1
|
Yang P, Davidson JO, Zhou KQ, Wilson R, Wassink G, Prasad JD, Bennet L, Gunn AJ, Dean JM. Therapeutic Hypothermia Attenuates Cortical Interneuron Loss after Cerebral Ischemia in Near-Term Fetal Sheep. Int J Mol Sci 2023; 24:ijms24043706. [PMID: 36835117 PMCID: PMC9962824 DOI: 10.3390/ijms24043706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Therapeutic hypothermia significantly improves outcomes after neonatal hypoxic-ischemic (HI) encephalopathy but is only partially protective. There is evidence that cortical inhibitory interneuron circuits are particularly vulnerable to HI and that loss of interneurons may be an important contributor to long-term neurological dysfunction in these infants. In the present study, we examined the hypothesis that the duration of hypothermia has differential effects on interneuron survival after HI. Near-term fetal sheep received sham ischemia or cerebral ischemia for 30 min, followed by cerebral hypothermia from 3 h after ischemia end and continued up to 48 h, 72 h, or 120 h recovery. Sheep were euthanized after 7 days for histology. Hypothermia up to 48 h recovery resulted in moderate neuroprotection of glutamate decarboxylase (GAD)+ and parvalbumin+ interneurons but did not improve survival of calbindin+ cells. Hypothermia up to 72 h recovery was associated with significantly increased survival of all three interneuron phenotypes compared with sham controls. By contrast, while hypothermia up to 120 h recovery did not further improve (or impair) GAD+ or parvalbumin+ neuronal survival compared with hypothermia up to 72 h, it was associated with decreased survival of calbindin+ interneurons. Finally, protection of parvalbumin+ and GAD+ interneurons, but not calbindin+ interneurons, with hypothermia was associated with improved recovery of electroencephalographic (EEG) power and frequency by day 7 after HI. The present study demonstrates differential effects of increasing the duration of hypothermia on interneuron survival after HI in near-term fetal sheep. These findings may contribute to the apparent preclinical and clinical lack of benefit of very prolonged hypothermia.
Collapse
|
2
|
GABAergic and Glutamatergic Phenotypes of Neurons Expressing Calcium-Binding Proteins in the Preoptic Area of the Guinea Pig. Int J Mol Sci 2022; 23:ijms23147963. [PMID: 35887305 PMCID: PMC9320123 DOI: 10.3390/ijms23147963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
The mammalian preoptic area (POA) has large populations of calbindin (CB), calretinin (CR) and parvalbumin (PV) neurons, but phenotypes of these cells are unknown. Therefore, the question is whether neurons expressing CB, CR, and/or PV are GABAergic or glutamatergic. Double-immunofluorescence staining followed by epifluorescence and confocal microscopy was used to determine the coexpression patterns of CB, CR and PV expressing neurons with vesicular GABA transporters (VGAT) as specific markers of GABAergic neurons and vesicular glutamate transporters (VGLUT 2) as specific markers of glutamatergic neurons. The guinea pig was adopted as, like humans, it has a reproductive cycle with a true luteal phase and a long gestation period. The results demonstrated that in the guinea pig POA of both sexes, ~80% of CB+ and ~90% of CR+ neurons coexpress VGAT; however, one-fifth of CB+ neurons and one-third of CR+ cells coexpress VGLUT. About two-thirds of PV+ neurons express VGAT, and similar proportion of them coexpress VGLUT. Thus, many CB+, CR+ and PV+ neurons may be exclusively GABAergic (VGAT-expressing cells) or glutamatergic (VGLUT-expressing cells); however, at least a small fraction of CR+ cells and at least one-third of PV+ cells are likely neurons with a dual GABA/glutamate phenotype that may coexpress both transporters.
Collapse
|
3
|
Domínguez-Sala E, Valdés-Sánchez L, Canals S, Reiner O, Pombero A, García-López R, Estirado A, Pastor D, Geijo-Barrientos E, Martínez S. Abnormalities in Cortical GABAergic Interneurons of the Primary Motor Cortex Caused by Lis1 (Pafah1b1) Mutation Produce a Non-drastic Functional Phenotype. Front Cell Dev Biol 2022; 10:769853. [PMID: 35309904 PMCID: PMC8924048 DOI: 10.3389/fcell.2022.769853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Abstract
LIS1 (PAFAH1B1) plays a major role in the developing cerebral cortex, and haploinsufficient mutations cause human lissencephaly type 1. We have studied morphological and functional properties of the cerebral cortex of mutant mice harboring a deletion in the first exon of the mouse Lis1 (Pafah1b1) gene, which encodes for the LisH domain. The Lis1/sLis1 animals had an overall unaltered cortical structure but showed an abnormal distribution of cortical GABAergic interneurons (those expressing calbindin, calretinin, or parvalbumin), which mainly accumulated in the deep neocortical layers. Interestingly, the study of the oscillatory activity revealed an apparent inability of the cortical circuits to produce correct activity patterns. Moreover, the fast spiking (FS) inhibitory GABAergic interneurons exhibited several abnormalities regarding the size of the action potentials, the threshold for spike firing, the time course of the action potential after-hyperpolarization (AHP), the firing frequency, and the frequency and peak amplitude of spontaneous excitatory postsynaptic currents (sEPSC’s). These morphological and functional alterations in the cortical inhibitory system characterize the Lis1/sLis1 mouse as a model of mild lissencephaly, showing a phenotype less drastic than the typical phenotype attributed to classical lissencephaly. Therefore, the results described in the present manuscript corroborate the idea that mutations in some regions of the Lis1 gene can produce phenotypes more similar to those typically described in schizophrenic and autistic patients and animal models.
Collapse
Affiliation(s)
- E Domínguez-Sala
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - L Valdés-Sánchez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - S Canals
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - O Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - A Pombero
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - R García-López
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - A Estirado
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - D Pastor
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - E Geijo-Barrientos
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - S Martínez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red en Salud Mental CIBERSAM, Madrid, Spain
| |
Collapse
|
4
|
Ibrahim LA, Huang JJ, Wang SZ, Kim YJ, Zhang LI, Tao HW. Sparse Labeling and Neural Tracing in Brain Circuits by STARS Strategy: Revealing Morphological Development of Type II Spiral Ganglion Neurons. Cereb Cortex 2018; 31:5049854. [PMID: 29982390 DOI: 10.1093/cercor/bhy154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Indexed: 11/12/2022] Open
Abstract
Elucidating axonal and dendritic projection patterns of individual neurons is a key for understanding the cytoarchitecture of neural circuits in the brain. This requires genetic approaches to achieve Golgi-like sparse labeling of desired types of neurons. Here, we explored a novel strategy of stochastic gene activation with regulated sparseness (STARS), in which the stochastic choice between 2 competing Cre-lox recombination events is controlled by varying the lox efficiency and cassette length. In a created STARS transgenic mouse crossed with various Cre driver lines, sparse neuronal labeling with a relatively uniform level of sparseness was achieved across different brain regions and cell types in both central and peripheral nervous systems. Tracing of individual type II peripheral auditory fibers revealed for the first time that they undergo experience-dependent developmental refinement, which is impaired by attenuating external sound input. Our results suggest that STARS strategy can be applied for circuit mapping and sparse gene manipulation.
Collapse
Affiliation(s)
- Leena A Ibrahim
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Medical Biology Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Sheng-Zhi Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Young J Kim
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - L I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - H W Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Salvi R, Sun W, Ding D, Chen GD, Lobarinas E, Wang J, Radziwon K, Auerbach BD. Inner Hair Cell Loss Disrupts Hearing and Cochlear Function Leading to Sensory Deprivation and Enhanced Central Auditory Gain. Front Neurosci 2017; 10:621. [PMID: 28149271 PMCID: PMC5241314 DOI: 10.3389/fnins.2016.00621] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/30/2016] [Indexed: 11/13/2022] Open
Abstract
There are three times as many outer hair cells (OHC) as inner hair cells (IHC), yet IHC transmit virtually all acoustic information to the brain as they synapse with 90–95% of type I auditory nerve fibers. Here we review a comprehensive series of experiments aimed at determining how loss of the IHC/type I system affects hearing by selectively destroying these cells in chinchillas using the ototoxic anti-cancer agent carboplatin. Eliminating IHC/type I neurons has no effect on distortion product otoacoustic emission or the cochlear microphonic potential generated by OHC; however, it greatly reduces the summating potential produced by IHC and the compound action potential (CAP) generated by type I neurons. Remarkably, responses from remaining auditory nerve fibers maintain sharp tuning and low thresholds despite innervating regions of the cochlea with ~80% IHC loss. Moreover, chinchillas with large IHC lesions have surprisingly normal thresholds in quiet until IHC losses exceeded 80%, suggesting that only a few IHC are needed to detect sounds in quiet. However, behavioral thresholds in broadband noise are elevated significantly and tone-in-narrow band noise masking patterns exhibit greater remote masking. These results suggest the auditory system is able to compensate for considerable loss of IHC/type I neurons in quiet but not in difficult listening conditions. How does the auditory brain deal with the drastic loss of cochlear input? Recordings from the inferior colliculus found a relatively small decline in sound-evoked activity despite a large decrease in CAP amplitude after IHC lesion. Paradoxically, sound-evoked responses are generally larger than normal in the auditory cortex, indicative of increased central gain. This gain enhancement in the auditory cortex is associated with decreased GABA-mediated inhibition. These results suggest that when the neural output of the cochlea is reduced, the central auditory system compensates by turning up its gain so that weak signals once again become comfortably loud. While this gain enhancement is able to restore normal hearing under quiet conditions, it may not adequately compensate for peripheral dysfunction in more complex sound environments. In addition, excessive gain increases may convert recruitment into the debilitating condition known as hyperacusis.
Collapse
Affiliation(s)
- Richard Salvi
- Center for Hearing and Deafness, University at Buffalo Buffalo, NY, USA
| | - Wei Sun
- Center for Hearing and Deafness, University at Buffalo Buffalo, NY, USA
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo Buffalo, NY, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo Buffalo, NY, USA
| | | | - Jian Wang
- School of Human Communication Disorders, Dalhousie University Halifax, NS, Canada
| | - Kelly Radziwon
- Center for Hearing and Deafness, University at Buffalo Buffalo, NY, USA
| | | |
Collapse
|
6
|
Reyes LD, Stimpson CD, Gupta K, Raghanti MA, Hof PR, Reep RL, Sherwood CC. Neuron Types in the Presumptive Primary Somatosensory Cortex of the Florida Manatee (Trichechus manatus latirostris). BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:210-31. [PMID: 26613530 DOI: 10.1159/000441964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/25/2015] [Indexed: 11/19/2022]
Abstract
Within afrotherians, sirenians are unusual due to their aquatic lifestyle, large body size and relatively large lissencephalic brain. However, little is known about the neuron type distributions of the cerebral cortex in sirenians within the context of other afrotherians and aquatic mammals. The present study investigated two cortical regions, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2), in the presumptive primary somatosensory cortex (S1) in Florida manatees (Trichechus manatus latirostris) to characterize cyto- and chemoarchitecture. The mean neuron density for both cortical regions was 35,617 neurons/mm(3) and fell within the 95% prediction intervals relative to brain mass based on a reference group of afrotherians and xenarthrans. Densities of inhibitory interneuron subtypes labeled against calcium-binding proteins and neuropeptide Y were relatively low compared to afrotherians and xenarthrans and also formed a small percentage of the overall population of inhibitory interneurons as revealed by GAD67 immunoreactivity. Nonphosphorylated neurofilament protein-immunoreactive (NPNFP-ir) neurons comprised a mean of 60% of neurons in layer V across DL1 and CL2. DL1 contained a higher percentage of NPNFP-ir neurons than CL2, although CL2 had a higher variety of morphological types. The mean percentage of NPNFP-ir neurons in the two regions of the presumptive S1 were low compared to other afrotherians and xenarthrans but were within the 95% prediction intervals relative to brain mass, and their morphologies were comparable to those found in other afrotherians and xenarthrans. Although this specific pattern of neuron types and densities sets the manatee apart from other afrotherians and xenarthrans, the manatee isocortex does not appear to be explicitly adapted for an aquatic habitat. Many of the features that are shared between manatees and cetaceans are also shared with a diverse array of terrestrial mammals and likely represent highly conserved neural features. A comparative study across manatees and dugongs is necessary to determine whether these traits are specific to one or more of the manatee species, or can be generalized to all sirenians.
Collapse
Affiliation(s)
- Laura D Reyes
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, D.C., USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Barbaresi P, Mensà E, Lariccia V, Pugnaloni A, Amoroso S, Fabri M. Differential distribution of parvalbumin- and calbindin-D28K-immunoreactive neurons in the rat periaqueductal gray matter and their colocalization with enzymes producing nitric oxide. Brain Res Bull 2013; 99:48-62. [PMID: 24107244 DOI: 10.1016/j.brainresbull.2013.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/09/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
Abstract
The distribution, colocalization with enzymes producing nitric oxide (NO), and the synaptic organization of neurons containing two calcium-binding proteins (CaBPs) - parvalbumin (Parv) and calbindin-D28K (Calb) - were investigated in the rat periaqueductal gray matter (PAG). Parv-immunopositive (ParvIP) neurons were detected in the mesencephalic nucleus and rarely in the PAG. CalbIP neurons were found both in the dorsolateral (PAG-dl) and ventrolateral PAG (PAG-vl); their size ranged from 112.96 μm(2) (PAG-dl) to 125.13 μm(2) (PAG-vl). Ultrastructurally Parv and Calb immunoreactivity was mostly found in dendritic profiles. Axon terminals containing each of the two CaBPs formed symmetric synapses. Moreover both Parv and Calb were used to label a subpopulation of NO-producing neurons. Colocalization was investigated using two protocols: (i) a combination of Calb and Parv immunocytochemistry (Icc) with nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry (Hi) and (ii) neuronal NO synthase-Icc (nNOS) (immunofluorescence). Both techniques demonstrated a complete lack of colocalization of Parv and NADPH-d/nNOS in PAG neurons. Double-labeled (DL) neurons (Calb-NADPH-d; Calb-nNOS) were detected in PAG-dl. NADPH-d-Hi/Calb-Icc indicated that 41-47% of NADPH-d-positive neurons contained Calb, whereas 17-23% of CalbIP cells contained NADPH-d. Two-color immunofluorescence revealed that 53-66% of nNOSIP cells colocalized with Calb and 24-34% of CalbIP neurons contained nNOS. DL neuron size was 104.44 μm(2); neurons labeled only with NADPH-d or Calb measured 89.793 μm(2) and 113.48 μm(2), respectively. Together with previous findings (Barbaresi et al. [2012]) these data suggest that: Therefore the important aspect of the PAG intrinsic organization emerging from this and previous double-labeling studies is the chemical diversity of NO-synthesizing neurons, which is likely related to the different functions in which these neurons are involved.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, I-60020 Ancona, Italy.
| | | | | | | | | | | |
Collapse
|
8
|
Butti C, Santos M, Uppal N, Hof PR. Von Economo neurons: Clinical and evolutionary perspectives. Cortex 2013; 49:312-26. [DOI: 10.1016/j.cortex.2011.10.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 08/03/2011] [Accepted: 10/14/2011] [Indexed: 11/25/2022]
|
9
|
Hiraishi T, Kitaura H, Oishi M, Fukuda M, Kameyama S, Takahashi H, Kakita A, Fujii Y. Significance of horizontal propagation of synchronized activities in human epileptic neocortex investigated by optical imaging and immunohistological study. Epilepsy Res 2012. [PMID: 23200433 DOI: 10.1016/j.eplepsyres.2012.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To characterize the physiological condition of human epileptic neocortex, we employed flavoprotein fluorescence imaging (FFI), an optical imaging method which detects intrinsic signals accompanying neural activation, and immunohistologically studied human cortical specimens. The experimented materials were cortical tissues surrounding various intracerebral lesions obtained from 5 patients with epilepsy (epileptic patients: EPs) and 5 without epilepsy (non-epileptic patients: NEPs). These tissues were immersed in oxygenated artificial cerebrospinal fluid immediately after removal in the operating room. Signal changes of FFI in the cortical layers subjected to electrical stimulation were observed under bicuculline methiodide perfusion. Immunohistological staining for parvalbumin (PV), calbindin, and calretinin were performed on the same specimens to evaluate expressions of calcium-binding protein positive cells. The FFI study showed the characteristic cortical propagation pattern of elicited activities horizontally along the cortical layers in EPs but not in NEPs. The propagated area with more than 0.5% signal changes was significantly larger in EPs than in NEPs (p=0.008). Only the expression of PV positive neurons was significantly lower in EPs than in NEPs (p=0.006). The propagated area on FFI and the decrease in PV positive neurons correlated significantly (R=-0.78, p=0.04). The present study visualized the unique horizontal propagation of signal changes on FFI and demonstrated a correlation of this propagation with immunohistological decreases in PV positive neurons in human epileptic cortex. Further investigations may elucidate the mechanism of hyper-excitability and hyper-synchronization in epileptic cortical tissue itself.
Collapse
Affiliation(s)
- Tetsuya Hiraishi
- Department of Neurosurgery, Brain Research Institute, University of Niigata, Niigata, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Egea J, Malmierca E, Rosa AO, del Barrio L, Negredo P, Nuñez A, López MG. Participation of calbindin-D28K in nociception: results from calbindin-D28K knockout mice. Pflugers Arch 2011; 463:449-58. [PMID: 22134771 DOI: 10.1007/s00424-011-1063-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/05/2011] [Accepted: 11/16/2011] [Indexed: 11/30/2022]
Abstract
Since calbindin-D(28K) (CB-D(28K))-positive neurons have been related to nociceptive sensory processing, we have hypothesized that altered CB-D(28K) expression could alter nociceptive transmission. We have used +/+ and -/- knockout (KO) mice for CB-D(28k) in different behavioral models of pain and sensory responses at the caudalis subdivision of the trigeminal spinal nucleus in order to understand how this protein may participate in nociception. Behavioral responses to formalin injection in the hind paw or at the whisker pad or in the hind paw glutamate or i.p. acetic acid tests showed an increase of the pain threshold in CB-D(28k) -/- mice. KO mice showed a diminution of the inhibitory activity at Sp5C nucleus and a marked reduction of GABA content. Sp5C neurons from CB-D(28k) -/- mice did not change their spontaneous activity or tactile response after formalin injection in the whisker pad. In contrast, Sp5C neurons increased their spontaneous firing rate and tactile response after formalin injection in their receptive field in CB-D(28k) +/+ mice. The results of this study demonstrate the active role played by CB-D(28k) in nociceptive sensory transmission. The lack of this calcium binding protein, associated to deficient GABAergic neurotransmission, translates into dysfunction of sensory processing of nociceptive stimuli.
Collapse
Affiliation(s)
- Javier Egea
- Instituto Teófilo Hernando, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Yuan K, Fink KL, Winer JA, Schreiner CE. Local connection patterns of parvalbumin-positive inhibitory interneurons in rat primary auditory cortex. Hear Res 2010; 274:121-8. [PMID: 20600741 DOI: 10.1016/j.heares.2010.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/10/2010] [Accepted: 06/17/2010] [Indexed: 11/25/2022]
Abstract
In the auditory cortex (AC), GABAergic neurons constitute approximately 15-25% of all neurons. GABAergic cells are present in all sensory modalities and essential for modulating sensory receptive fields. Parvalbumin (PV) positive cells represent the largest sub-group of the GABAergic population in auditory neocortex. We investigated the projection pattern of PV cells in rat primary auditory cortex (AI) with a retrograde tracer (wheat germ apo-HRP conjugated to gold [WAHG]) and immunocytochemistry for PV. All AC layers except layer I contained cells double-labeled for PV and WAHG. All co-localized PV+ cells were within 2 mm of the injection site, regardless of laminar origin. Most (ca. 90%) of the co-localized PV cells were within 500 μm of the injection site in both dorsal-ventral and rostral-caudal dimension of the auditory core region. WAHG-only cells declined less rapidly with distance and were found up to 6 mm from the deposit sites. WAHG-only labeled cells in the medial geniculate body were in ventral division loci compatible with an injection in AI. Differences in the range and direction of the distribution pattern of co-localized PV+ cells and WAHG-only cells in AI express distinct functional convergence patterns for the two cell populations.
Collapse
Affiliation(s)
- Kexin Yuan
- Coleman Memorial Laboratory and WM Keck Foundation Center for Integrative Neuroscience, Department of Otolaryngology, University of California, San Francisco, CA 94143-0444, USA.
| | | | | | | |
Collapse
|
12
|
Xu X, Roby KD, Callaway EM. Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J Comp Neurol 2010; 518:389-404. [PMID: 19950390 DOI: 10.1002/cne.22229] [Citation(s) in RCA: 335] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cerebral cortex has diverse types of inhibitory neurons. In rat cortex, past research has shown that parvalbumin (PV), somatostatin (SOM), calretinin (CR), and cholecystokinin (CCK) label four distinct chemical classes of GABAergic interneurons. However, in contrast to rat cortex, previous studies indicate that there is significant colocalization of SOM and CR in mouse cortical inhibitory neurons. In the present study we further characterized immunochemical distinctions among mouse inhibitory cortical neurons by double immunochemical labeling with chemical markers. We found that, PV, SOM, and vasointenstinal peptide (VIP) reliably identify three nonoverlapping distinct subpopulations, as there was no overlap of immunoreactivity between PV and all the other chemical markers tested, and SOM and VIP did not show any overlap in labeled neurons in all the cortical areas. In comparison, there was significant overlap in combinations of other chemical markers. With some laminar and regional variations, the average overlap of SOM/CR (percentage of SOM+ cells expressing CR) and SOM/neuropeptide tyrosine (NPY) across all examined layers and cortical regions was 21.6% and 7.1%, respectively. The average overlap of VIP/CR, VIP/NPY, and CR/NPY was 34.2%, 9.5%, and 10%, respectively. We quantified and assessed the percentages of marker-positive GABAergic cells, and showed that the nonoverlapping subpopulations (i.e., PV+, SOM+ and VIP+ cells) accounted for about 60% of the GABAergic cell population. Taken together, our data reveal important chemical distinctions between mouse inhibitory cortical neurons and indicate that PV, SOM, and VIP can differentially label a majority of mouse inhibitory cortical neurons.
Collapse
Affiliation(s)
- Xiangmin Xu
- Systems Neurobiology Laboratories, the Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
13
|
Clancy B, Teague-Ross TJ, Nagarajan R. Cross-species analyses of the cortical GABAergic and subplate neural populations. Front Neuroanat 2009; 3:20. [PMID: 19936319 PMCID: PMC2779099 DOI: 10.3389/neuro.05.020.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 09/04/2009] [Indexed: 01/26/2023] Open
Abstract
Cortical GABAergic (gamma-aminobutyric acidergic) neurons include a recently identified subset whose projections extend over relatively long distances in adult rodents and primates. A number of these inhibitory projection neurons are located in and above the conventionally identified white matter, suggesting their persistence from, or a correspondence with, the developmental subplate. GABAergic and subplate neurons share some unique properties unlike those of the more prevalent pyramidal neurons. To better understand the GABAergic and subplate populations, we constructed a database of neural developmental events common to the three species most frequently used in experimental studies: rat, mouse, and macaque, using data from the online database www.translatingtime.net as well as GABAergic and subplate developmental data from the empirical literature. We used a general linear model to test for similarities and differences, a valid approach because the sequence of most neurodevelopmental events is remarkably conserved across mammalian species. Similarities between the two rodent populations are striking, permitting us to identify developmental dates for GABAergic and subplate neural events in rats that were previously identified only in mice, as well as the timing in mouse development for events previously identified in rats. Primate comparative data are also compelling, although slight variability in statistical error measurement indicates differences in primate GABAergic and subplate events when compared to rodents. Although human extrapolations are challenging because fewer empirical data points are available, and because human data display more variability, we also produce estimates of dates for GABAergic and subplate neural events that have not yet been, or cannot be, determined empirically in humans.
Collapse
Affiliation(s)
- Barbara Clancy
- Department of Biology, University of Central Arkansas Conway, AR, USA
| | | | | |
Collapse
|
14
|
Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals. Brain Struct Funct 2008; 213:301-28. [PMID: 19011898 DOI: 10.1007/s00429-008-0198-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 10/16/2008] [Indexed: 12/24/2022]
Abstract
Interpreting the evolution of neuronal types in the cerebral cortex of mammals requires information from a diversity of species. However, there is currently a paucity of data from the Xenarthra and Afrotheria, two major phylogenetic groups that diverged close to the base of the eutherian mammal adaptive radiation. In this study, we used immunohistochemistry to examine the distribution and morphology of neocortical neurons stained for nonphosphorylated neurofilament protein, calbindin, calretinin, parvalbumin, and neuropeptide Y in three xenarthran species-the giant anteater (Myrmecophaga tridactyla), the lesser anteater (Tamandua tetradactyla), and the two-toed sloth (Choloepus didactylus)-and two afrotherian species-the rock hyrax (Procavia capensis) and the black and rufous giant elephant shrew (Rhynchocyon petersi). We also studied the distribution and morphology of astrocytes using glial fibrillary acidic protein as a marker. In all of these species, nonphosphorylated neurofilament protein-immunoreactive neurons predominated in layer V. These neurons exhibited diverse morphologies with regional variation. Specifically, high proportions of atypical neurofilament-enriched neuron classes were observed, including extraverted neurons, inverted pyramidal neurons, fusiform neurons, and other multipolar types. In addition, many projection neurons in layers II-III were found to contain calbindin. Among interneurons, parvalbumin- and calbindin-expressing cells were generally denser compared to calretinin-immunoreactive cells. We traced the evolution of certain cortical architectural traits using phylogenetic analysis. Based on our reconstruction of character evolution, we found that the living xenarthrans and afrotherians show many similarities to the stem eutherian mammal, whereas other eutherian lineages display a greater number of derived traits.
Collapse
|
15
|
Wouterlood F, Boekel A, Aliane V, Beliën J, Uylings H, Witter M. Contacts between medial and lateral perforant pathway fibers and parvalbumin expressing neurons in the subiculum of the rat. Neuroscience 2008; 156:653-61. [DOI: 10.1016/j.neuroscience.2008.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 08/01/2008] [Accepted: 08/11/2008] [Indexed: 11/30/2022]
|
16
|
Atencio CA, Schreiner CE. Spectrotemporal processing differences between auditory cortical fast-spiking and regular-spiking neurons. J Neurosci 2008; 28:3897-910. [PMID: 18400888 PMCID: PMC2474630 DOI: 10.1523/jneurosci.5366-07.2008] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/28/2008] [Accepted: 02/23/2008] [Indexed: 11/21/2022] Open
Abstract
Excitatory pyramidal neurons and inhibitory interneurons constitute the main elements of cortical circuitry and have distinctive morphologic and electrophysiological properties. Here, we differentiate them by analyzing the time course of their action potentials (APs) and characterizing their receptive field properties in auditory cortex. Pyramidal neurons have longer APs and discharge as regular-spiking units (RSUs), whereas basket and chandelier cells, which are inhibitory interneurons, have shorter APs and are fast-spiking units (FSUs). To compare these neuronal classes, we stimulated cat primary auditory cortex neurons with a dynamic moving ripple stimulus and constructed single-unit spectrotemporal receptive fields (STRFs) and their associated nonlinearities. FSUs had shorter latencies, broader spectral tuning, greater stimulus specificity, and higher temporal precision than RSUs. The STRF structure of FSUs was more separable, suggesting more independence between spectral and temporal processing regimens. The nonlinearities associated with the two cell classes were indicative of higher feature selectivity for FSUs. These global functional differences between RSUs and FSUs suggest fundamental distinctions between putative excitatory and inhibitory interneurons that shape auditory cortical processing.
Collapse
Affiliation(s)
- Craig A Atencio
- Bioengineering Graduate Group, University of California, San Francisco, 94143, USA.
| | | |
Collapse
|
17
|
Pinaud R, Saldanha CJ, Wynne RD, Lovell PV, Mello CV. The excitatory thalamo-"cortical" projection within the song control system of zebra finches is formed by calbindin-expressing neurons. J Comp Neurol 2008; 504:601-18. [PMID: 17722049 DOI: 10.1002/cne.21457] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The learning and production of vocalizations in songbirds are controlled by a system of interconnected brain nuclei organized into a direct vocal motor pathway and an anterior forebrain (pallium-basal ganglia-thalamo-pallial) loop. Here we show that the thalamo-pallial ("thalamo-cortical") projection (from the medial part of the dorsolateral thalamic nucleus to the lateral magnocellular nucleus of the anterior nidopallium--DLM to LMAN) within the anterior forebrain loop is composed of cells positive for the calcium-binding protein calbindin. We show that the vast majority of cells within DLM express calbindin, based both on immunocytochemistry (ICC) for calbindin protein and in situ hybridization for calb mRNA. Using a combination of tract-tracing and ICC we show that the neurons that participate in the DLM-to-LMAN projection are calbindin-positive. We also demonstrate that DLM is devoid of cells expressing mRNA for the GABAergic marker zGAD65. This observation confirms that the calbindin-expressing cells in DLM are not GABAergic, in accordance with previous electrophysiological data indicating that the DLM-to-LMAN projection is excitatory. Furthermore, we use ICC to determine the trajectory of the fibers within the DLM-to-LMAN projection, and to demonstrate a sex difference in calbindin expression levels in the fibers of the DLM-to-LMAN projection. Our findings provide a clear-cut neurochemical signature for a critical projection in the songbird vocal control pathways that enable song learning.
Collapse
Affiliation(s)
- Raphael Pinaud
- Neurological Sciences Institute, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | | | | |
Collapse
|
18
|
Dávila JC, Olmos L, Legaz I, Medina L, Guirado S, Real MA. Dynamic patterns of colocalization of calbindin, parvalbumin and GABA in subpopulations of mouse basolateral amygdalar cells during development. J Chem Neuroanat 2008; 35:67-76. [PMID: 17681450 DOI: 10.1016/j.jchemneu.2007.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 06/22/2007] [Accepted: 06/22/2007] [Indexed: 11/25/2022]
Abstract
Calbindin cells represent a major interneuron subtype of the cortical/pallial regions, such as the basolateral amygdala, which are often analyzed in studies of tangential migration of interneurons from the subpallial ganglionic eminences to the pallium/cortex. However, previous evidence suggests that during development the calbindin cells may include more than one of the interneuron subtypes found in the adult pallium/cortex. Furthermore, in the adult basolateral amygdala, calbindin cells include a subpopulation of non-GABAergic (non-interneuron) cells. To better characterize these cells throughout development, in the present study we investigated the colocalization of calbindin, parvalbumin and GABA in cells of the mouse basolateral amygdala during late embryonic (E16.5) and several postnatal ages from birth until 4 weeks after birth (P0, P10 and P28). Our results indicate that CB, PV and GABA show a dynamic pattern of colocalization in cells of the mouse basolateral amygdalar nucleus throughout development. From E16.5 through P28, the majority of CB+ neurons and virtually all PV+ neurons are GABAergic. However, after P10, the percentage of GABAergic CB+ cells decline from 96% to 70%. Furthermore, while only 9% of CB+ neurons are PV+ at P10, this percentage raises to 42% at P28. At all postnatal ages studied, the majority of the PV+ cells are CB+, suggesting that PV+ interneurons develop postnatally mainly as a subpopulation within the CB+ cells of the basolateral amygdalar nucleus. These results are important for interpreting data from interneuron migration.
Collapse
Affiliation(s)
- José Carlos Dávila
- Department of Cell Biology, Genetics, and Physiology, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Ruzicka WB, Zhubi A, Veldic M, Grayson DR, Costa E, Guidotti A. Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. Mol Psychiatry 2007; 12:385-97. [PMID: 17264840 DOI: 10.1038/sj.mp.4001954] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Among the most consistent results of studies of post-mortem brain tissue from schizophrenia patients (SZP) is the finding that in this disease, several genes expressed by GABAergic neurons are downregulated. This downregulation may be caused by hypermethylation of the relevant promoters in affected neurons. Indeed, increased numbers of GABAergic interneurons expressing DNA methyltransferase 1 (DNMT1) mRNA have been demonstrated in the prefrontal cortex (PFC) of SZP using in situ hybridization. The present study expands upon these findings using nested competitive reverse transcription-polymerase chain reaction combined with laser-assisted microdissection to quantitate the extent of DNMT1 mRNA overexpression in distinct populations of GABAergic neurons obtained from either layer I or layer V of the PFC of SZP. In a cohort of eight SZP and eight non-psychiatric subject (NPS) post-mortem BA9 tissue samples, DNMT1 mRNA was found to be selectively expressed in GABAergic interneurons and virtually absent in pyramidal neurons. DNMT1 mRNA expression was approximately threefold higher in GABAergic interneurons microdissected from layer I of SZP relative to the same neurons microdissected from NPS. GABAergic interneurons obtained from layer V of the same samples displayed no difference in DNMT1 mRNA expression between groups. In the same samples, the GABAergic neuron-specific glutamic acid-decarboxylase(67) (GAD(67)) and reelin mRNAs were underexpressed twofold in GABAergic interneurons isolated from layer I of SZP relative to GABAergic interneurons microdissected from layer I of NPS, and unaltered in GABAergic interneurons of layer V. These findings implicate an epigenetically mediated layer I GABAergic dysfunction in the pathogenesis of schizophrenia, and suggest novel strategies for treatment of the disease.
Collapse
Affiliation(s)
- W B Ruzicka
- 1Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Wei-Xing Shi
- Neuropsychopharmacological Research Unit, Department of Psychiatry, Yale University School of Medicine, 300 George Street, Room 8300C, New Haven, CT 06511, USA.
| |
Collapse
|
21
|
Tan AYY, Atencio CA, Polley DB, Merzenich MM, Schreiner CE. Unbalanced synaptic inhibition can create intensity-tuned auditory cortex neurons. Neuroscience 2007; 146:449-62. [PMID: 17320296 DOI: 10.1016/j.neuroscience.2007.01.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 01/03/2007] [Accepted: 01/05/2007] [Indexed: 11/19/2022]
Abstract
Intensity-tuned auditory cortex neurons have spike rates that are nonmonotonic functions of sound intensity: their spike rate initially increases and peaks as sound intensity is increased, then decreases as sound intensity is further increased. They are either "unbalanced," receiving disproportionally large synaptic inhibition at high sound intensities; or "balanced," receiving intensity-tuned synaptic excitation and identically tuned synaptic inhibition which neither creates enhances nor creates intensity-tuning. It has remained unknown if the synaptic inhibition received by unbalanced neurons enhances intensity-tuning already present in the synaptic excitation, or if it creates intensity-tuning that is not present in the synaptic excitation. Here we show, using in vivo whole cell recordings in pentobarbital-anesthetized rats, that in some unbalanced intensity-tuned auditory cortex neurons synaptic inhibition enhances the intensity-tuning; while in others it actually creates the intensity-tuning. The lack of balance between synaptic excitation and inhibition was not always apparent in their peak amplitudes, but could sometimes be revealed only by considering their relative timing. Since synaptic inhibition is essentially cortical in origin, the unbalanced neurons in which inhibition creates intensity-tuning provide examples of auditory feature-selectivity arising de novo at the auditory cortex.
Collapse
Affiliation(s)
- A Y Y Tan
- Coleman Memorial Laboratory and W.M. Keck Foundation Center for Integrative Neuroscience, University of California, San Francisco, 513 Parnassus Avenue, HSE-844, San Francisco, CA 94143-0444, USA.
| | | | | | | | | |
Collapse
|
22
|
Bourne JA, Warner CE, Upton DJ, Rosa MGP. Chemoarchitecture of the middle temporal visual area in the marmoset monkey (Callithrix jacchus): laminar distribution of calcium-binding proteins (calbindin, parvalbumin) and nonphosphorylated neurofilament. J Comp Neurol 2007; 500:832-49. [PMID: 17177255 DOI: 10.1002/cne.21190] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We studied the distributions of interneurons containing the calcium-binding proteins parvalbumin and calbindin D-28k, as well as that of pyramidal neurons containing nonphosphorylated neurofilament (NNF), in the middle temporal visual area (MT) of marmoset monkeys. The distributions of these classes of cells in MT are distinct from those found in adjacent areas. Similar to the primary visual area (V1), in MT, calbindin-immunopositive neurons can be objectively classified into "dark" and "light" subtypes based on optical density of stained cell bodies. Calbindin-positive dark neurons are particularly concentrated in layers 2 and 3, whereas light neurons have a more widespread distribution. In addition, a subcategory of calbindin-positive dark neuron, characterized by a "halo" of stained processes surrounding the cell body, is found within and around layer 4 of MT and V1. These cells are rare in most other visual areas. In comparison, parvalbumin-immunopositive cells in area MT have a relatively homogeneous distribution, although with a trend toward higher spatial density in lower layer 3, and are relatively uniform in terms of density of staining. Finally, MT shows a characteristic trilaminar distribution of NNF-immunopositive pyramidal cells, with stained cell bodies evident in layers 3, 5, and 6. Although the laminar distribution of cells stained for the three markers overlap to some extent, these subcategories can be readily distinguished in terms of morphology, including cell body size. Chemoarchitectural parallels observed between MT and V1 suggest comparable physiological requirements and neuronal circuitry.
Collapse
Affiliation(s)
- James A Bourne
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
23
|
Barber SC, Shaw PJ. Chapter 4 Molecular mechanisms of motor neuron degeneration in amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2007; 82:57-87. [PMID: 18808889 DOI: 10.1016/s0072-9752(07)80007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
24
|
PANTAZOPOULOS HARRY, LANGE NICHOLAS, HASSINGER LINDA, BERRETTA SABINA. Subpopulations of neurons expressing parvalbumin in the human amygdala. J Comp Neurol 2006; 496:706-22. [PMID: 16615121 PMCID: PMC1927834 DOI: 10.1002/cne.20961] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Amygdalar intrinsic inhibitory networks comprise several subpopulations of gamma-aminobutyric acidergic neurons, each characterized by distinct morphological features and clusters of functionally relevant neurochemical markers. In rodents, the calcium-binding proteins parvalbumin (PVB) and calbindin D28k (CB) are coexpressed in large subpopulations of amygdalar interneurons. PVB-immunoreactive (-IR) neurons have also been shown to be ensheathed by perineuronal nets (PNN), extracellular matrix envelopes believed to affect ionic homeostasis and synaptic plasticity. We tested the hypothesis that differential expression of these three markers may define distinct neuronal subpopulations within the human amygdala. Toward this end, triple-fluorescent labeling using antisera raised against PVB and CB as well as biotinylated Wisteria floribunda lectin for detection of PNN was combined with confocal microscopy. Among the 1,779 PVB-IR neurons counted, 18% also expressed CB, 31% were ensheathed in PNN, and 7% expressed both CB and PNN. Forty-four percent of PVB-IR neurons did not colocalize with either CB or PNN. The distribution of each of these neuronal subgroups showed substantial rostrocaudal gradients. Furthermore, distinct morphological features were found to characterize each neuronal subgroup. In particular, significant differences relative to the distribution and morphology were detected between PVB-IR neurons expressing CB and PVB-IR neurons wrapped in PNNs. These results indicate that amygdalar PVB-IR neurons can be subdivided into at least four different subgroups, each characterized by a specific neurochemical profile, morphological characteristics, and three-dimensional distribution. Such properties suggest that each of these neuronal subpopulations may play a specific role within the intrinsic circuitry of the amygdala.
Collapse
Affiliation(s)
- HARRY PANTAZOPOULOS
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, Massachusetts 02478
| | - NICHOLAS LANGE
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115
- Neurostatistics Laboratory, McLean Hospital, Belmont, Massachusetts 02478
| | - LINDA HASSINGER
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, Massachusetts 02478
| | - SABINA BERRETTA
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, Massachusetts 02478
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
- *Correspondence to: Sabina Berretta, MRC3, McLean Hospital, 115 Mill Street, Belmont, MA 02478. E-mail:
| |
Collapse
|
25
|
Pinaud R, Fortes AF, Lovell P, Mello CV. Calbindin-positive neurons reveal a sexual dimorphism within the songbird analogue of the mammalian auditory cortex. ACTA ACUST UNITED AC 2006; 66:182-95. [PMID: 16288476 DOI: 10.1002/neu.20211] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The oscine song system, a set of interconnected brain nuclei involved in song production and learning, is one of the first and clearest examples of brain sexual dimorphism in a vertebrate, being typically well-developed in males, but not females. Here we present evidence for a sexual dimorphism in the caudomedial nidopallidum (NCM), an auditory area outside of the song system. NCM is thought to correspond to a portion of the auditory cortex of mammals and is involved in the perceptual processing of birdsong. We show that cells immunolabeled for the calcium-binding protein calbindin are primarily localized to caudal NCM and are almost twice as numerous in males as in females. We demonstrate that calbindin-positive cells constitute a subset of GABAergic cells in NCM, and show that the sex dimorphism in this cell population does not result from local gender differences in the overall density of neuronal or GABAergic cells. In addition, we demonstrate that calbindin-positive cells lack song-induced expression of the activity-dependent gene ZENK, and that song stimulation does not change the density or distribution of these cells in NCM. Finally, we show that the distribution of calbindin-positive cells in NCM is strikingly similar to the mRNA expression for the estrogen-generating enzyme aromatase. Together these results suggest that NCM is likely composed of neurochemically-distinct domains and presents a marked sex dimorphism in a specific subset of GABAergic neurons, which may confer sex-specific sensory processing capabilities to this auditory area. Our results also suggest that local sex steroid hormones may play a local role in auditory processing in the songbird telencephalon.
Collapse
Affiliation(s)
- Raphael Pinaud
- Laboratory of Auditory and Vocal Learning, Neurological Sciences Institute, Oregon Health & Science University, Portland, Oregon 97006, USA
| | | | | | | |
Collapse
|
26
|
Desgent S, Boire D, Ptito M. Distribution of calcium binding proteins in visual and auditory cortices of hamsters. Exp Brain Res 2005; 163:159-72. [PMID: 15672239 DOI: 10.1007/s00221-004-2151-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2004] [Accepted: 10/14/2004] [Indexed: 12/19/2022]
Abstract
The morphology and distribution of neurons immunoreactive (ir) to parvalbumin (PV), calretinin (CR) and calbindin (CB) were studied in the primary visual (V1) and auditory (A1) cortices of hamsters. Cortical cell populations were labelled immunohistochemically using a glucose oxidase-diaminobenzidine-nickel combined revelation method. Quantitative analysis revealed significant differences between V1 and A1 in the density and distribution of their neuronal population. CBir cells exhibited several typologies in both cortical regions. Most cells were multipolar even though many of them had bitufted or bipolar morphologies. These cells were distributed in layers II/III and in layer V of both A1 and V1, but were more numerous in layer V of V1. CRir cells were of the fusiform type with long bipolar dendritic arbours. These were similarly distributed in both cortices with a peak in superficial layers II/III. PVir cells were also found in both cortices and had round or oval-shaped somata with multipolar processes. They were mostly located in layer V for V1 and in layers III/IV for A1. Visual and auditory primary cortices can thus be differentiated on the basis of their immunoreactivity to specific calcium binding proteins.
Collapse
Affiliation(s)
- Sébastien Desgent
- School of Optometry, University of Montreal, CP6128 Succ. Centre-Ville, Montreal, Quebec, H3C 3J7, Canada
| | | | | |
Collapse
|
27
|
Ma X, Suga N. Lateral inhibition for center-surround reorganization of the frequency map of bat auditory cortex. J Neurophysiol 2004; 92:3192-9. [PMID: 15548634 DOI: 10.1152/jn.00301.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Repetitive acoustic stimulation, auditory fear conditioning, and focal electric stimulation of the auditory cortex (AC) each evoke the reorganization of the central auditory system. Our current study of the big brown bat indicates that focal electric stimulation of the AC evokes center-surround reorganization of the frequency map of the AC. In the center, the neuron's best frequencies (BFs), together with their frequency-tuning curves, shift toward the BFs of electrically stimulated cortical neurons (centripetal BF shifts). In the surround, BFs shift away from the stimulated cortical BF (centrifugal BF shifts). Centripetal BF shifts are much larger than centrifugal BF shifts. An antagonist (bicuculline methiodide) of inhibitory synaptic transmitter receptors changes centrifugal BF shifts into centripetal BF shifts, whereas its agonist (muscimol) changes centripetal BF shifts into centrifugal BF shifts. This reorganization of the AC thus depends on a balance between facilitation and inhibition evoked by focal cortical electric stimulation. Unlike neurons in the AC of the big brown bat, neurons in the Doppler-shifted constant-frequency (DSCF) area of the AC of the mustached bat are highly specialized for fine-frequency analysis and show almost exclusively centrifugal BF shifts for focal electric stimulation of the DSCF area. Our current data indicate that in the highly specialized area, lateral inhibition is strong compared with the less-specialized area and that the specialized and nonspecialized areas both share the same inhibitory mechanism for centrifugal BF shifts.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
28
|
Sherwood CC, Holloway RL, Erwin JM, Hof PR. Cortical Orofacial Motor Representation in Old World Monkeys, Great Apes, and Humans. BRAIN, BEHAVIOR AND EVOLUTION 2004; 63:82-106. [PMID: 14685003 DOI: 10.1159/000075673] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 08/27/2003] [Indexed: 11/19/2022]
Abstract
This study presents a comparative stereologic investigation of neurofilament protein- and calcium-binding protein-immunoreactive neurons within the region of orofacial representation of primary motor cortex (Brodmann's area 4) in several catarrhine primate species (Macaca fascicularis, Papio anubis, Pongo pygmaeus, Gorilla gorilla, Pan troglodytes, and Homo sapiens). Results showed that the density of interneurons involved in vertical interlaminar processing (i.e., calbindin- and calretinin-immunoreactive neurons) as well pyramidal neurons that supply heavily-myelinated projections (i.e., neurofilament protein-immunoreactive neurons) are correlated with overall neuronal density, whereas interneurons making transcolumnar connections (i.e., parvalbumin-immunoreactive neurons) do not exhibit such a relationship. These results suggest that differential scaling rules apply to different neuronal subtypes depending on their functional role in cortical circuitry. For example, cortical columns across catarrhine species appear to involve a similar conserved network of intracolumnar inhibitory interconnections, as represented by the distribution of calbindin- and calretinin-immunoreactive neurons. The subpopulation of horizontally-oriented wide-arbor interneurons, on the other hand, increases in density relative to other interneuron subpopulations in large brains. Due to these scaling trends, the region of orofacial representation of primary motor cortex in great apes and humans is characterized by a greater proportion of neurons enriched in neurofilament protein and parvalbumin compared to the Old World monkeys examined. These modifications might contribute to the voluntary dexterous control of orofacial muscles in great ape and human communication.
Collapse
Affiliation(s)
- Chet C Sherwood
- Department of Anthropology, Columbia University, New York, NY, USA.
| | | | | | | |
Collapse
|
29
|
Fukuda T, Kosaka T. Ultrastructural study of gap junctions between dendrites of parvalbumin-containing GABAergic neurons in various neocortical areas of the adult rat. Neuroscience 2003; 120:5-20. [PMID: 12849736 DOI: 10.1016/s0306-4522(03)00328-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Parvalbumin (PV)-containing GABAergic neurons in the hippocampus form dual networks linked by both dendrodendritic gap junctions and mutual inhibitory synapses. Recent physiological studies have demonstrated similar functional connectivity among cortical GABAergic neurons, but the corresponding structures have not been fully analyzed at the electron microscopic level. In this study we examined detailed ultrastructural features of gap junctions between PV neurons in the mature neocortex. Light microscopic observations and confocal laser scanning microscopy revealed frequent dendrodendritic contacts between PV neurons. Electron microscopic analysis provided direct morphological evidence for the existence of gap junctions between 22 pairs of PV-immunoreactive dendrites in the visual, auditory, and somatosensory cortices. Their ultrastructural features that were characteristic of immunolabeled profiles were consistent with the general structure of gap junctions. In one case a gap junction coexisted with a dendrodendritic chemical synapse, making a mixed synapse. Importantly, we also encountered a gap junction between PV positive and negative, presumptive non-principal cell-derived, dendrites. Quantitative analysis was made in 16 pairs of PV positive dendrites forming gap junctions in the infragranular layers of the somatosensory cortex. Diameters of these dendrites ranged from 0.3 to 2.7 microm, suggesting diverse locations of gap junctions along the proximal-distal axis of dendritic trees, but the majority (81%) were less than 1 microm. The mean size of gap junctions along apposing membranes was 0.22+/-0.09 microm. By using this size, the theoretical value of a junctional conductance was estimated to be 2.1-5.3 nS. Dendrites of PV neurons in the infragranular layers of the somatosensory cortex were reconstructed light microscopically and the sites of contacts with other PV neurons were mapped. Although these contacts do not necessarily imply gap junctional coupling, their number (5.3+/-2.3 per cell, n=11) suggested the degree of connectivity of less than 10 coupling from single PV neurons with others. Sholl analysis revealed that only 38% of their dendrites occurred within 200 microm from the soma. The present study demonstrated detailed ultrastructural features of gap junctions between mature cortical PV neurons. These features will facilitate not only identification of gap junctions in variously labeled neurons but also analysis of their functional aspects by enabling theoretical estimate of their junctional conductances.
Collapse
Affiliation(s)
- T Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
30
|
Clemo HR, Keniston L, Meredith MA. A comparison of the distribution of GABA-ergic neurons in cortices representing different sensory modalities. J Chem Neuroanat 2003; 26:51-63. [PMID: 12954530 DOI: 10.1016/s0891-0618(03)00039-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is well known that sensory receptive field properties are shaped by inhibitory processes. Given the physiological and perceptual distinctions among the different sensory modalities, it might be expected that the contribution of GABA-ergic inhibition to the process would vary from area to area, depending on the sensory modality represented. Furthermore, as receptive field properties become progressively more complex at higher cortical levels, differences in the inhibitory contributions to these computations would be reflected in differences in GABA-ergic neuronal distribution. These possibilities were examined in the cortices surrounding the cat Anterior Ectosylvian Sulcus (AES) which contains higher order visual (AEV), somatosensory (SIV) and auditory (Field AES) representations, and is located between the lower-level primary (AI) and secondary auditory (AII) and somatosensory (SII) areas. Using standard immunocytochemical and light-microscopic techniques, the distribution of GABA-ergic neurons (and their co-localized calcium-binding proteins: calbindin (CB), calretinin (CR) and parvalbumin (PV)) was determined for each area. When normalized for differences in cortical thickness, the depth distribution of each of the immunopositive types was plotted. These data confirmed that there were striking differences in the distribution of GABA-, CB-, CR- and PV-positive neurons. However, the laminar organization for a given marker was remarkably similar for the different subregions, irrespective of modality or hierarchical level. These data indicate that, instead of underlying processing differences among different sensory and hierarchical representations, the distribution of GABA-ergic inhibitory neurons reveals common organizational features across sensory cortex.
Collapse
Affiliation(s)
- H Ruth Clemo
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond, VA 23298-0709, USA.
| | | | | |
Collapse
|
31
|
Carretta D, Santarelli M, Vanni D, Ciabatti S, Sbriccoli A, Pinto F, Minciacchi D. Cortical and brainstem neurons containing calcium-binding proteins in a murine model of Duchenne's muscular dystrophy: selective changes in the sensorimotor cortex. J Comp Neurol 2003; 456:48-59. [PMID: 12508313 DOI: 10.1002/cne.10506] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the muscular dystrophic (mdx) mouse, which is characterized by deficient dystrophin expression and provides a model of Duchenne's muscular dystrophy, we previously demonstrated marked central nervous system alterations and in particular a quantitative reduction of corticospinal and rubrospinal neurons and pathologic changes of these cells. Prompted by these findings and in view of the relations between calcium ions and dystrophin, we analyzed with immunohistochemistry the neurons containing the calcium-binding proteins parvalbumin, calbindin D28k, and calretinin in cortical areas and brainstem nuclei of mdx mice. In the sensorimotor cortex, parvalbumin-positive and calbindin-positive neurons, which represent a subset of cortical interneurons, were significantly more numerous in mdx mice than in wild-type ones. In addition, the laminar distribution of parvalbumin-positive neurons in the motor and somatosensory cortical areas of mdx mice was altered with respect to wild-type animals. No alterations in the number and distribution were found in the parvalbumin- or calbindin-expressing cell populations of the visual and anterior cingulate cortices of mdx mice. The pattern of calretinin immunoreactivity was normal in all investigated cortical areas. The cell populations containing either calcium-binding protein were similar in brainstem nuclei of mdx and wild-type mice. The present findings demonstrated selective changes of subsets of interneurons in the motor and somatosensory cortical areas of mdx mice. Therefore, the data showed that, in the cortices of these mutant animals, the previously demonstrated pathologic changes of corticospinal cell populations are accompanied by marked alterations in the local circuitry.
Collapse
Affiliation(s)
- Donatella Carretta
- Department of Neurological and Psychiatric Sciences, University of Florence, Florence, Italy, I-50134
| | | | | | | | | | | | | |
Collapse
|
32
|
Normal development of embryonic thalamocortical connectivity in the absence of evoked synaptic activity. J Neurosci 2002. [PMID: 12451131 DOI: 10.1523/jneurosci.22-23-10313.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study is concerned with the role of impulse activity and synaptic transmission in early thalamocortical development. Disruption of the gene encoding SNAP-25, a component of the soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor complex required for regulated neuroexocytosis, eliminates evoked but not spontaneous neurotransmitter release (Washbourne et al., 2002). The Snap25 null mutant mouse provides an opportunity to test whether synaptic activity is required for prenatal neural development. We found that evoked release is not needed for at least the gross formation of the embryonic forebrain, because the major features of the diencephalon and telencephalon were normal in the null mutant mouse. However, half of the homozygous mutants showed undulation of the cortical plate, which in the most severely affected brains was accompanied by a marked reduction of calbindin-immunoreactive neurons. Carbocyanine dye tracing of the thalamocortical fiber pathway revealed normal growth kinetics and fasciculation patterns between embryonic days 17.5 and 19. As in normal mice, mutant thalamocortical axons reach the cortex, accumulate below the cortical plate, and then start to extend side-branches in the subplate and deep cortical plate. Multiple carbocyanine dye placements in the cortical convexity revealed normal overall topography of both early thalamocortical and corticofugal projections. Electrophysiological recordings from thalamocortical slices confirmed that thalamic axons were capable of conducting action potentials to the cortex. Thus, our data suggest that axonal growth and early topographic arrangement of these fiber pathways do not rely on activity-dependent mechanisms requiring evoked neurotransmitter release. Intercellular communication mediated by constitutive secretion of transmitters or growth factors, however, might play a part.
Collapse
|
33
|
Sakai M, Suga N. Centripetal and centrifugal reorganizations of frequency map of auditory cortex in gerbils. Proc Natl Acad Sci U S A 2002; 99:7108-12. [PMID: 11997468 PMCID: PMC124536 DOI: 10.1073/pnas.102165399] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As repetitive acoustic stimulation and auditory conditioning do, electric stimulation of the primary auditory cortex (AI) evokes reorganization of the frequency map of AI, as well as of the subcortical auditory nuclei. The reorganization is caused by shifts in best frequencies (BFs) of neurons either toward (centripetal) or away from (centrifugal) the BF of stimulated cortical neurons. In AI of the Mongolian gerbil, we found that focal electrical stimulation evoked a centripetal BF shift in an elliptical area centered at the stimulated neurons and a centrifugal BF shift in a zone surrounding it. The 1.9-mm long major and 1.1-mm long minor axes of the elliptical area were parallel and orthogonal to the frequency axis, respectively. The width of the surrounding zone was 0.2-0.3 mm. Such "center-surround" reorganization has not yet been found in any sensory cortex except AI of the gerbil. The ellipse is similar to the arborization pattern of pyramidal neurons, the major source of excitatory horizontal connections in AI, whereas the surrounding zone is compatible to the arborization range of small basket cells (inhibitory neurons) in AI.
Collapse
Affiliation(s)
- Masashi Sakai
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| | | |
Collapse
|
34
|
McDonald AJ, Mascagni F. Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience 2001; 105:681-93. [PMID: 11516833 DOI: 10.1016/s0306-4522(01)00214-7] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The basolateral amygdala contains subpopulations of non-pyramidal neurons that express the calcium-binding proteins parvalbumin, calbindin-D28k (calbindin) or calretinin. Although little is known about the exact functions of these proteins, they have provided useful markers of specific neuronal subpopulations in studies of the neuronal circuitry of the cerebral cortex and other brain regions. The purpose of the present study was to investigate whether basolateral amygdalar non-pyramidal neurons containing parvalbumin, calbindin, or calretinin exhibit immunoreactivity for GABA, and to determine if calretinin is colocalized with parvalbumin or calbindin in the rat basolateral amygdala. Pyramidal neurons were distinguished from non-pyramidal neurons on the basis of staining intensity. Using immunofluorescence confocal laser scanning microscopy, as well as the 'mirror technique' on immunoperoxidase-stained sections, it was found that there was virtually no colocalization of calretinin with parvalbumin or calbindin, but that the great majority of basolateral amygdalar non-pyramidal neurons containing parvalbumin, calbindin, or calretinin exhibited GABA immunoreactivity. Calbindin-positive neurons constituted almost 60% of the GABA-containing population in both subdivisions of the basolateral nucleus and more than 40% of the GABA-containing population in the lateral nucleus. Parvalbumin-positive neurons constituted 19-43% of GABA-immunoreactive neurons in the basolateral amygdala, depending on the nucleus. Calretinin-positive non-pyramidal neurons constituted about 20% of the GABA-positive neuronal population in each nucleus of the basolateral amygdala. These findings indicate that non-pyramidal neurons containing parvalbumin, calbindin, or calretinin comprise the majority of GABA-containing neurons in the basolateral amygdala, and that the calretinin subpopulation is distinct from non-pyramidal subpopulations containing parvalbumin and calbindin. These separate neuronal populations may play unique roles in the inhibitory circuitry of the amygdala.
Collapse
Affiliation(s)
- A J McDonald
- Department of Cell Biology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | | |
Collapse
|
35
|
Cruikshank SJ, Killackey HP, Metherate R. Parvalbumin and calbindin are differentially distributed within primary and secondary subregions of the mouse auditory forebrain. Neuroscience 2001; 105:553-69. [PMID: 11516823 DOI: 10.1016/s0306-4522(01)00226-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The calcium binding proteins parvalbumin and calbindin are thought to differentially regulate physiological functions and often show complementary distributions in the CNS. Our goal was to determine parvalbumin and calbindin distributions in the different subdivisions of mouse auditory thalamus and auditory cortex. Following fixation, FVB mouse brains (postnatal days 38-80) were sectioned along coronal and horizontal planes, then processed for parvalbumin and calbindin immunohistochemistry (antibodies: parvalbumin pa-235, calbindin-d-28k cl-300). Strong complementary differences in calcium binding protein distributions were found in mouse auditory thalamus. The ventral division of the medial geniculate, which is the principal relay to primary auditory cortex, exhibited dense parvalbumin but weak calbindin immunoreactivity. In contrast, most of the 'secondary' auditory thalamic regions surrounding the ventral division showed strong calbindin and lighter parvalbumin levels. Thus, the mouse auditory thalamus is composed of a parvalbumin positive 'core' surrounded by a calbindin positive 'shell'. Parvalbumin immunoreactivity was also more prominent in the primary auditory cortex than in the secondary belt auditory cortex. Calbindin immunoreactivity in auditory cortex was less clearly divided along primary/secondary lines, especially in supragranular layers. However, within infragranular layers, there was heavier staining in belt areas than in primary auditory cortex. In auditory thalamus, parvalbumin labeling was largely confined to the neuropil, whereas calbindin labeling involved somata and neuropil. In auditory cortex, somata and neuropil were positive for both proteins.In summary, the calcium binding proteins parvalbumin and calbindin were found to be differentially distributed within the primary and non-primary regions of mouse auditory forebrain. These differences in protein distribution may contribute to the distinct types of physiological responses that occur in the primary vs. non-primary areas.
Collapse
Affiliation(s)
- S J Cruikshank
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | | | | |
Collapse
|
36
|
Kemppainen S, Pitkänen A. Distribution of parvalbumin, calretinin, and calbindin-D(28k) immunoreactivity in the rat amygdaloid complex and colocalization with gamma-aminobutyric acid. J Comp Neurol 2000; 426:441-67. [PMID: 10992249 DOI: 10.1002/1096-9861(20001023)426:3<441::aid-cne8>3.0.co;2-7] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To understand the organization of inhibitory circuitries in the rat amygdala, the distribution of parvalbumin, calretinin, and calbindin immunoreactivity was investigated in the rat amygdaloid complex. Colocalization of various calcium-binding proteins with the inhibitory transmitter gamma-aminobutyric acid (GABA) was studied by using the mirror technique. Parvalbumin-immunoreactive (-ir) elements were located mostly in the deep amygdaloid nuclei, whereas the calretinin-ir and calbindin-ir staining were most intense in the cortical nuclei as well as in the central nucleus and the amygdalohippocampal area. Second, the distribution of immunopositive neurons largely parallelled the distribution of terminal and neuropil labeling. Third, immunostained neurons could be divided into four major morphologic types (types 1-4) based on the characteristics of the somata and the dendritic trees. The fourth lightly stained neuronal type that had a pyramidal GABA-negative soma was observed only in calretinin and calbindin preparations. Fourth, parvalbumin-ir terminals formed basket-like plexus and cartridges, which suggests that parvalbumin labels GABAergic inhibitory basket cells and axo-axonic chandelier cells, respectively. Colocalization studies indicated that 521 of 553 (94%) of parvalbumin-ir, 419 of 557 (75%) of calbindin-ir, and 158 of 657 (24%) of calretinin-ir neurons were GABA-positive in the deep amygdaloid nuclei. A high density of large GABA-negative calbindin-ir neurons was observed caudally in the medial division of the lateral nucleus and GABA-negative calretinin-ir neurons were observed in the magnocellular division of the accessory basal nucleus as well as in the intermediate and parvicellular divisions of the basal nucleus. These data suggest that in various amygdaloid areas, neuronal excitability is controlled by GABAergic neurons that contain different calcium-binding proteins. The appearance of basket-like plexus and cartridges in the parvalbumin preparations, but not in calretinin preparations, suggests that like in the hippocampus, the distribution of inhibitory terminals in the dendritic and perisomatic regions of postsynaptic neurons in the rat amygdala is organized in a topographic manner.
Collapse
Affiliation(s)
- S Kemppainen
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, FIN-70211 Kuopio, Finland
| | | |
Collapse
|
37
|
Kwong WH, Chan WY, Lee KK, Fan M, Yew DT. Neurotransmitters, neuropeptides and calcium binding proteins in developing human cerebellum: a review. THE HISTOCHEMICAL JOURNAL 2000; 32:521-34. [PMID: 11127973 DOI: 10.1023/a:1004197210189] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many endogenous neurochemicals that are known to have important functions in the mature central nervous system have also been found in the developing human cerebellum. Cholinergic neurons, as revealed by immunoreactivities towards choline acetyltransferase or acetylcholinesterase, appear early at 23 weeks of gestation in the cerebellar cortex and deep nuclei. Immunoreactivities gradually increase until the first postnatal month. Enkephalin is localized in the developing cerebellum, initially in the fibers of the cortex and deep nuclei at 16-20 weeks and then also in the Purkinje cells, granule cells, basket cells and Golgi cells at 23 weeks onward. Another neuropeptide, substance P, is localized mainly in the fibers of the dentate nucleus from 9 to 24 weeks but substance P immunoreactivity declines thereafter. GABA, an inhibitory neurotransmitter of the central nervous system, starts to appear at 16 weeks in the Purkinje cells, stellate cells, basket cells, mossy fibers and neurons of deep nuclei. GABA expression is gradually upregulated toward term forming networks of GABA-positive fibers and neurons. Catecholaminergic fibers and neurons are also detected in the cortex and deep nuclei at as early as 16 weeks. Calcium binding proteins, calbindin D28K and parvalbumin, make their first appearance in the cortex and deep nuclei at 14 weeks and then their expression decreases toward term, while calretinin appears later at 21 weeks but its expression increases with fetal age. The above findings suggest that many neurotransmitters, neuropeptides and calcium binding proteins (1) appear early during development of the cerebellum; (2) have specific temporal and spatial expression patterns; (3) may have functions other than those found in the mature neural systems; and (4) may be able to interact with each other during early development.
Collapse
Affiliation(s)
- W H Kwong
- Department of Anatomy, Faculty of Medicine, The Chinese University of Hong Kong
| | | | | | | | | |
Collapse
|
38
|
Taki K, Kaneko T, Mizuno N. A group of cortical interneurons expressing mu-opioid receptor-like immunoreactivity: a double immunofluorescence study in the rat cerebral cortex. Neuroscience 2000; 98:221-31. [PMID: 10854753 DOI: 10.1016/s0306-4522(00)00124-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
mu-Opioid receptor-expressing neurons in the rat cerebral neocortex were characterized by an immunolabeling method with an antibody to a carboxyl terminal portion of the receptor. They were small, bipolar, vertically elongated, non-pyramidal neurons, and scattered mainly in layers II-IV. We examined chemical characteristics of mu-opioid receptor-expressing neocortical neurons by the double immunofluorescence method. Almost all neuronal cell bodies expressing mu-opioid receptor-like immunoreactivity showed immunoreactivity for GABA, suggesting that they were cortical inhibitory interneurons. mu-Opioid receptor-immunoreactive neurons were further studied by the double staining method with markers for the subgroups of cortical GABAergic neurons. Immunoreactivities for vasoactive intestinal polypeptide, corticotropin releasing factor, choline acetyltransferase, calretinin and cholecystokinin were found in 92, 79, 67, 35 and 35% of mu-opioid receptor-immunoreactive cortical neurons, respectively. In contrast, less than 10% of mu-opioid receptor-immunoreactive neurons showed immunoreactivity for parvalbumin, calbindin, somatostatin, neuropeptide Y or nitric oxide synthase. Moreover, mu-opioid receptor-immunoreactive neurons very frequently exhibited preproenkephalin immunoreactivity, but not preprodynorphin immunoreactivity. The present results indicate that mu-opioid receptor-expressing neurons belong to a distinct subgroup of neocortical GABAergic neurons, because vasoactive intestinal polypeptide, corticotropin releasing factor, choline acetyltransferase, calretinin and cholecystokinin have often been reported to coexist with one another in single neocortical neurons. Methionine-enkephalin, which is a major product of the preproenkephalin gene, is known to be one of the most potent endogenous ligands for mu-opioid receptor. Thus, the expression of mu-opioid receptor in preproenkephalin-producing neurons suggested that mu-opioid receptor serves as an autoreceptor for the subpopulation of GABAergic interneurons at a single-neuron or population level.
Collapse
Affiliation(s)
- K Taki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, 606-8501, Kyoto, Japan
| | | | | |
Collapse
|
39
|
Kaneko T, Cho R, Li Y, Nomura S, Mizuno N. Predominant information transfer from layer III pyramidal neurons to corticospinal neurons. J Comp Neurol 2000; 423:52-65. [PMID: 10861536 DOI: 10.1002/1096-9861(20000717)423:1<52::aid-cne5>3.0.co;2-f] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Connections of layer III pyramidal neurons to corticospinal neurons of layer V and corticothalamic neurons of layer VI in the rat primary motor cortex were examined in brain slices by combining intracellular staining with Golgi-like retrograde labeling of corticofugal neurons. Forty layer III pyramidal neurons stained intracellularly were of the regular-spiking type, showed immunoreactivity for glutaminase, and emitted axon collaterals arborizing locally in layers II/III and/or V. Nine of them were reconstructed for morphologic analysis; 15.2% or 3.8% of varicosities of axon collaterals of the reconstructed neurons were apposed to dendrites of corticospinal or corticothalamic neurons, respectively. By confocal laser scanning and electron microscopy, some of these appositions were revealed to make synapses. These findings suggest that corticospinal neurons receive information from the superficial cortical layers four times more frequently than corticothalamic neurons. The connections were further examined by intracellular recording of excitatory postsynaptic potential (EPSP) that were evoked in layer V and layer VI pyramidal neurons by stimulation of layer II/III. EPSPs evoked in layer V pyramidal neurons showed short and constant onset latencies, suggesting their monosynaptic nature. In contrast, most EPSPs evoked in layer VI pyramidal neurons had long onset latencies, showed double-shock facilitation of onset latency, and were largely suppressed by an N-methyl-D-aspartic acid receptor blocker, suggesting that they were polysynaptic. The results suggest that information from the superficial cortical layers is transferred directly and efficiently to corticospinal neurons in layer V and thereby exerts an important influence on cortical motor output. Corticothalamic neurons are, in contrast, considered relatively independent of, or indirectly related to, information processing of the superficial cortical layers.
Collapse
Affiliation(s)
- T Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | |
Collapse
|
40
|
Budinger E, Heil P, Scheich H. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections. Eur J Neurosci 2000; 12:2425-51. [PMID: 10947821 DOI: 10.1046/j.1460-9568.2000.00142.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The auditory cortex of the Mongolian gerbil comprises several physiologically identified fields, including the primary (AI), anterior (AAF), dorsal (D), ventral (V), dorsoposterior (DP) and ventroposterior (VP) fields, as established previously with electrophysiological [Thomas et al. (1993) Eur. J. Neurosci., 5, 882] and functional metabolic techniques [Scheich et al. (1993) Eur. J. Neurosci., 5, 898]. Here we describe the cyto-, myelo- and chemoarchitecture and the corticocortical connections of the auditory cortex in this species. A central area of temporal cortex corresponding to AI and the rostrally adjacent AAF is distinguished from surrounding cortical areas by its koniocortical cytoarchitecture, by a higher density of myelinated fibres, predominantly in granular and infragranular layers, and by characteristic patterns of immunoreactivity for the calcium-binding protein parvalbumin (most intense staining in layers III/IV and VIa) and for the cytoskeletal neurofilament protein (antibody SMI-32; most intense staining in layers III, V and VI). Concerning the cortical connections, injections of the predominantly anterograde tracer biocytin into the four tonotopically organized fields AI, AAF, DP and VP yielded the following labelling patterns. (i) Labelled axons and terminals were seen within each injected field itself. (ii) Following injections into AI, labelled axons and terminals were also seen in the ipsilateral AAF, DP, VP, D and V, and in a hitherto undescribed possible auditory field, termed the ventromedial field (VM). Similarly, following injections into AAF, DP and VP, labelling was also seen in each of the noninjected fields, except in VM. (iii) Each field projects to its homotopic counterpart in the contralateral hemisphere. In addition, field AI projects to contralateral AAF, DP and VP, field DP to contralateral AI and VP, and field VP to contralateral AI and DP. (iv) Some retrogradely filled pyramidal neurons within the areas of terminal labelling indicate reciprocal connections between most fields, both ipsilateral and contralateral. (v) The labelled fibres within the injected and the target fields, both ipsilateral and contralateral, were arranged in continuous dorsoventral bands parallel to isofrequency contours. The more caudal the injection site in AI the more rostral was the label in AAF. This suggests divergent but frequency-specific connections within and, at least for AI and AAF, also across fields, both ipsilateral and contralateral. (vi) Projections to associative cortices (perirhinal, entorhinal, cingulate) and to other sensory cortices (olfactory, somatosensory, visual) from AAF, DP and VP appeared stronger than those from AI. These data support the differentiation of auditory cortical fields in the gerbil into at least 'core' (AI and AAF) and 'noncore' fields. They further reveal a complex pattern of interconnections within and between auditory cortical fields and other cortical areas, such that each field of auditory cortex has its unique set of connections.
Collapse
Affiliation(s)
- E Budinger
- Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | | | | |
Collapse
|
41
|
Gao WJ, Wormington AB, Newman DE, Pallas SL. Development of inhibitory circuitry in visual and auditory cortex of postnatal ferrets: immunocytochemical localization of calbindin- and parvalbumin-containing neurons. J Comp Neurol 2000; 422:140-57. [PMID: 10842223 DOI: 10.1002/(sici)1096-9861(20000619)422:1<140::aid-cne9>3.0.co;2-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The inhibitory neurotransmitter gamma-aminobutyric acid (GABA) is thought to play an important role in activity-dependent stages of brain development. Previous studies have shown that different functional subclasses of cortical GABA-containing neurons can be distinguished by antibodies to the calcium-binding proteins parvalbumin and calbindin. Thus insight into the development of distinct subsets of inhibitory cortical circuits can be gained by studying the development of these calcium-binding protein-containing neurons. Previous studies in several mammalian species have suggested that calcium-binding proteins are upregulated in sensory cortex when thalamocortical afferents arrive. In ferrets, the ingrowth of thalamic axons into cortex occurs well into postnatal development, allowing access to early stages of cortical development and calcium-binding protein expression. We find in ferrets that both parvalbumin- and calbindin-immunoreactivity are present in primary visual and primary auditory cortex long before thalamocortical synapse formation, but that there is a sharp decline in immunoreactivity by postnatal day 20. Day 20 in ferrets corresponds to postnatal day 1 in cats, and thus previous studies in postnatal cats would have missed this early pattern of calcium-binding protein distribution. Another surprising finding is that the proportion of parvalbumin- and calbindin-immunoreactive neurons peaks secondarily late in development, between P60 and adulthood. This result suggests that the parvalbumin- and calbindin-containing subclasses of nonpyramidal neurons remain immature until late in the critical period for cortical plasticity, and that they are positioned to play an important role in experience-dependent modification of cortical circuits.
Collapse
Affiliation(s)
- W J Gao
- Department of Biology, Georgia State University, Atlanta, Georgia 30302, USA
| | | | | | | |
Collapse
|
42
|
Schwark HD, Li J. Distribution of neurons immunoreactive for calcium-binding proteins varies across areas of cat primary somatosensory cortex. Brain Res Bull 2000; 51:379-85. [PMID: 10715557 DOI: 10.1016/s0361-9230(99)00250-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The primary somatosensory (SI) cortex in the cat contains four cytoarchitectonic areas that appear to contain separate body representations and have different functions. We tested whether functional differences among these areas are reflected in the densities of neurons containing each of three calcium-binding proteins: parvalbumin (PV), calbindin (CB), and calretinin (CR). Colocalization experiments revealed that CR was localized in a population of neurons distinct from those containing PV or CB. The general laminar distributions of the three calcium-binding proteins were similar to those described in other species and cortical areas, but there were significant density differences in layers II and III across SI. The density of PV-immunoreactive neurons was higher in areas 3b and 1 than in areas 3a and 2. CB-immunoreactive neurons were found in higher densities in anterior SI than in posterior SI, and the pattern of CR-immunoreactive neurons was reciprocal to that of CB, with significantly higher densities in posterior regions of SI. Since the firing characteristics of nonpyramidal neurons appear to be related to their calcium-binding protein content, differences in regional distributions of these neurons in layers II and III may contribute to functional differences between the cytoarchitectonic areas of SI cortex.
Collapse
Affiliation(s)
- H D Schwark
- Department of Biology, University of North Texas, Denton, TX 76203, USA
| | | |
Collapse
|
43
|
Abstract
The reason for the selective vulnerability of motor neurons in amyotrophic lateral sclerosis (ALS) is primarily unknown. A possible factor is the expression by motor neurons of Ca(2+)-permeable AMPA/kainate channels, which may permit rapid Ca(2+) influx in response to synaptic receptor activation. However, other subpopulations of central neurons, most notably forebrain GABAergic interneurons, consistently express large numbers of these channels but do not degenerate in ALS. Indeed, when subjected to identical excitotoxic exposures, motor neurons were more susceptible than GABAergic neurons to AMPA/kainate receptor-mediated neurotoxicity. Microfluorimetric studies were performed to examine the basis for the difference in vulnerability. First, AMPA or kainate exposures appeared to trigger substantial mitochondrial Ca(2+) loading in motor neurons, as indicated by a sharp increase in intracellular Ca(2+) after addition of the mitochondrial uncoupler carbonyl cyanide p-(trifluoromethoxy)phenyl hydrazone (FCCP) after the agonist exposure. The same exposures caused little mitochondrial Ca(2+) accumulation in GABAergic cortical neurons. Subsequent experiments examined other measures of mitochondrial function to compare sequelae of AMPA/kainate receptor activation between these populations. Brief exposure to either AMPA or kainate caused mitochondrial depolarization, assessed using tetramethylrhodamine ethylester, and reactive oxygen species (ROS) generation, assessed using hydroethidine, in motor neurons. However, these effects were only seen in the GABAergic neurons after exposure to the nondesensitizing AMPA receptor agonist kainate. Finally, addition of either antioxidants or toxins (FCCP or CN(-)) that block mitochondrial Ca(2+) uptake attenuated AMPA/kainate receptor-mediated motor neuron injury, suggesting that the mitochondrial Ca(2+) uptake and consequent ROS generation are central to the injury process.
Collapse
|
44
|
Crespo C, Porteros A, Arévalo R, Briñón JG, Aijón J, Alonso JR. Distribution of parvalbumin immunoreactivity in the brain of the tench (Tinca tinca L., 1758). J Comp Neurol 1999; 413:549-71. [PMID: 10495442 DOI: 10.1002/(sici)1096-9861(19991101)413:4<549::aid-cne5>3.0.co;2-d] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The distribution of parvalbumin (PV) immunoreactivity in the tench brain was examined by using the avidin-biotin-peroxidase immunocytochemical method. This protein was detected in neuronal populations throughout all main divisions of the tench brain. In the telencephalic hemispheres, PV-immunopositive neurons were distributed in both the dorsal and ventral areas, being more abundant in the area ventralis telencephali, nucleus ventralis. In the diencephalon, the scarce distribution of PV-containing cells followed a rostrocaudal gradient, and the most evident staining was observed in the nucleus periventricularis tuberculi posterioris and in a few nuclei of the area praetectalis. In the mesencephalon, abundant PV-immunoreactive elements were found in the tectum opticum, torus semicircularis, and tegmentum. In the tectum opticum, PV-immunoreactivity presented a laminar distribution. Three PV-containing neuronal populations were described in the torus semicircularis, whereas in the tegmentum, the PV staining was mainly located in the nucleus tegmentalis rostralis and in the nucleus nervi oculomotorii. In the metencephalon, Purkinje cells were PV-immunopositive in the valvula cerebelli, lobus caudalis cerebelli, and in the corpus cerebelli. In the myelencephalon, PV immunoreactivity was abundant in the nucleus lateralis valvulae, in the nucleus nervi trochlearis, nucleus nervi trigemini, nucleus nervi abducentis, nucleus nervi glossopharyngei, and in the formatio reticularis. Mauthner cells were also PV immunostained. By contrast to other vertebrate groups, only a restricted population of PV-containing neurons was GABA-immunoreactive in the tench, demonstrating that this calcium-binding protein cannot be considered a marker for GABAergic elements in the teleost brain. This study demonstrates a low phylogenetic conservation of the distribution of PV comparing teleosts and tetrapods.
Collapse
Affiliation(s)
- C Crespo
- Departamento Biología Celular y Patología, Universidad de Salamanca, E-37007 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Hof PR, Glezer II, Condé F, Flagg RA, Rubin MB, Nimchinsky EA, Vogt Weisenhorn DM. Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat 1999; 16:77-116. [PMID: 10223310 DOI: 10.1016/s0891-0618(98)00065-9] [Citation(s) in RCA: 296] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The three calcium-binding proteins parvalbumin, calbindin, and calretinin are found in morphologically distinct classes of inhibitory interneurons as well as in some pyramidal neurons in the mammalian neocortex. Although there is a wide variability in the qualitative and quantitative characteristics of the neocortical subpopulations of calcium-binding protein-immunoreactive neurons in mammals, most of the available data show that there is a fundamental similarity among the mammalian species investigated so far, in terms of the distribution of parvalbumin, calbindin, and calretinin across the depth of the neocortex. Thus, calbindin- and calretinin-immunoreactive neurons are predominant in layers II and III, but are present across all cortical layers, whereas parvalbumin-immunoreactive neurons are more prevalent in the middle and lower cortical layers. These different neuronal populations have well defined regional and laminar distribution, neurochemical characteristics and synaptic connections, and each of these cell types displays a particular developmental sequence. Most of the available data on the development, distribution and morphological characteristics of these calcium-binding proteins are from studies in common laboratory animals such as the rat, mouse, cat, macaque monkey, as well as from postmortem analyses in humans, but there are virtually no data on other species aside of a few incidental reports. In the context of the evolution of mammalian neocortex, the distribution and morphological characteristics of calcium-binding protein-immunoreactive neurons may help defining taxon-specific patterns that may be used as reliable phylogenetic traits. It would be interesting to extend such neurochemical analyses of neuronal subpopulations to other species to assess the degree to which neurochemical specialization of particular neuronal subtypes, as well as their regional and laminar distribution in the cerebral cortex, may represent sets of derived features in any given mammalian order. This could be particularly interesting in view of the consistent differences in neurochemical typology observed in considerably divergent orders such as cetaceans and certain families of insectivores and metatherians, as well as in monotremes. The present article provides an overview of calcium-binding protein distribution across a large number of representative mammalian species and a review of their developmental patterns in the species where data are available. This analysis demonstrates that while it is likely that the developmental patterns are quite consistent across species, at least based on the limited number of species for which ontogenetic data exist, the distribution and morphology of calcium-binding protein-containingneurons varies substantially among mammalian orders and that certain species show highly divergent patterns compared to closely related taxa. Interestingly, primates, carnivores, rodents and tree shrews appear closely related on the basis of the observed patterns, marsupials show some affinities with that group, whereas prototherians have unique patterns. Our findings also support the relationships of cetaceans and ungulates, and demonstrates possible affinities between carnivores and ungulates, as well as the existence of common, probably primitive, traits in cetaceans and insectivores.
Collapse
Affiliation(s)
- P R Hof
- Fishberg Research Center for Neurobiology, Department of Geriatrics and Adult Development, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Vysokanov A, Flores-Hernandez J, Surmeier DJ. mRNAs for clozapine-sensitive receptors co-localize in rat prefrontal cortex neurons. Neurosci Lett 1998; 258:179-82. [PMID: 9885960 DOI: 10.1016/s0304-3940(98)00882-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The clinical efficacy of clozapine in treating schizophrenia may stem from its lack of receptor selectivity. If true, several clozapine-sensitive receptors may be co-expressed by neurons dysfunctional in schizophrenia. To test this hypothesis, neurons from the rat medial prefrontal cortex were acutely isolated and subjected to single cell RT-PCR analysis. The co-ordinated expression of five clozapine-sensitive receptors (D4, m1, 5-HT2a, 5-HT2c, 5-HT7) was examined in interneurons and pyramidal neurons. Profiling of GABAergic interneurons commonly revealed the co-expression of two or more clozapine-sensitive receptor mRNAs. Although co-expression of these receptors was less extensive in pyramidal neurons, it was also commonly found. These results suggest that clozapine's therapeutic effects may be mediated by antagonism of dopaminergic, cholinergic and serotoninergic signaling pathways at the single cell level.
Collapse
MESH Headings
- Animals
- Clozapine/pharmacology
- Dopamine Antagonists/pharmacology
- In Vitro Techniques
- Interneurons/metabolism
- Neurons/metabolism
- Prefrontal Cortex/cytology
- Prefrontal Cortex/metabolism
- Pyramidal Cells/metabolism
- RNA, Messenger/metabolism
- Rats
- Receptor, Muscarinic M1
- Receptor, Serotonin, 5-HT2A
- Receptor, Serotonin, 5-HT2C
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D4
- Receptors, Drug/metabolism
- Receptors, Muscarinic/metabolism
- Receptors, Serotonin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Serotonin Antagonists/pharmacology
Collapse
Affiliation(s)
- A Vysokanov
- Department of Physiology and Institute for Neuroscience, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | |
Collapse
|
47
|
Yan XX, Baram TZ, Gerth A, Schultz L, Ribak CE. Co-localization of corticotropin-releasing hormone with glutamate decarboxylase and calcium-binding proteins in infant rat neocortical interneurons. Exp Brain Res 1998; 123:334-40. [PMID: 9860272 PMCID: PMC3786772 DOI: 10.1007/s002210050576] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Corticotropin releasing hormone (CRH) has been localized to interneurons of the mammalian cerebral cortex, but these neurons have not been fully characterized. The present study determined the extent of co-localization of CRH with glutamate decarboxylase (GAD) and calcium-binding proteins in the infant rat neocortex using immunocytochemistry. CRH-immunoreactive (ir) neurons were classified into two major groups. The first group was larger and consisted of densely CRH-immunostained small bipolar cells, predominantly localized to layers II and III. The second group of CRH-ir cells was lightly labeled and included multipolar neurons mainly found in deep cortical layers. Co-localization studies indicated that the vast majority of CRH-ir neurons, including both bipolar and multipolar types, was co-immunolabeled for GAD-65 and GAD-67. Most multipolar, but only some bipolar, CRH-ir neurons also contained parvalbumin, while CRH-ir neurons rarely contained calbindin or calretinin. These results indicate that virtually all CRH-ir neurons in the rat cerebral cortex are GABAergic. Furthermore, since parvalbumin is expressed by cortical basket and chandelier cells, the co-localization of CRH and parvalbumin suggests that some cortical CRH-ir neurons may belong to these two cell types.
Collapse
|
48
|
De Venecia RK, Smelser CB, McMullen NT. Parvalbumin is expressed in a reciprocal circuit linking the medial geniculate body and auditory neocortex in the rabbit. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981026)400:3<349::aid-cne5>3.0.co;2-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Kaneko T, Murashima M, Lee T, Mizuno N. Characterization of neocortical non-pyramidal neurons expressing preprotachykinins A and B: a double immunofluorescence study in the rat. Neuroscience 1998; 86:765-81. [PMID: 9692716 DOI: 10.1016/s0306-4522(98)00036-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neurons expressing preprotachykinin A and preprotachykinin B, which are the precursor prepropeptides of substance P and neurokinin B (neuromedin K), respectively, were characterized immunocytochemically in the rat neocortex. Antibodies raised against C-terminal portions of preprotachykinins were used for labeling cell bodies of preprotachykinin-producing neurons. Neurons immunoreactive for preprotachykinin B were encountered four times more frequently in the neocortex than those immunoreactive for preprotachykinin A. Preprotachykinin A-immunoreactive neurons were scattered more frequently in the deep cortical layers (layers IV-VI) than in the superficial layers (layers I-III), whereas preprotachykinin B-immunoreactive neurons were distributed more frequently in the superficial layers than in the deep layers. Almost all preprotachykinin-expressing neurons were immunoreactive for GABA, suggesting that they were non-pyramidal cells. However, co-expression of the two preprotachykinin immunoreactivities in single neurons was not found. Preprotachykinin-expressing neocortical neurons were further examined with markers for subpopulations of GABAergic cortical neurons. Immunoreactivities for parvalbumin, calbindin and somatostatin were found in 69%, 27% and 11%, respectively, of preprotachykinin A-immunoreactive neurons. Conversely, preprotachykinin A-immunoreactive neurons constituted only 6% of parvalbumin-immunoreactive neurons, 4% of calbindin-immunoreactive neurons and 1% of somatostatin-immunoreactive neurons. Immunoreactivities for calretinin, choline acetyltransferase, vasoactive intestinal polypeptide, corticotropin-releasing factor and cholecystokinin were detected in 13-39% of preprotachykinin B-immunoreactive neurons. Preprotachykinin B immunoreactivity was seen in 33% of calretinin-positive neurons, 45% of cholinergic neurons, 47% of vasoactive intestinal polypeptide-positive neurons, 59% of corticotropin-releasing factor-positive neurons and 83% of cholecystokinin-positive neurons. These results indicate that preprotachykinin A- and preprotachykinin B-expressing neurons constitute separate populations of GABAergic non-pyramidal neurons in the neocortex. Since receptors for substance P and neurokinin B are expressed in GABAergic neurons [Kaneko T. et al. (1994) Neuroscience 60, 199-211] and pyramidal neurons [Ding Y. Q. et al. (1996) J. comp. Neurol. 364, 290-310], respectively, cortical neurons may use two separate lines of tachykinin signals; substance P serves as a signal between GABAergic non-pyramidal neurons, whereas neurokinin B acts as a signal of GABAergic neurons to pyramidal neurons.
Collapse
Affiliation(s)
- T Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
50
|
Glezer II, Hof PR, Morgane PJ. Comparative analysis of calcium-binding protein-immunoreactive neuronal populations in the auditory and visual systems of the bottlenose dolphin (Tursiops truncatus) and the macaque monkey (Macaca fascicularis). J Chem Neuroanat 1998; 15:203-37. [PMID: 9860088 DOI: 10.1016/s0891-0618(98)00022-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study compares the distribution of three calcium-binding protein-immunoreactive (CaBP-immunoreactive) neuronal populations (calretinin-, calbindin- and parvalbumin-immunoreactive) in the visual and auditory systems in two mammalian species which are fundamentally different in their evolutionary traits and ecology, the aquatic toothed whale Tursiops truncatus (bottlenose dolphin) and the terrestrial Old World primate, Macaca fascicularis (long-tailed macaque). Immunocytochemical analyses, combined with computerized morphometry revealed that in the visual and auditory systems of the bottlenose dolphin, calretinin and calbindin are the prevalent calcium-binding proteins, whereas parvalbumin is present in very few neurons. The prevalence of calretinin and calbindin-immunoreactive neurons is especially obvious in the auditory system of this species. In both auditory and visual systems of the macaque monkey, the parvalbumin-immunoreactive neurons are present in comparable or higher densities than the calretinin and calbindin-immunoreactive neurons. In some structures of the visual and auditory systems of the macaque monkey, the calretinin- and calbindin-immunoreactive neurons are nearly absent. The prevalence of parvalbumin-immunoreactive over calretinin- and calbindin-immunoreactive neurons is particularly prominent in the visual system of primates. Thus, the dominant sensory systems in both aquatic and terrestrial mammals are enriched in specific phenotypes of calcium-binding protein-immunoreactive neurons.
Collapse
Affiliation(s)
- I I Glezer
- Department of Cell Biology and Anatomical Sciences, CUNY Medical School/Sophie Davis School of Biomedical Education, New York, NY 10031, USA.
| | | | | |
Collapse
|