1
|
Melis MR, Argiolas A. Erectile Function and Sexual Behavior: A Review of the Role of Nitric Oxide in the Central Nervous System. Biomolecules 2021; 11:biom11121866. [PMID: 34944510 PMCID: PMC8699072 DOI: 10.3390/biom11121866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO), the neuromodulator/neurotransmitter formed from l-arginine by neuronal, endothelial and inducible NO synthases, is involved in numerous functions across the body, from the control of arterial blood pressure to penile erection, and at central level from energy homeostasis regulation to memory, learning and sexual behavior. The aim of this work is to review earlier studies showing that NO plays a role in erectile function and sexual behavior in the hypothalamus and its paraventricular nucleus and the medial preoptic area, and integrate these findings with those of recent studies on this matter. This revisitation shows that NO influences erectile function and sexual behavior in males and females by acting not only in the paraventricular nucleus and medial preoptic area but also in extrahypothalamic brain areas, often with different mechanisms. Most importantly, since these areas are strictly interconnected with the paraventricular nucleus and medial preoptic area, send to and receive neural projections from the spinal cord, in which sexual communication between brain and genital apparatus takes place, this review reveals that central NO participates in concert with neurotransmitters/neuropeptides to a neural circuit controlling both the consummatory (penile erection, copulation, lordosis) and appetitive components (sexual motivation, arousal, reward) of sexual behavior.
Collapse
|
2
|
Oxytocin, Erectile Function and Sexual Behavior: Last Discoveries and Possible Advances. Int J Mol Sci 2021; 22:ijms221910376. [PMID: 34638719 PMCID: PMC8509000 DOI: 10.3390/ijms221910376] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
A continuously increasing amount of research shows that oxytocin is involved in numerous central functions. Among the functions in which oxytocin is thought to be involved are those that play a role in social and sexual behaviors, and the involvement of central oxytocin in erectile function and sexual behavior was indeed one of the first to be discovered in laboratory animals in the 1980s. The first part of this review summarizes the results of studies done in laboratory animals that support a facilitatory role of oxytocin in male and female sexual behavior and reveal mechanisms through which this ancient neuropeptide participates in concert with other neurotransmitters and neuropeptides in this complex function, which is fundamental for the species reproduction. The second part summarizes the results of studies done mainly with intranasal oxytocin in men and women with the aim to translate the results found in laboratory animals to humans. Unexpectedly, the results of these studies do not appear to confirm the facilitatory role of oxytocin found in male and female sexual behavior in animals, both in men and women. Possible explanations for the failure of oxytocin to improve sexual behavior in men and women and strategies to attempt to overcome this impasse are considered.
Collapse
|
3
|
Ratajczak P, Kus K, Zielińska-Przyjemska M, Skórczewska B, Zaprutko T, Kopciuch D, Paczkowska A, Nowakowska E. Antistress and antidepressant properties of dapoxetine and vortioxetine. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Hull EM, Dominguez JM. Neuroendocrine Regulation of Male Sexual Behavior. Compr Physiol 2019; 9:1383-1410. [DOI: 10.1002/cphy.c180018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Wiggins JW, Kozyrev N, Sledd JE, Wilson GG, Coolen LM. Chronic Spinal Cord Injury Reduces Gastrin-Releasing Peptide in the Spinal Ejaculation Generator in Male Rats. J Neurotrauma 2019; 36:3378-3393. [PMID: 31111794 DOI: 10.1089/neu.2019.6509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Spinal cord injury (SCI) causes sexual dysfunction, including anejaculation in men. Likewise, chronic mid-thoracic contusion injury impairs ejaculatory reflexes in male rats. Ejaculation is controlled by a spinal ejaculation generator (SEG) comprised of a population of lumbar spinothalamic (LSt) neurons. LSt neurons co-express four neuropeptides, including gastrin-releasing peptide (GRP) and galanin and control ejaculation via release of these peptides in lumbar and sacral autonomic and motor nuclei. Here, we tested the hypothesis that contusion injury causes a disruption of the neuropeptides that are expressed in LSt cell bodies and axon terminals, thereby causing ejaculatory dysfunction. Male Sprague Dawley rats received contusion or sham surgery at spinal levels T6-7. Five to six weeks later, animals were perfused and spinal cords were immunoprocessed for galanin and GRP. Results showed that numbers of cells immunoreactive for galanin were not altered by SCI, suggesting that LSt cells are not ablated by SCI. In contrast, GRP immunoreactivity was decreased in LSt cells following SCI, evidenced by fewer GRP and galanin/GRP dual labeled cells. However, SCI did not affect efferent connections of LSt, cells as axon terminals containing galanin or GRP in contact with autonomic cells were not reduced following SCI. Finally, no changes in testosterone plasma levels or androgen receptor expression were noted after SCI. In conclusion, chronic contusion injury decreased immunoreactivity for GRP in LSt cell soma, but did not affect LSt neurons per se or LSt connections within the SEG. Since GRP is essential for triggering ejaculation, such loss may contribute to ejaculatory dysfunction following SCI.
Collapse
Affiliation(s)
- J Walker Wiggins
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi.,Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, Mississippi
| | - Natalie Kozyrev
- Robarts Institute, Western University, London, Ontario, Canada
| | - Jonathan E Sledd
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - George G Wilson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lique M Coolen
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Biological Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
6
|
Seizert CA. The neurobiology of the male sexual refractory period. Neurosci Biobehav Rev 2018; 92:350-377. [DOI: 10.1016/j.neubiorev.2018.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 04/03/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023]
|
7
|
Xia JD, Chen J, Sun HJ, Zhou LH, Zhu GQ, Chen Y, Dai YT. Centrally mediated ejaculatory response via sympathetic outflow in rats: role of N-methyl-D-aspartic acid receptors in paraventricular nucleus. Andrology 2016; 5:153-159. [PMID: 27860425 DOI: 10.1111/andr.12274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/03/2016] [Accepted: 07/19/2016] [Indexed: 11/29/2022]
Affiliation(s)
- J.-D. Xia
- Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - J. Chen
- Department of Obstetrics and Gynecology; Nanjing Drum Tower Hospital; Nanjing Medical University; Nanjing China
| | - H.-J. Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| | - L.-H. Zhou
- Department of Urology; The First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - G.-Q. Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| | - Y. Chen
- Department of Andrology; Nanjing Drum Tower Hospital; Nanjing Medical University; Nanjing China
| | - Y.-T. Dai
- Department of Andrology; Nanjing Drum Tower Hospital; Nanjing Medical University; Nanjing China
| |
Collapse
|
8
|
Multiple Orgasms in Men-What We Know So Far. Sex Med Rev 2016; 4:136-148. [PMID: 27872023 DOI: 10.1016/j.sxmr.2015.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 01/23/2023]
Abstract
INTRODUCTION There is much popular discussion on strategies to facilitate multiple orgasms in men (ie, 100,000+ hits in Google), yet the topic has not received an objective comprehensive review in the literature. AIM To review the literature on male multiple orgasms. METHODS We searched the literature for publications on "male multiple orgasms" and factors influencing male multiple orgasms in Google, PubMed, and PsychINFO. This yielded 15 relevant publications. MAIN OUTCOME MEASURES A comprehensive overview on the topic of male multiple orgasms and factors that influence the propensity of men to experience multiple orgasms. RESULTS Few men are multiorgasmic: <10% for those in their 20s, and <7% after the age of 30. The literature suggests 2 types of male multiple orgasms: "sporadic" multiorgasms, with interorgasmic intervals of several minutes, and "condensed" multiorgasms, with bursts of 2-4 orgasms within a few seconds to 2 minutes. Multiple orgasms appear physiologically similar to the single orgasm in mono-orgasmic men. However, in a single case study, a multiorgasmic man did not experience with his first orgasm the prolactin surge that usually occurs with orgasm in mono-orgasmic men. Various factors may facilitate multiple orgasms: (1) practicing to have an orgasm without ejaculation; (2) using psychostimulant drugs; (3) having multiple and/or novel sexual partners; or (4) using sex toys to enhance tactile stimulation. However, confirmatory physiological data on any of these factors are few. In some cases, the ability to experience multiple orgasms may increase after medical procedures that reduce ejaculation (eg, prostatectomy or castration), but what factor(s) influence this phenomenon is poorly investigated. CONCLUSION Despite popular interest, the topic of male multiple orgasms has received surprisingly little scientific assessment. The role of ejaculation and physiological change during the refractory period in inhibiting multiple orgasms has barely been investigated.
Collapse
|
9
|
Rubio-Casillas A, Rodríguez-Quintero C, Rodríguez-Manzo G, Fernández-Guasti A. Unraveling the modulatory actions of serotonin on male rat sexual responses. Neurosci Biobehav Rev 2015; 55:234-46. [DOI: 10.1016/j.neubiorev.2015.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/25/2015] [Accepted: 05/04/2015] [Indexed: 12/29/2022]
|
10
|
Rodríguez-Manzo G, Canseco-Alba A. Anandamide reduces the ejaculatory threshold of sexually sluggish male rats: possible relevance for human lifelong delayed ejaculation disorder. J Sex Med 2015; 12:1128-35. [PMID: 25808995 DOI: 10.1111/jsm.12866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The sexually sluggish (SLG) male rat has been proposed as an animal model for the study of lifelong delayed ejaculation, a sexual dysfunction for which no treatment is available. Low endocannabinoid anandamide (AEA) doses facilitate sexual behavior display in normal sexually active and in noncopulating male rats through the activation of CB1 receptors. AIM To establish whether low AEA doses reduced the ejaculatory threshold of SLG male rats by acting at CB1 receptors. METHODS SLG male rats were intraperitoneally injected with different doses of AEA (0.1-3.0 mg/kg), the CB1 receptor antagonist AM251 (0.1-3.0 mg/kg), or their vehicles and tested for copulatory behavior during 60 minutes. Animals receiving AEA effective doses were subjected to a second sexual behavior test, 7 days later under drug-free conditions. To determine the participation of CB1 receptors in AEA-induced actions, SLG rats were pretreated with AM251 prior to AEA. MAIN OUTCOME MEASURES The sexual parameters, intromission latency, number of mounts and intromissions, ejaculation latency, and interintromission interval. RESULTS All sexual behavior parameters of SLG rats were significantly increased when compared with normal sexually experienced animals. Low AEA doses (0.3 and 1 mg/kg) significantly lowered the ejaculatory threshold of SLG rats, reducing the number of pre-ejaculatory intromissions and ejaculation latency. IL, M number, and locomotor activity were unaffected by AEA. Facilitation of the ejaculatory response of SLG rats disappeared 7 days after AEA injection. AM251 lacked an effect on copulation of SLG rats but blocked the AEA-induced lowering of the ejaculatory threshold. CONCLUSIONS AEA appears to specifically target the ejaculatory threshold of SLG rats through the activation of CB1 receptors. This specificity along with the fact that AEA's effects are exerted acutely and at low doses makes this drug emerge as a promising treatment for the improvement of the ejaculatory response in men with primary delayed ejaculation.
Collapse
Affiliation(s)
| | - Ana Canseco-Alba
- Departamento de Farmacobiología, Cinvestav-Sede Sur, México, México
| |
Collapse
|
11
|
Kobayashi T, Kiyokawa Y, Takeuchi Y, Mori Y. Neural correlates underlying naloxone-induced amelioration of sexual behavior deterioration due to an alarm pheromone. Front Neurosci 2015; 9:52. [PMID: 25755631 PMCID: PMC4337336 DOI: 10.3389/fnins.2015.00052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/06/2015] [Indexed: 01/25/2023] Open
Abstract
Sexual behavior is suppressed by various types of stressors. We previously demonstrated that an alarm pheromone released by stressed male Wistar rats is a stressor to other rats, increases the number of mounts needed for ejaculation, and decreases the hit rate (described as the number of intromissions/sum of the mounts and intromissions). This deterioration in sexual behavior was ameliorated by pretreatment with the opioid receptor antagonist naloxone. However, the neural mechanism underlying this remains to be elucidated. Here, we examined Fos expression in 31 brain regions of pheromone-exposed rats and naloxone-pretreated pheromone-exposed rats 60 min after 10 intromissions. As previously reported, the alarm pheromone increased the number of mounts and decreased the hit rate. In addition, Fos expression was increases in the anterior medial division (BNSTam), anterior lateral division (BNSTal) and posterior division (BNSTp) of the bed nucleus of the stria terminalis, parvocellular part of the paraventricular nucleus of the hypothalamus, arcuate nucleus, dorsolateral and ventrolateral periaqueductal gray, and nucleus paragigantocellularis (nPGi). Fos expression was decreased in the magnocellular part of the paraventricular nucleus of the hypothalamus. Pretreatment with naloxone blocked the pheromone-induced changes in Fos expression in the magnocellular part of the paraventricular nucleus of the hypothalamus, ventrolateral periaqueductal gray, and nPGi. Based on these results, we hypothesize that the alarm pheromone deteriorated sexual behavior by activating the ventrolateral periaqueductal gray-nucleus paragigantocellularis cluster and suppressing the magnocellular part of the paraventricular nucleus of the hypothalamus (PVN) via the opioidergic pathway.
Collapse
Affiliation(s)
| | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, Graduate School of Agricultural and Life Sciences, The University of TokyoBunkyo, Tokyo, Japan
| | | | | |
Collapse
|
12
|
Neural mechanisms of female sexual behavior in the rat; comparison with male ejaculatory control. Pharmacol Biochem Behav 2014; 121:16-30. [DOI: 10.1016/j.pbb.2013.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 01/20/2023]
|
13
|
Snoeren EM, Veening JG, Olivier B, Oosting RS. Serotonin 1A receptors and sexual behavior in male rats: A review. Pharmacol Biochem Behav 2014; 121:102-14. [DOI: 10.1016/j.pbb.2013.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/08/2013] [Accepted: 11/07/2013] [Indexed: 12/21/2022]
|
14
|
Veening J, Coolen L. Neural mechanisms of sexual behavior in the male rat: Emphasis on ejaculation-related circuits. Pharmacol Biochem Behav 2014; 121:170-83. [DOI: 10.1016/j.pbb.2013.12.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 01/20/2023]
|
15
|
Dobberfuhl AD, Oti T, Sakamoto H, Marson L. Identification of CNS neurons innervating the levator ani and ventral bulbospongiosus muscles in male rats. J Sex Med 2013; 11:664-77. [PMID: 24373488 DOI: 10.1111/jsm.12418] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The pelvic striated muscles play an important role in mediating erections and ejaculation, and together these muscles compose a tightly coordinated neuromuscular system that is androgen sensitive and sexually dimorphic. AIM To identify spinal and brains neurons involved in the control of the levator ani (LA) and bulbospongiosus (BS) in the male adult and preadolescent rat. METHODS Rats were anesthetized, and the transsynaptic retrograde tracer pseudorabies virus (PRV) was injected into the LA muscle of adults or the ventral BS muscle in 30-day-old rats. After 3-5 days rats were sacrificed, and PRV-labeled neurons in the spinal cords and brains were identified using immunohistochemistry. The presence of gastrin-releasing peptide (GRP) in the lumbar spinal neurons was examined. MAIN OUTCOMES MEASURES The location and number of PRV-labeled neurons in the spinal cord and brain and GRP colocalization in the lumbar spinal cord. RESULTS PRV-labeled spinal interneurons were found distributed throughout T11-S1 of the spinal cord, subsequent to dorsal medial motoneuron infection. The majority of spinal interneurons were found in the lumbosacral spinal cord in the region of the dorsal gray commissure and parasympathetic preganglionic neurons. Preadolescent rats had more PRV-labeled spinal interneurons at L5-S1 where the motoneurons were located but relatively less spread rostrally in the spinal cord compared with adults. Lumbar spinothalmic neurons in medial gray of L3-L4 co-localized PRV and GRP. In the brain consistent labeling was seen in areas known to be involved in male sexual behavior including the ventrolateral medulla, hypothalamic paraventricular nucleus, and medial preoptic area. CONCLUSION Common spinal and brain pathways project to the LA and BS muscles in the rat suggesting that these muscles act together to coordinate male sexual reflexes. Differences may exist in the amount of synaptic connections/neuronal pathways in adolescents compared with adults.
Collapse
Affiliation(s)
- Amy D Dobberfuhl
- Division of Urology, Department of Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
16
|
Wild JM, Balthazart J. Neural pathways mediating control of reproductive behavior in male Japanese quail. J Comp Neurol 2013; 521:2067-87. [PMID: 23225613 DOI: 10.1002/cne.23275] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/19/2012] [Accepted: 11/26/2012] [Indexed: 12/20/2022]
Abstract
The sexually dimorphic medial preoptic nucleus (POM) in Japanese quail has for many years been the focus of intensive investigations into its role in reproductive behavior. The present study delineates a sequence of descending pathways that finally reach sacral levels of the spinal cord housing motor neurons innervating cloacal muscles involved in reproductive behavior. We first retrogradely labeled the motor neurons innervating the large cloacal sphincter muscle (mSC) that forms part of the foam gland complex (Seiwert and Adkins-Regan [1998] Brain Behav Evol 52:61-80) and then putative premotor nuclei in the brainstem, one of which was nucleus retroambigualis (RAm) in the caudal medulla. Anterograde tracing from RAm defined a bulbospinal pathway, terminations of which overlapped the distribution of mSC motor neurons and their extensive dorsally directed dendrites. Descending input to RAm arose from an extensive dorsomedial nucleus of the intercollicular complex (DM-ICo), electrical stimulation of which drove vocalizations. POM neurons were retrogradely labeled by injections of tracer into DM-ICo, but POM projections largely surrounded DM, rather than penetrated it. Thus, although a POM projection to ICo was shown, a POM projection to DM must be inferred. Nevertheless, the sequence of projections in the male quail from POM to cloacal motor neurons strongly resembles that in rats, cats, and monkeys for the control of reproductive behavior, as largely defined by Holstege et al. ([1997], Neuroscience 80:587-598).
Collapse
Affiliation(s)
- J Martin Wild
- Department of Anatomy with Radiology, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
17
|
Hubscher CH, Gupta DS, Brink TS. Convergence and cross talk in urogenital neural circuitries. J Neurophysiol 2013; 110:1997-2005. [DOI: 10.1152/jn.00297.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Despite common comorbidity of sexual and urinary dysfunctions, the interrelationships between the neural control of these functions are poorly understood. The medullary reticular formation (MRF) contributes to both mating/arousal functions and micturition, making it a good site to test circuitry interactions. Urethane-anesthetized adult Wistar rats were used to examine the impact of electrically stimulating different nerve targets [dorsal nerve of the penis (DNP) or clitoris (DNC); L6/S1 trunk] on responses of individual extracellularly recorded MRF neurons. The effect of bladder filling on MRF neurons was also examined, as was stimulation of DNP on bladder reflexes via cystometry. In total, 236 MRF neurons responded to neurostimulation: 102 to DNP stimulation (12 males), 64 to DNC stimulation (12 females), and 70 to L6/S1 trunk stimulation (12 males). Amplitude thresholds were significantly different at DNP (15.0 ± 0.6 μA), DNC (10.5 ± 0.7 μA), and L6/S1 trunk (54.2 ± 4.6 μA), whereas similar frequency responses were found (max responses near 30–40 Hz). In five males, filling/voiding cycles were lengthened with DNP stimulation (11.0 ± 0.9 μA), with a maximal effective frequency plateau beginning at 30 Hz. Bladder effects lasted ∼2 min after DNP stimulus offset. Many MRF neurons receiving DNP/DNC input responded to bladder filling (35.0% and 68.3%, respectively), either just before (43%) or simultaneously with (57%) the voiding reflex. Taken together, MRF-evoked responses with neurostimulation of multiple nerve targets along with different responses to bladder infusion have implications for the role of MRF in multiple aspects of urogenital functions.
Collapse
Affiliation(s)
- C. H. Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; and
| | - D. S. Gupta
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; and
| | - T. S. Brink
- Neuromodulation Research, Medtronic Incorporated, Minneapolis, Minnesota
| |
Collapse
|
18
|
Kobayashi T, Kiyokawa Y, Arata S, Takeuchi Y, Mori Y. c-Fos expression during the modulation of sexual behavior by an alarm pheromone. Behav Brain Res 2013; 237:230-7. [DOI: 10.1016/j.bbr.2012.09.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 09/20/2012] [Accepted: 09/23/2012] [Indexed: 10/27/2022]
|
19
|
Effect of dexmedetomidine on ejaculatory behavior and sexual motivation in intact male rats. Pharmacol Biochem Behav 2012; 103:345-52. [DOI: 10.1016/j.pbb.2012.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/29/2012] [Accepted: 09/08/2012] [Indexed: 01/07/2023]
|
20
|
Soga T, Wong D, Putteeraj M, Song K, Parhar I. Early-life citalopram-induced impairments in sexual behavior and the role of androgen receptor. Neuroscience 2012; 225:172-84. [DOI: 10.1016/j.neuroscience.2012.08.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/28/2012] [Accepted: 08/28/2012] [Indexed: 01/27/2023]
|
21
|
Tanahashi M, Karicheti V, Thor KB, Marson L. Characterization of bulbospongiosus muscle reflexes activated by urethral distension in male rats. Am J Physiol Regul Integr Comp Physiol 2012; 303:R737-47. [DOI: 10.1152/ajpregu.00004.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The urethrogenital reflex (UGR) is used as a surrogate model of the autonomic and somatic nerve and muscle activity that accompanies ejaculation. The UGR is evoked by distension of the urethra and activation of penile afferents. The current study compares two methods of elevating urethral intraluminal pressure in spinalized, anesthetized male Sprague-Dawley rats ( n = 60). The first method, penile extension UGR, involves extracting the penis from the foreskin, so that urethral pressure rises due to a natural anatomical flexure in the penis. The second method, penile clamping UGR, involves penile extension UGR with the addition of clamping of the glans penis. Groups of animals were prepared that either received no additional treatment, surgical shams, or received bilateral nerve cuts (4 nerve cut groups): either the pudendal sensory nerve branch (SbPN), the pelvic nerves, the hypogastric nerves, or all three nerves. Penile clamping UGR was characterized by multiple bursts, monitored by electromyography (EMG) of the bulbospongiosus muscle (BSM) accompanied by elevations in urethral pressure. The penile clamping UGR activity declined across multiple trials and eventually resulted in only a single BSM burst, indicating desensitization. In contrast, the penile extension UGR, without penile clamping, evoked only a single BSM EMG burst that showed no desensitization. Thus, the UGR is composed of two BSM patterns: an initial single burst, termed urethrobulbospongiosus (UBS) reflex and a subsequent multiple bursting pattern (termed ejaculation-like response, ELR) that was only induced with penile clamping urethral occlusion. Transection of the SbPN eliminated the ELR in the penile clamping model, but the single UBS reflex remained in both the clamping and extension models. Pelvic nerve (PelN) transection increased the threshold for inducing BSM activation with both methods of occlusion but actually unmasked an ELR in the penile extension method. Hypogastric nerve (HgN) cuts did not significantly alter any parameter. Transection of all three nerves eliminated BSM activation completely. In conclusion, penile clamping occlusion recruits penile and urethral primary afferent fibers that are necessary for an ELR. Urethral distension without significant penile afferent activation recruits urethral primary afferent fibers carried in either the pelvic or pudendal nerve that are necessary for the single-burst UBS reflex.
Collapse
|
22
|
Kozyrev N, Lehman MN, Coolen LM. Activation of Gastrin‐releasing Peptide Receptors in the Lumbosacral Spinal Cord is Required for Ejaculation in Male Rats. J Sex Med 2012; 9:1303-18. [DOI: 10.1111/j.1743-6109.2012.02688.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Hueletl‐Soto ME, Carro‐Juárez M, Rodríguez‐Manzo G. Fluoxetine Chronic Treatment Inhibits Male Rat Sexual Behavior by Affecting Both Copulatory Behavior and the Genital Motor Pattern of Ejaculation. J Sex Med 2012; 9:1015-26. [DOI: 10.1111/j.1743-6109.2011.02339.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Staudt MD, Truitt WA, McKenna KE, de Oliveira CVR, Lehman MN, Coolen LM. A pivotal role of lumbar spinothalamic cells in the regulation of ejaculation via intraspinal connections. J Sex Med 2011; 9:2256-65. [PMID: 22189051 DOI: 10.1111/j.1743-6109.2011.02574.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION A population of lumbar spinothalamic cells (LSt cells) has been demonstrated to play a pivotal role in ejaculatory behavior and comprise a critical component of the spinal ejaculation generator. LSt cells are hypothesized to regulate ejaculation via their projections to autonomic and motor neurons in the lumbosacral spinal cord. AIM The current study tested the hypothesis that ejaculatory reflexes are dependent on LSt cells via projections within the lumbosacral spinal cord. METHODS Male rats received intraspinal injections of neurotoxin saporin conjugated to substance P analog, previously shown to selectively lesion LSt cells. Two weeks later, males were anesthetized and spinal cords were transected. Subsequently, males were subjected to ejaculatory reflex paradigms, including stimulation of the dorsal penile nerve (DPN), urethrogenital stimulation or administration of D3 agonist 7-OH-DPAT. Electromyographic recordings of the bulbocavernosus muscle (BCM) were analyzed for rhythmic bursting characteristic of the expulsion phase of ejaculation. In addition, a fourth commonly used paradigm for ejaculation and erections in unanesthetized, spinal-intact male rats was utilized: the ex copula reflex paradigm. MAIN OUTCOME MEASURES LSt cell lesions were predicted to prevent rhythmic bursting of BCM following DPN, urethral, or pharmacological stimulation, and emissions in the ex copula paradigm. In contrast, LSt cell lesions were not expected to abolish erectile function as measured in the ex copula paradigm. RESULTS LSt cell lesions prevented rhythmic contractions of the BCM induced by any of the ejaculatory reflex paradigms in spinalized rats. However, LSt cell lesions did not affect erectile function nor emissions determined in the ex copula reflex paradigm. CONCLUSIONS These data demonstrate that LSt cells are essential for ejaculatory, but not erectile reflexes, as previously reported for mating animals. Moreover, LSt cells mediate ejaculation via projections within the spinal cord, presumably to autonomic and motor neurons.
Collapse
Affiliation(s)
- Michael D Staudt
- Department of Anatomy & Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Concerns about paraphilia and its treatment have grown in the past few years. Although the aetiology of paraphilia disorder is still not completely understood, pharmacological treatments have been proposed for this disorder. Paraphilias are a major burden for patients and society; nevertheless, only a few individuals with paraphilias voluntarily seek treatment. Antidepressants have been used in the treatment of certain types of mild (e.g. exhibitionism) and juvenile paraphilias. Antilibidinal hormonal treatments, such as steroidal antiandrogens and gonadotrophin-releasing hormone (GnRH) analogues, have also been studied and they seem to be effective in paraphilic disorders, although caution should be taken in the prescription of these treatments in order to avoid or minimize adverse effects and the risk of victimization. The combination of psychotherapy and pharmacological therapy is associated with better efficacy compared with either treatment as monotherapy. Paraphilia is a chronic disorder and a minimal duration of treatment of 3-5 years is highly recommended for severe paraphilia with a high risk of sexual violence. In conclusion, this review of the literature provides suggestive evidence that paraphilias are well characterized disorders marked by pathological dimensions. Although further research is necessary to confirm treatment efficacy and to improve our knowledge of long-term tolerance, available data on the use of selective serotonin reuptake inhibitors, steroidal antiandrogens and GnRH analogues strongly suggest the efficacy of these treatments for paraphilic disorders.
Collapse
Affiliation(s)
- Frederico D Garcia
- ADEN Laboratory EA4311, Rouen University Hospital, Biomedical Research Institute, IFR 23, Rouen, France
| | | |
Collapse
|
26
|
Normandin JJ, Murphy AZ. Somatic genital reflexes in rats with a nod to humans: anatomy, physiology, and the role of the social neuropeptides. Horm Behav 2011; 59:656-65. [PMID: 21338605 PMCID: PMC3105176 DOI: 10.1016/j.yhbeh.2011.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 12/31/2022]
Abstract
Somatic genital reflexes such as ejaculation and vaginocervical contractions are produced through the striated muscles associated with the genitalia. The coordination of these reflexes is surprisingly complex and involves a number of lumbosacral spinal and supraspinal systems. The rat model has been proven to be an excellent source of information regarding these mechanisms, and many parallels to research in humans can be drawn. An understanding of the spinal systems involving the lumbosacral spinal cord, both efferent and afferent, has been generated through decades of research. Spinal and supraspinal mechanisms of descending excitation, through a spinal ejaculation generator in the lumbar spinal cord and thalamus, and descending inhibition, through the ventrolateral medulla, have been identified and characterized both anatomically and physiologically. In addition, delineation of the neural circuits whereby ascending genitosensory information regarding the regulation of somatic genital reflexes is relayed supraspinally has also been the topic of recent investigation. Lastly, the importance of the "social neuropeptides" oxytocin and vasopressin in the regulation of somatic genital reflexes, and associated sociosexual behaviors, is emerging. This work not only has implications for understanding how nervous systems generate sexual behavior but also provides treatment targets for sexual dysfunction in people.
Collapse
Affiliation(s)
- Joseph J. Normandin
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-5010
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302-5010
| | - Anne Z. Murphy
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302-5010
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-5010
| |
Collapse
|
27
|
Johnson RD, Chadha HK, Dugan VP, Gupta DS, Ferrero SL, Hubscher CH. Bilateral bulbospinal projections to pudendal motoneuron circuitry after chronic spinal cord hemisection injury as revealed by transsynaptic tracing with pseudorabies virus. J Neurotrauma 2011; 28:595-605. [PMID: 21265606 DOI: 10.1089/neu.2009.1180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Complications of spinal cord injury in males include losing brainstem control of pudendal nerve-innervated perineal muscles involved in erection and ejaculation. We previously described, in adult male rats, a bulbospinal pathway originating in a discrete area within the medullary gigantocellularis (GiA/Gi), and lateral paragigantocellularis (LPGi) nuclei, which when electrically microstimulated unilaterally, produces a bilateral inhibition of pudendal motoneuron reflex circuitry after crossing to the contralateral spinal cord below T8. Microstimulation following a long-term lateral hemisection, however, revealed reflex inhibition from both sides of the medulla, suggesting the development or unmasking of an injury-induced bulbospinal pathway crossing the midline cranial to the spinal lesion. In the present study, we investigated this pathway anatomically using the transsynaptic neuronal tracer pseudorabies virus (PRV) injected unilaterally into the bulbospongiosus muscle in uninjured controls, and ipsilateral to a chronic (1-2 months) unilateral lesion of the lateral funiculus. At 4.75 days post-injection, PRV-labeled cells were found bilaterally in the GiA/Gi/LPGi with equal side-to-side labeling in uninjured controls, and with significantly greater labeling contralateral to the lesion/injection in lesioned animals. The finding of PRV-labeled neurons on both sides of the medulla after removing the mid-thoracic spinal pathway on one side provides anatomical evidence for the bilaterality in both the brainstem origin and the lumbosacral pudendal circuit termination of the spared lateral funicular bulbospinal pathway. This also suggests that this bilaterality may contribute to the quick functional recovery of bladder and sexual functions observed in animals and humans with lateral hemisection injury.
Collapse
Affiliation(s)
- Richard D Johnson
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida 32610-0144, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Normandin JJ, Murphy AZ. Serotonergic lesions of the periaqueductal gray, a primary source of serotonin to the nucleus paragigantocellularis, facilitate sexual behavior in male rats. Pharmacol Biochem Behav 2011; 98:369-75. [PMID: 21296106 DOI: 10.1016/j.pbb.2011.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/21/2011] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
While selective serotonin reuptake inhibitors (SSRIs) are widely used to treat anxiety and depression, they also produce profound disruptions of sexual function including delayed orgasm/ejaculation. The nucleus paragigantocellularis (nPGi), a primary source of inhibition of ejaculation in male rats, contains receptors for serotonin (5-HT). The ventrolateral periaqueductal gray (vlPAG) provides serotonin to this region, thus providing an anatomical and neurochemical basis for serotonergic regulation of the nPGi. We hypothesize that 5-HT acting at the nPGi could underlie the SSRI-induced inhibition of ejaculation in rodents. To this end, we produced 5-HT lesions of the source of 5-HT to the nPGi (the vlPAG) and examined sexual behavior. Removing the source of 5-HT to the nPGi facilitated genital reflexes, but not other aspects of sexual behavior, consistent with our hypothesis. Namely, 5-HT lesions produced a significant increase in the mean number of ejaculations and a significant decrease in ejaculation latency as compared to sham lesioned animals, while latency to mating and the post-ejaculatory interval did not differ. These data suggest that the serotonergic vlPAG-nPGi pathway is an important regulatory mechanism for the inhibition of ejaculation in rats and supports the hypothesis that this circuit contributes to SSRI-induced inhibition of ejaculation.
Collapse
Affiliation(s)
- Joseph J Normandin
- Department of Biology, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA
| | | |
Collapse
|
29
|
Melis MR, Argiolas A. Central control of penile erection: A re-visitation of the role of oxytocin and its interaction with dopamine and glutamic acid in male rats. Neurosci Biobehav Rev 2011; 35:939-55. [DOI: 10.1016/j.neubiorev.2010.10.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 10/08/2010] [Accepted: 10/26/2010] [Indexed: 11/28/2022]
|
30
|
Normandin JJ, Murphy AZ. Excitotoxic lesions of the nucleus paragigantocellularis facilitate male sexual behavior but attenuate female sexual behavior in rats. Neuroscience 2010; 175:212-23. [PMID: 21144886 DOI: 10.1016/j.neuroscience.2010.11.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/11/2010] [Accepted: 11/13/2010] [Indexed: 01/23/2023]
Abstract
Little is known regarding the descending inhibitory control of genital reflexes such as ejaculation and vaginal contractions. The brainstem nucleus paragigantocellularis (nPGi) projects bilaterally to the lumbosacral motoneuron pools that innervate the genital musculature of both male and female rats. Electrolytic nPGi lesions facilitate ejaculation in males, leading to the hypothesis that the nPGi is the source of descending inhibition to genital reflexes. However, the function of the nPGi in female sexual behavior remains to be elucidated. To this end, male and female rats received bilateral excitotoxic fiber-sparing lesions of the nPGi, and sexual behavior and sexual behavior-induced Fos expression were examined. In males, nPGi lesions facilitated copulation, supporting the hypothesis that the nPGi, and not fibers-of-passage, is the source of descending inhibition of genital reflexes in male rats. nPGi lesions in males did not alter sexual behavior-induced Fos expression in any brain region examined. nPGi-lesioned females spent significantly less time mating with stimulus males and had significantly longer ejaculation-return latencies compared to baseline. These results did not significantly differ from control females, but this trend warranted further analysis of the reinforcing value of sexual behavior. Both lesioned and non-lesioned females formed a conditioned place preference (CPP) for artificial vaginocervical stimulation (aVCS). However, post-reinforcement, nPGi-lesioned females did not differ in the percentage of time spent in the non-reinforced chamber versus the reinforced chamber, suggesting a weakened CPP for aVCS. nPGi lesions in females reduced sexual behavior-induced Fos expression throughout the hypothalamus and amygdala. Taken together, these results suggest that while nPGi lesions in males facilitate copulation, such lesions in females attenuate several aspects of sexual behavior resulting in a reduction in the rewarding value of copulation that may be mediated by nPGi control of genital reflexes. This work has important implications for the understanding and treatment of sexual dysfunction in people including delayed/premature ejaculation, involuntary vaginal spasms, and pain during intercourse.
Collapse
Affiliation(s)
- J J Normandin
- Department of Biology, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA
| | | |
Collapse
|
31
|
Giuliano F, Pfaus J, Balasubramanian S, Hedlund P, Hisasue SI, Marson L, Wallen K. Experimental Models for the Study of Female and Male Sexual Function. J Sex Med 2010; 7:2970-95. [DOI: 10.1111/j.1743-6109.2010.01960.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Hubscher CH, Reed WR, Kaddumi EG, Armstrong JE, Johnson RD. Select spinal lesions reveal multiple ascending pathways in the rat conveying input from the male genitalia. J Physiol 2010; 588:1073-83. [PMID: 20142271 DOI: 10.1113/jphysiol.2009.186544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The specific white matter location of all the spinal pathways conveying penile input to the rostral medulla is not known. Our previous studies using rats demonstrated the loss of low but not high threshold penile inputs to medullary reticular formation (MRF) neurons after acute and chronic dorsal column (DC) lesions of the T8 spinal cord and loss of all penile inputs after lesioning the dorsal three-fifths of the cord. In the present study, select T8 lesions were made and terminal electrophysiological recordings were performed 45-60 days later in a limited portion of the nucleus reticularis gigantocellularis (Gi) and Gi pars alpha. Lesions included subtotal dorsal hemisections that spared only the lateral half of the dorsal portion of the lateral funiculus on one side, dorsal and over-dorsal hemisections, and subtotal transections that spared predominantly just the ventromedial white matter. Electrophysiological data for 448 single unit recordings obtained from 32 urethane-anaesthetized rats, when analysed in groups based upon histological lesion reconstructions, revealed (1) ascending bilateral projections in the dorsal, dorsolateral and ventrolateral white matter of the spinal cord conveying information from the male external genitalia to MRF, and (2) ascending bilateral projections in the ventrolateral white matter conveying information from the pelvic visceral organs (bladder, descending colon, urethra) to MRF. Multiple spinal pathways from the penis to the MRF may correspond to different functions, including those processing affective/pleasure/motivational, nociception, and mating-specific (such as for erection and ejaculation) inputs.
Collapse
Affiliation(s)
- C H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|
33
|
Ferran García J, Puigvert Martínez A, Castro RP. Eyaculación prematura. Rev Int Androl 2010. [DOI: 10.1016/s1698-031x(10)70006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Normandin JJ, Murphy AZ. Nucleus paragigantocellularis afferents in male and female rats: organization, gonadal steroid receptor expression, and activation during sexual behavior. J Comp Neurol 2008; 508:771-94. [PMID: 18393295 DOI: 10.1002/cne.21704] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The supraspinal regulation of genital reflexes is poorly understood. The brainstem nucleus paragigantocellularis (nPGi) of rats is a well-established source of tonic inhibition of genital reflexes. However, the organization, gonadal steroid receptor expression, and activity of nPGi afferents during sex have not been fully characterized in male and female rats. To delineate the anatomical and physiological organization of nPGi afferents, the retrograde tracer Fluoro-Gold (FG) was injected into the nPGi of sexually experienced male and female rats. Animals engaged in sexual behavior 1 hour before sacrifice. Cells containing FG, estrogen receptor-alpha (ER(alpha)), androgen receptor (AR), and the immediate-early gene product Fos were identified immunocytochemically. Retrograde labeling from the nPGi was prominent in the bed nucleus of the stria terminalis, paraventricular nucleus (PVN), posterior hypothalamus, precommissural nucleus, deep mesencephalic nucleus, and periaqueductal gray (PAG) of both sexes. Sex differences were observed in the caudal medial preoptic area (MPO), with significantly more FG+ cells observed in males, and in the PAG and inferior colliculus, where significantly more FG+ cells were observed in females. The majority of regions that contained FG+ cells also contained ER(alpha) or AR, indicating sensitivity to gonadal steroids. The proportions of FG+ cells that co-localized with sex-induced Fos was high in the PVN of both sexes and high in the MPO of males but low in the PAG of both sexes despite the large number of PAG-nPGi output neurons and Fos+ cells in both sexes. The characterization of these afferents will lead to a further understanding of the neural regulation of genital reflexes.
Collapse
Affiliation(s)
- Joseph J Normandin
- Center for Behavioral Neuroscience, Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | |
Collapse
|
35
|
Romero-Carbente JC, Hurtazo EA, Paredes RG. Central tegmental field and sexual behavior in the male rat: Effects of neurotoxic lesions. Neuroscience 2007; 148:867-75. [PMID: 17706882 DOI: 10.1016/j.neuroscience.2007.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 06/27/2007] [Accepted: 07/11/2007] [Indexed: 11/16/2022]
Abstract
The medial preoptic area/anterior hypothalamus (MPOA/AH) is a key structure in the control of male sexual behavior. This area has reciprocal connections with mesencephalic and brainstem structures including the central tegmental field (CTF). It has been suggested that the CTF receives somatosensory information generated in the genitals promoting activation of the MPOA/AH. In the present study we evaluated the effects of bilateral neurotoxic lesions of the CTF upon male rat sexual behavior. We also explored the effects of these lesions on sociosexual behaviors, partner preference, sexual incentive motivation and motor execution. Tests were performed before and after bilateral quinolinic acid infusions. The lesion was evaluated by quantifying neuronal nuclei (Neu-N) and by the presence of glial fibrillary acidic protein (GFAP) immunohistochemistries. A significant reduction in the percentage of animals displaying mounts, intromissions, and ejaculations was observed in the bilateral and misplaced lesion groups 1 week after the lesion. In the second week post-lesion, only animals with bilateral damage of the CTF showed a significant reduction in sexual behavior. In the third post-lesion test, the percentage of animals displaying sexual behavior returned to control levels. The frequency of pursuit and self-grooming was reduced, and genital exploration was increased after the lesion. Partner preference and sexual incentive motivation were not affected by the lesion suggesting that the CTF is not involved in the appetitive aspects of sexual behavior. Mount, intromission, and ejaculation latency were increased in animals with damage of the CTF and in animals with lesions outside this region. Motor execution was also affected in both groups, suggesting that alterations in latencies could be associated with damage not specific to the CTF.
Collapse
Affiliation(s)
- J C Romero-Carbente
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Quéretaro, Qro 76230, Mexico
| | | | | |
Collapse
|
36
|
Abstract
The hormonal factors and neural circuitry that control copulation are similar across rodent species, although there are differences in specific behavior patterns. Both estradiol (E) and dihydrotestosterone (DHT) contribute to the activation of mating, although E is more important for copulation and DHT for genital reflexes. Hormonal activation of the medial preoptic area (MPOA) is most effective, although implants in the medial amygdala (MeA) can also stimulate mounting in castrates. Chemosensory inputs from the main and accessory olfactory systems are the most important stimuli for mating in rodents, especially in hamsters, although genitosensory input also contributes. Dopamine agonists facilitate sexual behavior, and serotonin (5-HT) is generally inhibitory, though certain 5-HT receptor subtypes facilitate erection or ejaculation. Norepinephrine agonists and opiates have dose-dependent effects, with low doses facilitating and high doses inhibiting behavior.
Collapse
Affiliation(s)
- Elaine M Hull
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA.
| | | |
Collapse
|
37
|
Abstract
Premature ejaculation (PE) is a common male sexual disorder. Recent normative data suggests that men with an intravaginal ejaculatory latency time (IELT) of less than 1 minute have "definite" PE, while men with IELTs between 1 and 1.5 minutes have "probable" PE. Although there is insufficient empirical evidence to identify the etiology of PE, there is limited correlational evidence to suggest that men with PE have high levels of sexual anxiety and inherited altered sensitivity of central 5-HT (5-hydroxytryptamine, serotonin) receptors. Pharmacological modulation of the ejaculatory threshold using off-label daily or on-demand selective serotonin re-uptake inhibitors is well tolerated and offers patients a high likelihood of achieving improved ejaculatory control within a few days of initiating treatment, consequential improvements in sexual desire and other sexual domains. Investigational drugs such as the ejaculo-selective serotonin transport inhibitor, dapoxetine represent a major development in sexual medicine. These drugs offer patients the convenience of on-demand dosing, significant improvements in IELT, ejaculatory control and sexual satisfaction with minimal adverse effects.
Collapse
Affiliation(s)
- Chris G. McMahon
- Australian Centre For Sexual Health Suite 2-4, Berry Road Medical Centre 1a Berry Rd St. Leonards, Australia
| |
Collapse
|
38
|
Abstract
Premature ejaculation (PE) is a common male sexual disorder. Recent normative data suggest that men with an intravaginal ejaculatory latency time (IELT) of less than 1 minute have "definite" PE, while men with IELTs between 1 and 1.5 minutes have "probable" PE. Although there is insufficient empirical evidence to identify the etiology of PE, there is limited correlational evidence to suggest that men with PE have high levels of sexual anxiety and inherited altered sensitivity of central 5-HT (serotonin) receptors. Pharmacological modulation of the ejaculatory threshold using off-label daily or on-demand selective serotonin re-uptake inhibitors (SSRIs) offers patients a high likelihood of achieving improved ejaculatory control within a few days of initiating treatment, consequential improvements in sexual desire and other sexual domains and is well tolerated. Investigational drugs such as the ejaculo-selective serotonin transport inhibitors (ESSTIs) such as dapoxetine and UK-390,957 represent a major development in sexual medicine. These drugs offer patients the convenience of on-demand dosing, significant improvements in IELT, ejaculatory control, and sexual satisfaction with minimal adverse effects.
Collapse
|
39
|
Habr-Alencar SF, Dias RG, Teodorov E, Bernardi MM. The effect of hetero- and homosexual experience and long-term treatment with fluoxetine on homosexual behavior in male rats. Psychopharmacology (Berl) 2006; 189:269-75. [PMID: 17016704 DOI: 10.1007/s00213-006-0574-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 08/18/2006] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The selective serotonin reuptake inhibitors have become the most frequently prescribed drugs for the treatment of depression. Sexual side effects have been noted to occur with this treatment on heterosexual behavior in rats. Heterosexual experience facilitates sexual orientation of male rats and decreases the latencies to first mount and first intromission. On the other hand, homosexual behavior in male rats induced by female hormones has not been evaluated. AIM The objective of this work is to evaluate the effects of heterosexual and homosexual experience in male rats long-term treated with fluoxetine (FLX) on homosexual hormone-induced behavior. MATERIALS AND METHODS Male rats were treated with FLX or saline solution (10 mg/kg for 65 days). At days 36, 50, and 65 of the treatment, the rats were evaluated for homosexual behavior. Other rats treated with FLX or saline solution for 60 consecutive days were submitted to heterosexual behavior at 14, 21, and 28 days of the treatment. After this, they were orquiectomized and homosexual hormone-induced behavior was observed at 45 and 60 days of the treatment. RESULTS (1) Only treatment with FLX did not affect the homosexual behavior. (2) The homosexual experience facilitated the homosexual behavior mainly on the animals from the control group. (3) The heterosexual experience facilitated the homosexual behavior on both groups. CONCLUSIONS Only long-term administration of FLX does not interfere with the homosexual behavior in male rats. The homosexual and the heterosexual experience facilitated the homosexual behavior on the control and experimental groups. We suggested that learning aspects related to sexual behavior are responsible by these results.
Collapse
Affiliation(s)
- Soraya F Habr-Alencar
- Department of Pathology, Faculty of Veterinary Medicine and Zootechny, University of São Paulo, Sao Paulo, Brazil.
| | | | | | | |
Collapse
|
40
|
McMahon CG, McMahon CN, Leow LJ, Winestock CG. Efficacy of type-5 phosphodiesterase inhibitors in the drug treatment of premature ejaculation: a systematic review. BJU Int 2006; 98:259-72. [PMID: 16879663 DOI: 10.1111/j.1464-410x.2006.06290.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This review examines the role of nitric oxide (NO) as a neurotransmitter involved in the central and peripheral control of ejaculation, the methods of phosphodiesterase type 5 inhibitor (PDE5I) drug treatment studies for premature ejaculation (PE), the adherence of methods to the contemporary consensus of ideal PE drug trial design, the impact of methods on treatment outcomes and the role of PDE5Is in the treatment of PE. NO/cGMP transduction is involved in both the central and peripheral control of emission, but evidence for a direct central or peripheral effect of PDE5Is on ejaculation is speculative. Thirteen of the 14 studies reviewed failed to fulfil the evidence-based medicine criteria for ideal PE drug trial design. Limitations of the studies include inadequately defined study populations, the lack of a double-blind placebo-controlled study design, and the absence of consistent objective physiological measures or sensitive, validated outcome assessment instruments as study endpoints. The broad range of intravaginal ejaculatory latency time (IELT) fold-increases reported with PDE5Is, on-demand selective serotonin re-uptake inhibitor (SSRI) drugs, and combined PDE5I/on-demand SSRIs is testament to the unreliability of data and conclusions from methodologically flawed studies. The one study that fulfilled the evidence-based medicine criteria of an ideal clinical trial design reported that treatment with sildenafil failed to significantly increase baseline IELT, supporting our conclusion that there is no convincing evidence to support any role for PDE5Is in the treatment of men with lifelong PE and normal erectile function. However, there is limited evidence to support a potential role for PDE5Is alone or combined with daily or on-demand SSRIs in the treatment of acquired PE in men with comorbid erectile dysfunction. Further controlled studies adhering to the contemporary consensus of ideal clinical trial design are required to clarify the role of PDE5Is in this subgroup of men with acquired PE.
Collapse
Affiliation(s)
- Chris G McMahon
- Australian Centre for Sexual Health, Suite 2-4, Berry Road Medical Centre, 1a Berry Road, St. Leonards, NSW, Australia 2065.
| | | | | | | |
Collapse
|
41
|
Giraldi A, Marson L, Nappi R, Pfaus J, Traish AM, Vardi Y, Goldstein I. Physiology of female sexual function: animal models. J Sex Med 2006; 1:237-53. [PMID: 16422954 DOI: 10.1111/j.1743-6109.04037.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Data concerning the physiology of desire, arousal, and orgasm in women are limited because of ethical constraints. Aim. To gain knowledge of physiology of female sexual function through animal models. METHODS To provide state-of-the-art knowledge concerning female sexual function in animal models, representing the opinions of seven experts from five countries developed in a consensus process over a 2-year period. MAIN OUTCOME MEASURE Expert opinion was based on the grading of evidence-based medical literature, widespread internal committee discussion, public presentation, and debate. RESULTS Sexual desire may be considered as the presence of desire for, and fantasy about, sexual activity. Desire in animals can be inferred from certain appetitive behaviors that occur during copulation and from certain unconditioned copulatory measures. Proceptive behaviors are dependent in part on estrogen, progesterone, and drugs that bind to D1 dopamine receptors, adrenergic receptors, oxytocin receptors, opioid receptors, or gamma-amino butyric acid receptors. Peripheral arousal states are dependent on regulation of genital smooth muscle tone. Multiple neurotransmitters/mediators are involved including adrenergic, and nonadrenergic, noncholinergic agents such as vasoactive intestinal polypeptide, nitric oxide, neuropeptide Y, calcitonin gene-related peptide, and substance P. Sex steroid hormones, estrogens and androgens, are critical for structure and function of genital tissues including modulation of genital blood flow, lubrication, neurotransmitter function, smooth muscle contractility, mucification, and sex steroid receptor expression in genital tissues. Orgasm may be investigated by urethrogenital (UG) reflex, in which genital stimulation results in rhythmic contractions of striated perineal muscles and contractions of vagina, anus, and uterine smooth muscle. The UG reflex is generated by a multisegmental spinal pattern generator involving the coordination of sympathetic, parasympathetic, and somatic efferents innervating the genital organs. Serotonin and dopamine may modulate UG reflex activity. CONCLUSIONS More research is needed in animal models in the physiology of female sexual function.
Collapse
|
42
|
Johnson RD. Descending pathways modulating the spinal circuitry for ejaculation: effects of chronic spinal cord injury. AUTONOMIC DYSFUNCTION AFTER SPINAL CORD INJURY 2006; 152:415-26. [PMID: 16198717 DOI: 10.1016/s0079-6123(05)52028-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sexual dysfunction is a common complication in men with chronic spinal cord injury. In particular, ejaculation is severely compromised or absent and the resulting infertility issues are important to this group of predominantly young men. To investigate the neural circuits and descending spinal pathways involved in ejaculation, animal models have been developed in normal and spinal cord-injured preparations. Primarily through studies in rats, spinal ejaculatory circuits have been described including (i) autonomic circuits at the thoracolumbar and lumbosacral levels mediating the emission phase of ejaculation, (ii) somatic circuits at the lumbosacral level controlling the expulsion phase of ejaculation through sequential and rhythmic contraction of perineal striated muscles (e.g. bulbospongiosus), and (iii) a proposed ejaculatory pattern generator in the lumbar cord. Midthoracic incomplete chronic spinal cord injury has revealed the dependency of spinal ejaculatory circuits on bilateral spinal pathways from the brainstem via modulation of pudendal motor neuron reflexes and pudendal nerve autonomic fibers. Accordingly, sensory input from the dorsal nerve of the penis, required to trigger the ejaculatory response in animals and humans, is no longer inhibited from the lateral paragigantocellularis nucleus in the ventrolateral medulla. This inhibitory effect, likely presynaptic through a serotonergic pathway, is thought to be necessary to provide the rhythmic, bursting, and sequential contractions of the perineal muscles during ejaculation. Chronic lateral hemisection injury, which severs half of the descending lateral funiculus-located pathways, results in new functional connections of the pudendal reflex inhibitory and pudendal sympathetic activation pathways across the midline, above and below the lesion, respectively. Clinical correlations in spinal cord-injured men have demonstrated the validity of the rodent animal for the study of ejaculatory dysfunction after chronic injury.
Collapse
Affiliation(s)
- Richard D Johnson
- Department of Physiological Sciences, College of Veterinary Medicine and the McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0144, USA.
| |
Collapse
|
43
|
Affiliation(s)
- Ion G Motofei
- St. Pantelimon Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | | |
Collapse
|
44
|
Abstract
Involuntary sleep-related erections (SREs) occur naturally during REM sleep in sexually potent men and other mammals. The regularity of their pattern and non-volitional nature made SREs useful clinically for differentiating psychogenic and organic erectile dysfunction (ED) in candidates for surgical intervention. Normative data available for different age groups added to the attractiveness of SRE measurement for clinical decision-making. Clinical SRE testing is less commonly applied today with the advent of minimally invasive medical therapies for ED. Nonetheless, as an objective measure of erectile function, SRE recording for research provides a precise technique for examining the mechanisms of erection and is still conducted to resolve legal disputes. SRE alterations provoked hormonally and pharmacologically are discussed. Different SRE patterns are associated with comorbid factors and some of these are illustrated, described, or both. Recording techniques developed for rats have proved extremely valuable for furthering our understanding of brain centers mediating erectile response. Data from lesion and stimulation studies are examined in the present review, moving us a step closer to understanding the underpinnings of erectile function.
Collapse
Affiliation(s)
- Max Hirshkowitz
- Department of Psychiatry, Baylor College of Medicine, Houston Veterans Affairs Medical Center Sleep Center, TX, USA.
| | | |
Collapse
|
45
|
Allard J, Truitt WA, McKenna KE, Coolen LM. Spinal cord control of ejaculation. World J Urol 2005; 23:119-26. [PMID: 15947961 DOI: 10.1007/s00345-004-0494-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 11/22/2004] [Indexed: 11/30/2022] Open
Abstract
Ejaculation is a reflex mediated by a spinal control center, referred to as a spinal ejaculation generator. During intercourse, the spinal ejaculation generator integrates the sensory inputs that are necessary to trigger ejaculation. At the time of ejaculation, it coordinates the sympathetic, parasympathetic, and somatic outflow to induce the two phases of ejaculation, i.e. emission and expulsion. It also provides the brain with signals related to the occurrence of ejaculation. Experimental and clinical data evidenced that these functions were devoted to neurons located in the lumbosacral cord. We recently characterized a population of spinothalamic neurons in the lumbar spinal cord of male rats (LSt cells) that constitutes an integral part of the spinal ejaculation generator. LSt cells send projections to the autonomic nuclei and motoneurons involved in the emission and expulsion phase, and they receive sensory projections from the pelvis. LSt cells are activated with ejaculation, but not following other components of sexual behavior, and lesions of LSt cells completely ablate ejaculatory function. These data support a pivotal role for the LSt cells in the control of ejaculation.
Collapse
Affiliation(s)
- Julien Allard
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati, Cincinnati, OH 45267-0521, USA
| | | | | | | |
Collapse
|
46
|
Gerendai I. Supraspinal connections of the reproductive organs: structural and functional aspects. ACTA ACUST UNITED AC 2005; 91:1-21. [PMID: 15334828 DOI: 10.1556/aphysiol.91.2004.1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gonadal functions are governed by the hypothalamo-hypophyseal system. Other organs of the reproduction tract are under the regulatory action of gonadal steroids. In the past two decades several data have been accumulated on the involvement of fine-tuning control mechanisms which include autocrine and paracrine effects of biologically active substances produced locally and the regulatory action of nerves innervating the organs of the system. Recent studies using the viral transsynaptic technique have revealed cell groups in the central nervous system that are transneuronally connected with the male and female reproductive organs. This review summarizes neuromorphological data on the supraspinal innervation of reproductive organs and the functional significance of these brain areas in the control of reproduction.
Collapse
Affiliation(s)
- Ida Gerendai
- Department of Human Morphology and Developmental Biology, Neuroendocrine Research Laboratory, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary.
| |
Collapse
|
47
|
Hubscher CH, Johnson RD. Effects of Chronic Dorsal Column Lesions on Pelvic Viscerosomatic Convergent Medullary Reticular Formation Neurons. J Neurophysiol 2004; 92:3596-600. [PMID: 15282259 DOI: 10.1152/jn.00310.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Single medullary reticular formation (MRF) neurons receive multiple somatovisceral convergent inputs originating from many different spinal and cranial nerves, including the pelvic nerve (PN), dorsal nerve of the penis (DNP), and the abdominal branches of the vagus. In a previous study, the input to MRF from the male genitalia was shown to be eliminated with chronic 30-day dorsal hemisection at the T8 spinal level. In this study, the effect of a smaller chronic lesion [dorsal column lesion (DCx)] on MRF neuronal responses was examined. Responses to bilateral electrical stimulation of the DNP remained. MRF neuronal responses to non-noxious (touch/stroke) levels of penile stimulation, however, were eliminated; only responses to noxious pinch remained. No differences were found for the number of neurons responding to noxious distention of the colon between the DCx and control groups. Although no differences were found across these groups for the percent MRF responses to vagal stimulation, the mean response latency for the DCx group was twice the sham-DCx/intact control group. Taken together, these results indicate that the MRF receives at least some of its input from the male genitalia via pathways located within the dorsal columns at the mid-thoracic spinal level.
Collapse
Affiliation(s)
- Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292, USA.
| | | |
Collapse
|
48
|
Abstract
Ejaculation is a reflex mediated by a spinal control center, referred to as a spinal ejaculation generator. This spinal ejaculation generator coordinates sympathetic, parasympathetic and motor outflow to induce the two phases of ejaculation, i.e., emission and expulsion. In addition, the spinal ejaculation generator integrates this outflow with inputs that are related to the summation of sexual activity prior to ejaculation that are required to trigger ejaculation. Recently, a group of spinothalamic neurons in the lumbar spinal cord (LSt cells) were demonstrated to comprise an integral part of the spinal ejaculation generator. Specifically, lesions of LSt cells completely ablate ejaculatory function. Moreover, LSt cells are activated following ejaculation, but not following other components of sexual behavior. Furthermore, based on their relationship with autonomic nuclei, motoneurons and genital sensory inputs, LSt cells are also in the ideal anatomical position to integrate sensory inputs and autonomic and motor outflow. Additionally, the spinal ejaculation generator is under inhibitory and excitatory influence of supraspinal sites, including the nucleus paragigantocellularis (nPGi), the paraventricular nucleus of the hypothalamus (PVN) and the medial preoptic area (MPOA). Finally, sensory information related to ejaculation is processed in the spinal cord and brain, possibly contributing to the rewarding properties of ejaculation. One candidate pathway for relay of ejaculation-related cues consists of LSt cells and their projections to the parvocellular subparafascicular thalamic nucleus. Moreover, neural activation specifically related to ejaculation is observed in the brain and may reflect of processing of ejaculation-related sensory cues.
Collapse
Affiliation(s)
- Lique M Coolen
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati, Cincinnati, OH 45267-0521, USA.
| | | | | | | |
Collapse
|
49
|
Abstract
Steroid hormones regulate sexual behavior primarily by slow, genomically mediated effects. These effects are realized, in part, by enhancing the processing of relevant sensory stimuli, altering the synthesis, release, and/or receptors for neurotransmitters in integrative areas, and increasing the responsiveness of appropriate motor outputs. Dopamine has facilitative effects on sexual motivation, copulatory proficiency, and genital reflexes. Dopamine in the nigrostriatal tract influences motor activity; in the mesolimbic tract it activates numerous motivated behaviors, including copulation; in the medial preoptic area (MPOA) it controls genital reflexes, copulatory patterns, and specifically sexual motivation. Testosterone increases nitric oxide synthase in the MPOA; nitric oxide increases basal and female-stimulated dopamine release, which in turn facilitates copulation and genital reflexes. Serotonin (5-HT) is primarily inhibitory, although stimulation of 5-HT(2C) receptors increases erections and inhibits ejaculation, whereas stimulation of 5-HT(1A) receptors has the opposite effects: facilitation of ejaculation and, in some circumstances, inhibition of erection. 5-HT is released in the anterior lateral hypothalamus at the time of ejaculation. Microinjections of selective serotonin reuptake inhibitors there delay the onset of copulation and delay ejaculation after copulation begins. One means for this inhibition is a decrease in dopamine release in the mesolimbic tract.
Collapse
Affiliation(s)
- Elaine M Hull
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260-4110, USA.
| | | | | |
Collapse
|
50
|
Marson L, Foley KA. Identification of neural pathways involved in genital reflexes in the female: a combined anterograde and retrograde tracing study. Neuroscience 2004; 127:723-36. [PMID: 15283970 DOI: 10.1016/j.neuroscience.2004.04.063] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2004] [Revised: 04/22/2004] [Accepted: 04/22/2004] [Indexed: 11/27/2022]
Abstract
The medial preoptic area (MPOA) is important for reproductive behavior in females. However, the descending pathways mediating these responses to the spinal motor output are unknown. The MPOA does not directly innervate the spinal cord. Therefore, pathways mediating MPOA-induced changes in sexual behavior must relay in the brain. The nucleus paragigantocellularis (nPGi) projects heavily to spinal circuits involved in female sexual reflexes and is involved in the tonic inhibition of genital reflexes. However, the periaqueductal gray (PAG) is also important for female sexual behavior. The present study examined the hypothesis that the MPOA output relays through PAG and the nPGi before descending to the spinal cord. We used anterograde and retrograde tracing techniques to examine the descending pathways and relay sites from the MPOA to the spinal cord and the nPGi in the female rat. Injection of biotinylated dextran amine into the MPOA produced dense labeling in specific regions of the PAG and Barrington's nucleus; anterogradely labeled fibers terminated close to neurons retrogradely labeled from the spinal cord in the PAG, Barrington's nucleus, nPGi, lateral hypothalamus and paraventricular nucleus (PVN). Anterogradely labeled fibers and varicosities were also found close to neurons retrogradely labeled from the nPGi in the PAG, lateral hypothalamus and PVN. These results suggest that the major MPOA output relays in the PAG and nPGi before descending to innervate spinal circuits regulating female genital reflexes and that the MPOA plays a multifaceted role in female reproductive behavior through its modulation of PAG output systems.
Collapse
Affiliation(s)
- L Marson
- UNC at Chapel Hill, Department of Surgery, Urology Division, 103 Mason Farm Road, 2330 MBRB, CB 7052 UNC at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|