016/bs.irn.2015.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ability of drug-associated cues to reinitiate drug craving and seeking, even after long periods of abstinence, has led to the hypothesis that addiction represents a form of pathological learning, in which drugs of abuse hijack normal learning and memory processes to support long-term addictive behaviors. In this chapter, we review evidence suggesting that G protein-gated inwardly rectifying potassium (GIRK/Kir3) channels are one mechanism through which numerous drugs of abuse can modulate learning and memory processes. We will examine the role of GIRK channels in two forms of experience-dependent long-term changes in neuronal function: homeostatic plasticity and synaptic plasticity. We will also discuss how drug-induced changes in GIRK-mediated signaling can lead to changes that support the development and maintenance of addiction.
Collapse
|
22
|
Venkatasubramaniam A, Drude A, Good T. Role of N-terminal residues in Aβ interactions with integrin receptor and cell surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2568-77. [DOI: 10.1016/j.bbamem.2014.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/26/2014] [Accepted: 06/13/2014] [Indexed: 01/12/2023]
|
23
|
Iannella N, Launey T, Abbott D, Tanaka S. A nonlinear cable framework for bidirectional synaptic plasticity. PLoS One 2014; 9:e102601. [PMID: 25148478 PMCID: PMC4141722 DOI: 10.1371/journal.pone.0102601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/20/2014] [Indexed: 11/18/2022] Open
Abstract
Finding the rules underlying how axons of cortical neurons form neural circuits and modify their corresponding synaptic strength is the still subject of intense research. Experiments have shown that internal calcium concentration, and both the precise timing and temporal order of pre and postsynaptic action potentials, are important constituents governing whether the strength of a synapse located on the dendrite is increased or decreased. In particular, previous investigations focusing on spike timing-dependent plasticity (STDP) have typically observed an asymmetric temporal window governing changes in synaptic efficacy. Such a temporal window emphasizes that if a presynaptic spike, arriving at the synaptic terminal, precedes the generation of a postsynaptic action potential, then the synapse is potentiated; however if the temporal order is reversed, then depression occurs. Furthermore, recent experimental studies have now demonstrated that the temporal window also depends on the dendritic location of the synapse. Specifically, it was shown that in distal regions of the apical dendrite, the magnitude of potentiation was smaller and the window for depression was broader, when compared to observations from the proximal region of the dendrite. To date, the underlying mechanism(s) for such a distance-dependent effect is (are) currently unknown. Here, using the ionic cable theory framework in conjunction with the standard calcium based plasticity model, we show for the first time that such distance-dependent inhomogeneities in the temporal learning window for STDP can be largely explained by both the spatial and active properties of the dendrite.
Collapse
Affiliation(s)
- Nicolangelo Iannella
- Centre for Biomedical Engineering (CBME) and the School of Electrical & Electronic Engineering, The University of Adelaide SA, Adelaide, Australia
- Computational and Theoretical Neuroscience Laboratory, Institute for Telecommunications Research, University of South Australia, Mawson Lakes, South Australia, Australia
- Launey Research Unit, RIKEN, Brain Science Institute, Saitama, Japan
- * E-mail:
| | - Thomas Launey
- Launey Research Unit, RIKEN, Brain Science Institute, Saitama, Japan
| | - Derek Abbott
- Centre for Biomedical Engineering (CBME) and the School of Electrical & Electronic Engineering, The University of Adelaide SA, Adelaide, Australia
| | - Shigeru Tanaka
- Faculty of Electro-Communications, The University of Electro-Communications, Choju-shi, Tokyo, Japan
| |
Collapse
|
24
|
Increased adenosine levels in mice expressing mutant glial fibrillary acidic protein in astrocytes result in failure of induction of LTP reversal (depotentiation) in hippocampal CA1 neurons. Brain Res 2014; 1578:1-13. [DOI: 10.1016/j.brainres.2014.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/23/2014] [Accepted: 07/03/2014] [Indexed: 11/20/2022]
|
25
|
Cunha-Reis D, Aidil-Carvalho MDF, Ribeiro JA. Endogenous inhibition of hippocampal LTD and depotentiation by vasoactive intestinal peptide VPAC1 receptors. Hippocampus 2014; 24:1353-63. [PMID: 24935659 DOI: 10.1002/hipo.22316] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2014] [Indexed: 11/08/2022]
Abstract
Vasoactive intestinal peptide (VIP), an important modulator of hippocampal synaptic transmission, influences exploration and hippocampal-dependent learning in rodents. Homosynaptic long-term depression (LTD) and depotentiation are two plasticity phenomena implicated in learning of behavior flexibility and spatial novelty detection. In this study, we investigated the influence of endogenous VIP on LTD and depotentiation induced by low-frequency stimulation (1 Hz, 900 pulses) of the hippocampal CA1 area in vitro in juvenile and young adult rats, respectively. LTD and depotentiation were enhanced by the VIP receptor antagonist Ac-Tyr(1) , D-Phe(2) GRF (1-29), and the selective VPAC1 receptor antagonist, PG 97-269, but not the selective VPAC2 receptor antagonist, PG 99-465. This action was mimicked by an anti-VIP antibody, suggesting that VIP, and not pituitary adenylate cyclase-activating polypeptide (PACAP), is the endogenous mediator of these effects. Selective inhibition of PAC1 receptors with PACAP (6-38) enhanced depotentiation, but not LTD. VPAC1 receptor blockade also revealed LTD in young adult rats, an effect abolished by the GABAA antagonist bicuculline, evidencing an involvement of GABAergic transmission. We conclude that inhibition of LTD and depotentiation by endogenous VIP occurs through VPAC1 receptor-mediated mechanisms and suggest that disinhibition of pyramidal cell dendrites is the most likely physiological mechanism underlying this effect. As such, VPAC1 receptor ligands may be considered promising pharmacological targets for treatment of cognitive dysfunction in diseases involving altered GABAergic circuits and pathological saturation of LTP/LTD like Down's syndrome and temporal lobe epilepsy.
Collapse
Affiliation(s)
- Diana Cunha-Reis
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | | | | |
Collapse
|
26
|
Sadegh M, Fathollahi Y. Repetitive systemic morphine alters activity-dependent plasticity of schaffer-collateral-CA1 pyramidal cell synapses: Involvement of adenosine A1 receptors and adenosine deaminase. J Neurosci Res 2014; 92:1395-408. [DOI: 10.1002/jnr.23414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Mehdi Sadegh
- Department of Physiology; School of Medical Sciences, Tarbiat Modares University; Tehran Iran
- Department of Physiology; Faculty of Medicine; Arak University of Medical Sciences; Arak Iran
| | - Yaghoub Fathollahi
- Department of Physiology; School of Medical Sciences, Tarbiat Modares University; Tehran Iran
| |
Collapse
|
27
|
Fole A, Miguens M, Higuera-Matas A, Alguacil LF, Ambrosio E, Del Olmo N. Cocaine facilitates protein synthesis-dependent LTP: the role of metabotropic glutamate receptors. Eur Neuropsychopharmacol 2014; 24:621-9. [PMID: 24268515 DOI: 10.1016/j.euroneuro.2013.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/10/2013] [Accepted: 10/25/2013] [Indexed: 11/27/2022]
Abstract
Cocaine addiction alters synaptic plasticity in many brain areas involved in learning and memory processes, including the hippocampus. Long-term potentiation (LTP) is one of the best studied examples of hippocampal synaptic plasticity and it is considered as one of the molecular basis of learning and memory. We previously demonstrated that in the presence of cocaine, a long lasting form of hippocampal LTP is induced by a single pulse of high frequency stimulation, which in normal conditions evokes only an early form of LTP. In this study, we further explore the molecular basis of this modulation of synaptic plasticity by cocaine. By performing pharmacological experiments on hippocampal slices, we were able to show that cocaine converts early LTP to a form of LTP dependent on protein synthesis, probably through the cAMP-dependent protein kinase and extracellular signal-regulated kinase signaling cascades. We also found that metabotropic glutamate receptors are involved in this phenomenon. These studies further clarify the molecular machinery used by cocaine to alter synaptic plasticity and modulate learning and memory processes.
Collapse
Affiliation(s)
- A Fole
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain; Departamento de Psicobiología, Facultad de Psicología, UNED, 28040 Madrid, Spain
| | - M Miguens
- Departamento de Psicología Básica I, Facultad de Psicología, UNED, 28040 Madrid, Spain
| | - A Higuera-Matas
- Departamento de Psicobiología, Facultad de Psicología, UNED, 28040 Madrid, Spain
| | - L F Alguacil
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain; Unidad de Investigación Traslacional, Hospital de Ciudad Real, Spain
| | - E Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, UNED, 28040 Madrid, Spain
| | - N Del Olmo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain.
| |
Collapse
|
28
|
Hansen N, Manahan-Vaughan D. Dopamine D1/D5 receptors mediate informational saliency that promotes persistent hippocampal long-term plasticity. Cereb Cortex 2014; 24:845-58. [PMID: 23183712 PMCID: PMC3948488 DOI: 10.1093/cercor/bhs362] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA) plays an essential role in the enablement of cognition. It adds color to experience-dependent information storage, conferring salience to the memories that result. At the synaptic level, experience-dependent information storage is enabled by synaptic plasticity, and given its importance for memory formation, it is not surprising that DA comprises a key neuromodulator in the enablement of synaptic plasticity, and particularly of plasticity that persists for longer periods of time: Analogous to long-term memory. The hippocampus, that is a critical structure for the synaptic processing of semantic, episodic, spatial, and declarative memories, is specifically affected by DA, with the D1/D5 receptor proving crucial for hippocampus-dependent memory. Furthermore, D1/D5 receptors are pivotal in conferring the properties of novelty and reward to information being processed by the hippocampus. They also facilitate the expression of persistent forms of synaptic plasticity, and given reports that both long-term potentiation and long-term depression encode different aspects of spatial representations, this suggests that D1/D5 receptors can drive the nature and qualitative content of stored information in the hippocampus. In light of these observations, we propose that D1/D5 receptors gate hippocampal long-term plasticity and memory and are pivotal in conferring the properties of novelty and reward to information being processed by the hippocampus.
Collapse
Affiliation(s)
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty,Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
29
|
Pettorossi VE, Di Mauro M, Scarduzio M, Panichi R, Tozzi A, Calabresi P, Grassi S. Modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the CA1 hippocampal region of male rats. Physiol Rep 2013; 1:e00185. [PMID: 24744863 PMCID: PMC3970743 DOI: 10.1002/phy2.185] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 01/16/2023] Open
Abstract
Estrogenic and androgenic neurosteroids can rapidly modulate synaptic plasticity in the brain through interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used electrophysiological recordings in slices of young and adolescent male rats to explore the influence of sex neurosteroids on synaptic plasticity in the CA1 hippocampal region, by blocking ARs or ERs during induction of long‐term depression (LTD) and depotentiation (DP) by low‐frequency stimulation (LFS) and long‐term potentiation (LTP) by high‐frequency stimulation (HFS). We found that LTD and DP depend on ARs, while LTP on ERs in both age groups. Accordingly, the AR blocker flutamide affected induction of LTD reverting it into LTP, and prevented DP, while having no effect on HFS‐dependent LTP. Conversely, ER blockade with ICI 182,780 (ICI) markedly reduced LTP, but did not influence LTD and DP. However, the receptor blockade did not affect the maintenance of either LTD or LTP. Moreover, we found that similar to LTP and LTD induced in control condition, the LTP unveiled by flutamide during LFS and residual LTP induced by HFS under ICI depended on N‐methyl‐d aspartate receptor (NMDAR) activation. Furthermore, as the synaptic paired‐pulse facilitation (PPF) was not affected by either AR or ER blockade, we suggest that sex neurosteroids act primarily at a postsynaptic level. This study demonstrates for the first time the crucial role of estrogenic and androgenic neurosteroids in determining the sign of hippocampal synaptic plasticity in male rat and the activity‐dependent recruitment of androgenic and estrogenic pathways leading to LTD and LTP, respectively. This study shows a crucial and opposite role of estrogenic and androgenic neurosteroids in guiding the direction of synaptic plasticity in the hippocampus CA1 region of male rat, through activation of their specific receptors. In fact, by using selective antagonists for estrogen receptors (ICI 182,730) or androgen receptors (flutamide), we show that long‐term potentiation (LTP) induced by high‐frequency stimulation (HFS) depends on estrogenic signals, while long‐term depression (LTD) and depotentiation induced by low‐frequency stimulation (LFS) require activation of androgenic pathway. We suggest that different stimulation frequencies may lead to LTD or LTP depending on activation of specific neurosteroid pathway.
Collapse
Affiliation(s)
- Vito Enrico Pettorossi
- Dipartimento di Medicina Interna, Sezione di Fisiologia Umana, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Via Gambuli, Perugia, 106156, Italy
| | - Michela Di Mauro
- Dipartimento di Medicina Interna, Sezione di Fisiologia Umana, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Via Gambuli, Perugia, 106156, Italy
| | - Mariangela Scarduzio
- Dipartimento di Medicina Interna, Sezione di Fisiologia Umana, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Via Gambuli, Perugia, 106156, Italy
| | - Roberto Panichi
- Dipartimento di Medicina Interna, Sezione di Fisiologia Umana, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Via Gambuli, Perugia, 106156, Italy
| | - Alessandro Tozzi
- Clinica Neurologica, Ospedale S. Maria della Misericordia, Università di Perugia, Perugia, 06156, Italy ; Fondazione Santa Lucia, I.R.C.C.S, Roma, 00143, Italy
| | - Paolo Calabresi
- Clinica Neurologica, Ospedale S. Maria della Misericordia, Università di Perugia, Perugia, 06156, Italy ; Fondazione Santa Lucia, I.R.C.C.S, Roma, 00143, Italy
| | - Silvarosa Grassi
- Dipartimento di Medicina Interna, Sezione di Fisiologia Umana, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Via Gambuli, Perugia, 106156, Italy
| |
Collapse
|
30
|
Artola A. Diabetes mellitus- and ageing-induced changes in the capacity for long-term depression and long-term potentiation inductions: Toward a unified mechanism. Eur J Pharmacol 2013; 719:161-169. [DOI: 10.1016/j.ejphar.2013.04.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/21/2013] [Accepted: 04/03/2013] [Indexed: 12/01/2022]
|
31
|
A neocortical delta rhythm facilitates reciprocal interlaminar interactions via nested theta rhythms. J Neurosci 2013; 33:10750-61. [PMID: 23804097 DOI: 10.1523/jneurosci.0735-13.2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Delta oscillations (1-4 Hz) associate with deep sleep and are implicated in memory consolidation and replay of cortical responses elicited during wake states. A potent local generator has been characterized in thalamus, and local generators in neocortex have been suggested. Here we demonstrate that isolated rat neocortex generates delta rhythms in conditions mimicking the neuromodulatory state during deep sleep (low cholinergic and dopaminergic tone). The rhythm originated in an NMDA receptor-driven network of intrinsic bursting (IB) neurons in layer 5, activating a source of GABAB receptor-mediated inhibition. In contrast, regular spiking (RS) neurons in layer 5 generated theta-frequency outputs. In layer 2/3 principal cells, outputs from IB cells associated with IPSPs, whereas those from layer 5 RS neurons related to nested bursts of theta-frequency EPSPs. Both interlaminar spike and field correlations revealed a sequence of events whereby sparse spiking in layer 2/3 was partially reflected back from layer 5 on each delta period. We suggest that these reciprocal, interlaminar interactions may represent a "Helmholtz machine"-like process to control synaptic rescaling during deep sleep.
Collapse
|
32
|
Zhang M, Wang H. Mice overexpressing type 1 adenylyl cyclase show enhanced spatial memory flexibility in the absence of intact synaptic long-term depression. Learn Mem 2013; 20:352-7. [PMID: 23772089 PMCID: PMC3687257 DOI: 10.1101/lm.030114.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is significant interest in understanding the contribution of intracellular signaling and synaptic substrates to memory flexibility, which involves new learning and suppression of obsolete memory. Here, we report that enhancement of Ca2+-stimulated cAMP signaling by overexpressing type 1 adenylyl cyclase (AC1) facilitated long-term potentiation (LTP) but impaired long-term depression (LTD) at the hippocampal Shaffer collateral-CA1 synapses. However, following the induction of LTP, low-frequency stimulation caused comparable synaptic depotentiation in both wild type and AC1 transgenic (AC1 TG) mice. Although previous studies have suggested the function of LTD in spatial memory flexibility, AC1 TG mice showed not only better initial learning in the Morris water maze, but also faster acquisition and increased ratio of new memory formation to old memory retention during the reversal platform training. In the memory extinction test, which requires suppression of old memory without involving the acquisition of the new platform information, AC1 TG and wild type mice showed comparable performance. Our results demonstrate new functions of Ca2+-stimulated AC1, and also suggest that certain aspects of hippocampus-dependent behavioral flexibility may not require intact LTD.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
33
|
Mukherjee S, Manahan-Vaughan D. Role of metabotropic glutamate receptors in persistent forms of hippocampal plasticity and learning. Neuropharmacology 2013; 66:65-81. [DOI: 10.1016/j.neuropharm.2012.06.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 12/27/2022]
|
34
|
LI J, SASAKI H, FUJIWARA H, KATO H, KANEKO K, YAMAZAKI Y, FUJII S. Synaptic plasticity in hippocampal CA1 neurons and learning behavior in transient ischemia-loaded gerbils. Biomed Res 2013; 34:75-85. [DOI: 10.2220/biomedres.34.75] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat Rev Neurosci 2012; 13:798-810. [PMID: 23080416 DOI: 10.1038/nrn3353] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thirty years have passed since the publication of Elie Bienenstock, Leon Cooper and Paul Munro's 'Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex', known as the BCM theory of synaptic plasticity. This theory has guided experimentalists to discover some fundamental properties of synaptic plasticity and has provided a mathematical structure that bridges molecular mechanisms and systems-level consequences of learning and memory storage.
Collapse
|
36
|
Putative roles for phospholipase Cη enzymes in neuronal Ca2+ signal modulation. Biochem Soc Trans 2012; 40:282-6. [PMID: 22260706 DOI: 10.1042/bst20110622] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The most recently identified PLC (phospholipase C) enzymes belong to the PLCη family. Their unique Ca2+-sensitivity and their specific appearance in neurons have attracted great attention since their discovery; however, their physiological role(s) in neurons are still yet to be established. PLCη enzymes are expressed in the neocortex, hippocampus and cerebellum. PLCη2 is also expressed at high levels in pituitary gland, pineal gland and in the retina. Driven by the specific localization of PLCη enzymes in different brain areas, in the present paper, we discuss the roles that they may play in neural processes, including differentiation, memory formation, circadian rhythm regulation, neurotransmitter/hormone release and the pathogenesis of neurodegenerative disorders associated with aberrant Ca2+ signalling, such as Alzheimer's disease.
Collapse
|
37
|
Sanderson TM. Molecular mechanisms involved in depotentiation and their relevance to schizophrenia. Chonnam Med J 2012; 48:1-6. [PMID: 22570808 PMCID: PMC3341431 DOI: 10.4068/cmj.2012.48.1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 04/10/2012] [Indexed: 12/27/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission are forms of synaptic plasticity that have been studied extensively and are thought to contribute to learning and memory. The reversal of LTP, known as depotentiation (DP) has received far less attention however, and its role in behavior is also far from clear. Recently, deficits in depotentiation have been observed in models of schizophrenia, suggesting that a greater understanding of this form of synaptic plasticity may help reveal the physiological alterations that underlie symptoms experienced by patients. This review therefore seeks to summarize the current state of knowledge on DP, and then put the deficits in DP in models of disease into this context.
Collapse
Affiliation(s)
- Thomas M Sanderson
- Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
38
|
Qi Y, Hu NW, Rowan MJ. Switching off LTP: mGlu and NMDA receptor-dependent novelty exploration-induced depotentiation in the rat hippocampus. Cereb Cortex 2012; 23:932-9. [PMID: 22490551 DOI: 10.1093/cercor/bhs086] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Both electrically induced synaptic long-term potentiation (LTP) and long-term depression have been extensively studied as models of the cellular basis of learning and memory mechanisms. Recently, considerable interest has been generated by the possibility that the activity-dependent persistent reversal of previously established synaptic LTP (depotentiation) may play a role in the time- and state-dependent erasure of memory. Here, we examined the requirement for glutamate receptor activation in experience-induced reversal of previously established LTP in the CA1 area of the hippocampus of freely behaving rats. Continuous exploration of non-aversive novelty for ~30 min, which was associated with hippocampal activation as measured by increased theta power in the electroencephalogram, triggered a rapid and persistent reversal of high frequency stimulation-induced LTP both at apical and basal synapses. Blockade of metabotropic glutamate (mGlu) receptors with mGlu5 subtype-selective antagonists, or N-methyl-D-aspartate (NMDA) receptors with GluN2B subunit-selective antagonists, prevented novelty-induced depotentiation. These findings strongly indicate that activation of both mGlu5 receptors and GluN2B-containing NMDA receptors is required for experience-triggered induction of depotentiation at CA3-CA1 synapses. The mechanistic concordance of the present and previous studies of experience-induced and electrically induced synaptic depotentiation helps to integrate our understanding of the neurophysiological underpinnings of learning and memory.
Collapse
Affiliation(s)
- Yingjie Qi
- Department of Pharmacology and Therapeutics, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
39
|
Izumi Y, Zorumski CF. NMDA receptors, mGluR5, and endocannabinoids are involved in a cascade leading to hippocampal long-term depression. Neuropsychopharmacology 2012; 37:609-17. [PMID: 21993209 PMCID: PMC3260982 DOI: 10.1038/npp.2011.243] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the CA1 region of the rat hippocampus, metabotropic glutamate receptor-5 (mGluR5) and cannabinoid-1 receptors (CB1Rs) are believed to participate in long-term synaptic depression (LTD). How mGluRs and CB1Rs interact to promote LTD remains uncertain. In this study, we examined LTD induced by CB1R agonists, mGluR5 agonists, and low-frequency electrical stimulation (LFS) of the Schaffer collateral pathway. Synthetic CB1R agonists induced robust LTD that was mimicked by the endocannabinoid (EC), noladin ether (NLDE), but not by anandamide. 2-Arachidonylglycerol (2AG) produced only a small degree of LTD. The selective mGluR5 agonist, namely (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), also induced robust LTD, and CHPG and NLDE occluded each other's effects. Similarly, CHPG and NLDE occluded LFS-induced LTD, and LTD resulting from all three treatments was blocked by a CB1R antagonist. CHPG-LTD and NLDE-LTD were insensitive to N-methyl-D-aspartate receptor (NMDAR) block, even though LFS-LTD requires NMDARs. LTD induced by LFS or CHPG, but not NLDE-LTD, was blocked by a selective mGluR5 antagonist. (RS)-3,5-dihydroxyphenylglycine (DHPG), a less selective group I mGluR agonist, also induced LTD, but its effects were not blocked by mGluR5 or CB1R antagonists. Furthermore, DHPG-LTD was additive with LFS-LTD and CHGP-LTD. These results suggest that NMDARs, mGluR5, and CB1Rs participate in a cascade that underlies LFS-LTD and that release of an EC and CB1R activation occur downstream of NMDARs and mGluR5. Furthermore, DHPG induces a form of LTD that differs mechanistically from LFS-induced depression.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Departments of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA.
| | - Charles F Zorumski
- Departments of Psychiatry, Washington University School of Medicine, St Louis, MO, USA,Department of Neurobiology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
40
|
Aberg KC, Herzog MH. About similar characteristics of visual perceptual learning and LTP. Vision Res 2012; 61:100-6. [PMID: 22289647 DOI: 10.1016/j.visres.2011.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 12/12/2022]
Abstract
Perceptual learning is an implicit form of learning which induces long-lasting perceptual enhancements. Perceptual learning shows intriguing characteristics. For example, a minimal number of trials per session is needed for learning and the interleaved presentation of more than one stimulus type can hinder learning. Here, we show that these and other characteristics of perceptual learning are very similar to characteristics of long-term potentiation (LTP), the basic mechanism of memory formation. We outline these characteristics and discuss results of electrophysiological experiments which indirectly link LTP and perceptual learning.
Collapse
Affiliation(s)
- Kristoffer C Aberg
- Laboratory of Psychophysics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
| | | |
Collapse
|
41
|
Chistiakova M, Volgushev M. Heterosynaptic plasticity in the neocortex. Exp Brain Res 2012; 199:377-90. [PMID: 19499213 PMCID: PMC2781103 DOI: 10.1007/s00221-009-1859-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 05/12/2009] [Indexed: 01/25/2023]
Abstract
Ongoing learning continuously shapes the distribution of neurons’ synaptic weights in a system with plastic synapses. Plasticity may change the weights of synapses that were active during the induction—homosynaptic changes, but also may change synapses not active during the induction—heterosynaptic changes. Here we will argue, that heterosynaptic and homosynaptic plasticity are complementary processes, and that heterosynaptic plasticity might accompany homosynaptic plasticity induced by typical pairing protocols. Synapses are not uniform in their susceptibility for plastic changes, but have predispositions to undergo potentiation or depression, or not to change. Predisposition is one of the factors determining the direction and magnitude of homo- and heterosynaptic changes. Heterosynaptic changes which take place according to predispositions for plasticity may provide a useful mechanism(s) for homeostasis of neurons’ synaptic weights and extending the lifetime of memory traces during ongoing learning in neuronal networks.
Collapse
|
42
|
Long-term depression of spinal nociception and pain in man: Influence of varying stimulation parameters. Eur J Pain 2012; 13:161-70. [DOI: 10.1016/j.ejpain.2008.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 03/14/2008] [Accepted: 04/05/2008] [Indexed: 11/22/2022]
|
43
|
Hong I, Kim J, Song B, Park S, Lee J, Kim J, An B, Lee S, Choi S. Modulation of fear memory by retrieval and extinction: a clue for memory deconsolidation. Rev Neurosci 2011; 22:205-29. [PMID: 21476941 DOI: 10.1515/rns.2011.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Memories are fragile and easily forgotten at first, but after a consolidation period of hours to weeks, are inscribed in our brains as stable traces, no longer vulnerable to conventional amnesic treatments. Retrieval of a memory renders it labile, akin to the early stages of consolidation. This phenomenon has been explored as memory reactivation, in the sense that the memory is temporarily 'deconsolidated', allowing a short time window for amnesic intervention. This window closes again after reconsolidation, which restores the stability of the memory. In contrast to this 'transient deconsolidation' and the short-spanned amnesic effects of consolidation blockers, some specific treatments can disrupt even consolidated memory, leading to apparent amnesia. We propose the term 'amnesic deconsolidation' to describe such processes that lead to disruption of consolidated memory and/or consolidated memory traces. We review studies of these 'amnesic deconsolidation' treatments that enhance memory extinction, alleviate relapse, and reverse learning-induced plasticity. The transient deconsolidation that memory retrieval induces and the amnesic deconsolidation that these regimes induce both seem to dislodge a component that stabilizes consolidated memory. Characterizing this component, at both molecular and network levels, will provide a key to developing clinical treatments for memory-related disorders and to defining the consolidated memory trace.
Collapse
Affiliation(s)
- Ingie Hong
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Noguès X, Corsini MM, Marighetto A, Abrous DN. Functions for adult neurogenesis in memory: an introduction to the neurocomputational approach and to its contribution. Behav Brain Res 2011; 227:418-25. [PMID: 21856335 DOI: 10.1016/j.bbr.2011.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 08/04/2011] [Accepted: 08/06/2011] [Indexed: 01/26/2023]
Abstract
Until recently, it was believed that the introduction of new neurons in neuronal networks was incompatible with memory function. Since the rediscovery of adult hippocampal neurogenesis, behavioral data demonstrate that adult neurogenesis is required for memory processing. We examine neurocomputational studies to identify which basic mechanisms involved in memory might be mediated by adult neurogenesis. Mainly, adult neurogenesis might be involved in the reduction of catastrophic interference and in a time-related pattern separation function. Artificial neuronal networks suggest that the selective recruitment of new-born or old neurons is not stochastic, but depends on environmental requirements. This leads us to propose the novel concept of "soft-supervision". Soft-supervision would be a biologically plausible process, by which the environment is able to influence activation and learning rules of neurons differentially.
Collapse
Affiliation(s)
- X Noguès
- INSERM U862, Neurocenter Magendie, Pathophysiology of Declarative Memory group, Bordeaux F33077, France.
| | | | | | | |
Collapse
|
45
|
Connor SA, Wang YT, Nguyen PV. Activation of {beta}-adrenergic receptors facilitates heterosynaptic translation-dependent long-term potentiation. J Physiol 2011; 589:4321-40. [PMID: 21746789 DOI: 10.1113/jphysiol.2011.209379] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Noradrenaline critically modulates the ability of synapses to undergo long-term plasticity on time scales extending well beyond fast synaptic transmission. Noradrenergic signalling through β-adrenergic receptors (β-ARs) enhances memory consolidation and can boost the longevity of long-term potentiation (LTP). Previous research has shown that stimulation of one synaptic pathway with a protocol that induces persistent, translation-dependent LTP can enable the induction of LTP by subthreshold stimulation at a second, independent synaptic pathway. This heterosynaptic facilitation depends on the regulation and synthesis of proteins. Recordings taken from area CA1 in mouse hippocampal slices showed that induction of β-AR-dependent LTP at one synaptic pathway (S1) can facilitate LTP at a second, independent pathway (S2) when low-frequency, subthreshold stimulation is applied after a 30 min delay. β-AR-dependent heterosynaptic facilitation requires protein synthesis as inhibition of mammalian target of rapamycin (mTOR), extracellular signal-regulated kinase (ERK), or translation, prevented homo- and heterosynaptic LTP. Shifting application of a translational repressor, emetine, to coincide with S2 stimulation did not block LTP. Heterosynaptic LTP was prevented in the presence of the cell-permeable cAMP-dependent protein kinase inhibitor, PKI. Conversely, the time window for inter-pathway transfer of heterosynaptic LTP was extended through inhibition of GluR2 endocytosis. Our data show that activation of β-ARs boosts the heterosynaptic expression of translation-dependent LTP. These results suggest that engagement of the noradrenergic system may extend the associative capacity of hippocampal synapses through facilitation of intersynaptic crosstalk.
Collapse
Affiliation(s)
- Steven A Connor
- Centre for Neuroscience, University of Alberta School of Medicine, Medical Sciences Building, Edmonton, Canada
| | | | | |
Collapse
|
46
|
Ikarashi K, Fujiwara H, Yamazaki Y, Goto JI, Kaneko K, Kato H, Fujii S, Sasaki H, Fukumoto S, Furukawa K, Waki H, Furukawa K. Impaired hippocampal long-term potentiation and failure of learning in 1,4-N-acetylgalactosaminyltransferase gene transgenic mice. Glycobiology 2011; 21:1373-81. [DOI: 10.1093/glycob/cwr090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Michmizos D, Koutsouraki E, Asprodini E, Baloyannis S. Synaptic Plasticity: A Unifying Model to Address Some Persisting Questions. Int J Neurosci 2011; 121:289-304. [DOI: 10.3109/00207454.2011.556283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Morini R, Mlinar B, Baccini G, Corradetti R. Enhanced hippocampal long-term potentiation following repeated MDMA treatment in Dark-Agouti rats. Eur Neuropsychopharmacol 2011; 21:80-91. [PMID: 20727723 DOI: 10.1016/j.euroneuro.2010.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 07/19/2010] [Accepted: 07/22/2010] [Indexed: 11/15/2022]
Abstract
In rats and primates, (±)3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) produces both long-lasting damage to serotonergic axons and memory impairment. Our objective was to determine effects of neurotoxic dose of MDMA on long-term potentiation (LTP) in hippocampal area CA1 in Dark-Agouti (DA) rats. One week after neurotoxic MDMA treatment in vivo (12.5mg/kg i.p., once a week, per three weeks), serotonergic deficit was evident in hippocampal slices as 56.3% reduction in 5-HT content (p=0.04) and as 68.4% reduction in the effect of endogenous 5-HT release on synaptic neurotransmission (p<0.01). In hippocampal slices from the same animals, LTP was on average 46% greater than that observed in sham-treated controls (42.9 ± 3.5%; n=12 vs. 29.2 ± 3.2%; n=12; p<0.01). Non-neurotoxic dose of MDMA (12.5 mg/kg, i.p., one time) did not change LTP one week after the treatment, suggesting correlation between serotonergic deficit and enhanced synaptic plasticity. We conclude that MDMA-induced impairment of learning and memory is not a consequence of hippocampal LTP inhibition.
Collapse
Affiliation(s)
- Raffaella Morini
- Department of Preclinical and Clinical Pharmacology Mario Aiazzi-Mancini, University of Florence, Florence, Italy
| | | | | | | |
Collapse
|
49
|
Cortical Stimulation as an Adjuvant to Upper Limb Rehabilitation After Stroke. PM R 2010; 2:S269-78. [DOI: 10.1016/j.pmrj.2010.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/15/2010] [Accepted: 09/24/2010] [Indexed: 11/23/2022]
|
50
|
Tenorio G, Connor SA, Guévremont D, Abraham WC, Williams J, O'Dell TJ, Nguyen PV. 'Silent' priming of translation-dependent LTP by ß-adrenergic receptors involves phosphorylation and recruitment of AMPA receptors. Learn Mem 2010; 17:627-38. [PMID: 21097606 DOI: 10.1101/lm.1974510] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The capacity for long-term changes in synaptic efficacy can be altered by prior synaptic activity, a process known as "metaplasticity." Activation of receptors for modulatory neurotransmitters can trigger downstream signaling cascades that persist beyond initial receptor activation and may thus have metaplastic effects. Because activation of β-adrenergic receptors (β-ARs) strongly enhances the induction of long-term potentiation (LTP) in the hippocampal CA1 region, we examined whether activation of these receptors also had metaplastic effects on LTP induction. Our results show that activation of β-ARs induces a protein synthesis-dependent form of metaplasticity that primes the future induction of late-phase LTP by a subthreshold stimulus. β-AR activation also induced a long-lasting increase in phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) GluA1 subunits at a protein kinase A (PKA) site (S845) and transiently activated extracellular signal-regulated kinase (ERK). Consistent with this, inhibitors of PKA and ERK blocked the metaplastic effects of β-AR activation. β-AR activation also induced a prolonged, translation-dependent increase in cell surface levels of GluA1 subunit-containing AMPA receptors. Our results indicate that β-ARs can modulate hippocampal synaptic plasticity by priming synapses for the future induction of late-phase LTP through up-regulation of translational processes, one consequence of which is the trafficking of AMPARs to the cell surface.
Collapse
Affiliation(s)
- Gustavo Tenorio
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|