1
|
Duncan GJ, Simkins TJ, Emery B. Neuron-Oligodendrocyte Interactions in the Structure and Integrity of Axons. Front Cell Dev Biol 2021; 9:653101. [PMID: 33763430 PMCID: PMC7982542 DOI: 10.3389/fcell.2021.653101] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
The myelination of axons by oligodendrocytes is a highly complex cell-to-cell interaction. Oligodendrocytes and axons have a reciprocal signaling relationship in which oligodendrocytes receive cues from axons that direct their myelination, and oligodendrocytes subsequently shape axonal structure and conduction. Oligodendrocytes are necessary for the maturation of excitatory domains on the axon including nodes of Ranvier, help buffer potassium, and support neuronal energy metabolism. Disruption of the oligodendrocyte-axon unit in traumatic injuries, Alzheimer's disease and demyelinating diseases such as multiple sclerosis results in axonal dysfunction and can culminate in neurodegeneration. In this review, we discuss the mechanisms by which demyelination and loss of oligodendrocytes compromise axons. We highlight the intra-axonal cascades initiated by demyelination that can result in irreversible axonal damage. Both the restoration of oligodendrocyte myelination or neuroprotective therapies targeting these intra-axonal cascades are likely to have therapeutic potential in disorders in which oligodendrocyte support of axons is disrupted.
Collapse
Affiliation(s)
- Greg J. Duncan
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Tyrell J. Simkins
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- Vollum Institute, Oregon Health & Science University, Portland, OR, United States
- Department of Neurology, VA Portland Health Care System, Portland, OR, United States
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
2
|
Van Schependom J, Guldolf K, D'hooghe MB, Nagels G, D'haeseleer M. Detecting neurodegenerative pathology in multiple sclerosis before irreversible brain tissue loss sets in. Transl Neurodegener 2019; 8:37. [PMID: 31827784 PMCID: PMC6900860 DOI: 10.1186/s40035-019-0178-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background Multiple sclerosis (MS) is a complex chronic inflammatory and degenerative disorder of the central nervous system. Accelerated brain volume loss, or also termed atrophy, is currently emerging as a popular imaging marker of neurodegeneration in affected patients, but, unfortunately, can only be reliably interpreted at the time when irreversible tissue damage likely has already occurred. Timing of treatment decisions based on brain atrophy may therefore be viewed as suboptimal. Main body This Narrative Review focuses on alternative techniques with the potential of detecting neurodegenerative events in the brain of subjects with MS prior to the atrophic stage. First, metabolic and molecular imaging provide the opportunity to identify early subcellular changes associated with energy dysfunction, which is an assumed core mechanism of axonal degeneration in MS. Second, cerebral hypoperfusion has been observed throughout the entire clinical spectrum of the disorder but it remains an open question whether this serves as an alternative marker of reduced metabolic activity, or exists as an independent contributing process, mediated by endothelin-1 hyperexpression. Third, both metabolic and perfusion alterations may lead to repercussions at the level of network performance and structural connectivity, respectively assessable by functional and diffusion tensor imaging. Fourth and finally, elevated body fluid levels of neurofilaments are gaining interest as a biochemical mirror of axonal damage in a wide range of neurological conditions, with early rises in patients with MS appearing to be predictive of future brain atrophy. Conclusions Recent findings from the fields of advanced neuroradiology and neurochemistry provide the promising prospect of demonstrating degenerative brain pathology in patients with MS before atrophy has installed. Although the overall level of evidence on the presented topic is still preliminary, this Review may pave the way for further longitudinal and multimodal studies exploring the relationships between the abovementioned measures, possibly leading to novel insights in early disease mechanisms and therapeutic intervention strategies.
Collapse
Affiliation(s)
- Jeroen Van Schependom
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,2Radiology Department Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Kaat Guldolf
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium
| | - Marie Béatrice D'hooghe
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| | - Guy Nagels
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| | - Miguel D'haeseleer
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| |
Collapse
|
3
|
Ma RSY, Kayani K, Whyte-Oshodi D, Whyte-Oshodi A, Nachiappan N, Gnanarajah S, Mohammed R. Voltage gated sodium channels as therapeutic targets for chronic pain. J Pain Res 2019; 12:2709-2722. [PMID: 31564962 PMCID: PMC6743634 DOI: 10.2147/jpr.s207610] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/02/2019] [Indexed: 01/23/2023] Open
Abstract
Being maladaptive and frequently unresponsive to pharmacotherapy, chronic pain presents a major unmet clinical need. While an intact central nervous system is required for conscious pain perception, nociceptor hyperexcitability induced by nerve injury in the peripheral nervous system (PNS) is sufficient and necessary to initiate and maintain neuropathic pain. The genesis and propagation of action potentials is dependent on voltage-gated sodium channels, in particular, Nav1.7, Nav1.8 and Nav1.9. However, nerve injury triggers changes in their distribution, expression and/or biophysical properties, leading to aberrant excitability. Most existing treatment for pain relief acts through non-selective, state-dependent sodium channel blockage and have narrow therapeutic windows. Natural toxins and developing subtype-specific and molecular-specific sodium channel blockers show promise for treatment of neuropathic pain with minimal side effects. New approaches to analgesia include combination therapy and gene therapy. Here, we review how individual sodium channel subtypes contribute to pain, and the attempts made to develop more effective analgesics for the treatment of chronic pain.
Collapse
Affiliation(s)
- Renee Siu Yu Ma
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kayani Kayani
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | - Raihan Mohammed
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Ünsal C, Özcan M. Neurotoxicity of Cuprizone in Female and Male Rats: Electrophysiological Observations. NEUROPHYSIOLOGY+ 2018. [DOI: 10.1007/s11062-018-9724-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Schattling B, Eggert B, Friese MA. Acquired channelopathies as contributors to development and progression of multiple sclerosis. Exp Neurol 2014; 262 Pt A:28-36. [PMID: 24656770 DOI: 10.1016/j.expneurol.2013.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/13/2013] [Indexed: 12/18/2022]
Abstract
Multiple sclerosis (MS), the most frequent inflammatory disease of the central nervous system (CNS), affects about two and a half million individuals worldwide and causes major burdens to the patients, which develop the disease usually at the age of 20 to 40. MS is likely referable to a breakdown of immune cell tolerance to CNS self-antigens resulting in focal immune cell infiltration, activation of microglia and astrocytes, demyelination and axonal and neuronal loss. Here we discuss how altered expression patterns and dysregulated functions of ion channels contribute on a molecular level to nearly all pathophysiological steps of the disease. In particular the detrimental redistribution of ion channels along axons, as well as neuronal excitotoxicity with regard to imbalanced glutamate homeostasis during chronic CNS inflammation will be discussed in detail. Together, we describe which ion channels in the immune and nervous system commend as attractive future drugable targets in MS treatment.
Collapse
Affiliation(s)
- Benjamin Schattling
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, D-20251 Hamburg, Germany
| | - Britta Eggert
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, D-20251 Hamburg, Germany
| | - Manuel A Friese
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, D-20251 Hamburg, Germany.
| |
Collapse
|
6
|
Mekhail M, Almazan G, Tabrizian M. Oligodendrocyte-protection and remyelination post-spinal cord injuries: a review. Prog Neurobiol 2012; 96:322-39. [PMID: 22307058 DOI: 10.1016/j.pneurobio.2012.01.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 12/28/2022]
Abstract
In the past four decades, the main focus of investigators in the field of spinal cord regeneration has been to devise therapeutic measures that enhance neural regeneration. More recently, emphasis has been placed on enhancing remyelination and providing oligodendrocyte-protection after a spinal cord injury (SCI). Demyelination post-SCI is part of the cascading secondary injury that takes place immediately after the primary insult; therefore, therapeutic measures are needed to reduce oligodendrocyte death and/or enhance remyelination during the acute stage, preserving neurological functions that would be lost otherwise. In this review a thorough investigation of the oligodendrocyte-protective and remyelinative molecular therapies available to date is provided. The advent of new biomaterials shown to promote remyelination post-SCI is discussed mainly in the context of a combinatorial approach where the biomaterial also provides drug delivery capabilities. The aim of these molecular and biomaterial-based therapies is twofold: (1) oligodendrocyte-protective therapy, which involves protecting already existing oligodendrocytes from undergoing apoptosis/necrosis; and (2) inductive remyelination, which involves harnessing the remyelinative capabilities of endogenous oligodendrocyte precursor cells (OPCs) at the lesion site by providing a suitable environment for their migration, survival, proliferation and differentiation. From the evidence reported in the literature, we conclude that the use of a combinatorial approach including biomaterials and molecular therapies would provide advantages such as: (1) sustained release of the therapeutic molecule, (2) local delivery at the lesion site, and (3) an environment at the site of injury that promotes OPC migration, differentiation and remyelination.
Collapse
Affiliation(s)
- Mina Mekhail
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
7
|
Molecular differential expression of voltage-gated sodium channel α and β subunit mRNAs in five different mammalian cell lines. J Bioenerg Biomembr 2011; 43:729-38. [DOI: 10.1007/s10863-011-9399-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 10/23/2011] [Indexed: 12/19/2022]
|
8
|
Awad AM, Estephan B, Warnack W, Stüve O. Optic neuritis presenting with amaurosis fugax. J Neurol 2009; 256:2100-3. [DOI: 10.1007/s00415-009-5302-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 08/13/2009] [Accepted: 08/15/2009] [Indexed: 11/27/2022]
|
9
|
Abstract
Our understanding of the potential role of sodium channels in multiple sclerosis (MS) has grown substantially in recent years. The channels have long had a recognized role in the symptomatology of the disease, but now also have suspected roles in causing permanent axonal destruction, and a potential role in modulating the intensity of immune activity. Sodium channels might also provide an avenue to achieve axonal and neuronal protection in MS, thereby impeding the otherwise relentless advance of permanent neurological deficit. The symptoms of MS are largely determined by the conduction properties of axons and these, in turn, are largely determined by sodium channels. The number, subtype and distribution of the sodium channels are all important, together with the way that channel function is modified by local factors, such as those resulting from inflammation (eg, nitric oxide). Suspicion is growing that sodium channels may also contribute to the axonal degeneration primarily responsible for permanent neurological deficits. The proposed mechanism involves intra-axonal sodium accumulation which promotes reverse action of the sodium/calcium exchanger and thereby a lethal rise in intra-axonal calcium. Partial blockade of sodium channels protects axons from degeneration in experimental models of MS, and therapy based on this approach is currently under investigation in clinical trials. Some recent findings suggest that such systemic inhibition of sodium channels may also promote axonal protection by suppressing inflammation within the brain.
Collapse
Affiliation(s)
- Kenneth J Smith
- Department of Clinical Neurosciences, Institute of Psychiatry, King's College London, London, UK.
| |
Collapse
|
10
|
Tan AM, Petruska JC, Mendell LM, Levine JM. Sensory afferents regenerated into dorsal columns after spinal cord injury remain in a chronic pathophysiological state. Exp Neurol 2007; 206:257-68. [PMID: 17585905 PMCID: PMC3103885 DOI: 10.1016/j.expneurol.2007.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
Axon regeneration after experimental spinal cord injury (SCI) can be promoted by combinatorial treatments that increase the intrinsic growth capacity of the damaged neurons and reduce environmental factors that inhibit axon growth. A prior peripheral nerve conditioning lesion is a well-established means of increasing the intrinsic growth state of sensory neurons whose axons project within the dorsal columns of the spinal cord. Combining such a prior peripheral nerve conditioning lesion with the infusion of antibodies that neutralize the growth inhibitory effects of the NG2 chondroitin sulfate proteoglycan promotes sensory axon growth through the glial scar and into the white matter of the dorsal columns. The physiological properties of these regenerated axons, particularly in the chronic SCI phase, have not been established. Here we examined the functional status of regenerated sensory afferents in the dorsal columns after SCI. Six months post-injury, we located and electrically mapped functional sensory axons that had regenerated beyond the injury site. The regenerated axons had reduced conduction velocity, decreased frequency-following ability, and increasing latency to repetitive stimuli. Many of the axons that had regenerated into the dorsal columns rostral to the injury site were chronically demyelinated. These results demonstrate that regenerated sensory axons remain in a chronic pathophysiological state and emphasize the need to restore normal conduction properties to regenerated axons after spinal cord injury.
Collapse
Affiliation(s)
- Andrew M Tan
- Department of Neurobiology and Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
11
|
Danilov AI, Covacu R, Moe MC, Langmoen IA, Johansson CB, Olsson T, Brundin L. Neurogenesis in the adult spinal cord in an experimental model of multiple sclerosis. Eur J Neurosci 2006; 23:394-400. [PMID: 16420447 DOI: 10.1111/j.1460-9568.2005.04563.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multiple sclerosis is an inflammatory disease of the central nervous system characterized by inflammation, demyelination, axonal degeneration and accumulation of neurological disability. Previously, we demonstrated that stem cells constitute a possible endogenous source for remyelination. We now addressed the question of whether neurogenesis can occur in neuroinflammatory lesions. We demonstrated that, in experimental autoimmune encephalomyelitis, induced in rats 1,1'-dioctadecyl-6,6'-di(4sulphopentyl)-3,3,3',3'tetramethylindocarbocyanin(DiI)-labelled ependymal cells not only proliferated but descendants migrated to the area of neuroinflammation and differentiated into cells expressing the neuronal markers beta-III-tubulin and NeuN. Furthermore, these cells were immunoreactive for bromodeoxyuridine and PCNA, markers for cells undergoing cell proliferation. Using the whole-cell patch-clamp technique on freshly isolated 1, DiI-labelled cells from spinal cord lesions we demonstrated the ability of these cells to fire overshooting action potentials similar to those of immature neurones. We thus provide the first evidence for the initiation of neurogenesis in neuroinflammatory lesions in the adult spinal cord.
Collapse
|
12
|
De Stefano N, Bartolozzi ML, Guidi L, Stromillo ML, Federico A. Magnetic resonance spectroscopy as a measure of brain damage in multiple sclerosis. J Neurol Sci 2005; 233:203-8. [PMID: 15949506 DOI: 10.1016/j.jns.2005.03.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent MR studies have emphasised the importance of neuronal and axonal damage in multiple sclerosis. In this respect, proton MR spectroscopy (by monitoring levels of N-acetylaspartate, a putative marker of axonal integrity) has been particularly illuminating by showing indirect evidence of neurodegeneration in both lesional and non-lesional brain tissues from the earliest stages of the disease. The importance of these changes to patients' clinical disability argues for the primary role of neuronal pathology in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Nicola De Stefano
- Neurometabolic Unit, Department of Neurological and Behavioral Sciences, University of Siena, Viale Bracci 2, 53100 Siena, Italy.
| | | | | | | | | |
Collapse
|
13
|
Coward K, Plumpton C, Facer P, Birch R, Carlstedt T, Tate S, Bountra C, Anand P. Immunolocalization of SNS/PN3 and NaN/SNS2 sodium channels in human pain states. Pain 2000; 85:41-50. [PMID: 10692601 DOI: 10.1016/s0304-3959(99)00251-1] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tetrodotoxin-resistant (TTX-R) voltage-gated sodium channel SNS/PN3 and the newly discovered NaN/SNS2 are expressed in sensory neurones, particularly in nociceptors. Using specific antibodies, we have studied, for the first time in humans, the presence of SNS/PN3 and NaN/SNS2 in peripheral nerves, including tissues from patients with chronic neurogenic pain. In brachial plexus injury patients, there was an acute decrease of SNS/PN3- and NaN/SNS2-like immunoreactivity in sensory cell bodies of cervical dorsal root ganglia (DRG) whose central axons had been avulsed from spinal cord, with gradual return of the immunoreactivity to control levels over months. In contrast, there was increased intensity of immunoreactivity to both channels in some peripheral nerve fibers just proximal to the site of injury in brachial plexus trunks, and in neuromas. These findings suggest that the expression of these sodium channels in neuronal cell bodies is reduced after spinal cord root avulsion injury in man, but that pre-synthesized channel proteins may undergo translocation with accumulation at sites of nerve injury, as in animal models of peripheral axotomy. The latter may contribute to positive symptoms, as our patients all showed a positive Tinel's sign. Nerve terminals in distal limb neuromas and skin from patients with chronic local hyperalgesia and allodynia all showed marked increases of SNS/PN3-immunoreactive fibers, but little or no NaN/SNS2-immunoreactivity, suggesting that the former may be related to the persistent hypersensitive state. Axonal immunoreactivity to both channels was similar to control nerves in sural nerve biopsies in a selection of neuropathies, irrespective of nerve inflammation, demyelination or spontaneous pain, including a patient with congenital insensitivity to pain. Our studies suggest that the best target for SNS/PN3 blocking agents is likely to be chronic local hypersensitivity.
Collapse
Affiliation(s)
- K Coward
- Peripheral Neuropathy Unit, Division of Neuroscience and Psychological Medicine, Imperial College School of Medicine, Area A, Ground Floor, Hammersmith Hospital, Du Cane Road, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Smith KJ, McDonald WI. The pathophysiology of multiple sclerosis: the mechanisms underlying the production of symptoms and the natural history of the disease. Philos Trans R Soc Lond B Biol Sci 1999; 354:1649-73. [PMID: 10603618 PMCID: PMC1692682 DOI: 10.1098/rstb.1999.0510] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The pathophysiology of multiple sclerosis is reviewed, with emphasis on the axonal conduction properties underlying the production of symptoms, and the course of the disease. The major cause of the negative symptoms during relapses (e.g. paralysis, blindness and numbness) is conduction block, caused largely by demyelination and inflammation, and possibly by defects in synaptic transmission and putative circulating blocking factors. Recovery from symptoms during remissions is due mainly to the restoration of axonal function, either by remyelination, the resolution of inflammation, or the restoration of conduction to axons which persist in the demyelinated state. Conduction in the latter axons shows a number of deficits, particularly with regard to the conduction of trains of impulses and these contribute to weakness and sensory problems. The mechanisms underlying the sensitivity of symptoms to changes in body temperature (Uhthoff's phenomenon) are discussed. The origin of 'positive' symptoms, such as tingling sensations, are described, including the generation of ectopic trains and bursts of impulses, ephaptic interactions between axons and/or neurons, the triggering of additional, spurious impulses by the transmission of normal impulses, the mechanosensitivity of axons underlying movement-induced sensations (e.g. Lhermitte's phenomenon) and pain. The clinical course of the disease is discussed, together with its relationship to the evolution of lesions as revealed by magnetic resonance imaging and spectroscopy. The earliest detectable event in the development of most new lesions is a breakdown of the blood-brain barrier in association with inflammation. Inflammation resolves after approximately one month, at which time there is an improvement in the symptoms. Demyelination occurs during the inflammatory phase of the lesion. An important mechanism determining persistent neurological deficit is axonal degeneration, although persistent conduction block arising from the failure of repair mechanisms probably also contributes.
Collapse
Affiliation(s)
- K J Smith
- Department of Clinical Neurosciences, Guy's, King's and St Thomas' School of Medicine, King's College, London, UK.
| | | |
Collapse
|
15
|
Affiliation(s)
- W I McDonald
- Institute of Neurology, Queen Square, London, and Moorfields Eye Hospital, City Road, London, UK
| |
Collapse
|
16
|
Butt AM, Duncan A, Hornby MF, Kirvell SL, Hunter A, Levine JM, Berry M. Cells expressing the NG2 antigen contact nodes of Ranvier in adult CNS white matter. Glia 1999. [DOI: 10.1002/(sici)1098-1136(199903)26:1<84::aid-glia9>3.0.co;2-l] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J Neurosci 1998. [PMID: 9482802 DOI: 10.1523/jneurosci.18-06-02174.1998] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The novel sodium channel PN3/alpha-SNS, which was cloned from a rat dorsal root ganglion (DRG) cDNA library, is expressed predominantly in small sensory neurons and may contribute to the tetrodotoxin-resistant (TTXR) sodium current that is believed to be associated with central sensitization in chronic neuropathic pain states. To assess further the role of PN3, we have used electrophysiological, in situ hybridization and immunohistochemical methods to monitor changes in TTXR sodium current and the distribution of PN3 in normal and peripheral nerve-injured rats. (1) Whole-cell patch-clamp recordings showed that there were no significant changes in the TTXR and TTX-sensitive sodium current densities of small DRG neurons after chronic constriction injury (CCI) of the sciatic nerve. (2) Additionally, in situ hybridization showed that there was no change in the expression of PN3 mRNA in the DRG up to 14 d after CCI. PN3 mRNA was not detected in sections of brain and spinal cord taken from either normal or nerve-injured rats. (3) In contrast, immunohistochemical studies showed that major changes in the subcellular distribution of PN3 protein were caused by either CCI or complete transection of the sciatic nerve. The intensity of PN3 immunolabeling decreased in small DRG neurons and increased in sciatic nerve axons at the site of injury. The alteration in immunolabeling was attributed to translocation of presynthesized, intracellularly located PN3 protein from neuronal somata to peripheral axons, with subsequent accumulation at the site of injury. The specific subcellular redistribution of PN3 after peripheral nerve injury may be an important factor in establishing peripheral nerve hyperexcitability and resultant neuropathic pain.
Collapse
|
18
|
Rivera-Quiñones C, McGavern D, Schmelzer JD, Hunter SF, Low PA, Rodriguez M. Absence of neurological deficits following extensive demyelination in a class I-deficient murine model of multiple sclerosis. Nat Med 1998; 4:187-193. [PMID: 9461192 PMCID: PMC5319411 DOI: 10.1038/nm0298-187] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Demyelination alone has been considered sufficient for development of neurological deficits following central nervous system (CNS) disease. However, extensive demyelination is not always associated with clinical deficits in patients with multiple sclerosis (MS), the most common primary demyelinating disease in humans. We used the Theiler's murine encephalomyelitis virus model of demyelination to investigate the role of major histocompatibility complex (MHC) class I and class II gene products in the development of functional and neurophysiological deficits following demyelination. We measured spontaneous clinical activity by two independent assays and recorded hind-limb motor-evoked potentials in infected class I-deficient and class II-deficient mice of an identical genetic background as well as in highly susceptible SJL/J mice. The results show that despite a similar distribution and extent of demyelinated lesions in all mice, only class I-deficient mice were functionally normal. We propose that the mechanism by which demyelinated class I-deficient mice maintain neurologic function results from increased sodium channel densities and the relative preservation of axons. These findings are the first to implicate a role for MHC class I in the development of neurological deficits following demyelination.
Collapse
Affiliation(s)
- Cynthia Rivera-Quiñones
- Department ofNeurology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, Minnesota 55905, USA
- Department ofImmunology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Dorian McGavern
- Molecular Neuroscience Program, Mayo Clinic and Foundation, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - James D Schmelzer
- Department ofNeurology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Samuel F Hunter
- Department ofNeurology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Phillip A Low
- Department ofNeurology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Moses Rodriguez
- Department ofNeurology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, Minnesota 55905, USA
- Department ofImmunology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, Minnesota 55905, USA
- Molecular Neuroscience Program, Mayo Clinic and Foundation, 200 First Street SW, Rochester, Minnesota 55905, USA
| |
Collapse
|
19
|
Abstract
The prominent symptoms associated with central demyelinating diseases such as multiple sclerosis (MS) are primarily caused by conduction deficits in affected axons. The symptoms may go into remission, but the mechanisms underlying remissions are uncertain. One factor that could be important is the restoration of conduction to affected axons, but it is not known whether demyelinated central axons resemble their peripheral counterparts in being able to conduct in the absence of repair by remyelination. In the present study we have made intra-axonal recordings from central axons affected by a demyelinating lesion, and then the axons have been labeled ionophoretically to permit their subsequent identification. Ultrastructural examination of 23 labeled preparations has established that some segmentally demyelinated central axons can conduct, and that they can do so over continuous lengths of demyelination exceeding several internodes (2500 micron). Such segmentally demyelinated central axons were found to conduct with the anticipated reduction in velocity and a refractory period of transmission (RPT) as much as 34 times the value obtained from the nondemyelinated portion of the same axon; the RPT was typically prolonged to 2-5 times the normal value. We conclude that some segmentally demyelinated central axons can conduct, and we propose that the restoration of conduction to such axons is likely to contribute to the remissions commonly observed in diseases such as MS.
Collapse
|
20
|
Chen C, Cavanaugh JM, Ozaktay AC, Kallakuri S, King AI. Effects of phospholipase A2 on lumbar nerve root structure and function. Spine (Phila Pa 1976) 1997; 22:1057-64. [PMID: 9160462 DOI: 10.1097/00007632-199705150-00002] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
STUDY DESIGN To investigate the effects of phospholipase A2 on the neurophysiology and histology of rat lumbar spinal nerves and the corresponding behavioral changes. OBJECTIVES To study possible mechanisms of sciatica. SUMMARY OF BACKGROUND DATA The pathophysiology of sciatica is uncertain, although mechanical, chemical, and ischemic factors have been proposed. METHODS Phospholipase A2 was injected into the rat L4-L5 epidural space, and the rats were observed for 3 or 21 days. Behavioral studies were conducted daily during the survival period. On the 3rd or 21st day, extracellular nerve recordings were made from dorsal roots, to determine discharge properties and mechanical sensitivity. The nerve roots were then sectioned for a light-microscopic examination. RESULTS Motor weakness of hind limbs and altered sensation were observed. In the 3-day phospholipase A2 groups, squeezing the dorsal roots at the L4-L5 disc level (force = 0.8 g) evoked sustained ectopic discharge that lasted approximately 8 minutes. Squeezing the roots distal to the L4-L5 area did not result in sustained discharges. In sham, control, and 21-day phospholipase A2 groups, squeezing the dorsal roots elicited only a transient firing that lasted approximately 0.1 second. Loss of myelin was seen in the nerve root cross sections in the 3-day group, and remyelination was observed in the 21-day group. No abnormality was found in the control groups. CONCLUSIONS Based on these studies, it is hypothesized that phospholipase A2 causes demyelination that results in hypersensitive regions where ectopic discharge may be elicited by mechanical stimulation. These ectopic discharges may be a source of sciatica. We believe that, as long as these irritating factors are present, the hypersensitive nerve root nerve will continue to fire, and sciatic pain will persist.
Collapse
Affiliation(s)
- C Chen
- Bioengineering Center, Wayne State University, Detroit, Michigan, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
A novel in vitro method of spinal cord injury was developed to facilitate the study of cellular and molecular mechanisms underlying neural trauma. A 3-cm length of thoracic spinal cord was removed from the adult Wistar rat. A strip of dorsal column and its associated dorsal horn gray matter was excised and pinned in an in vitro recording chamber where it was constantly perfused with oxygenated Ringer's solution at either 25 degrees C or 33 degrees C. Injury was performed by compressing the dorsal column segment in vitro with a modified aneurysm clip (closing force 2.0 g) for 15 s. Microelectrode and sucrose gap recordings were generated to characterize the physiological effects of compressive injury. Longitudinal thin sections of control and injured dorsal column segments were examined by electron microscopy. At 25 degrees C, injured axons were characterized by a significant reduction in amplitude of the compound action potential (CAP) to 76.9 +/- 2.4% (P < 0.0005) and an increase in response latency to 112.5 +/- 2.5% (P <0.005). At 33 degrees C, the effects of injury on the CAP amplitude were accentuated (P< 0.0001). With the K+ channel blocker, 4-AP (1 mM), there was broadening of the CAP of injured axons and a delay in repolarization of the axonal resting membrane potential, suggesting myelin disruption with exposure of paranodal K+ channels. Ultrastructurally, injured dorsal column segments showed considerable axonal and myelin pathology including splaying of the myelin sheath and vesicular degeneration.
Collapse
Affiliation(s)
- M G Fehlings
- The Toronto Hospital Research Institute, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
22
|
Fehlings MG, Nashmi R. Changes in pharmacological sensitivity of the spinal cord to potassium channel blockers following acute spinal cord injury. Brain Res 1996; 736:135-45. [PMID: 8930318 DOI: 10.1016/0006-8993(96)00667-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this investigation we studied changes in the pharmacological sensitivity of dorsal column white matter to a variety of K+ channel blockers, including 4-aminopyridine (4-AP), following acute spinal cord injury (SCI) in vitro using a modified aneurysm clip. Compound action potentials (CAPs) were recorded extracellularly with microelectrodes and by the sucrose gap recording technique. With acute trauma, injured axons showed significantly enhanced sensitivity to 4-AP in comparison to uninjured controls as early as 10 min following injury. Microelectrode derived field potential recordings showed a significantly greater increase in a delayed positive component (P2) of the CAP at both 1 and 5 mM 4-AP in injured as compared to noninjured axons. Sucrose gap recordings showed an increase in CAP area and amplitude of injured axons with 1 mM 4-AP at 22 degrees C. The relative improvement in CAP area and amplitude with 4-AP was even more pronounced (P < 0.05) at higher temperatures (37 degrees C). As shown by sucrose gap, 4-AP also caused a delay in repolarization of the CAP and depolarization of the resting membrane potential of acutely injured axons. TEA (0.1 mM and 10 mM), when infused alone and with CsCl (10 mM), produced similar effects on injured and intact axons. In conclusion, the results of this study show an altered sensitivity of the spinal cord to 4-AP following acute SCI. In contrast, TEA and CsCl exhibit no difference in their effects on low frequency axonal conduction between injured and noninjured axons. The data suggest that acute traumatic myelin disruption following SCI causes axonal dysfunction partly due to abnormal activation of 4-AP-sensitive 'fast' K+ channels.
Collapse
Affiliation(s)
- M G Fehlings
- Playfair Neuroscience Unit, Toronto Hospital Research Institute, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
23
|
Nezu A, Kimura S, Osaka H, Kobayashi T, Ohtsuki N. Effect of digitalis on conduction dysfunction in Pelizaeus-Merzbacher disease. J Neurol Sci 1996; 141:49-53. [PMID: 8880692 DOI: 10.1016/0022-510x(96)00134-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We studied the effect of digitalis on nerve conduction dysfunction in Pelizaeus-Merzbacher disease (PMD). The patients were three Japanese boys with PMD, aged 7-10 years. Digitalis was administered orally in a daily dose of 0.06 mg/kg for 2 consecutive months, and the obtained serum concentrations ranged from 0.33 to 0.55 ng/ml. The digitalis therapy induced slight improvement of severe dysarthria and cognitive dysfunction in the two older patients. Electrophysiological examinations revealed the following results: In brainstem auditory evoked potentials (BAEPs), while waves II (or III) to V were absent before treatment, on treatment all waves of BAEPs except a wave IV were restored in all patients. While visual evoked potentials (VEPs) in response to transient flash stimulation showed markedly prolonged latencies before treatment, digitalis produced a mild, although not statistically significant, shortening of the latency of N160. There were also no significant changes in inter-peak amplitudes of VEPs. Transcranial cortical magnetic stimulation continued to fail to elicit motor evoked potentials of the first dorsal interosseous muscles in all patients. Thus, although the serum concentrations were insufficient to elicit favorable therapeutic effects, digitalis therapy provided slight relief of clinical symptoms with evidence of improvement of conduction dysfunction. It is suggested that patients with PMD may respond to symptomatic treatment modulating nerve conduction.
Collapse
Affiliation(s)
- A Nezu
- Department of Pediatrics, Urafune Hospital of Yokohama City University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
24
|
England JD, Levinson SR, Shrager P. Immunocytochemical investigations of sodium channels along nodal and internodal portions of demyelinated axons. Microsc Res Tech 1996; 34:445-51. [PMID: 8837020 DOI: 10.1002/(sici)1097-0029(19960801)34:5<445::aid-jemt4>3.0.co;2-l] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Voltage-gated sodium channels are largely localized to the nodes of Ranvier in myelinated axons, providing the physiological basis for saltatory conduction. Studies using antisodium channel antibodies have shown that along demyelinated axons sodium channels form new distributions. The nature of this changed distribution appears to vary with the time course and mechanism of demyelination. In chronic demyelination, sodium channels increase in number and redistribute along previously internodal axon segments. In chronic demyelination produced by doxorubicin, the increase in sodium channels appeared independently of Schwann cells, suggesting increased neuronal synthesis. In acute demyelination produced by lysolecithin new clusters of sodium channels developed but only in association with the edges of remyelinating Schwann cells, which appeared to control the distribution and mobility of the channels. These findings affirm the plasticity of sodium channels in demyelinated axons and are relevant to understanding how these axons recover conduction.
Collapse
Affiliation(s)
- J D England
- Department of Neurology, Louisiana State University School of Medicine, New Orleans 70112, USA
| | | | | |
Collapse
|
25
|
Felts PA, Smith KJ. Changes in the distribution of a calcium-dependent ATPase during demyelination and remyelination in the central nervous system. JOURNAL OF NEUROCYTOLOGY 1996; 25:171-80. [PMID: 8737170 DOI: 10.1007/bf02284794] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A calcium-adenosine triphosphatase (Ca(2+)-ATPase) activity expressed by CNS nerve fibres has been examined during demyelination and remyelination in rats, 21-26 days after an intraspinal injection of ethidium bromide. The Ca(2+)-ATPase distribution was determined cytochemically, using a technique believed primarily to reflect the presence of ecto-ATPases. We confirm that in normal nerve fibres Ca(2+)-ATPase activity was present on the external surface of the myelin sheath, and on the axolemma at the nodes of Ranvier. Labelling of the internodal axolemma was restricted to small, scattered, punctate regions. However, following demyelination the Ca(2+)-ATPase activity was expressed continuously along both the exposed, previously internodal axolemma of entirely naked axons, and it was particularly prominent at sites of contact between axons and glial-cell processes. During remyelination (which in this lesion is accomplished predominantly by Schwann cells) the proportion of the axonal surface exhibiting Ca(2+)-ATPase activity decreased in concert with the progressive thickening of the new myelin sheath. The non-myelin forming plasmalemma of Schwann cells was positive for the Ca(2+)-ATPase activity, but activity was abruptly lost at the site of compaction between the inner and outer leaflets of the forming myelin sheath. Ecto-ATPase activity is a property of some cell adhesion molecules, and it follows that the changes observed in the distribution of ATPase activity in this study may reflect changes in the axolemma which are important for the successful repair of the lesion by remyelination. The ATPase activity may, for example, reflect the changing distribution of molecules important in aiding axo-glial recognition and the establishment of axo-glial contacts.
Collapse
Affiliation(s)
- P A Felts
- Department of Neurology, United Medical School, Guy's Hospital, London, UK
| | | |
Collapse
|
26
|
Gambi D, Fulgente T, Melchionda D, Onofrj M. Evoked potential (EP) alterations in experimental allergic encephalomyelitis (EAE): early delays and latency reductions without plaques. ITALIAN JOURNAL OF NEUROLOGICAL SCIENCES 1996; 17:23-33. [PMID: 8742985 DOI: 10.1007/bf01995706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Experimental allergic encephalomyelitis (EAE) in its chronic relapsing (CR-EAE), chronic progressive (CP-EAE) and acute (A-EAE) forms was obtained in 24 juvenile strain 13 guinea pigs. Visual, brainstem acoustic and somatosensory evoked potentials (EPs) were recorded in these animals prior to the sensitizing injection and during the course of the disease. Delays in the EPs appeared 15 days post-sensitization (dps), preceding or simultaneously with clinical alterations: electron microscopy revealed myelin stripping and vacuolation in the animals sacrificed 25 dps. Decreases in EP latency were recorded 32 dps; when electron microscopy revealed myelin layers indicating remyelination, whereas light microscopy showed only inflammatory changes. When confluent plaques were revealed by light microscopy 120 dps, the EP wave shapes were distorted or absent. The discussion reviews the literature on early myelin and conduction changes during central demyelination.
Collapse
Affiliation(s)
- D Gambi
- Istituto di Clinica Neurologica e Scienze del Comportamento, Università degli Studi G. D'Annunzio, Chieti, Italy
| | | | | | | |
Collapse
|
27
|
Wang H, Allen ML, Grigg JJ, Noebels JL, Tempel BL. Hypomyelination alters K+ channel expression in mouse mutants shiverer and Trembler. Neuron 1995; 15:1337-47. [PMID: 8845157 DOI: 10.1016/0896-6273(95)90012-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Voltage-gated K+ channels are localized to juxtaparanodal regions of myelinated axons. To begin to understand the role of normal compact myelin in this localization, we examined mKv1.1 and mKv1.2 expression in the dysmyelinating mouse mutants shiverer and Trembler. In neonatal wild-type and shiverer mice, the focal localization of both proteins in axon fiber tracts is similar, suggesting that cues other than mature myelin can direct initial K+ channel localization in shiverer mutants. In contrast, K+ channel localization is altered in hypomyelinated axonal fiber tracts of adult mutants, suggesting that abnormal myelination leads to channel redistribution. In shiverer adult, K+ channel expression is up-regulated in both axons and glia, as revealed by immunocytochemistry, RNase protection, and in situ hybridization studies. This up-regulation of K+ channels in hypomyelinated axon tracts may reflect a compensatory reorganization of ionic currents, allowing impulse conduction to occur in these dysmyelinating mouse mutants.
Collapse
Affiliation(s)
- H Wang
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
28
|
Maxwell WL, McCreath BJ, Graham DI, Gennarelli TA. Cytochemical evidence for redistribution of membrane pump calcium-ATPase and ecto-Ca-ATPase activity, and calcium influx in myelinated nerve fibres of the optic nerve after stretch injury. JOURNAL OF NEUROCYTOLOGY 1995; 24:925-42. [PMID: 8719820 DOI: 10.1007/bf01215643] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There has been controversy for some time as to whether a posttraumatic influx of calcium ions occurs in stretch/nondisruptively injured axons within the central nervous system in both human diffuse axonal injury and a variety of models of such injury. We have used the oxalate/pyroantimonate technique to provide cytochemical evidence in support of such an ionic influx after focal axonal injury to normoxic guinea pig optic nerve axons, a model for human diffuse axonal injury. We present evidence for morphological changes within 15 min of injury where aggregates of pyroantimonate precipitate occur in nodal blebs at nodes of Ranvier, in focal swellings within axonal mitochondria, and at localized sites of separation of myelin lamellae. In parallel with these studies, we have used cytochemical techniques for localization of membrane pump Ca(2+)-ATPase and ecto-Ca-ATPase activity. There is loss of labelling for membrane pump Ca(2+)-ATPase activity on the nodal axolemma, together with loss of ecto-Ca-ATPase from the external aspect of the myelin sheath at sites of focal separation of myelin lamellae. Disruption of myelin lamellae and loss of ecto-Ca-ATPase activity becomes widespread between 1 and 4 h after injury. This is correlated with both infolding and retraction of the axolemma from the internal aspect of the myelin sheath to form periaxonal spaces which are characterized by aggregates of pyroantimonate precipitate, and the development of myelin intrusions into invaginations of the axolemma such that the regular profile of the axon is lost. There is novel labelling of membrane pump Ca(2+)-ATPase on the cytoplasmic aspect of the internodal axolemma between 1 and 4 h after injury. There is loss of an organized axonal cytoskeleton in a proportion of nerve fibres by 4-6 h after injury. We suggest that these changes demonstrate a progressive pathology linked to calcium ion influx after stretch (non-disruptive) axonal injury to optic nerve myelinated fibres. We posit that calcium influx, linked to or correlated with changes in Ca(2+)-ATPase activities, results in dissolution of the axonal cytoskeleton and axotomy between 4 and 6 h after the initial insult to axons.
Collapse
Affiliation(s)
- W L Maxwell
- Laboratory of Human Anatomy, University of Glasgow, UK
| | | | | | | |
Collapse
|
29
|
De Stefano N, Matthews PM, Antel JP, Preul M, Francis G, Arnold DL. Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 1995; 38:901-9. [PMID: 8526462 DOI: 10.1002/ana.410380610] [Citation(s) in RCA: 206] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We report the chemical pathological changes on magnetic resonance spectroscopic images of 4 patients, each of whom had a single large demyelinating plaque. The patients were followed from soon after the onset of the symptoms for a minimum of 7 months to a maximum of 3 1/2 years. We observed increases in the relative resonance intensities of choline-containing compounds, lactate, and myo-inositol inside the lesion acutely. Decreases in relative resonance intensities of N-acetylaspartate and creatine were seen both in and around the magnetic resonance imaging-detected lesions. In all patients neurological deficits improved and creatine, lactate, and myo-inositol resonance intensities normalized during the follow-up. Choline compounds recovered more slowly and were still abnormally high in 1 patient after 7 months. Partial recovery of the N-acetylaspartate resonance was seen for all patients. Evaluation of the relationships between indices of cerebral chemical pathology, brain lesion volumes, and functional disability showed highly significant negative correlations between N-acetylaspartate resonance intensities and both brain lesion volumes (r = -0.80, p < 0.0001) and clinical disability (r = -0.73, p < 0.0001). As N-acetylaspartate is localized solely in neurons in the adult central nervous system, our results suggest that neuronal dysfunction may be a proximate mechanism of disability even in inflammatory disorders primarily affecting myelin and oligodendroglial cells.
Collapse
Affiliation(s)
- N De Stefano
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Pinault D. Backpropagation of action potentials generated at ectopic axonal loci: hypothesis that axon terminals integrate local environmental signals. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1995; 21:42-92. [PMID: 8547954 DOI: 10.1016/0165-0173(95)00004-m] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review deals with the fascinating complexity of presynaptic axon terminals that are characterized by a high degree of functional distinctiveness. In vertebrate and invertebrate neurons, all-or-none APs can take off not only from the axon hillock, but also from ectopic axonal loci including terminals. Invertebrate neurons display EAPs, for instance alternating with somatic APs, during survival functions. In vertebrate, EAPs have been recorded in the peripheral and central nervous systems in time relationship with physiological or pathological neuronal activities. In motor or sensory axon, EAP generation may be the cause of motor dysfunctioning or sensory perceptions and pain respectively. Locomotion is associated with rhythmic depolarizations of the presynaptic axonal membrane of primary afferents, which are ridden by robust EAP bursts. In central axons lying within an epileptic tissue EAP discharges, coinciding with paroxysmal ECoG waves, get longer as somatic discharges get shorter during seizure progression. Once invaded by an orthodromic burst, an ectopic axonal locus can display an EAP after discharge. Such loci can also fire during hyperpolarization or the postinhibitory excitatory period of the parent somata, but not during their tonic excitation. Neurons are thus endowed with electrophysiological intrinsic properties making possible the alternate discharges of somatic APs and EAPs. In invertebrate and vertebrate neurons, ectopic axonal loci fire while the parent somata stop firing, further suggesting that axon terminal networks are unique and individual functional entities. The functional importance of EAPs in the nervous systems is, however, not yet well understood. Ectopically generated axonal APs propagate backwards and forwards along the axon, thus acting as a retrograde and anterograde signal. In invertebrate neurons, somatically and ectopically generated APs cannot have the same effect on the postsynaptic membrane. As suggested by studies related to the dorsal root reflex, EAPs may not only be implied in the presynaptic modulation of transmitter release but also contribute significantly during their backpropagation to a powerful control (collision process) of incoming volleys. From experimental data related to epileptiform activities it is proposed that EAPs, once orthodromically conducted, might potentiate synapses, initiate, spread or maintain epileptic cellular processes. For instance, paroxysmal discharges of EAPs would exert, like a booster-driver, a powerful synchronizing synaptic drive upon a large number of excitatory and inhibitory postsynaptic neurons. We have proposed that, once backpropagated, EAPs are likewise capable of initiating (and anticipating) threshold and low-threshold somatodendritic depolarizations. Interestingly, an antidromic EAP can modulate the excitability of the parent soma.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D Pinault
- Université Laval, Centre de Recherches en Neurobiologie, Hôpital de l'Enfant-Jésus, Québec, Canada
| |
Collapse
|
31
|
Miguel-Hidalgo JJ, Angelides KJ, Chalupa LM. Distinct temporal patterns of expression of sodium channel-like immunoreactivity during the prenatal development of the monkey and cat retina. Eur J Neurosci 1995; 7:535-46. [PMID: 7620605 DOI: 10.1111/j.1460-9568.1995.tb00658.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polyclonal and monoclonal antibodies prepared against the alpha-subunit of the voltage-gated sodium channel (alpha NaCh) were used to examine the distribution of sodium channel-like immunoreactivity during the prenatal development of the cat and rhesus monkey (Macaca mulatta) retina. At all prenatal ages studied, beginning on embryonic day 29 (E29) in the cat and E52 in the monkey, both antibodies labelled optic axons. With the polyclonal antibodies, the appearance of positive cells largely mirrored the onset of their morphological maturation. Immunoreactivity appeared first in the somata of ganglion cells, and subsequently the inner plexiform layer could be distinguished by its intense immunolabelling. A few weeks later horizontal cells displayed immunolabelling that extended to their dendrites in the developing outer plexiform layer. This was followed by immunoreactive cones, with bipolar cells labelled only postnatally. By contrast, with the monoclonal antibody some cells were found to be immunoreactive while their somata were still in the ventricular layer (E33 in cat and E52 in monkey). Many of these cells appeared to migrate to the outer portion of the prospective inner nuclear layer, where they gradually acquired the morphological appearance of bipolar cells. Transient expression of immunolabelling with monoclonal sodium channel antibody was found in the cones of the cat and cones and rods of the monkey. These results indicate that different types of alpha NaCh-like proteins are expressed in the mammalian retina at distinct developmental periods. Their presence at very early stages during development suggests that these proteins could play a specific role in the commitment and/or differentiation of specific retinal cell types.
Collapse
Affiliation(s)
- J J Miguel-Hidalgo
- Section of Neurobiology, Physiology and Behavior, University of California, Davis 95616-8686, USA
| | | | | |
Collapse
|
32
|
|
33
|
Butt AM, Duncan A, Berry M. Astrocyte associations with nodes of Ranvier: ultrastructural analysis of HRP-filled astrocytes in the mouse optic nerve. JOURNAL OF NEUROCYTOLOGY 1994; 23:486-99. [PMID: 7983475 DOI: 10.1007/bf01184072] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Astrocytes are implicated in the function of nodes of Ranvier because their perinodal processes form contacts with the axonal membrane at nodes. We have filled astrocytes iontophoretically with horseradish peroxidase in the intact mouse optic nerve to resolve the precise relationship between perinodal processes and astrocyte three dimensional structure. We confirm that nodal contacts were formed either by single processes which almost completely enveloped nodes, or by delicate, finger-like projections from larger processes which made discrete nodal contacts. A single perinodal process can form multiple contacts with a node and nodes were contacted by processes from more than one astrocyte. Perinodal processes emanated from larger processes, which terminated as end-feet on blood vessels and at the pia, as well as collateral branches which subsequently ended at nodes; these latter may specifically subserve nodes. Perinodal contacts were also formed directly by the soma and cytoplasmic expansions of the cell body. Both primary processes and collateral branches formed multiple associations with nodes which often appeared in clusters. Thus, all astrocytes formed multiple contacts with nodes, blood vessels and the subpial glia limitans. We conclude that perinodal processes are not formed by a specialized astrocyte in the mouse optic nerve.
Collapse
Affiliation(s)
- A M Butt
- Sherrington School of Physiology, UMDS, Guy's Hospital, London, UK
| | | | | |
Collapse
|
34
|
McDonald WI, Miller DH, Thompson AJ. Are magnetic resonance findings predictive of clinical outcome in therapeutic trials in multiple sclerosis? The dilemma of interferon-beta. Ann Neurol 1994; 36:14-8. [PMID: 8024255 DOI: 10.1002/ana.410360106] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
35
|
Yokota T, Saito Y, Miyatake T. Conduction slowing without conduction block of compound muscle and nerve action potentials due to sodium channel block. J Neurol Sci 1994; 124:220-4. [PMID: 7964875 DOI: 10.1016/0022-510x(94)90330-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We studied the effect of lidocaine on nerve conduction in vivo. Recovery of the compound muscle action potential (CMAP), sensory nerve action potential (SNAP), and single motor unit potential (MUP) of median nerve stimulation was recorded in four healthy volunteers after intravenous infusion of 20 ml of 0.5% lidocaine. During loading, CMAP and SNAP amplitudes rapidly decreased and their latencies increased. After recovery of the CMAP and SNAP amplitudes, nerve conduction velocity improved gradually over a period of 3-6 h, the amplitudes and configurations of CMAP and SNAP remaining unchanged. The conduction velocity of the single MUP markedly slowed before it is blocked. This indicates that maximum conduction velocity of CMAP and SNAP could be slowed by the partial inactivation of sodium channels without accompanying conduction block. Prolongation of the rise time of depolarization of the axonal membrane potential may be the active mechanism in this slowing because of sodium channel inactivation. Abnormalities in sodium channels at the nodes of Ranvier should be considered as a mechanism of conduction slowing even when there is no conduction block.
Collapse
Affiliation(s)
- T Yokota
- Department of Neurology, Tokyo Medical and Dental University, Japan
| | | | | |
Collapse
|
36
|
Smith KJ. Conduction properties of central demyelinated and remyelinated axons, and their relation to symptom production in demyelinating disorders. Eye (Lond) 1994; 8 ( Pt 2):224-37. [PMID: 7958027 DOI: 10.1038/eye.1994.51] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The conduction properties of central demyelinated and remyelinated axons are discussed, and related to the expression of symptoms in central demyelinating disease. The mechanisms underlying the block and restoration of conduction in segmentally demyelinated axons are described, together with the range of deficits expressed by the conducting axons. These abnormalities are related to clinical relapses and remissions, and to the phenomena of weakness, fatigue, the temperature sensitivity of symptoms, and the generation of 'positive' symptoms (e.g. Uhthoff's and Lhermitte's symptoms). The potential role of circulating 'blocking factors' in the symptomatology of central demyelinating disease is examined, and some approaches are advanced for the symptomatic therapy of such diseases.
Collapse
Affiliation(s)
- K J Smith
- Department of Neurology, United Medical School of Guy's Hospital, London, UK
| |
Collapse
|
37
|
Utzschneider DA, Archer DR, Kocsis JD, Waxman SG, Duncan ID. Transplantation of glial cells enhances action potential conduction of amyelinated spinal cord axons in the myelin-deficient rat. Proc Natl Acad Sci U S A 1994; 91:53-7. [PMID: 8278406 PMCID: PMC42884 DOI: 10.1073/pnas.91.1.53] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A central issue in transplantation research is to determine how and when transplantation of neural tissue can influence the development and function of the mammalian central nervous system. Of particular interest is whether electrophysiological function in the traumatized or diseased mammalian central nervous system can be improved by the replacement of cellular elements that are missing or damaged. Although it is known that transplantation of neural tissue can lead to functional improvement in models of neurological disease characterized by neuronal loss, less is known about results of transplantation in disorders of myelin. We report here that transplantation of glial cells into the dorsal columns of neonatal myelin-deficient rat spinal cords leads to myelination and a 3-fold increase in conduction velocity. We also show that impulses can propagate into and out of the transplant region and that axons myelinated by transplanted cells do not have impaired frequency-response properties. These results demonstrate that myelination following central nervous system glial cell transplantation enhances action potential conduction in myelin-deficient axons, with conduction velocity approaching normal values.
Collapse
Affiliation(s)
- D A Utzschneider
- Department of Neurology, Yale University Medical School, Haven, CT
| | | | | | | | | |
Collapse
|
38
|
Waxman SG, Utzschneider DA, Kocsis JD. Enhancement of action potential conduction following demyelination: experimental approaches to restoration of function in multiple sclerosis and spinal cord injury. PROGRESS IN BRAIN RESEARCH 1994; 100:233-43. [PMID: 7938524 DOI: 10.1016/s0079-6123(08)60790-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- S G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510
| | | | | |
Collapse
|
39
|
Abstract
It is possible to learn more about peripheral nerve function in human subjects than is obtainable with routine nerve conduction studies, and thereby to study the basis of "positive" symptoms, such as paresthesias. Using microneurography, ectopic impulse activity in cutaneous afferents has been recorded in patients suffering from neurologic disorders and in normal subjects in whom paresthesias were provoked by hyperventilation, prolonged tetanization of cutaneous nerves and ischemia. Using relatively simple modifications of standard nerve conduction techniques, the increases in axonal excitability responsible for this ectopic activity have been documented in human volunteers. Hyperventilation increases axonal excitability but does not change supernormality, probably because Na+ channels are activated by the decrease in [Ca2+] on the axonal membrane. Prolonged tetanic stimulation and ischemia probably share similar mechanisms. At least in motor axons, postischemic ectopic activity occurs when the hyperpolarization that results from activation of the Na+/K+ pump lowers the membrane potential below the equilibrium potential for K+. A high extracellular [K+] can then result in an inward current producing depolarization and possibly triggering regenerative processes.
Collapse
Affiliation(s)
- D Burke
- Department of Clinical Neurophysiology, Prince Henry Hospital, Sydney, Australia
| |
Collapse
|
40
|
Playford DE, Dunlop SA. A biphasic sequence of myelination in the developing optic nerve of the frog. J Comp Neurol 1993; 333:83-93. [PMID: 8340498 DOI: 10.1002/cne.903330107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have examined the sequence of myelination along the optic nerve of the frog Litoria (Hyla) moorei from early tadpole life to adulthood. Myelinated axons were counted in electron micrographs of transverse sections taken from behind the eye, at the optic foramen and the chiasm. In tadpoles, myelinated axon numbers were significantly higher at the foramen than at the other levels. By metamorphic climax, numbers had risen at all three levels but more so behind the eye and at the chiasm to become approximately equal along the nerve. After metamorphosis, there was a dramatic increase in myelinated axon numbers, but another pattern was seen; in frogs of 5 cm and 7 cm body length, counts were significantly higher at the chiasm than at the foramen and lowest behind the eye. Thereafter, myelinated axon numbers stabilized at the chiasm but increased behind the eye and at the foramen so that in the most mature stage for this species, 9 cm adults, counts were again similar at the three levels. In addition, total axon numbers, that is, myelinated plus unmyelinated, were assessed from electron micrographs and increased from approximately 8,500 in early tadpoles to 0.65 million in fully mature adults. The proportion of axons that were myelinated showed two peaks, one before and the other after metamorphosis. Measurements of axon diameters from electron micrographs suggested that there was a critical diameter for myelination of 0.3 microns before, and of 0.5 microns after metamorphosis. The data indicate that there is a biphasic sequence of myelination of optic axons, the first phase being pre-metamorphic and the second post-metamorphic. The first phase is initiated at the foramen, and then extends both towards the eye and chiasm and continues until metamorphic climax. During the second phase, myelination originates at the chiasm, spreads towards the eye, and is complete only in the most mature adults. The critical diameter for myelination is smaller in the first phase than in the second.
Collapse
Affiliation(s)
- D E Playford
- Department of Psychology, University of Western Australia, Nedlands
| | | |
Collapse
|
41
|
Abstract
The membrane of the myelinated axon expresses a rich repertoire of physiologically active molecules: (1) Voltage-sensitive NA+ channels are clustered at high density (approximately 1,000/microns 2) in the nodal axon membrane and are present at lower density (< 25/microns 2) in the internodal axon membrane under the myelin. Na+ channels are also present within Schwann cell processes (in peripheral nerve) and perinodal astrocyte processes (in the central nervous system) which contact the Na+ channel-rich axon membrane at the node. In some demyelinated fibers, the bared (formerly internodal) axon membrane reorganizes and expresses a higher-than-normal Na+ channel density, providing a basis for restoration of conduction. The presence of glial cell processes, adjacent to foci of Na+ channels in immature and demyelinated axons, suggests that glial cells participate in the clustering of Na+ channels in the axon membrane. (2) "Fast" K+ channels, sensitive to 4-aminopyridine, are present in the paranodal or internodal axon membrane under the myelin; these channels may function to prevent reexcitation following action potentials, or participate in the generation of an internodal resting potential. (3) "Slow" K+ channels, sensitive to tetraethylammonium, are present in the nodal axon membrane and, in lower densities, in the internodal axon membrane; their activation produces a hyperpolarizing afterpotential which modulates repetitive firing. (4) The "inward rectifier" is activated by hyperpolarization. This channel is permeable to both Na+ and K+ ions and may modulate axonal excitability or participate in ionic reuptake following activity. (5) Na+/K(+)-ATPase and (6) Ca(2+)-ATPase are also present in the axon membrane and function to maintain transmembrane gradients of Na+, K+, and Ca2+. (7) A specialized antiporter molecule, the Na+/Ca2+ exchanger, is present in myelinated axons within central nervous system white matter. Following anoxia, the Na+/Ca2+ exchanger mediates an influx of Ca2+ which damages the axon. The molecular organization of the myelinated axon has important pathophysiological implications. Blockade of fast K+ channels and Na+/K(+)-ATPase improves action potential conduction in some demyelinated axons, and block of the Na+/Ca2+ exchanger protects white matter axons from anoxic injury. Modification of ion channels, pumps, and exchangers in myelinated fibers may thus provide an important therapeutic approach for a number of neurological disorders.
Collapse
Affiliation(s)
- S G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | | |
Collapse
|
42
|
|
43
|
|
44
|
Abstract
The new technique of nuclear magnetic resonance imaging (NMR) has been found to have particular value in the study of the evolution of the plaque of multiple sclerosis. Particularly when combined with gadolinium enhancement, the method not only shows very dramatically the waxing and waning of the plaque with time, it also demonstrates with remarkable clarity the important role of changes in vascular permeability in the pathological process. In this Annotation the ability of this technique to throw new light on the process of plaque formation and evaluation is critically assessed. In addition, the role of changing fluid content of the extracellular spaces of the CNS in influencing interpretation of the more conventional clinical and electrophysiological findings is discussed. While the method of NMR analysis does not yet show us how the plaque is initiated, it is suggested that future studies with these new techniques in the living subject may well lead us to rational therapeutic approaches based on pathogenetic mechanisms.
Collapse
Affiliation(s)
- W I McDonald
- NMR Research Group, Institute of Neurology, London
| | | | | |
Collapse
|
45
|
Utzschneider D, Black JA, Kocsis JD. Conduction properties of spinal cord axons in the myelin-deficient rat mutant. Neuroscience 1992; 49:221-8. [PMID: 1407548 DOI: 10.1016/0306-4522(92)90090-o] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Spinal cords of myelin-deficient and normal age-matched (control) rats were removed and their conduction and pharmacological properties studied in an in vitro brain slice chamber. The conduction velocity of the myelin-deficient dorsal column axons was reduced to about 25% of control axons; however, the amyelinated myelin-deficient axons displayed refractory periods and the ability to sustain high-frequency action potential discharge similar to that of dorsal column axons in control rats. Pharmacological results suggest that the myelin-deficient dorsal column axons qualitatively express a normal complement of ion channels and receptors. The demonstration of a normal representation of channels and receptors on these axons supports the proposal that the oligodendrocyte, and not the axon, is the site of the primary defect in the myelin-deficient rat mutant. It is concluded that, unlike acutely demyelinated axons which display marked frequency-dependent conduction block, amyelinated axons of the myelin-deficient rat spinal cord develop compensatory mechanisms to stabilize action potential conduction.
Collapse
Affiliation(s)
- D Utzschneider
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510
| | | | | |
Collapse
|
46
|
Abstract
Demyelination of central axons arises from a number of conditions, including multiple sclerosis and spinal cord compression. The demyelination disrupts conduction and leads directly to the production of symptoms. Repair of the demyelination by peripheral myelinating cells could potentially relieve the symptoms, but the conduction properties of central axons remyelinated by Schwann cells have yet to be studied in detail. This paper examined the conduction properties of such axons. Large focal demyelinating and remyelinating lesions were induced in the dorsal columns of rats by the intraspinal injection of ethidium bromide. Recordings of compound action potentials conducted through these lesions were then made at various recovery times. Thus the changing conduction properties of the affected fibers could be correlated with the different stages of lesion development. During the early stages of demyelination there was widespread conduction block, with no evidence of appreciable conduction occurring with prolonged latency or refractory period of transmission (RPT). However, with the onset of remyelination by Schwann cells, conduction was restored in many axons, and most, if not all, of the affected axons eventually showed successful conduction through the lesion. Initially the conduction was characterized by very prolonged latency, long RPT, and an inability to conduct fast trains of impulses. These deficits became less prominent as remyelination progressed. In chronically remyelinated axons the RPT was restored to within normal limits, although some deficit in both conduction velocity and the ability to conduct trains of impulses persisted. Since these deficits were not severe we conclude that remyelination of central demyelinated axons by Schwann cells should be effective in promoting the restoration of normal function.
Collapse
Affiliation(s)
- P A Felts
- Department of Anatomy and Neurobiology, Eastern Virginia Medical School, Norfolk 23501
| | | |
Collapse
|
47
|
Yezierski RP, Devon RM, Vicedomini JP, Broton JG. Effects of dorsal column demyelination on evoked potentials in nucleus gracilis. J Neurotrauma 1992; 9:231-44. [PMID: 1474610 DOI: 10.1089/neu.1992.9.231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Intraspinal injections of lysolecithin were used to produce unilateral demyelination in the dorsal columns of the rat spinal cord. The purpose of this study was to evaluate the effects of demyelination on the conductive properties of axons belonging to a spinal pathway of known origin and site of termination. At 5 and 50 day intervals following injections, animals were prepared for acute experiments during which recordings of tibial nerve evoked potentials were made from the surface of the lumbar spinal cord (L5-L6) and nucleus gracilis (0.5-1.0 mm caudal to obex). Latency, duration, and strength of potentials were evaluated in control (uninjected) and lysolecithin-injected animals. The analysis of these potentials showed increases in latency and decreases in duration and strength of responses recorded 5 days after lysolecithin injections. Animals examined 50 days postinjection showed a decreased latency and increased duration and strength of responses compared to those recorded 5 days postinjection. Ultrastructural examination of lysolecithin injection sites showed these improvements to parallel the remyelination of axons by oligodendrocytes and Schwann cells. The improvement in physiologic characteristics of evoked potentials coupled with the remyelination of dorsal column axons supports the conclusion that remyelination of chemically demyelinated axons is an important factor in reestablishing the functional connectivity of demyelinated axons.
Collapse
Affiliation(s)
- R P Yezierski
- Department of Neurological Surgery, University of Miami, Florida
| | | | | | | |
Collapse
|