1
|
Nagano H, Sobue Y, Matsuyama H, Saito S, Sakai H, Alom F, Tanahashi Y, Ishii T, Unno T. Muscarinic M 2 receptor promotes vasopressin synthesis in mice supraoptic nuclei. J Endocrinol 2018; 237:207-216. [PMID: 29563233 DOI: 10.1530/joe-17-0630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/21/2018] [Indexed: 11/08/2022]
Abstract
Muscarinic acetylcholine receptors have been suggested to be implicated in arginine-vasopressin secretion because intracerebroventricular muscarinic agonist administration induces arginine-vasopressin release into the circulation. Although which subtype is involved in the regulation of arginine-vasopressin secretion is unclear, M2 receptors have been reported to be highly expressed in the hypothalamus. In the present study, M2 receptor-knockout mice were used to elucidate whether M2 receptor regulates arginine-vasopressin synthesis in the paraventricular nuclei and supraoptic nuclei of the hypothalamus. The number of arginine-vasopressin-immunoreactive neurons in M2 receptor-knockout mice was significantly decreased in the supraoptic nuclei, but not in the paraventricular nuclei compared with wild-type mice. Plasma arginine-vasopressin level in M2 receptor-knockout mice was also significantly lower than in the wild-type mice. Urinary volume and frequency as well as water intake in M2 receptor-knockout mice were significantly higher than those in wild-type mice. The V2 vasopressin receptor expression in kidneys of M2 receptor-knockout mice was comparable with that of wild-type mice, and increased urination in M2 receptor-knockout mice was significantly decreased by administration of desmopressin, a specific V2 receptor agonist, suggesting that V2 receptors in the kidneys of M2 receptor-knockout mice are intact. These results suggest that M2 receptors promote arginine-vasopressin synthesis in the supraoptic nuclei and play a role in the regulation and maintenance of body fluid.
Collapse
Affiliation(s)
- Hiroshi Nagano
- Department of Pathogenetic Veterinary ScienceUnited Graduate School of Veterinary Science, Gifu University, Gifu, Japan
| | - Yuki Sobue
- Laboratory of Veterinary PharmacologyFaculty of Applied Biological Science, Gifu University, Gifu, Japan
| | - Hayato Matsuyama
- Laboratory of Veterinary PharmacologyFaculty of Applied Biological Science, Gifu University, Gifu, Japan
| | - Shoichiro Saito
- Laboratory of Veterinary AnatomyFaculty of Applied Biological Science, Gifu University, Gifu, Japan
| | - Hiroki Sakai
- Laboratory of Veterinary PathologyFaculty of Applied Biological Science, Gifu University, Gifu, Japan
| | - Firoj Alom
- Department of Pathogenetic Veterinary ScienceUnited Graduate School of Veterinary Science, Gifu University, Gifu, Japan
| | - Yasuyuki Tanahashi
- Department of Animal Medical SciencesFaculty of Life Science, Kyoto Sangyo University, Kyoto, Japan
| | - Toshiaki Ishii
- Department of Basic Veterinary MedicineObihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Toshihiro Unno
- Laboratory of Veterinary PharmacologyFaculty of Applied Biological Science, Gifu University, Gifu, Japan
| |
Collapse
|
2
|
García-Fernández JM, Cernuda-Cernuda R, Davies WIL, Rodgers J, Turton M, Peirson SN, Follett BK, Halford S, Hughes S, Hankins MW, Foster RG. The hypothalamic photoreceptors regulating seasonal reproduction in birds: a prime role for VA opsin. Front Neuroendocrinol 2015; 37:13-28. [PMID: 25448788 DOI: 10.1016/j.yfrne.2014.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/25/2014] [Accepted: 11/02/2014] [Indexed: 01/30/2023]
Abstract
Extraretinal photoreceptors located within the medio-basal hypothalamus regulate the photoperiodic control of seasonal reproduction in birds. An action spectrum for this response describes an opsin photopigment with a λmax of ∼ 492 nm. Beyond this however, the specific identity of the photopigment remains unresolved. Several candidates have emerged including rod-opsin; melanopsin (OPN4); neuropsin (OPN5); and vertebrate ancient (VA) opsin. These contenders are evaluated against key criteria used routinely in photobiology to link orphan photopigments to specific biological responses. To date, only VA opsin can easily satisfy all criteria and we propose that this photopigment represents the prime candidate for encoding daylength and driving seasonal breeding in birds. We also show that VA opsin is co-expressed with both gonadotropin-releasing hormone (GnRH) and arginine-vasotocin (AVT) neurons. These new data suggest that GnRH and AVT neurosecretory pathways are endogenously photosensitive and that our current understanding of how these systems are regulated will require substantial revision.
Collapse
Affiliation(s)
- José M García-Fernández
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, INEUROPA (Instituto de Neurociencias del Principado de Asturias), Spain
| | - Rafael Cernuda-Cernuda
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, INEUROPA (Instituto de Neurociencias del Principado de Asturias), Spain
| | - Wayne I L Davies
- School of Animal Biology and University of Western Australia Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Jessica Rodgers
- Sleep and Circadian Neuroscience Institute, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Michael Turton
- Sleep and Circadian Neuroscience Institute, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Brian K Follett
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.eNuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Steven Hughes
- Sleep and Circadian Neuroscience Institute, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Mark W Hankins
- Sleep and Circadian Neuroscience Institute, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom.
| |
Collapse
|
3
|
Effects of acute and subchronic AT1 receptor blockade on cardiovascular, hydromineral and neuroendocrine responses in female rats. Physiol Behav 2013; 122:104-12. [PMID: 23978402 DOI: 10.1016/j.physbeh.2013.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/28/2013] [Accepted: 08/15/2013] [Indexed: 11/23/2022]
Abstract
Female Wistar rats were ovariectomized (OVX) and separated into two groups that received either estradiol cypionate (EC, 40 μg/kg, sc; OVX-EC) or vehicle (corn oil, sc; OVX-oil) for 14 consecutive days. On the 7th day of treatment, a subset of animals from both the OVX-oil and OVX-EC groups was subjected to subchronic losartan (AT1 receptor antagonist) treatment (0.1g/L in drinking water; ~15 mg/kg/day) for 7 days. Other group of OVX-oil and OVX-EC rats was submitted to an acute losartan injection (100mg/kg, ip) on the 14th day of hormone replacement. In both protocols, the following parameters were measured: I) mean arterial pressure (MAP) and heart rate (HR); II) water and 0.3M saline intake; III) angiotensin II (ANG II), atrial natriuretic peptide (ANP), vasopressin (AVP) and oxytocin (OT) plasma concentrations; and IV) urinary and plasma sodium concentrations. Acute AT1 blockade induced a significant reduction in the MAP in the OVX rats, resulting in increased HR and water intake, which were attenuated by estradiol therapy. Acute AT1 blockade also increased ANG II and OT and reduced ANP plasma concentrations, with no changes in AVP secretion. In addition, acute hypotension was accompanied by a decrease in natriuresis, which was unaltered by estradiol. Subchronic AT1 blockade induced a significant decrease in MAP without changing HR in both groups. Additionally, subchronic losartan treatment induced sodium appetite in OVX rats. Prolonged AT1 blockade increased ANG II and AVP and reduced ANP plasma concentrations. Moreover, it increased natriuresis but did not alter plasma OT concentrations. Finally, estradiol treatment attenuated the increase in salt intake and plasma ANG II concentrations induced by subchronic AT1 blockade. In conclusion, our results suggest differential adaptive responses to the acute or subchronic losartan treatment in OVX and OVX-EC rats.
Collapse
|
4
|
Teruyama R, Sakuraba M, Kurotaki H, Armstrong WE. Transient receptor potential channel m4 and m5 in magnocellular cells in rat supraoptic and paraventricular nuclei. J Neuroendocrinol 2011; 23:1204-13. [PMID: 21848647 PMCID: PMC5703211 DOI: 10.1111/j.1365-2826.2011.02211.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neurohypophysial hormones, vasopressin (VP) and oxytocin (OT), are synthesised by magnocellular cells in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) of the hypothalamus. The release of VP into the general circulation from the neurohypophysis increases during hyperosmolality, hypotension and hypovolaemia. VP neurones increase hormone release by increasing their firing rate as a result of adopting a phasic bursting. Depolarising after potentials (DAPs) following a series of action potentials are considered to be involved in the generation of the phasic bursts by summating to plateau potentials. We recently discovered a fast DAP (fDAP) in addition to the slower DAP characterised previously. Almost all VP neurones expressed the fDAP, whereas only 16% of OT neurones had this property, which implicates the involvement of fDAP in the generation of the firing patterns in VP neurones. Our findings obtained from electrophysiological experiments suggested that the ionic current underlying the fDAP is mediated by those of two closely-related Ca(2+) -activated cation channels: the melastatin-related subfamily of transient receptor potential channels, TRPM4 and TRPM5. In the present study, double/triple immunofluorescence microscopy and reverse transcriptase-polymerase chain reaction techniques were employed to evaluate whether TRPM4 and TRPM5 are specifically located in VP neurones. Using specific antibodies against these channels, TRPM5 immunoreactivity was found almost exclusively in VP neurones, but not in OT neurones in both the SON and PVN. The most prominent TRPM5 immunoreactivity was in the dendrites of VP neurones. By contrast, most TRPM4 immunoreactivity occurred in cell bodies of both VP and OT neurones. TRPM4 and TRPM5 mRNA were both found in a cDNA library derived from SON punches. These results indictate the possible involvement of TRPM5 in the generation of the fDAP, and these channels may play an important role in determining the distinct firing properties of VP neurones in the SON.
Collapse
Affiliation(s)
- R Teruyama
- Department of Biological Sciences, Louisiana State University, LA 70803, USA.
| | | | | | | |
Collapse
|
5
|
Mecawi AS, Vilhena-Franco T, Araujo IG, Reis LC, Elias LLK, Antunes-Rodrigues J. Estradiol potentiates hypothalamic vasopressin and oxytocin neuron activation and hormonal secretion induced by hypovolemic shock. Am J Physiol Regul Integr Comp Physiol 2011; 301:R905-15. [PMID: 21632848 DOI: 10.1152/ajpregu.00800.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogen receptors are located in important brain areas that integrate cardiovascular and hydroelectrolytic responses, including the subfornical organ (SFO) and supraoptic (SON) and paraventricular (PVN) nuclei. The aim of this study was to evaluate the influence of estradiol on cardiovascular and neuroendocrine changes induced by hemorrhagic shock in ovariectomized rats. Female Wistar rats (220-280 g) were ovariectomized and treated for 7 days with vehicle or estradiol cypionate (EC, 10 or 40 μg/kg, sc). On the 8th day, animals were subjected to hemorrhage (1.5 ml/100 g for 1 min). Hemorrhage induced acute hypotension and bradycardia in the ovariectomized-oil group, but EC treatment inhibited these responses. We observed increases in plasma angiotensin II concentrations and decreases in plasma atrial natriuretic peptide levels after hemorrhage; EC treatment produced no effects on these responses. There were also increases in plasma vasopressin (AVP), oxytocin (OT), and prolactin levels after the induction of hemorrhage in all groups, and these responses were potentiated by EC administration. SFO neurons and parvocellular and magnocellular AVP and OT neurons in the PVN and SON were activated by hemorrhagic shock. EC treatment enhanced the activation of SFO neurons and AVP and OT magnocellular neurons in the PVN and SON and AVP neurons in the medial parvocellular region of the PVN. These results suggest that estradiol modulates the cardiovascular responses induced by hemorrhage, and this effect is likely mediated by an enhancement of AVP and OT neuron activity in the SON and PVN.
Collapse
Affiliation(s)
- Andre S Mecawi
- Faculty of Medicine of Ribeirao Preto, Department of Physiology, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Bundzikova J, Pirnik Z, Mikkelsen JD, Zelena D, Kiss A. Activity of Oxytocinergic Neurons in the Supraoptic Nucleus under Stimulation of ��2-Adrenoceptors in Brattleboro Rats. Ann N Y Acad Sci 2008; 1148:154-60. [DOI: 10.1196/annals.1410.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Haley GE, Flynn FW. Blockade of NK3R signaling in the PVN decreases vasopressin and oxytocin release and c-Fos expression in the magnocellular neurons in response to hypotension. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1158-67. [PMID: 18650316 DOI: 10.1152/ajpregu.90402.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tachykinin neurokinin 3 receptor (NK3R) signaling has a broad role in vasopressin (VP) and oxytocin (OT) release. Hydralazine (HDZ)-induced hypotension activates NK3R expressed by magnocellular neurons, increases plasma VP and OT levels, and induces c-Fos expression in VP and OT neurons. Intraventricular pretreatment with the specific NK3R antagonist, SB-222200, eliminates the HDZ-stimulated VP and OT release. NK3R are distributed in the central pathways conveying hypotension information to the magnocellular neurons, and the NK3R antagonist could act anywhere in the pathways. Alternatively, the antagonist could act at the NK3R expressed by the magnocellular neurons. To determine whether blockade of NK3R on magnocellular neurons impairs VP and OT release to HDZ, rats were pretreated with a unilateral PVN injection of 0.15 M NaCl or SB-222200 prior to an intravenous injection of 0.15 M NaCl or HDZ. Blood samples were taken, and brains were processed for VP/c-Fos and OT/c-Fos immunohistochemistry. Intravenous injection of 0.15 M NaCl did not alter plasma hormone levels, and little c-Fos immunoreactivity was present in the PVN. Conversely, intravenous injection of HDZ increased plasma VP and OT levels and c-Fos expression in VP and OT magnocellular neurons. Intra-PVN injection of SB-222200 prior to an intravenous injection of HDZ significantly decreased c-Fos expression in both VP and OT neurons by approximately 70% and attenuated plasma VP and OT levels by 33% and 35%, respectively. Therefore, NK3R signaling in magnocellular neurons has a critical role for the release of VP and OT in response to hypotension.
Collapse
Affiliation(s)
- Gwendolen E Haley
- Graduate Neuroscience Program, University of Wyoming, Laramie, Wyoming 82071, USA
| | | |
Collapse
|
8
|
da Silveira LTG, Junta CM, Monesi N, de Oliveira-Pelegrin GR, Passos GA, Rocha MJA. Time course of c-fos, vasopressin and oxytocin mRNA expression in the hypothalamus following long-term dehydration. Cell Mol Neurobiol 2007; 27:575-84. [PMID: 17393298 PMCID: PMC11517278 DOI: 10.1007/s10571-007-9144-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
1. This study presents a time course analysis of the messenger RNA (mRNA) levels of c-fos, vasopressin (VP), and oxytocin (OT) in the paraventricular (PVN) and supraoptic nucleus (SON), following acute and chronic dehydration by water deprivation. 2. Male Wistar rats were separated into five groups: nondehydrated (control group) and dehydrated for 6, 24, 48 and 72 h. Following water deprivation, animals were decapitated, their blood was collected for hematocrit, osmolality, and plasma sodium measurements, and brains were removed for dissection of both PVN and SON. 3. As expected, the hematocrit, osmolality, plasma sodium, and weight loss were increased after water deprivation. In SON, a significant increase in both VP and OT mRNA expression was observed 6 h after dehydration reaching a peak at 24 h and returning to basal levels of expression at 72 h. In the PVN, an increase in both VP and OTmRNA expression occurred 24 h after dehydration. At 72 h the VP and OT mRNA expression levels had decreased but they were still at higher levels than those detected in control animals. 4. These results suggest that SON is the first nucleus to respond to the dehydration stimulus. Additionally, we also observed an increase in c-fos mRNA expression in both PVN and SON 6 h after water deprivation, which progressively decreased 24, 48, and 72 h after the onset of water deprivation. Therefore, it is possible that c-fos may be involved in the modulation of VP and OT genes, regulating the mRNA expression levels on a temporally distinct basis within the PVN and SON.
Collapse
Affiliation(s)
- Lenise Trito Garcia da Silveira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, Brasil
| | - Cristina Moraes Junta
- Departamento de Genética da Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, Brasil
| | - Nadia Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, Brasil
| | | | - Geraldo Aleixo Passos
- Departamento de Genética da Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, Brasil
- Departamento de Morfologia, Estomatologia e Fisiologia da Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brasil
| | - Maria José A. Rocha
- Departamento de Morfologia, Estomatologia e Fisiologia da Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brasil
- Departamento de MEF–Faculdade de Odontologia de Ribeirão Preto, USP, Avenida do Café s/n, CEP 14040-904, Ribeirão Preto, SP Brasil
| |
Collapse
|
9
|
Rodovalho GV, Franci CR, Morris M, Anselmo-Franci JA. Locus Coeruleus Lesions Decrease Oxytocin and Vasopressin Release Induced by Hemorrhage. Neurochem Res 2006; 31:259-66. [PMID: 16528616 DOI: 10.1007/s11064-005-9015-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2005] [Indexed: 11/30/2022]
Abstract
The role of the noradrenergic nucleus Locus Coeruleus (LC) on hemorrhage-induced vasopressin (AVP) and oxytocin (OT) secretion was examined. Rats with LC lesion were submitted to three 1-min hemorrhage sessions at 5-min intervals; 15% of the total blood volume was withdrawn in each session. OT and AVP were measured in plasma, paraventricular (PVN) and supraoptic (SON) nuclei and in posterior pituitary (PP). LC Lesion did not affect basal plasma AVP or OT levels, but partly blocked the increase in plasma AVP and OT induced by hemorrhage. Hemorrhage produced decreases in content of AVP and OT in the PVN and SON and increased levels in the PP. These responses were attenuated in the lesioned group, but only in the PVN and PP. Data suggest a stimulatory role of the inputs from LC to PVN neurons on hemorrhage-induced OT and AVP secretion and that, this pathway is critical in the hypo-volemic neuroendocrine reflex.
Collapse
Affiliation(s)
- G V Rodovalho
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | | |
Collapse
|
10
|
Vasopressin and oxytocin. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
11
|
Antunes-Rodrigues J, de Castro M, Elias LLK, Valença MM, McCann SM. Neuroendocrine control of body fluid metabolism. Physiol Rev 2004; 84:169-208. [PMID: 14715914 DOI: 10.1152/physrev.00017.2003] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mammals control the volume and osmolality of their body fluids from stimuli that arise from both the intracellular and extracellular fluid compartments. These stimuli are sensed by two kinds of receptors: osmoreceptor-Na+ receptors and volume or pressure receptors. This information is conveyed to specific areas of the central nervous system responsible for an integrated response, which depends on the integrity of the anteroventral region of the third ventricle, e.g., organum vasculosum of the lamina terminalis, median preoptic nucleus, and subfornical organ. The hypothalamo-neurohypophysial system plays a fundamental role in the maintenance of body fluid homeostasis by secreting vasopressin and oxytocin in response to osmotic and nonosmotic stimuli. Since the discovery of the atrial natriuretic peptide (ANP), a large number of publications have demonstrated that this peptide provides a potent defense mechanism against volume overload in mammals, including humans. ANP is mostly localized in the heart, but ANP and its receptor are also found in hypothalamic and brain stem areas involved in body fluid volume and blood pressure regulation. Blood volume expansion acts not only directly on the heart, by stretch of atrial myocytes to increase the release of ANP, but also on the brain ANPergic neurons through afferent inputs from baroreceptors. Angiotensin II also plays an important role in the regulation of body fluids, being a potent inducer of thirst and, in general, antagonizes the actions of ANP. This review emphasizes the role played by brain ANP and its interaction with neurohypophysial hormones in the control of body fluid homeostasis.
Collapse
Affiliation(s)
- José Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
12
|
Dampney RAL, Horiuchi J. Functional organisation of central cardiovascular pathways: studies using c-fos gene expression. Prog Neurobiol 2003; 71:359-84. [PMID: 14757116 DOI: 10.1016/j.pneurobio.2003.11.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Until about 10 years ago, knowledge of the functional organisation of the central pathways that subserve cardiovascular responses to homeostatic challenges and other stressors was based almost entirely on studies in anaesthetised animals. More recently, however, many studies have used the method of the expression of immediate early genes, particularly the c-fos gene, to identify populations of central neurons that are activated by such challenges in conscious animals. In this review we first consider the advantages and limitations of this method. Then, we discuss how the application of the method of immediate early gene expression, when used alone or in combination with other methods, has contributed to our understanding of the central mechanisms that regulate the autonomic and neuroendocrine response to various cardiovascular challenges (e.g., hypotension, hypoxia, hypovolemia, and other stressors) as they operate in the conscious state. In general, the results of studies of central cardiovascular pathways using immediate early gene expression are consistent with previous studies in anaesthetised animals, but in addition have revealed other previously unrecognised pathways that also contribute to cardiovascular regulation. Finally, we briefly consider recent evidence indicating that immediate early gene expression can modify the functional properties of central cardiovascular neurons, and the possible significance of this in producing long-term changes in the regulation of the cardiovascular system both in normal and pathological conditions.
Collapse
Affiliation(s)
- R A L Dampney
- Department of Physiology and Institute for Biomedical Research, University of Sydney, Sydney, NSW 2006, Australia.
| | | |
Collapse
|
13
|
Saito T, Soya H. Delineation of responsive AVP-containing neurons to running stress in the hypothalamus. Am J Physiol Regul Integr Comp Physiol 2003; 286:R484-90. [PMID: 14630623 DOI: 10.1152/ajpregu.00453.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Running becomes a stress, termed running stress, if it persists above the lactate threshold (LT) and results in enhanced plasma ACTH level in humans. Although the exact underlying regulation mechanism is still uncertain, hypothalamic AVP has been shown to play a dominant role in running-induced ACTH release. It is still not known, however, whether running stress activates the hypothalamic AVP-containing neurons that are involved in the activation of the ACTH response. For this reason, we applied our rat running stress model, in which both plasma ACTH and osmolality levels increase just above LT running (supra-LT running), to delineate which hypothalamic AVP neurons were responsive to running stress. Rats were previously habituated to running and then subjected to a 30-min run either just below or above the LT. Plasma samples were collected from these animals to determine ACTH and osmolality levels. Brains were prepared for immunocytochemistry for both AVP/Fos in the hypothalamus and enzyme immunoassay for the stalk median eminence (SME) AVP content. Only supra-LT running resulted in an increase in the number of Fos/AVP-immunoreactive neurons in both the parvocellular paraventricular nucleus (pPVN) and the magnocellular supraoptic nucleus (SON) accompanied by increased ACTH and plasma osmolality levels. Similarly, running reduced the SME content of the AVP. We thus found that AVP-containing neurons located in both the pPVN and SON are responsive to running stress just above the LT.
Collapse
Affiliation(s)
- Tsuyoshi Saito
- Laboratory of Exercise Biochemistry, Institute of Health and Sport Sciences, Tsukuba 305-8574, Ibaraki, Japan
| | | |
Collapse
|
14
|
Kc P, Haxhiu MA, Trouth CO, Balan KV, Anderson WA, Mack SO. CO(2)-induced c-Fos expression in hypothalamic vasopressin containing neurons. RESPIRATION PHYSIOLOGY 2002; 129:289-96. [PMID: 11788132 DOI: 10.1016/s0034-5687(01)00321-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Following exposure of anesthetized and unanesthetized rats to hypercapnic stress, arginine vasopressin (AVP)-containing neurons of the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei were examined for expression of the c-fos gene encoded protein (c-Fos). In addition, we determined whether AVP-containing PVN neurons activated by hypercapnia project to phrenic nuclei. In adult control rats, only scant c-Fos-like immunoreactive neurons were observed within the hypothalamic nuclei. A marked increase in c-Fos positive cells was induced after 2 h of breathing a gas mixture with elevated CO(2) (5% CO(2), 21% O(2) and 74% N(2), or 1 h following breathing of 12% CO(2,) 21% O(2,) and 67% N(2)). Colocalization studies of AVP and c-Fos protein revealed that in the PVN, 75% of AVP-containing cells expressed c-Fos immunoreactivity. c-Fos and AVP were coexpressed in 60% of SON neurons in anesthetized rats. In addition, retrograde labeling studies with cholera toxin b subunit (CTb) revealed that a subpopulation of PVN cells (15%) that project to phrenic nuclei are activated by hypercapnia, as indicated by c-Fos expression. These results indicate that (i) PVN and SON AVP-containing neurons are part of the neuronal networks that react to hypercapnic exposure; and (ii) a subset of CO(2) reactive PVN cells innervate phrenic nuclei.
Collapse
Affiliation(s)
- Prabha Kc
- Specialized Neuroscience Research Program, Department of Physiology and Biophysics, Howard University College of Medicine, 520 W St., NW, Washington, DC 20059, USA
| | | | | | | | | | | |
Collapse
|
15
|
Burbach JP, Luckman SM, Murphy D, Gainer H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev 2001; 81:1197-267. [PMID: 11427695 DOI: 10.1152/physrev.2001.81.3.1197] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hypothalamo-neurohypophysial system (HNS) is the major peptidergic neurosecretory system through which the brain controls peripheral physiology. The hormones vasopressin and oxytocin released from the HNS at the neurohypophysis serve homeostatic functions of water balance and reproduction. From a physiological viewpoint, the core question on the HNS has always been, "How is the rate of hormone production controlled?" Despite a clear description of the physiology, anatomy, cell biology, and biochemistry of the HNS gained over the last 100 years, this question has remained largely unanswered. However, recently, significant progress has been made through studies of gene identity and gene expression in the magnocellular neurons (MCNs) that constitute the HNS. These are keys to mechanisms and events that exist in the HNS. This review is an inventory of what we know about genes expressed in the HNS, about the regulation of their expression in response to physiological stimuli, and about their function. Genes relevant to the central question include receptors and signal transduction components that receive and process the message that the organism is in demand of a neurohypophysial hormone. The key players in gene regulatory events, the transcription factors, deserve special attention. They do not only control rates of hormone production at the level of the gene, but also determine the molecular make-up of the cell essential for appropriate development and physiological functioning. Finally, the HNS neurons are equipped with a machinery to produce and secrete hormones in a regulated manner. With the availability of several gene transfer approaches applicable to the HNS, it is anticipated that new insights will be obtained on how the HNS is able to respond to the physiological demands for its hormones.
Collapse
Affiliation(s)
- J P Burbach
- Rudolf Magnus Institute for Neurosciences, Section of Molecular Neuroscience, Department of Medical Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
16
|
Thrivikraman KV, Nemeroff CB, Plotsky PM. Sensitivity to glucocorticoid-mediated fast-feedback regulation of the hypothalamic-pituitary-adrenal axis is dependent upon stressor specific neurocircuitry. Brain Res 2000; 870:87-101. [PMID: 10869505 DOI: 10.1016/s0006-8993(00)02405-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
UNLABELLED Fos-protein immunoreactivity (Fos-IR) was used to identify neurocircuits potentially participating in the regulation of hypothalamic-pituitary-adrenal (HPA) axis sensitivity to glucocorticoid-mediated fast-feedback in rats exposed to the physical stressor, hemorrhage, or the psychological stressor, airpuff startle. Marked regional brain differences in the Fos-IR expression were observed in response to these stressors. Specifically, after hemorrhage, nuclear Fos-IR increased in the nucleus of the solitary tract and other brainstem regions known to regulate hemodynamic processes including the supraoptic nucleus, and the magnocellular division of hypothalamic paraventricular nucleus (PVN). In contrast, after airpuff startle Fos-IR increased in the dorsomedial and lateral hypothalamus as well as in the lateral septum. Thus, activation of brainstem neurocircuits predominated after hemorrhage whereas activation of forebrain neurocircuits predominated after airpuff startle. In other regions, the magnitude of stressor-induced Fos-IR expression varied in a region-specific manner. When stressor exposure was preceded by administration of corticosterone to achieve levels within the physiological range after stressors, HPA axis responses were suppressed in response to the airpuff startle but not to either a small or moderate hemorrhage. IN CONCLUSION (1) fast-feedback mediated inhibition of HPA axis activity is critically dependent upon stressor modality; (2) this apparent selectivity is reflected by differences in the nature of the neurocircuitry mediating these stressors. It is suggested that determination of the central actions of glucocorticoids in mediating fast-feedback regulation of the HPA axis requires evaluation of the interactions between activated glucocorticoid receptors and intracellular signaling cascades evoked by convergent neuronal input.
Collapse
Affiliation(s)
- K V Thrivikraman
- Stress Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, WMB 4000, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
17
|
Buller KM, Smith DW, Day TA. Differential recruitment of hypothalamic neuroendocrine and ventrolateral medulla catecholamine cells by non-hypotensive and hypotensive hemorrhages. Brain Res 1999; 834:42-54. [PMID: 10407092 DOI: 10.1016/s0006-8993(99)01539-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We performed c-fos expression experiments in conscious rats to quantify the threshold and extent of activation of hypothalamic neuroendocrine cells in response to non-hypotensive and hypotensive hemorrhages allowing us to assess whether their pattern of recruitment corresponded to known oxytocin, vasopressin and ACTH release patterns. Also, because previous studies have implicated ventrolateral medulla catecholamine cells in the generation of certain hypothalamic neuroendocrine cell responses, we examined the response of ventrolateral medulla catecholamine cells to non-hypotensive and hypotensive hemorrhages and directly tested their role in regulating neuroendocrine cell responses to hypotensive hemorrhage. Animals were subjected to hemorrhages of 0, 4, 8, 12 or 16 ml/kg BW, the latter two levels being hypotensive. We found that only supraoptic nucleus vasopressin cells were significantly activated by the smallest non-hypotensive hemorrhage (4 ml/kg), which corresponds to reports that only vasopressin is released into the plasma after a small hemorrhage. Hypotensive hemorrhages resulted in significant recruitment of paraventricular and supraoptic oxytocin and vasopressin cells and parvocellular cells of the medial division of the paraventricular nucleus. Vasopressin cells were recruited in much greater numbers than oxytocin cells, which is in agreement with previous findings that there is a greater release of vasopressin than oxytocin into the plasma after hypotensive hemorrhage. In addition, medial parvocellular cells of the paraventricular nucleus, most likely to be tuberoinfundibular-projecting corticotropin-releasing factor cells, were activated by hypotensive hemorrhage only when arterial pressure dropped below 60 mmHg which also corresponds well with the plasma release response of ACTH. Ventrolateral medulla catecholamine cells were only recruited by hypotensive hemorrhages. While caution must be exercised in interpreting an absence of response, this certainly suggests that catecholamine cells are unlikely to have a role in the activation of supraoptic neurosecretory cells in response to non-hypotensive hemorrhages. Unilateral lesions of the ventrolateral medulla catecholamine cell column, corresponding primarily to the location of A1 noradrenergic cells, significantly reduced the hypotensive hemorrhage-induced activation of hypothalamic vasopressin, oxytocin and medial parvocellular paraventricular nucleus cells. This suggests that A1 noradrenergic cells contribute to the activation of these neuroendocrine cell populations, including oxytocin cells, which is an unexpected finding. More significantly, however, because the reduction in responsiveness after A1 lesions was similar for all cell categories, it seems likely that other factors must determine the differential recruitment of hypothalamic neuroendocrine cells in response to a hypotensive hemorrhage.
Collapse
Affiliation(s)
- K M Buller
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | |
Collapse
|
18
|
Wyss JM, Tilokskulchai K, King K, Kadish I, van Groen T. Distribution of neurons in the anterior hypothalamic nucleus activated by blood pressure changes in the rat. Brain Res Bull 1999; 49:163-72. [PMID: 10435779 DOI: 10.1016/s0361-9230(99)00046-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Electrophysiological and Fos-like protein immunocytochemical methods were used to identify the number and distribution of anterior hypothalamic neurons that are activated by changes in arterial pressure. First, in anesthetized, male Sprague-Dawley rats, arterial pressure increases and decreases led to differential activation of neurons in the anterior hypothalamic nucleus. Most of the units that responded to a rise in arterial pressure with a decrease in activity (pressor units) were located in the central part of the anterior hypothalamic nucleus, whereas units that increased firing when arterial pressure rose (the depressor units) were found throughout the nucleus. Second, in awake, male Sprague-Dawley rats, Fos-like protein immunoreactivity was mapped following sustained arterial pressure changes. Within the anterior hypothalamus, reduction in arterial pressure increased the number of Fos-labeled neurons primarily in the paraventricular nucleus and to a lesser extent in the anterior half of the anterior hypothalamic nucleus. In contrast, elevation in arterial pressure increased Fos labeling throughout the anterior hypothalamic nucleus and to a lesser extent in the paraventricular nucleus.
Collapse
Affiliation(s)
- J M Wyss
- Department of Cell Biology, University of Alabama at Birmingham, 35294-0019, USA.
| | | | | | | | | |
Collapse
|
19
|
Tassorelli C, Joseph SA, Buzzi MG, Nappi G. The effects on the central nervous system of nitroglycerin--putative mechanisms and mediators. Prog Neurobiol 1999; 57:607-24. [PMID: 10221784 DOI: 10.1016/s0301-0082(98)00071-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitroglycerin is an organic nitrate that has been used as a vasodilator in the treatment of cardiac diseases for over a century. Only recently it has been demonstrated that the vasodilator effect of this drug depends upon the formation of nitric oxide in the blood vessel wall. However, clinical and research data gathered during the last decades have suggested that nitroglycerin possesses, besides its peripheral vasodilator effect, additional, puzzling biological activities. This organic nitrate compound provokes reflex cardiovascular activities via its interaction with the central sympathetic system. Its cerebrovascular effect, on the other hand, is probably mediated by the local release of neuropeptides. The direct application of nitroglycerin onto brain nuclei causes a prompt increase in the neuronal discharge rate. From a neurological point of view, nitroglycerin consistently induces a specific headache attack in patients suffering from migraine. Because of its temporal pattern and clinical characteristics, nitroglycerin-induced headache cannot be solely ascribed to the a drug-induced vasorelaxation. The demonstration that systemic nitroglycerin administration activates a widespread set of vegetative, nociceptive and neuroendocrine structures in the central nervous system seems to further support the occurrence of central mechanisms in the biological activity of nitroglycerin. Double labeling immunocytochemical and neuropharmacological studies have provided information on the putative neurotransmitters and neurochemical mechanisms involved in nitroglycerin-induced neuronal activation.
Collapse
Affiliation(s)
- C Tassorelli
- Neurological Institute IRCCS C. Mondino, University of Pavia, Italy.
| | | | | | | |
Collapse
|
20
|
Abstract
Exposure to hostile conditions initiates the secretion of several hormones, including corticosterone/cortisol, catecholamines, prolactin, oxytocin, and renin, as part of the survival mechanism. Such conditions are often referred to as "stressors" and can be divided into three categories: external conditions resulting in pain or discomfort, internal homeostatic disturbances, and learned or associative responses to the perception of impending endangerment, pain, or discomfort ("psychological stress"). The hormones released in response to stressors often are referred to as "stress hormones" and their secretion is regulated by neural circuits impinging on hypothalamic neurons that are the final output toward the pituitary gland and the kidneys. This review discusses the forebrain circuits that mediate the neuroendocrine responses to stressors and emphasizes those neuroendocrine systems that have previously received little attention as stress-sensitive hormones: renin, oxytocin, and prolactin. Anxiolytic drugs of the benzodiazepine class and other drugs that affect catecholamine, GABAA, histamine, and serotonin receptors alter the neuroendocrine stress response. The effects of these drugs are discussed in relation to their effects on forebrain neural circuits that regulate stress hormone secretion. For psychological stressors such as conditioned fear, the neural circuits mediating neuroendocrine responses involve cortical activation of the basolateral amygdala, which in turn activates the central nucleus of the amygdala. The central amygdala then activates hypothalamic neurons directly, indirectly through the bed nucleus of the stria terminalis, and/or possibly via circuits involving brainstem serotonergic and catecholaminergic neurons. The renin response to psychological stress, in contrast to those of ACTH and prolactin, is not mediated by the bed nucleus of the stria terminalis and is not suppressed by benzodiazepine anxiolytics. Stressors that challenge cardiovascular homeostasis, such as hemorrhage, trigger a pattern of neuroendocrine responses that is similar to that observed in response to psychological stressors. These neuroendocrine responses are initiated by afferent signals from cardiovascular receptors which synapse in the medulla oblongata and are relayed either directly or indirectly to hypothalamic neurons controlling ACTH, prolactin, and oxytocin release. In contrast, forebrain pathways may not be essential for the renin response to hemorrhage. Thus current evidence indicates that although a diverse group of stressors initiate similar increases in ACTH, renin, prolactin, and oxytocin, the specific neural circuits and neurotransmitter systems involved in these responses differ for each neuroendocrine system and stressor category.
Collapse
Affiliation(s)
- L D Van de Kar
- Department of Pharmacology, Loyola University of Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, Illinois, 60153, USA.
| | | |
Collapse
|
21
|
Rowland NE. Brain mechanisms of mammalian fluid homeostasis: insights from use of immediate early gene mapping. Neurosci Biobehav Rev 1998; 23:49-63. [PMID: 9861612 DOI: 10.1016/s0149-7634(97)00068-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A comprehensive review of the literature through mid-1997 is presented on the application of immediate early gene mapping to problems related to brain mechanisms of fluid homeostasis and cardiovascular regulation in mammals. First, the basic mechanisms of fluid intake and the principles and pitfalls of immediate early gene mapping are briefly introduced. Then, data from several principal paradigms are reviewed. These include fluid deprivation and intracellular dehydration, both of which are associated with thirst and water intake. The contributions of peripheral sodium receptors, and of both hindbrain and forebrain integrative mechanisms are evaluated. Extracellular dehydration, and associated aspects of both thirst and sodium appetite are then reviewed. The contributions of both structures along the lamina terminalis and the hypothalamic magnocellular neurosecretory groups figure prominently in most of these paradigms. Effects of hypotension and hypertension are discussed, including data from the endogenous generation and the exogenous application of angiotensin II. Lastly, we summarize the contribution of the early gene mapping technique and consider briefly the prospects for new advances using this method.
Collapse
Affiliation(s)
- N E Rowland
- Department of Psychology, University of Florida, Gainesville 32611-2250, USA.
| |
Collapse
|
22
|
Thunhorst RL, Xu Z, Cicha MZ, Zardetto-Smith AM, Johnson AK. Fos expression in rat brain during depletion-induced thirst and salt appetite. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:R1807-14. [PMID: 9841553 DOI: 10.1152/ajpregu.1998.274.6.r1807] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of Fos protein (Fos immunoreactivity, Fos-ir) was mapped in the brain of rats subjected to an angiotensin-dependent model of thirst and salt appetite. The physiological state associated with water and sodium ingestion was produced by the concurrent subcutaneous administration of the diuretic furosemide (10 mg/kg) and a low dose of the angiotensin-converting enzyme (ACE) inhibitor captopril (5 mg/kg; Furo/Cap treatment). The animals were killed 2 h posttreatment, and the brains were processed for Fos-ir to assess neural activation. Furo/Cap treatment significantly increased Fos-ir density above baseline levels both in structures of the lamina terminalis and hypothalamus known to mediate the actions of ANG II and in hindbrain regions associated with blood volume and pressure regulation. Furo/Cap treatment also typically increased Fos-ir density in these structures above levels observed after administration of furosemide or captopril separately. Fos-ir was reduced to a greater extent in forebrain than in hindbrain areas by a dose of captopril (100 mg/kg sc) known to block the actions of ACE in the brain. The present work provides further evidence that areas of lamina terminalis subserve angiotensin-dependent thirst and salt appetite.
Collapse
Affiliation(s)
- R L Thunhorst
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242-1407, USA
| | | | | | | | | |
Collapse
|
23
|
Thrivikraman KV, Su Y, Plotsky PM. Patterns of Fos-Immunoreactivity in the CNS Induced by Repeated Hemorrhage in Conscious Rats: Correlations with Pituitary-Adrenal Axis Activity. Stress 1997; 2:145-158. [PMID: 9787263 DOI: 10.3109/10253899709014745] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While the present understanding of pituitary-adrenal function predicts attenuation of responses to a repeated stressor, experimental observations often show occurrence of potentiation rather than inhibition. The role of the CNS in this phenomenon was investigated in rats sustaining either a single (S-HEM) or a double episode (R-HEM) of hemorrhage. For S-HEM, blood was withdrawn over 3min and retransfused at 10min; for R-HEM, the stimulus was repeated at 90 min. S-HEM elicited 26- and 9-fold increases in circulating adrenocorticotropin (ACTH) and corticosterone, respectively. After R-HEM the plasma ACTH response was potentiated by 82%. Sixty min after S-HEM, Fos-like immunoreactivity (Fos-IR) was increased in medullary (solitary nucleus, NTS and ventrolateral medulla, VLM), pontine (locus coeruleus, LC and parabrachial nucleus, PBN), limbic (central amygdala, CNA and bed nucleus, BNST), and hypothalamic (supraoptic nucleus, SON and paraventricular nucleus, PVN) regions activated by hemodynamic stimuli. However after R-HEM, the Fos-IR response was significantly potentiated only in the VLM and PVN, while only a moderate increase was evident in the NTS. In other brain regions (LC, PBN, CNA, BNST, HPC and SON), Fos-IR either did not change or the increases were less than those observed after S-HEM. It is suggested that this plasticity in the pattern of neuronal activation following repetition of a stimulus may account for the maintenance of pituitary-adrenal secretory responses and its potentiation after R-HEM.
Collapse
Affiliation(s)
- KV Thrivikraman
- Stress Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322 U.S.A
| | | | | |
Collapse
|
24
|
Rocha MJ, Herbert H. Effects of anesthetics on Fos protein expression in autonomic brain nuclei related to cardiovascular regulation. Neuropharmacology 1997; 36:1779-81. [PMID: 9517451 DOI: 10.1016/s0028-3908(97)00143-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We tested the influence of urethane, chloral hydrate and a mixture of ketamine/xylazine on Fos protein expression in autonomic brain regions related to blood pressure. We conclude that ketamine/xylazine is a suitable anesthetic to be used in studies looking at c-fos expression in neural circuits serving cardiovascular regulation.
Collapse
Affiliation(s)
- M J Rocha
- Department of Physiology, University of Tübingen, Germany.
| | | |
Collapse
|
25
|
Luckman SM. Comparison of the expression of c-fos, nur77 and egr1 mRNAs in rat hypothalamic magnocellular neurons and their putative afferent projection neurons: cell- and stimulus-specific induction. Eur J Neurosci 1997; 9:2443-51. [PMID: 9464938 DOI: 10.1111/j.1460-9568.1997.tb01661.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypothalamic magnocellular neurons and their afferent inputs provide a model system in which to study the regulation of inducible transcription factors in the brain in vivo. Osmotic stimulation of rats produced by graded infusions of saline at different tonicities was found to lead to the induction of c-fos, nur77 and egr1 mRNAs in magnocellular neurons, as well as in putative afferent neurons, including those in structures of the forebrain (subfornical organ, median preoptic nucleus and organum vasculosum of the lamina terminalis). The results presented suggest that stronger levels of osmotic stimulation recruit additional afferents from the forebrain and brainstem that can act on magnocellular neurons via alternative receptors. A single systemic injection of the peptide cholecystokinin produced robust induction of c-fos and nur77 mRNAs in afferent neurons of the brainstem nucleus tractus solitarii and in magnocellular neurons. Despite the fact that these two neuronal populations are clearly electrically active, egr1 was not induced by this stimulus, providing examples of cell- and stimulus-specificity of its expression. This study re-emphasizes that the induction of transcription factors is largely dependent on the nature of the afferent input and does not correlate necessarily to the electrical activity of the neuron.
Collapse
Affiliation(s)
- S M Luckman
- Department of Neurobiology, The Babraham Institute, Cambridge, UK
| |
Collapse
|
26
|
Schiltz JC, Hoffman GE, Stricker EM, Sved AF. Decreases in arterial pressure activate oxytocin neurons in conscious rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:R1474-83. [PMID: 9362314 DOI: 10.1152/ajpregu.1997.273.4.r1474] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hemorrhage and nonhypotensive hypovolemia are known to increase plasma levels of oxytocin (OT) and vasopressin (VP) in rats. The present experiments demonstrated that secretion of OT and VP also are stimulated by acute drug-induced hypotension. Injection of hydralazine abruptly decreased arterial blood pressure in conscious rats and induced Fos expression, a marker of neuronal activation, within OT and VP neurons in the hypothalamus. Hydralazine also elicited substantial increases in plasma levels of both OT and VP. Injection of chlorisondamine similarly elicited acute hypotension and increased plasma levels of OT and VP. Furthermore, when the hypotensive effect of chlorisondamine was blunted by coinfusion of phenylephrine, the induced increases in OT and VP were markedly attenuated. Across all treatments, arterial blood pressure was inversely related to plasma levels of OT and VP. Plasma osmolality was not increased by hydralazine, nor was there evidence of gastric malaise, two known stimuli for OT secretion in rats. These results suggest that arterial hypotension increases neurohypophysial release of OT and VP in conscious rats.
Collapse
Affiliation(s)
- J C Schiltz
- Department of Neuroscience, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
27
|
Krukoff TL, Mactavish D, Jhamandas JH. Activation by hypotension of neurons in the hypothalamic paraventricular nucleus that project to the brainstem. J Comp Neurol 1997; 385:285-96. [PMID: 9268128 DOI: 10.1002/(sici)1096-9861(19970825)385:2<285::aid-cne7>3.0.co;2-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To investigate the involvement of neuronal nitric oxide (NO) in the response of the brain to changes in blood pressure, we studied the activation of putative NO-producing neurons in the paraventricular nucleus of the hypothalamus (PVN) in rats whose mean arterial pressures (MAPs) were decreased by 40-50% with hemorrhage (HEM) or infusion of sodium nitroprusside (NP). Activation was assessed on the basis of expression of the immediate early gene, c-fos; putative NO-producing neurons were identified with the histochemical stain for nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d); and the proportions of neurons projecting to the nucleus of the tractus solitarius (NTS) and/or caudal ventrolateral medulla (CVLM) were determined with retrograde tracing techniques. No differences were found for results obtained from HEM and NP animals. Three to four percent of activated PVN neurons projected to the NTS or CVLM. Conversely, approximately 33% and 16% of neurons projecting to the NTS and CVLM, respectively, were activated. About 43% of NADPH-d neurons in the PVN were activated. Of PVN neurons projecting to the NTS or CVLM, 38% and 32%, respectively, were NADPH-d positive. About 11% of NADPH-d PVN neurons projected to the NTS or CVLM. An average of 3 NADPH-d neurons per section were activated and projected to either target. Finally, 7 PVN cells per section sent collateral branches to the NTS and CVLM; 2 or 3 of these cells per section were also activated by decreases in arterial pressure. No NADPH-d cells were found that sent collateral branches to the NTS and CVLM. This study shows that decreases in MAP activate PVN neurons that project, singly and through collaterals, to the NTS and CVLM. A relatively high proportion of the singly projecting neurons is NADPH-d positive. These results support the contention that descending projections from the PVN to the brainstem play an important role in the physiological response to decreases in arterial pressure and suggest that NO may participate in this response.
Collapse
Affiliation(s)
- T L Krukoff
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
28
|
Potts PD, Polson JW, Hirooka Y, Dampney RA. Effects of sinoaortic denervation on Fos expression in the brain evoked by hypertension and hypotension in conscious rabbits. Neuroscience 1997; 77:503-20. [PMID: 9472407 DOI: 10.1016/s0306-4522(96)00459-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have previously shown [Li and Dampney (1994) Neuroscience 61, 613-634] that periods of sustained hypertension and hypotension each induces a distinctive and reproducible pattern of neuronal expression of Fos (a marker of neuronal activation) in specific regions of the brainstem and forebrain of conscious rabbits. The aim of this study was to determine the contribution of afferent inputs from arterial baroreceptors to the activation of neurons in these various brain regions that is caused by a sustained change in arterial pressure. Experiments were carried out on rabbits in which the carotid sinus and aortic depressor nerves were cut in a preliminary operation. Following a recovery period of seven to 10 days, a moderate hypertension or hypotension (increase or decrease in arterial pressure of 20-30 mmHg) was induced in conscious barodenervated rabbits for 60 min by the continuous infusion of phenylephrine or sodium nitroprusside, respectively. In control experiments, barodenervated rabbits were subjected to the identical procedures except that they were infused with the vehicle solution alone. Compared with the effects seen in barointact rabbits, [Li and Dampney (1994) Neuroscience 61, 613-634] the number of neurons that expressed Fos in response to hypertension was reduced by approximately 90% in the nucleus of the solitary tract and in the caudal and intermediate parts of the ventrolateral medulla. In supramedullary regions, baroreceptor denervation resulted in a reduction of approximately 60% in hypertension-induced Fos expression in the central nucleus of the amygdala and in the bed nucleus of the stria terminalis, but no significant reduction in the parabrachial complex in the pons. Following hypotension, the number of neurons that expressed Fos in barodenervated rabbits, compared with barointact rabbits, [Li and Dampney (1994) Neuroscience 61, 613-634] was reduced by approximately 90% in the nucleus of the solitary tract, area postrema, and caudal, intermediate and rostral parts of the ventrolateral medulla. Baroreceptor denervation also resulted in a similar large reduction in hypotension-induced Fos expression in many supramedullary regions (locus coeruleus, midbrain periaqueductal grey, hypothalamic paraventricular nucleus, and in the central nucleus of the amygdala and the bed nucleus of the stria terminalis in the basal forebrain). In the supraoptic nucleus, hypotension-induced Fos expression in barodenervated rabbits was reduced by 75% compared to barointact animals, but was still significantly greater than in control animals. There was also a high level of Fos expression, much greater than in control animals, in the circumventricular organs surrounding the third ventricle (subfornical organ and organum vasculosum lamina terminalis). The results indicate that in conscious rabbits the activation of neurons that occurs in several discrete regions at all levels of the brain following a sustained change in arterial pressure is largely dependent upon inputs from arterial baroreceptors, with the exception of neurons in the circumventricular organs surrounding the third ventricle that are activated by sustained hypotension. The latter group of neurons are known to project to vasopressin-secreting neurons in the supraoptic nucleus, and may therefore via this pathway trigger the hypotension-induced release of vasopressin that occurs in the absence of baroreceptor inputs.
Collapse
Affiliation(s)
- P D Potts
- Department of Physiology, University of Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
29
|
Bon K, Lantéri-Minet M, de Pommery J, Michiels JF, Menétrey D. Cyclophosphamide cystitis as a model of visceral pain in rats: minor effects at mesodiencephalic levels as revealed by the expression of c-fos, with a note on Krox-24. Exp Brain Res 1997; 113:249-64. [PMID: 9063711 DOI: 10.1007/bf02450323] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The evoked expression of the immediate-early gene-encoded proteins c-Fos and Krox-24 was used to study activation of mesodiencephalic structures as a function of the development of cyclophosphamide (CP) cystitis in behaving rats. This article is the third of a series and completes previously published data obtained at both spinal and hindbrain levels. CP-injected animals received a single dose of 100 mg/kg i.p. under transient volatile anesthesia and survived for 1-4 h in order to cover the entire postinjection period during which the disease develops. Survival times longer than 4 h were not used owing to ethical considerations. Results from CP-injected groups are compared with those from either noninjected controls or saline-injected animals having survived for the same times as CP-injected ones. Quantitative results come from c-fos expression. At mesodiencephalic levels a high and widespread basal c-fos expression was observed in control animals; maximum staining was observed at the midthalamic level. Four groups of nuclei were identified with regard to the density of staining. The first group included nuclei showing clustered, intensely labeled cells; these areas were restricted in extent and related to the maintenance of circadian rythms (intergeniculate leaf, suprachiasmatic nucleus, dorsal parts of either paraventricular thalamic nuclei or central gray), sleep-arousal cycle (supramamillary nucleus), or changes in arterial pressure (laterodorsal tegmental nucleus). The second group included nuclei showing scattered, moderately labeled cells; these areas were widespread at all rostrocaudal levels and related to either autonomic/neuroendocrine regulations (central gray, lateral habenula, hypothalamus) or motor behavior, orienting reflex and oculomotor coordination (unspecific subdivisions of both colliculi and their adjoining mesencephalic regions, zona incerta dorsal). The third group included nuclei with evenly distributed, faintly labeled cells; these areas, which, with few exceptions, covered almost the entire diencephalon, mainly concerned nuclei of multisensory convergence having functions in either discriminative tasks (laterodorsal and lateroposterior thalamic nuclei) or emotional responses (intralaminar and midline thalamic nuclei). The fourth group included nuclei free of labeling; these were areas that received the bulk of unimodal sensory/motor inputs (central inferior colliculus, pretectal optic nuclei, ventral medial geniculate nucleus, ventral anterior pretectal nucleus, dorsal lateral geniculate nucleus, ventrobasal complex; zona incerta ventral, parafascicular thalamic nucleus) and are thus the most discriminative regarding specific modalities. Variations in staining were of the same magnitude in both saline- and CP-injected animals. A sequential study spanning every postinjection hour revealed maximum staining at 1 h postinjection, which was followed by a progressive, time-related decrease. Increases in the number of labeled cells 1 h postinjection were significant in only a restricted number of nuclei showing low basal expression (Edinger-Westphal nucleus and paraventricular, supraoptic, and lateral hypothalamic nuclei); time-related reductions in staining that were correlated to sleep or quiescence behaviors finally resulted in staining equal to or below that seen in control animals. No structures showed significantly increased staining in relation to the full development of cystitis, i.e., with the increase of visceronociceptive inputs. Comparing the present results with those previously obtained at more caudal levels, it appears that subtelencephalic levels primarily driven by visceronociceptive inputs, i.e., those that increase and/or maintain their activity in parallel with the degree of nociception, are confined to brainstem-spinal cord junction levels and only comprise certain subdivisions of the nucleus of the solitary tract (nucleus medialis, nucleus commissuralis, and ventralmost part of area po
Collapse
Affiliation(s)
- K Bon
- Institut National de la Santé et de la Recherche Médicale Unité 161, Paris, France
| | | | | | | | | |
Collapse
|
30
|
Luckman SM, Dye S, Cox HJ. Induction of members of the Fos/Jun family of immediate-early genes in identified hypothalamic neurons: in vivo evidence for differential regulation. Neuroscience 1996; 73:473-85. [PMID: 8783263 DOI: 10.1016/0306-4522(96)00076-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In situ hybridization was used to measure the expression of members of the Fos/Jun family of immediate-early genes in hypothalamic neurons in vivo following defined stimuli that utilize different afferent pathways. Only c-jun messenger RNA was expressed in the hypothalamic supraoptic and paraventricular nuclei of control animals. Intravenous infusions of sodium chloride solutions of different tonicity produced a range of plasma osmolalities within physiological limits. While the induction of c-fos and jun B messenger RNAs followed the stimulus intensity, the expression of c-jun was repressed at low levels of stimulation. A higher level of osmotic stimulation was able to co-induce c-jun with the c-fos, jun B and fos B genes, suggesting that other signalling pathways may then be activated. Parturition or systemic administration of cholecystokinin, that activate supraoptic and paraventricular neurons via ascending afferent pathways from the brainstem, both induced c-fos, but not the other genes, in the magnocellular nuclei. Use of double in situ hybridization confirmed that, unlike with osmotic stimulation, induction of c-fos only occurred in oxytocin neurons. These two stimuli did not cause a concomitant repression of c-jun messenger RNA expression in magnocellular oxytocin neurons. These patterns of induction provide evidence for the differential regulation of members of this family of genes in a physiological context.
Collapse
Affiliation(s)
- S M Luckman
- Department of Neurobiology, Babraham Institute, Cambridge, U.K
| | | | | |
Collapse
|
31
|
Xiong JJ, Hatton GI. Differential responses of oxytocin and vasopressin neurons to the osmotic and stressful components of hypertonic saline injections: a Fos protein double labeling study. Brain Res 1996; 719:143-53. [PMID: 8782874 DOI: 10.1016/0006-8993(95)01466-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Expression of Fos protein, detected immunocytochemically, was used to assess the relative responses of supraoptic nucleus (SON) oxytocin- (OX) and vasopressin- (VP) containing neurons to the osmotic vs. the osmotic plus stressful components of intraperitoneal hypertonic saline injections. The percentage of SON neurons showing Fos-like immunoreactivity (Fos-ir) was quantified for rats receiving general anesthesia only, anesthesia 1 h prior to either isotonic or hypertonic saline injection or no anesthesia prior to hypertonic injection. Hypertonic saline injection with and without anesthesia induced Fos-ir in 66% and 77% of SON neurons, respectively, whereas isotonic saline with anesthesia and anesthesia alone resulted in 15% and 13%, respectively, of cells showing Fos-ir. Double labeling for Fos-ir and either OX-ir or VP-ir resulted in quantitatively different responses to hypertonic injections with and without anesthesia in OX-ir and VP-ir neurons. The VP-ir neuronal response was similar under the two conditions: 49% and 48% of VP cells displaying Fos-ir with and without prior anesthesia, respectively. By contrast, a higher percentage of OX-ir neurons was found to exhibit Fos-ir without (68%) than with (53%) anesthesia. Thus, a greater percentage of neurons was induced to express Fos-ir when the stressful components of the hypertonic injection were unattenuated by anesthesia, and this difference was entirely due to increased numbers of responding OX neurons. These data indicate that, under these experimental conditions, SON OX neurons respond in larger numbers to the osmotic components of hypertonic saline injections and have a greater responsiveness than do VP neurons to the stressful components.
Collapse
Affiliation(s)
- J J Xiong
- Department of Neuroscience, University of California, Riverside 92521, USA
| | | |
Collapse
|
32
|
Hochstenbach SL, Ciriello J. Effect of lesions of forebrain circumventricular organs on c-fos expression in the central nervous system to plasma hypernatremia. Brain Res 1996; 713:17-28. [PMID: 8724971 DOI: 10.1016/0006-8993(95)01425-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Experiments were carried out on conscious adult male Wistar rats to investigate the effect of selective ablation of the subfornical organ (SFO), and/or the anteroventral third ventricular (AV3V) region on the induction of Fos in central structures in response to plasma hypernatremia. Fos induction, detected immunohistochemically, was used as a marker for neuronal activation. Intravenous infusions of hypertonic saline resulted in dense Fos-like immunoreactivity in several forebrain (paraventricular nucleus of the hypothalamus (PVH), supraoptic nucleus (SON), median preoptic nucleus (MnPO), medial preoptic nucleus, organum vasculosum of the laminae terminalis and (SFO) and brainstem (nucleus of the solitary tract, ventrolateral medulla, and parabrachial nucleus) structures. Intravenous infusions of the hypertonic saline solution into animals with lesions of either the SFO, the AV3V or both resulted in a decreased number of Fos-like immunoreactive neurons in the MnPO, PVH and SON. In addition, the number of Fos-labeled neurons in the SON after lesions of both the SFO and the AV3V was significantly greater than that observed in isotonic saline infused controls. Finally, lesions of the forebrain circumventricular structures did not alter the Fos labeling in brainstem structures as a result of the infusion of the hypertonic solution. These data suggest that changes in plasma osmolality and/or concentration of sodium alter the activity of SON and brainstem neurons in the absence of afferent inputs from the SFO and AV3V.
Collapse
Affiliation(s)
- S L Hochstenbach
- Department of Physiology, University of Western Ontario, London, Canada
| | | |
Collapse
|
33
|
Ruggiero DA, Tong S, Anwar M, Gootman N, Gootman PM. Hypotension-induced expression of the c-fos gene in the medulla oblongata of piglets. Brain Res 1996; 706:199-209. [PMID: 8822357 DOI: 10.1016/0006-8993(95)01173-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neural networks that mediate the reflex response to baroreceptor withdrawal were explored in Sus scrofa. Induction of c-fos was used as a monitor of synaptic activity in response to hypotension sustained by systemic administration of a peripheral vasodilator, sodium nitroprusside. Patterns of c-fos gene expression were compared between Saffan-anesthetized experimental animals and age-matched normotensive controls administered vehicle. Effects of other variables were controlled including 1 h preoperative accommodation to the novel environment, anesthesia, blood gases and pH. Identical post-stimulus survival periods were allowed for accumulation of transcript. The c-fos protein, Fos, was identified immunocytochemically with two rabbit antisera raised against amino acids 1-131 of Fos or residues 4-17 of synthetic human transcript. Fos was identified in catecholaminergic neurons labeled with an antiserum to tyrosine hydroxylase (TH). Fos was induced in the nucleus tractus solitarii (NTS) of hypotensive piglets. Neurons encoding Fos matched projection patterns of first order visceral afferents. Induction was prominent in the dorsolateral nucleus coinciding with the baroreceptor field. Indices of increased neuronal activity were evident in other baroreceptor terminal sites, e.g., medial subnucleus, the medial commissural field, the intermediate subnucleus and a ventral A2 noradrenergic area. In reticular formation c-fos protein was induced in circumscribed columns in the lateral tegmental field (LTF) extending from facial nucleus to calamus scriptorius. Catecholaminergic (TH-positive) neurons expressed Fos in the porcine C1 and A1 areas of ventrolateral medulla. Fos was also induced in a dorsal intermediate reticular zone of LTF. Minor or inconsistent differences between experimental and control were observed in nucleus raphe pallidus, rostral paramedian reticular formation, upper thoracic intermediolateral cell column, and stellate ganglia. In conclusion, baroreceptor withdrawal in young animals induced patterns of neuronal response along established cardiovascular reflex pathways.
Collapse
Affiliation(s)
- D A Ruggiero
- Department of Neurology and Neuroscience, Cornell University College of Medicine, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
34
|
Rowland NE, Fregly MJ, Rozelle AK, Morien A. Relationship between the drinking response to angiotensin II and induction of Fos in the brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 396:113-9. [PMID: 8726691 DOI: 10.1007/978-1-4899-1376-0_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- N E Rowland
- Department of Psychology, University of Florida, Gainesville 32611-2250, USA
| | | | | | | |
Collapse
|
35
|
Abstract
In this study, we carried out an immunohistochemical evaluation of the neurochemical characteristics of neurons that are activated (i.e., express Fos protein) in response to systemic administration of nitroglycerin. In the brain stem, a significant percentage of activated neurons contained noradrenaline as a neurotransmitter, whereas only a few of them contained serotonin. In the paraventricular and supraoptic nuclei of the hypothalamus, numerous Fos-immunoreactive neurons were also positive for vasopressin, oxytocin, and corticotropin-releasing factor. Codistribution with corticotropin-releasing factor was also observed in the central nucleus of the amygdala. Our findings point out a prominent role for catecholaminergic and peptidergic pathways in the brain in response to systemic nitroglycerin.
Collapse
Affiliation(s)
- C Tassorelli
- Neurological Institute C. Mondino, University of Pavia, Italy
| | | |
Collapse
|
36
|
Krukoff TL, MacTavish D, Harris KH, Jhamandas JH. Changes in blood volume and pressure induce c-fos expression in brainstem neurons that project to the paraventricular nucleus of the hypothalamus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 34:99-108. [PMID: 8750865 DOI: 10.1016/0169-328x(95)00142-f] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Immunohistochemistry for c-fos was combined with retrograde tracing techniques to study the effects of acute reductions in arterial blood pressure due to hemorrhage (HEM) in conscious rats on activated neurons in the brainstem nucleus of the tractus solitarius (NTS) or ventrolateral medulla (VLM) which project to the paraventricular nucleus (PVN) of the hypothalamus. In an attempt to separate blood pressure effects from those associated with changes in blood volume, a similar approach was used to study the effects of drug-evoked hypotension using peripheral infusions of sodium nitroprusside (NP). Few differences were found in patterns or numbers of activated neurons (Fos-immunoreactive) in the NTS or VLM after HEM or NP treatment; only in the NTS at the level of the area postrema were significantly higher numbers of neurons that expressed Fos found in NP rats. In addition, a large proportion of PVN-projecting neurons in the NTS and VLM was activated whereas many activated neurons in the NTS and VLM did not project to the PVN. These results show that a decrease in blood pressure leads to the activation of NTS and VLM neurons but that a change in blood volume does not activate significantly greater numbers of neurons in these areas that project to the PVN or to other targets. Whereas substantial numbers of neurons in the NTS and VLM appear to transmit cardiovascular information to the PVN, many others likely transmit this information to other central targets.
Collapse
Affiliation(s)
- T L Krukoff
- Department of Anatomy and Cell Biology, University of Alberta, Canada
| | | | | | | |
Collapse
|
37
|
Noradrenaline as a putative neurotransmitter mediating hypotension-induced Fos-like immunoreactivity in the supraoptic nucleus of the rat. Cell Res 1995. [DOI: 10.1038/cr.1995.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
38
|
Graham JC, Hoffman GE, Sved AF. c-Fos expression in brain in response to hypotension and hypertension in conscious rats. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1995; 55:92-104. [PMID: 8690857 DOI: 10.1016/0165-1838(95)00032-s] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hypotension- and hypertension-evoked expression of the protein product, Fos, of the immediate early gene c-fos was assessed throughout the rat brain as an approach for describing the neuronal populations that respond to alterations in arterial blood pressure. Conscious, chronically catheterized rats were treated with the vasoconstricting drug phenylephrine or the vasodilatating drug hydralazine to increase or decrease, respectively, arterial pressure by approx. 40 mm Hg for 90 min. Rats were then anesthetized, fixed by vascular perfusion, and sections representing the entire brain were processed for the immunocytochemical localization of Fos. In control rats treated with isotonic saline, few Fos-positive neurons were observed. In contrast, phenylephrine and hydralazine treatments resulted in different, yet reproducible, patterns of Fos expression in the brain, with hydralazine evoking Fos expression in more brain regions than phenylephrine. Brain regions containing Fos-positive neurons in rats treated with hydralazine included nucleus tractus solitarius, area postrema, caudal ventrolateral medulla, rostral ventrolateral medulla, bed nucleus of the stria terminalis, amygdala, paraventricular nucleus, supraoptic nucleus, subfornical organ and the Islands of Calleja. The nucleus tractus solitarius, paraventricular nucleus and the amygdala also contained Fos-positive neurons in phenylephrine-treated rats, although the number of Fos-positive neurons was always less than that noted in the hydralazine-treated rats and the location of Fos-positive neurons within these regions tended to differ between treatments. These results generally fit within an emerging understanding of brain circuitry underlying cardiovascular regulation.
Collapse
Affiliation(s)
- J C Graham
- Department of Neuroscience, University of Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
39
|
Shen E, Sun X. Endogenous acetylcholine-induced Fos expression in magnocellular neurosecretory neurons in the supraoptic nucleus of the rat hypothalamus. Neurosci Lett 1995; 195:191-4. [PMID: 8584207 DOI: 10.1016/0304-3940(95)11816-f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Induction of c-Fos expression in the supraoptic nucleus (SON) of the rat hypothalamus by endogenous acetylcholine was examined by microinfusion of neostigmine, a cholinesterase inhibitor, into the nucleus to locally accumulate the spontaneously released acetylcholine from the cholinergic terminals in the SON. Double staining of the neurosecretory neurons with antiserum to Fos, the protein product of c-Fos, and antiserum to vasopressin or oxytocin was performed. Fos-like immunoreactivity was manifested in both the vasopressin neurons and oxytocin neurons following the microinfusion of neostigmine. Microinfusion of nicotinic agonist, nicotine, to the SON also induced Fos expression, but mainly in the vasopressin neurons. Microinfusion of muscarinic agonist, carbachol, induced Fos expression as well, but mostly in the oxytocin neurons.
Collapse
Affiliation(s)
- E Shen
- Shanghai Brain Research Institute, China
| | | |
Collapse
|
40
|
Harding AJ, Ng JL, Halliday GM, Oliver J. Comparison of the number of vasopressin-producing hypothalamic neurons in rats and humans. J Neuroendocrinol 1995; 7:629-36. [PMID: 8704737 DOI: 10.1111/j.1365-2826.1995.tb00801.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The aim of this study was to assess the number and proportion of vasopressin-producing neurons in the hypothalamic magnocellular nuclei in rats and humans. Accurate and unbiased neuronal counts were estimated using the optical disector method. Arginine vasopressin-containing neurons were immunohistochemically visualized in formalin-fixed tissue sections. The magnocellular neurons were similar in size and morphology in both species. While the human hypothalamus contained significantly more vasopressin-containing neurons compared with the rat (36-fold increase), the proportion of vasopressin-containing neurons between species was similar. In both species, the majority of supraoptic neurons contained vasopressin, however the proportion of vasopressin-containing neurons in the human paraventricular nucleus was double that of the rat (nearly a 100-fold increase in number). These results suggest that the paraventricular nucleus contributes significantly to the release of vasopressin from the posterior pituitary in humans, whereas in rats vasopressin is mainly released by supraoptic neurons.
Collapse
Affiliation(s)
- A J Harding
- Department of Pathology, University of Sydney, NSW, Australia
| | | | | | | |
Collapse
|
41
|
Abstract
Rats were either depleted of sodium by treatment with a diuretic or were made hypovolemic by injection of polyethylene glycol (PEG) and their brains were subsequently examined for induction of Fos-like immunoreactivity (FLI). FLI was observed in the lamina terminalis (LT) after both treatments; FLI was observed in the magnocellular neurosecretory hypothalamic areas only after PEG. Implications of these data for brain substrates of sodium appetite are discussed.
Collapse
Affiliation(s)
- L Han
- Department of Psychology, University of Florida, Gainesville 32610-2250, USA
| | | |
Collapse
|
42
|
Petrov T, Harris KH, MacTavish D, Krukoff TL, Jhamandas JH. Hypotension induces Fos immunoreactivity in NADPH-diaphorase positive neurons in the paraventricular and supraoptic hypothalamic nuclei of the rat. Neuropharmacology 1995; 34:509-14. [PMID: 7566485 DOI: 10.1016/0028-3908(95)00002-n] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Double staining for Fos and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-D) was used to study the distribution of activated neurons that synthesize nitric oxide in the paraventricular (PVN) and supraoptic nuclei (SON) following hypotensive stimulation in conscious rats. Fos was detected in many magno- and parvocellular NADPH-D positive neurons in response to haemorrhage or drug-evoked hypotension using i.v. infusions of sodium nitroprusside. However, quantitative analysis did not reveal any differences in the number of Fos positive PVN neurons following either mode of stimulation. These results suggest that a subpopulation of hypothalamic NADPH-D positive neurons is activated following hypotensive challenge. This activation of NADPH-D neurons may occur indirectly through other CNS structures that influence the excitability of hypothalamic SON and PVN. Furthermore, the lack of a difference in activated neurons within the PVN following either haemorrhage or nitroprusside infusion suggests that while a drop in blood pressure causes activation of neurons that produce nitric oxide, a decrease in blood volume, which accompanies haemorrhage, does not.
Collapse
Affiliation(s)
- T Petrov
- Department of Anatomy, Neurology Faculty of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
43
|
Abstract
Rats were allowed to eat a meal (chow or cracker) of approximately normal spontaneous size either with or without water available. They were then sacrificed for measurement of either plasma renin activity (PRA) and gut contents at the end of the meal or Fos-immunoreactivity (FLI) in brain 1 h after the meal. PRA was doubled at the end of the meal relative to unfed controls, and this coincided with translocation of fluid into the gut. The supraoptic and magnocellular paraventricular nuclei showed meal-related FLI. The intensity of the FLI was related to meal size, and was less prominent in rats eating moist food. This study shows that normal-sized meals produce detectable changes in fluid parameters and activate brain locations known to be related to primary stimuli of drinking.
Collapse
Affiliation(s)
- N E Rowland
- Department of Psychology, University of Florida, Gainesville 32611-2250, USA
| |
Collapse
|
44
|
Bagdan B, Pittman QJ. Responses of electrophysiologically identified rat paraventricular neurons to cholecystokinin and other stimuli. Neuroscience 1995; 65:869-78. [PMID: 7609884 DOI: 10.1016/0306-4522(94)00547-i] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Extracellular recordings were carried out in the paraventricular nucleus of halothane-anesthetized male rats. Responses of neurons identified by antidromic criteria with projections to the nucleus tractus solitarius or to the ventral lateral medulla were compared to those of neurohypophysial neurons following alterations in blood pressure and osmolarity, hemorrhage and after intravenous injection of cholecystokinin. Neurohypophysial neurons displayed the well-described responses to blood pressure for putative vasopressin neurons and increases in excitability after cholecystokinin for putative oxytocin neurons. Twenty per cent of the ventral lateral medulla-projecting neurons were responsive to cardiovascular perturbations, with these displaying reduced activity after either decreases or increases in blood pressure. None of nine neurons projecting to the ventral lateral medulla responded to i.v. cholecystokinin. Two of 20 nucleus tractus solitarius-projecting neurons showed reduced activity after cholecystokinin and none increased their firing rate. Nitroprusside-induced hypotension was associated with reduced activity in 10% of this population. Three neurons displayed axon projections to both pituitary and medulla; two of these which projected to the nucleus tractus solitarius were activated by cholecystokinin. We conclude that some of the paraventricular nucleus neurons projecting to the medulla respond to recognized cardiovascular stimuli for neurohypophysial neurons, but neurons in these populations are generally unresponsive to cholecystokinin. The former group of neurons may act to coordinate autonomic and endocrine responses to cardiovascular perturbation; however, there may be other stimuli, such as cholecystokinin, which act only on one of the populations of paraventricular nucleus neurons. Furthermore, many neurons in the descending pathways may respond to stimuli not presently associated with activation of magnocellular neurons.
Collapse
Affiliation(s)
- B Bagdan
- Neuroscience Research Group, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | |
Collapse
|
45
|
Fénelon VS, Theodosis DT, Poulain DA. Fos synthesis in identified magnocellular neurons varies with phenotype, stimulus, location in the hypothalamus and reproductive state. Brain Res 1994; 662:165-77. [PMID: 7859070 DOI: 10.1016/0006-8993(94)90809-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study compared Fos expression in identified hypothalamic magnocellular neurons in lactating and non-lactating female rats submitted to acute haemorrhage or 24 h of water deprivation, stimuli that induce the release of both oxytocin and vasopressin. Quantitative analysis of preparations doubly immunostained for Fos and either of the neuropeptides revealed that oxytocin and vasopressin neurons synthesise Fos in response to either stimulus but to a different degree, depending on the type of neuron, the type of stimulus, the location of the neurons and the reproductive state of the animal. Thus, in terms of number of cells, haemorrhage was significantly more potent than water deprivation in inducing Fos immunoreactivity in either type of neuron in the supraoptic, paraventricular and anterior commissural nuclei. However, the Fos reaction of vasopressin cells in response to either stimulus was greater than that of oxytocin cells in the supraoptic and paraventricular nuclei, and in the perifornical posterior nucleus and nucleus circularis in response to water deprivation. Moreover, when considering each neuronal population as a whole, it was obvious that Fos synthesis varied in relation to the location of the neurons in the different hypothalamic nuclei, suggesting the existence of functionally distinct neuronal subgroups. Finally, our analyses clearly indicated that Fos synthesis in either type of magnocellular neuron was closely linked to the reproductive state of the animal since after haemorrhage or water deprivation, the number of Fos-positive oxytocin cells in the supraoptic nucleus and Fos-positive vasopressin cells in the paraventricular nucleus was significantly less in lactating than in virgin rats.
Collapse
Affiliation(s)
- V S Fénelon
- INSERM U. 378, Université de Bordeaux II, France
| | | | | |
Collapse
|
46
|
Chan RK, Sawchenko PE. Spatially and temporally differentiated patterns of c-fos expression in brainstem catecholaminergic cell groups induced by cardiovascular challenges in the rat. J Comp Neurol 1994; 348:433-60. [PMID: 7844257 DOI: 10.1002/cne.903480309] [Citation(s) in RCA: 259] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Brainstem catecholaminergic neurons have been implicated as mediating adaptive autonomic and neuroendocrine responses to cardiovascular challenges. To clarify the nature of this involvement, immuno- and hybridization histochemical methods were used to follow c-fos expression in these neurons in response to acute stimuli that differentially affect blood pressure and volume. From low basal levels, hypotensive hemorrhage (15%) provoked a progressive increase in the number and distribution of Fos-immunoreactive (ir) nuclei in the nucleus of the solitary tract (NTS), the A1 and C1 cell groups of the ventrolateral medulla, and in the pontine A5, locus coeruleus, and lateral parabrachial cell groups peaking at 2.0-2.5 hours after the challenge. Fos-ir ventrolateral medullary neurons, subsets of which were identified as projecting to the paraventricular hypothalamic nucleus or spinal cord, were predominantly aminergic, whereas most of those in the NTS were not. Infusion of an angiotensin II antagonist blunted hemorrhage-induced Fos expression in the area postrema, and attenuated that seen elsewhere in the medulla and pons. Nitroprusside-induced isovolemic hypotension yielded a pattern of c-fos induction similar to that seen following hemorrhage, except in the area postrema and the A1 cell group, where the response was muted or lacking. Phenylephrine-induced hypertension stimulated a restricted pattern of c-fos expression, largely limited to induced hypertension stimulated a restricted pattern of c-fos expression, largely limited to non-aminergic neurons, whose distribution in the NTS conformed to the termination patterns of primary baroreceptor afferents, and in the ventrolateral medulla overlapped in part with those of vagal cardiomotor and depressor neurons. These findings underscore the importance of brainstem catecholaminergic neurons in effecting integrated homeostatic responses to cardiovascular challenges and their ability to responding strategically to specific modalities of cardiovascular information. They also foster testable predictions as to effector neuron populations that might be recruited to respond to perturbations in individual circulatory parameters.
Collapse
Affiliation(s)
- R K Chan
- Laboratory of Neuronal Structure and Function, Salk Institute for Biological Studies, La Jolla, California 92037
| | | |
Collapse
|
47
|
Li YW, Dampney RA. Expression of Fos-like protein in brain following sustained hypertension and hypotension in conscious rabbits. Neuroscience 1994; 61:613-34. [PMID: 7969933 DOI: 10.1016/0306-4522(94)90439-1] [Citation(s) in RCA: 225] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The purpose of this study was to examine comprehensively and quantitatively the effects of sustained hypertension and hypotension on neuronal expression of Fos, the protein product of the proto-oncogene c-fos, in the brain of conscious rabbits. Hypertension or hypotension was produced by continuous intravenous infusion of phenylephrine or nitroprusside, at a rate sufficient to increase or decrease, respectively, arterial pressure by 20-30 mmHg, maintained for a period of 60 min. In comparison with a sham control group of rabbits that were infused with the vehicle solution alone, hypertension induced a significant increase in Fos immunoreactivity in the area postrema, the nucleus tractus solitarii, the caudal and intermediate ventrolateral medulla, the lateral parabrachial nucleus and the central nucleus of the amygdala. Double-labelling for tyrosine hydroxylase and Fos immunoreactivity showed that few (approximately 5%) of the Fos-positive neurons in the caudal and intermediate ventrolateral medulla in this group of animals were also positive for tyrosine hydroxylase. Hypotension also produced a significant increase in Fos immunoreactivity in the above regions, as well as in the rostral ventrolateral medulla, the A5 area, the locus coeruleus and subcoeruleus, the paraventricular nucleus, the supraoptic nucleus, the arcuate nucleus and the medial preoptic area. Approximately 65% of neurons in the rostral, intermediate and caudal ventrolateral medulla that expressed Fos following hypotension were also positive for tyrosine hydroxylase. Similarly, in the pons, approximately 75% of Fos-positive cells in the locus coeruleus, subcoeruleus and A5 area were positive for tyrosine hydroxylase. In the hypothalamus, 92% of Fos-positive neurons in the supraoptic nucleus, and 37% of Fos-positive neurons in the paraventricular nucleus, were immunoreactive for vasopressin. Our results demonstrate that hypertension and hypotension induce reproducible and specific patterns of Fos expression in the brainstem and forebrain. The distribution patterns and chemical characteristics of Fos-positive neurons following sustained hypertension or hypotension are significantly different. In particular, hypotension, but not hypertension, caused Fos expression in many tyrosine hydroxylase-positive cells within all pontomedullary catecholamine cell groups.
Collapse
Affiliation(s)
- Y W Li
- Department of Physiology, University of Sydney, NSW, Australia
| | | |
Collapse
|
48
|
Wright JW, Harding JW. Brain angiotensin receptor subtypes in the control of physiological and behavioral responses. Neurosci Biobehav Rev 1994; 18:21-53. [PMID: 8170622 DOI: 10.1016/0149-7634(94)90034-5] [Citation(s) in RCA: 209] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This review summarizes emerging evidence that supports the notion of a separate brain renin-angiotensin system (RAS) complete with the necessary precursors and enzymes for the formation and degradation of biologically active forms of angiotensins, and several binding subtypes that may mediate their diverse functions. Of these subtypes the most is known about the AT1 site which preferentially binds angiotensin II (AII) and angiotensin III (AIII). The AT1 site appears to mediate the classic angiotensin responses concerned with body water balance and the maintenance of blood pressure. Less is known about the AT2 site which also binds AII and AIII and may play a role in vascular growth. Recently, an AT3 site was discovered in cultured neoblastoma cells, and an AT4 site which preferentially binds AII(3-8), a fragment of AII now referred to as angiotensin IV (AIV). The AT4 site has been implicated in memory acquisition and retrieval, and the regulation of blood flow. In addition to the more well-studied functions of the brain RAS, we review additional less well investigated responses including regulation of cellular function, the modulation of sensory and motor systems, long term potentiation, and stress related mechanisms. Although the receptor subtypes responsible for mediating these physiologies and behaviors have not been definitively identified research efforts are ongoing. We also suggest potential contributions by the RAS to clinically relevant syndromes such as dysfunctions in the regulation of blood flow and ischemia, changes in cognitive affect and memory in clinical depressed and Alzheimer's patients, and angiotensin's contribution to alcohol consumption.
Collapse
Affiliation(s)
- J W Wright
- Department of Psychology, Washington State University, Pullman 99164-4820
| | | |
Collapse
|
49
|
Smith DW, Day TA. c-fos expression in hypothalamic neurosecretory and brainstem catecholamine cells following noxious somatic stimuli. Neuroscience 1994; 58:765-75. [PMID: 8190253 DOI: 10.1016/0306-4522(94)90453-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Noxious somatic stimuli elicit vasopressin secretion, an effect thought to result from activation of a facilitatory input from A1 catecholamine cells of the medulla oblongata. To better characterize the A1 cell response and effects on other neuroendocrine A1 projection targets, particularly within the paraventricular nucleus, we have now mapped c-fos expression in neurochemically identified catecholamine and neurosecretory cells following a noxious somatic stimulus. Unilateral hind paw pinch significantly increased c-fos expression in contralateral A1 cells whereas other brainstem catecholamine cell groups were unaffected. Expression of c-fos was also increased in the supraoptic nucleus, this effect being more pronounced for vasopressin than oxytocin neurosecretory cells and, as with A1 cells, primarily on the side contralateral to the stimulated paw. In contrast, the increase in the paraventricular nucleus was greater in oxytocin rather than in vasopressin cells. Additionally there was a significant rise in c-fos expression in medial parvocellular paraventricular nucleus cells of noxiously stimulated animals. Notably, the majority of tuberoinfundibular corticotropin-releasing factor cells are located in this medial parvocellular zone. These results are consistent with and expand on those previously reported from electrophysiological and anatomical studies. The finding of differing neurosecretory cell responses between supraoptic and paraventricular nuclei has interesting implications with regard to the afferent control of neurosecretory cell activity. For example, the substantially greater activation of supraoptic versus paraventricular nucleus vasopressin cells, despite being innervated by the same medullary noradrenergic cell group, raises the possibility of a differential input or differences in responsiveness. Furthermore, the activation of paraventricular nucleus parvocellular cells is consistent with suggestions that the A1 cell group provides an excitatory input to this population.
Collapse
Affiliation(s)
- D W Smith
- Department of Physiology and Pharmacology, University of Queensland, Australia
| | | |
Collapse
|
50
|
Arai R, Jacobowitz DM, Deura S. Heterogeneity in calbindin-D28k expression in oxytocin-containing magnocellular neurons of the rat hypothalamus. HISTOCHEMISTRY 1994; 101:9-12. [PMID: 7517930 DOI: 10.1007/bf00315825] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have used a double-labeling immunofluorescence method to examine whether oxytocin-containing magnocellular neurons possess a calcium-binding protein, calbindin-D28k, in the hypothalamus of the rat. In the supraoptic nucleus, most oxytocin-immunoreactive cells were also stained for calbindin-D28k. However, in the magnocellular part of the paraventricular nucleus nearly all oxytocin-labeled cells were devoid of calbindin-D28k. In the anterior commissural nucleus, approximately one-third of oxytocin-stained cells were also calbindin-D28k-immunoreactive, but the other cells were negative for calbindin-D28k. This study indicates that there may be distinct chemical features between oxytocin-containing magnocellular neurons of the supraoptic nucleus compared to those of the paraventricular nucleus.
Collapse
Affiliation(s)
- R Arai
- Department of Anatomy, Fujita Health University, School of Medicine, Aichi, Japan
| | | | | |
Collapse
|