1
|
Alaee E, Farahani F, Semnanian S, Azizi H. Prenatal exposure to morphine enhances excitability in locus coeruleus neurons. J Neural Transm (Vienna) 2022; 129:1049-1060. [PMID: 35674919 DOI: 10.1007/s00702-022-02515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
Opioid abuse during pregnancy may have noteworthy effects on the child's behavioral, emotional and cognitive progression. In this study, we assessed the effect of prenatal exposure to morphine on electrophysiological features of locus coeruleus (LC) noradrenergic neurons which is involved in modulating cognitive performance. Pregnant dams were randomly divided into two groups, that is a prenatal saline treated and prenatal morphine-treated group. To this end, on gestational days 11-18, either morphine or saline (twice daily, s.c.) was administered to pregnant dams. Whole-cell patch-clamp recordings were conducted on LC neurons of male offspring. The evoked firing rate, instantaneous frequency and action potentials half-width, and also input resistance of LC neurons significantly increased in the prenatal morphine group compared to the saline group. Moreover, action potentials decay slope, after hyperpolarization amplitude, rheobase current, and first spike latency were diminished in LC neurons following prenatal exposure to morphine. In addition, resting membrane potential, rise slope, and amplitude of action potentials were not changed by prenatal morphine exposure. Together, the current findings show a significant enhancement in excitability of the LC neurons following prenatal morphine exposure, which may affect the release of norepinephrine to other brain regions and/or cognitive performances of the offspring.
Collapse
Affiliation(s)
- Elham Alaee
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Farahani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Braun D, Feinstein DL. The locus coeruleus neuroprotective drug vindeburnol normalizes behavior in the 5xFAD transgenic mouse model of Alzheimer's disease. Brain Res 2017; 1702:29-37. [PMID: 29274883 DOI: 10.1016/j.brainres.2017.12.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023]
Abstract
Damage to noradrenergic neurons in the Locus coeruleus (LC) occurs contributes to neuropathology and behavioral deficits in Alzheimer's disease (AD); methods to reduce LC damage may therefore be of benefit. We previously showed that vindeburnol, a derivative of the plant alkaloid vincamine, reduced neuroinflammation, amyloid burden, and LC damage in a mouse model of AD; however, effects on behavior were not tested. We now tested the effects of vindeburnol on anxiety-like behavior in 5xFAD mice which develop robust amyloid burden at early ages. During novel object recognition testing, we observed that 5xFAD mice spent more time exploring than wildtype littermates, and that time was reduced by vindeburnol. Vindeburnol also reduced hyperlocomotion in the 5xFAD mice which may have contributed to their increased exploration times. In an open field test, vindeburnol normalized the increase of time spent in the center, and the decrease of time spent near the walls in 5xFAD mice. Vindeburnol reduced amyloid burden in the hippocampus and cortex, areas that contribute to regulation of anxiety-like behavior. In vitro, vindeburnol increased neuronal BDNF expression in a cAMP-dependent manner; and inhibited phosphodiesterase activity with an EC50 near 50 μM. These findings suggest that cAMP-mediated increases in neurotrophic factors contribute to beneficial effects of vindeburnol within the context of LC damage, which may be of value for treatment of some neuropsychiatric symptoms of AD.
Collapse
Affiliation(s)
- David Braun
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, United States
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, IL 60614, United States; Jesse Brown VA Medical Center, Chicago, IL 60614, United States.
| |
Collapse
|
3
|
Ahmad AS, Ahmad M, Maruyama T, Narumiya S, Doré S. Prostaglandin D2 DP1 receptor is beneficial in ischemic stroke and in acute exicitotoxicity in young and old mice. AGE (DORDRECHT, NETHERLANDS) 2010; 32:271-282. [PMID: 20640551 PMCID: PMC2926852 DOI: 10.1007/s11357-010-9135-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 01/29/2010] [Indexed: 05/29/2023]
Abstract
The cardiovascular complications reported to be associated with cyclooxygenase inhibitor use have shifted our focus toward prostaglandins and their respective receptors. Prostaglandin D(2) and its DP1 receptor have been implicated in various normal and pathologic conditions, but their role in stroke is still poorly defined. Here, we tested whether DP1 deletion aggravates N-methyl-D: -aspartic acid (NMDA)-induced acute toxicity and whether DP1 pharmacologic activation protects mice from acute excitotoxicity and transient cerebral ischemia. Moreover, since the elderly are more vulnerable to stroke-related damage than are younger patients, we tested the susceptibility of aged DP1 knockout (DP1(-/-)) mice to brain damage. We found that intrastriatal injection of 15 nmol NMDA caused significantly larger lesion volumes (27.2 +/- 6.4%) in young adult DP1(-/-) mice than in their wild-type counterparts. Additionally, intracerebroventricular pretreatment of wild-type mice with 10, 25, and 50 nmol of the DP1-selective agonist BW245C significantly attenuated the NMDA-induced lesion size by 19.5 +/- 5.0%, 39.6 +/- 7.7%, and 28.9 +/- 7.0%, respectively. The lowest tested dose of BW245C also was able to reduce middle cerebral artery occlusion-induced brain infarction size significantly (21.0 +/- 5.7%). Interestingly, the aggravated NMDA-induced brain damage was persistent in older DP1(-/-) mice as well. We conclude that the DP1 receptor plays an important role in attenuating brain damage and that selective targeting of this receptor could be considered as an adjunct therapeutic tool to minimize stroke damage.
Collapse
Affiliation(s)
- Abdullah Shafique Ahmad
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 364, Baltimore, MD 21205 USA
| | - Muzamil Ahmad
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 364, Baltimore, MD 21205 USA
| | - Takayuki Maruyama
- Pharmacological Research Laboratories, Ono Pharmaceutical Co. Ltd., Mishima-gun, Osaka, Japan
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto, Japan
| | - Sylvain Doré
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 364, Baltimore, MD 21205 USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
4
|
Traver S, Marien M, Martin E, Hirsch EC, Michel PP. The phenotypic differentiation of locus ceruleus noradrenergic neurons mediated by brain-derived neurotrophic factor is enhanced by corticotropin releasing factor through the activation of a cAMP-dependent signaling pathway. Mol Pharmacol 2006; 70:30-40. [PMID: 16569708 DOI: 10.1124/mol.106.022715] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have developed a model system of locus ceruleus (LC) neurons in culture, in which brain-derived neurotrophic factor (BDNF) induces the emergence of noradrenergic neurons attested by the presence of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase and the absence of phenylethanolamine N-methyl-transferase. Although inactive in itself, the neuropeptide corticotropin releasing factor (CRF) strongly amplified the effect of BDNF, increasing the number of cells expressing TH and the active accumulation of noradrenaline by a factor of 2 to 3 via a mechanism that was nonmitogenic. CRF also acted cooperatively with neurotrophin-4, which like BDNF is a selective ligand of the TrkB tyrosine kinase receptor. The effect of CRF but not that of BDNF was prevented by astressin, a nonselective CRF-1/CRF-2 receptor antagonist. However, only CRF-1 receptor transcripts were detectable in LC cultures, suggesting that this receptor subtype mediated the effect of CRF. Consistent with the positive coupling of CRF-1 receptors to adenylate cyclase, the trophic action of CRF was mimicked by cAMP elevating agents. Epac, a guanine nucleotide exchange factor directly activated by cAMP, contributed to the effect of CRF through the stimulation of extracellular signal-regulated kinases (ERKs) 1/2. However, downstream of ERK1/2 activation by CRF, the phenotypic induction of noradrenergic neurons relied upon the stimulation of the phosphatidylinositol-3-kinase/Akt transduction pathway by BDNF. Together, our results suggest that CRF participates to the phenotypic differentiation of LC noradrenergic neurons during development. Whether similar mechanisms account for the high degree of plasticity of these neurons in the adult brain remains to be established.
Collapse
Affiliation(s)
- Sabine Traver
- Unité Mixte de Recherche 679, INSERM-UPMC Bâtiment Pharmacie, Hôpital de la Salpêtrière, 47 bd de l'Hôpital, 75013, Paris, France
| | | | | | | | | |
Collapse
|
5
|
Rusnak M, Gainer H. Differential effects of forskolin on tyrosine hydroxylase gene transcription in identified brainstem catecholaminergic neuronal subtypes in organotypic culture. Eur J Neurosci 2005; 21:889-98. [PMID: 15787695 DOI: 10.1111/j.1460-9568.2005.03913.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The regulation of gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis, was studied in brainstem noradrenergic nuclei, locus coeruleus (LC), A2 and A1, in vitro. Several novel experimental approaches employed in this study included: (i) the development of a slice-explant model in which these brainstem nuclei maintained a high survival of the noradrenergic neurons, an organotypic topology and the coexpression of two identifying markers in addition to TH, i.e. norepinephrine transporter (NET) and vesicular monoamine transporter 2 (VMAT2); (ii) quantitative analysis of TH transcription in these nuclei was made using a labelled intronic probe to measure TH heteronuclear RNA (hnRNA) and (iii) the use of tetrodotoxin in the media to eliminate spontaneous neural activity in these nuclei, thereby providing a basal state as the starting point for the study of TH transcription under various pharmacological perturbations. In the presence of TTX, the adenylcyclase stimulator, forskolin, produced a 155% increase in LC, a 130% increase in A1, and a 220% increase in A2 in TH hnRNA as compared to control nuclei. This effect of forskolin was abolished in the LC and A1 by the PKA inhibitor, H89 (5 microm), but not by the MAP kinase pathway (MEK) inhibitor, PD98059 (75 microm). In contrast, the robust increase in TH transcription produced by forskolin in A2 neurons, was completely inhibited by PD98059, and only partially inhibited by H89, showing that induced TH transcription is mediated by different kinase pathways in specific central noradrenergic neuronal subtypes.
Collapse
Affiliation(s)
- Milan Rusnak
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
6
|
Davies MF, Tsui JY, Flannery JA, Li X, DeLorey TM, Hoffman BB. Augmentation of the noradrenergic system in alpha-2 adrenergic receptor deficient mice: anatomical changes associated with enhanced fear memory. Brain Res 2003; 986:157-65. [PMID: 12965240 DOI: 10.1016/s0006-8993(03)03248-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated sensitivity to the conditioned fear procedure of mice is influenced by the genetic deletion of alpha2A adrenoceptors (ARs). We observed a heightened freezing response in the discrete cue memory test in alpha2A AR knockout (alpha2A AR KO) mice and in D79N mice, a transgenic mouse strain with functionally impaired alpha2A ARs. No significant differences in contextual memory were observed between control and alpha2A AR KO or D79N mice suggesting a minimal role for the noradrenergic system in contextual memory. We speculated that the increased freezing response of the alpha2A AR KO and D79N mice in the discrete cue setting was due to increased release of norepinephrine evoked by the unconditioned footshock stimulus. In alpha2A AR KO mice we measured a doubling in the number of noradrenergic neurons in the locus coeruleus (LC) and a large increase in the cell volume of tyrosine hydroxylase positive neurons, likely due to selective preservation of large, multipolar neurons in the subcoeruleus. Hyperplasia of the noradrenergic neurons in the nucleus tractus solitarius, A5 and A7, was also observed. Alpha2A AR KO mice exhibit greater c-Fos expression in the LC compared to wild type mice suggesting that the LC neurons in the alpha2A AR KO mice were spontaneously more active. This study suggests that alpha2A ARs are involved in the development of the central noradrenergic system and raises the possibility that alterations in alpha2A AR expression may contribute to variations in fear and stress responses.
Collapse
|
7
|
Holm PC, Rodríguez FJ, Kresse A, Canals JM, Silos-Santiago I, Arenas E. Crucial role of TrkB ligands in the survival and phenotypic differentiation of developing locus coeruleus noradrenergic neurons. Development 2003; 130:3535-45. [PMID: 12810600 DOI: 10.1242/dev.00565] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of glial cell-line derived neurotrophic factor (GDNF) and neurotrophins in the development of locus coeruleus noradrenergic neurons was evaluated. We found that two neurotrophic factors previously reported to prevent the degeneration of lesioned adult central noradrenergic neurons, GDNF and neurotrophin 3 (NT3), do not play significant roles in the prenatal development of locus coeruleus noradrenergic neurons, as demonstrated by: (1) the lack of alterations in double Gdnf/Nt3 null mutant mice; and (2) the lack of survival-promoting effects of GDNF and/or NT3 in rat E13.5 primary cultures. In contrast, null mutant mice for TrkB, the tyrosine kinase receptor for brain-derived neurotrophic factor and neurotrophin 4, displayed a clear loss of locus coeruleus noradrenergic neurons. In accordance with this, treatment of rat E13.5 primary cultures with TrkB ligands prevented the early loss of noradrenergic neurons and maintained their survival for up to 6 days in vitro. Moreover, an additional 5-10-fold increase in the number of tyrosine hydroxylase positive noradrenergic neurons was detected after 12 hours in culture. This second effect of TrkB ligands involved neither proliferation nor survival, because the number of BrdU- or TUNEL-positive noradrenergic neurons did not change and the effect was elicited by delayed administration of either factor. Because TrkB ligands increased the number of tyrosine hydroxylase-positive cells expressing Phox2a, a paired homeodomain protein required for the development of locus coeruleus noradrenergic neurons, but did not affect the number of Phox2a-positive tyrosine hydroxylase-negative cells, our results suggest that the second effect of TrkB ligands may involve promoting or inducing a noradrenergic phenotype. In summary, our findings suggest that, unlike NT3 and GDNF, TrkB ligands are required and sufficient to promote the development of central noradrenergic neurons.
Collapse
Affiliation(s)
- Pontus C Holm
- Department of Medical Biochemistry and Biophysics, Laboratory of Molecular Neurobiology, Karolinska Institutet, Stockholm S-171 77, Sweden
| | | | | | | | | | | |
Collapse
|
8
|
Lucion AB, Pereira FM, Winkelman EC, Sanvitto GL, Anselmo-Franci JA. Neonatal handling reduces the number of cells in the locus coeruleus of rats. Behav Neurosci 2003; 117:894-903. [PMID: 14570540 DOI: 10.1037/0735-7044.117.5.894] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neonatal handling induces long-lasting effects on behaviors and stress responses. The objective of the present study was to analyze the effects of neonatal handling (from the 1st to the 10th day after delivery) on the number of cells and volume of locus coeruleus (LC) nucleus in male and female rats at 4 different ages: 11, 26, 35, and 90 days. Results showed significant reductions in the number of cells and the volume of the LC nucleus in neonatally handled males and females compared with nonhandled rats. Environmental stimulation early in life induced a stable structural change in a central noradrenergic nucleus, which could be one of the causal factors for the behavioral and hormonal alterations observed in adulthood.
Collapse
Affiliation(s)
- Aldo B Lucion
- Dept de Fisiologia, Inst de Ciencias Basicas da Saude, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, Porto Alegre RS 90050-170, Brazil.
| | | | | | | | | |
Collapse
|
9
|
Yan XD, Hanson AJ, Nahreini P, Koustas WT, Andreatta C, Prasad KN. Altered expression of genes regulating cell growth, proliferation, and apoptosis during adenosine 3',5'-cyclic monophosphate-induced differentiation of neuroblastoma cells in culture. In Vitro Cell Dev Biol Anim 2002; 38:529-37. [PMID: 12703981 DOI: 10.1290/1071-2690(2002)038<0529:aeogrc>2.0.co;2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An elevation of the intracellular levels of adenosine 3',5'-cyclic monophosphate (cAMP) induces terminal differentiation in neuroblastoma (NB) cells in culture; however, genetic alterations during differentiation have not been fully identified. To investigate this, we used Mouse Genome U74A microarray containing approximately 6000 functionally characterized genes to measure changes in gene expression in murine NB cells 30 min and 4, 24, and 72 h after treatment with cAMP-stimulating agents. Based on the time of increase in differentiated functions and their status (reversible versus irreversible) after treatment with cAMP-stimulating agents, the induction of differentiation in NB cells was divided into three distinct phases: initiation (about 4 h after treatment when no increase in differentiated functions is detectable), promotion (about 24 h after treatment when an increase in differentiated functions occurs, but they are reversible upon the removal of cAMP), and maintenance (about 72 h after treatment when differentiated functions are maximally expressed, but they are irreversible upon the removal of cAMP). Results showed that alterations in expression of genes regulating cell growth, proliferation, apoptosis, and necrosis occurred during cAMP-induced differentiation of NB cells. Genes that were upregulated during the initiation, promotion, or maintenance phase were called initiators, promoters, or maintainers of differentiation. Genes that were downregulated during the initiation, promotion, or maintenance phase were called suppressors of initiation, promotion, or maintenance phase. Genes regulating growth may act as initiators, promoters, maintainers, or suppressors of these phases. Genes regulating cell proliferation may primarily act as suppressors of promotion. Genes regulating cell cycle may behave as suppressors of initiation or promotion, whereas those regulating apoptosis and necrosis may act as initiators or suppressors of initiation or promotion. The fact that genetic signals for differentiation occurred 30 min after treatment with cAMP, whereas cell-cycle genes were downregulated at a later time, suggests that decision for NB cells to differentiate is made earlier and not at the cell-cycle stage, as commonly believed.
Collapse
Affiliation(s)
- Xiang-Dong Yan
- Center for Vitamins and Cancer Research, Department of Radiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
10
|
Reiriz J, Holm PC, Alberch J, Arenas E. BMP-2 and cAMP elevation confer locus coeruleus neurons responsiveness to multiple neurotrophic factors. JOURNAL OF NEUROBIOLOGY 2002; 50:291-304. [PMID: 11891664 DOI: 10.1002/neu.10034] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The locus coeruleus (LC) is a major target of several neurodegenerative disorders, including Parkinson's and Alzheimer's diseases. However, very little is known of the trophic requirements of LC neurons. In the present work, we have studied the biological activity of neurotrophic factors from different families in E15 primary cultures of LC neurons. In agreement with previous results, neurotrophin-3 (NT-3) and also glial cell line- derived neurotrophic factor (GDNF) increased the number of embryonic LC noradrenergic neurons in the presence of serum. In serum-free conditions, none of the factors tested, including NT-3, GDNF, neurturin, basic fibroblast growth factor (bFGF), or bone morphogenetic protein-2 (BMP-2), promoted the survival of tyrosine hydroxylase (TH)-immunoreactive neurons at 6 days in vitro. However, when BMP-2 was coadministered with any of these factors the number of LC TH-positive neurons increased twofold. Similar results were obtained by cotreatment of LC neurons with forskolin and NT-3, bFGF, or BMP-2. The strongest effect (a fourfold increase in the number of TH-positive cells) was induced by cotreatment with forskolin, BMP-2, and GDNF. Thus, our results show that LC neurons require multiple factors for their survival and development, and suggest that activation of LC neurons by bone morphogenetic proteins and cAMP plays a decisive role in conferring noradrenergic neuron responsiveness to several trophic factors.
Collapse
Affiliation(s)
- Julia Reiriz
- Department of Medical Biochemistry and Biophysics, Laboratory of Molecular Neurobiology, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
11
|
Tanaka K. Alteration of second messengers during acute cerebral ischemia - adenylate cyclase, cyclic AMP-dependent protein kinase, and cyclic AMP response element binding protein. Prog Neurobiol 2001; 65:173-207. [PMID: 11403878 DOI: 10.1016/s0301-0082(01)00002-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A variety of neurotransmitters and other chemical substances are released into the extracellular space in the brain in response to acute ischemic stress, and the biological actions of these substances are exclusively mediated by receptor-linked second messenger systems. One of the well-known second messenger systems is adenylate cyclase, which catalyzes the generation of cyclic AMP, triggering the activation of cyclic AMP-dependent protein kinase (PKA). PKA controls a number of cellular functions by phosphorylating many substrates, including an important DNA-binding transcription factor, cyclic AMP response element binding protein (CREB). CREB has recently been shown to play an important role in many physiological and pathological conditions, including synaptic plasticity and neuroprotection against various insults, and to constitute a convergence point for many signaling cascades. The autoradiographic method developed in our laboratory enables us to simultaneously quantify alterations of the second messenger system and local cerebral blood flow (lCBF). Adenylate cyclase is diffusely activated in the initial phase of acute ischemia (< or = 30 min), and its activity gradually decreases in the late phase of ischemia (2-6 h). The areas of reduced adenylate cyclase activity strictly coincide with infarct areas, which later become visible. The binding activity of PKA to cyclic AMP, which reflects the functional integrity of the enzyme, is rapidly suppressed during the initial phase of ischemia in the ischemic core, especially in vulnerable regions, such as the CA1 of the hippocampus, and it continues to decline. By contrast, PKA binding activity remains enhanced in the peri-ischemia area. These changes occur in a clearly lCBF-dependent manner. CREB phosphorylation at a serine residue, Ser(133), which suggests the activation of CREB-mediated transcription of genes containing a CRE motif in the nuclei, remains enhanced in the peri-ischemia area, which is spared of infarct damage. On the other hand, CREB phosphorylation at Ser133 rapidly diminishes in the ischemic core before the histological damage becomes manifest. The Ca2+ influx during membrane depolarization contributes to CREB phosphorylation in the initial phase of post-ischemic recirculation, while PKA activation and other signaling elements seem to be responsible in the later phase. These findings suggest that derangement of cyclic AMP-related intracellular signal transduction closely parallels ischemic neuronal damage and that persistent enhancement of this signaling pathway is important for neuronal survival in acute cerebral ischemia.
Collapse
Affiliation(s)
- K Tanaka
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan.
| |
Collapse
|
12
|
Granholm AC, Helt C, Srivastava N, Backman C, Gerhardt GA. Effects of age and GDNF on noradrenergic innervation of the hippocampal formation: studies from intraocular grafts. Microsc Res Tech 2001; 54:298-308. [PMID: 11514986 DOI: 10.1002/jemt.1142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent studies have suggested that factors in the target tissue influence the degree of plasticity and regeneration following aging and/or specific insults. We have investigated whether young or aged targets differ in their noradrenergic innervation from fetal locus coeruleus (LC) neurons, and also if a specific growth factor, glial cell line-derived neurotrophic factor (GDNF) can affect this innervation pattern. Tissue pieces of fetal brainstem and young (3 months) or old (18 months) iris tissue were transplanted simultaneously into the anterior chamber of the eye of adult hosts. We found that aged iris transplants became innervated to a significantly lesser degree by the cografted LC neurons than young iris transplants. Fetal hippocampal tissue was then grafted to adult hosts, and a fetal brainstem graft containing LC neurons was placed adjacent to the first graft, either at 3 or 21 months post-grafting. Thus, old/young chimeras of the noradrenergic coeruleo-hippocampal pathway were created. Aged hippocampal grafts received a much less dense innervation from co-grafted LC neurons than young hippocampal grafts. Tyrosine hydroxylase-positive-immunoreactive innervation was only found in the outskirts of aged grafts, while the young hippocampal grafts contained an even innervation pattern. The innervation density of hippocampal grafts was significantly enhanced by GDNF treatment. These findings demonstrate that target-derived factors may regulate neuronal plasticity, and that the age of the target is more important for innervation properties than the age of the neuron innervating a particular target.
Collapse
Affiliation(s)
- A C Granholm
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | |
Collapse
|
13
|
Ryu JR, Jobe PC, Milbrandt JC, Mishra PK, Clough RW, Browning RA, Dailey JW, Seo DO, Ko KH. Morphological deficits in noradrenergic neurons in GEPR-9s stem from abnormalities in both the locus coeruleus and its target tissues. Exp Neurol 1999; 156:84-91. [PMID: 10192779 DOI: 10.1006/exnr.1998.7003] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The epileptic condition of the genetically epilepsy-prone rat (GEPR) appears to be caused partially by deficiencies in the locus coeruleus (LC) innervation of the superior colliculus (SC). Previous studies provide quantitative documentation of noradrenergic morphological deficits in the moderately epileptic GEPR-3. The present findings extend these studies by applying cell culture methodology to assessments of the severely epileptic GEPR-9. Our data show that total neurite length, the number of neurite branch points per cell, the cross-sectional area of cell bodies, and the cell perimeter are deficient in noradrenergic neurons in LC + SC cocultures derived exclusively from GEPR-9s compared to analogous cocultures obtained solely from nonepileptic control rats. Partial restoration of LC neuron morphology toward normal occurs when the GEPR-9 SC component of the coculture is replaced with nonepileptic control SC. Finally, when the GEPR-9 SC is cocultured with the control LC, a partial morphological deficit occurs in the otherwise normal noradrenergic neurons. However, the magnitude of this deficit is less than that observed in noradrenergic neurons of the GEPR-9 LC cocultured with the control SC. These data support the hypothesis that the developmental deficiencies of noradrenergic neurons of the GEPR-9 are derived from two sources, the LC and its target tissue, in this case, the SC. Also, intrinsic abnormalities of the LC appear to make a more pronounced contribution to the noradrenergic deficits than do those which reside in the SC.
Collapse
Affiliation(s)
- J R Ryu
- College of Pharmacy, Seoul National University, San 56-1, Shillim-dong, Seoul, Kwanak-ku, 151-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Arimura A. Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. THE JAPANESE JOURNAL OF PHYSIOLOGY 1998; 48:301-31. [PMID: 9852340 DOI: 10.2170/jjphysiol.48.301] [Citation(s) in RCA: 421] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
PACAP is a pleiotropic neuropeptide that belongs to the secretin/glucagon/VIP family. PACAP functions as a hypothalamic hormone, neurotransmitter, neuromodulator, vasodilator, and neurotrophic factor. Its structure has been remarkably conserved during evolution. The PACAP receptor is G protein-coupled with seven transmembrane domains and also belongs to the VIP receptor family. PACAP, but not VIP, binds to PAC1-R, whereas PACAP and VIP bind to VPAC1-R and VPAC2-R with a similar affinity. Despite the sizable homology of the structures of PACAP and VIP and their receptors, the distribution of these peptides and receptors is quite different. At least eight subtypes of PACAP specific, or PAC1-R, result from alternate splicing. Each subtype is coupled with specific signaling pathways, and its expression is tissue or cell specific. Although PACAP fulfills most requirements for a physiological hypothalamic hypophysiotropic hormone, it does not consistently stimulate secretion of the adenohypophysial hormones, except for stimulation of IL-6 release from the FS cells of the pituitary. The major regulatory role of PACAP in pituitary cells appears to be the regulation of gene expression of pituitary hormones and/or regulatory proteins that control growth and differentiation of the pituitary glandular cells. These effects appear to be exhibited directly and indirectly through a paracrine or autocrine action. Although PACAP stimulates the release of AVP, the physiological role of neurohypophysial PACAP remains unknown. One important action of PACAP in the endocrine system is its role as a potent secretagogue for adrenaline from the adrenal medulla through activation of TH. PACAP also stimulates the release of insulin and increases [Ca2+]i from pancreatic beta-cells at an extremely small concentration. The stage-specific expression of PACAP in testicular germ cells during spermatogenesis suggests its regulatory role in the maturation of germ cells. In the ovary, PACAP is transiently expressed in the granulosa cells of the preovulatory follicles and appears to be involved in the LH-induced cellular events in the ovary, including prevention of follicular apoptosis. In the central nervous system, PACAP acts as a neurotransmitter or neuromodulator, which has been supported by IHC and electrophysiological methods. More important, PACAP is a neurotrophic factor that may play an important role during the development of the brain. In the adult brain, PACAP appears to function as a neuroprotective factor that attenuates the neuronal damage resulting from various insults.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Animals
- Endocrine Glands/drug effects
- Endocrine Glands/physiology
- Female
- Humans
- Male
- Molecular Sequence Data
- Nervous System/drug effects
- Nervous System Physiological Phenomena
- Neuropeptides/genetics
- Neuropeptides/pharmacology
- Neuropeptides/physiology
- Neurosecretory Systems/drug effects
- Neurosecretory Systems/physiology
- Ovary/drug effects
- Ovary/physiology
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/chemistry
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/physiology
- Receptors, Vasoactive Intestinal Peptide, Type II
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Sequence Homology, Amino Acid
- Signal Transduction
- Testis/drug effects
- Testis/physiology
- Tissue Distribution
Collapse
Affiliation(s)
- A Arimura
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
15
|
Nakao N. An increase in intracellular levels of cyclic AMP produces trophic effects on striatal neurons developing in culture. Neuroscience 1997; 82:1009-20. [PMID: 9466425 DOI: 10.1016/s0306-4522(97)00349-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclic AMP-dependent kinases have been suggested to constitute signal transduction pathways involved in the regulation of neuronal development and survival. The present study examined whether elevated levels of cyclic AMP exhibit trophic activities on rat striatal neurons grown under serum-free culture conditions. Treatment with dibutyryl cyclic AMP, a permeable cyclic AMP, increased GABA uptake and immunocytochemically detectable levels of proteins such as c-Fos and calbindin-D28k. Neuronal survival was promoted by dibutyryl cyclic AMP only in lower density cultures. Chronic exposure of neurons to dibutyryl cyclic AMP enhanced the morphological development of calbindin-D28k-positive neurons. Furthermore, pretreatment with dibutyryl cyclic AMP afforded neuroprotection against N-methyl-D-aspartate-induced excitotoxicity. The dibutyryl cyclic AMP-induced trophic effects above were blocked by adenosine 3',5'-cyclic monophosphothioate, a specific inhibitor of cyclic AMP-dependent kinases. We also examined whether cyclic AMP is involved in trophic effects provided by membrane depolarization induced by high K+ and growth factors such as basic fibroblast growth factor and insulin-like growth factor-1. Depolarization, but not the growth factors, increased intracellular levels of cyclic AMP. Adenosine 3',5'-cyclic monophosphothioate diminished depolarization increases in GABA uptake, whereas it did not affect the trophic effect of the growth factors. Co-treatment with the growth factors and dibutyryl cyclic AMP produced additive effects on both increases in GABA uptake and neuroprotection against excitotoxicity. The present results indicate that cyclic AMP-dependent kinases play roles in mediating differentiation and survival of developing striatal neurons. Signalling pathways activated by either basic fibroblast growth factor or insulin-like growth factor-1 are independent of those involving cyclic AMP. In contrast, depolarization-induced trophic effects are mediated, at least in part, by cyclic AMP-dependent pathways. Protective actions of dibutyryl cyclic AMP against excitotoxic injury as well as the additive effects with the growth factors are of potential interest in the experimental therapy of acute or chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- N Nakao
- Department of Neurological Surgery, Wakayama Medical College, Japan
| |
Collapse
|
16
|
Dickie BG, Greenfield SA. Chronic exposure to Ro20-1724 protects dopaminergic neurons in vitro against the neurotoxic action of N-methyl-D-aspartate and 1-methyl-4-phenylpyridinium. Brain Res 1997; 753:335-9. [PMID: 9125421 DOI: 10.1016/s0006-8993(97)00152-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Using organotypic cultures of rat ventral mesencephalon, the effects of chronic (12-15 day) exposure to the type IV cAMP phosphodiesterase inhibitor, Ro20-1724, were examined. At concentrations of 10(-8)-10(-5) M, Ro20-1724 alone had no effect upon the number of tyrosine hydroxylase-positive neurons or upon neurite outgrowth. However, the drug offered significant protection, with maximum effect at 10(-6) M, against subsequent acute (48 h) exposure to the neurotoxic agents 1-methyl-4-phenylpyridinium (MPP+) and N-methyl-D-aspartate (NMDA).
Collapse
Affiliation(s)
- B G Dickie
- University Department of Pharmacology, Oxford, UK
| | | |
Collapse
|
17
|
Jiang L, Foster FM, Ward P, Tasevski V, Luttrell BM, Conigrave AD. Extracellular ATP triggers cyclic AMP-dependent differentiation of HL-60 cells. Biochem Biophys Res Commun 1997; 232:626-30. [PMID: 9126325 DOI: 10.1006/bbrc.1997.6345] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Extracellular ATP and ATP gamma S (1-1000 microM) stimulated cyclic AMP (cAMP) production in undifferentiated HL-60 cells. The potency order for adenine nucleotides and adenosine was ATP gamma S > ATP > > ADP > 3 AMP = Adenosine. Indomethacin (50 microM) had no effect on ATP-induced cAMP production. ATP and ATP gamma S also suppressed cell growth and induced differentiation as revealed by fMLP-stimulated beta-glucuronidase release 48 h after exposure. The potency order for the induction of fMLP-stimulated beta-glucuronidase release by adenine nucleotides and adenosine was ATP gamma S > 3 ATP > ADP > AMP = Adenosine approximately 0. The protein kinase A inhibitor Rp-8-Br-cAMPS (10-200 mM) suppressed ATP-induced differentiation but had no effect on ATP-dependent growth suppression. UTP which, like ATP, activates P2U receptors on HL-60 cells, had no effect on cAMP production, cell growth, or differentiation. The data suggest the existence of a novel receptor for ATP on undifferentiated HL-60 cells that is coupled to the activation of adenylate cyclase and cAMP-dependent differentiation.
Collapse
Affiliation(s)
- L Jiang
- Department of Biochemistry, University of Sydney, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Morio H, Tatsuno I, Tanaka T, Uchida D, Hirai A, Tamura Y, Saito Y. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neurotrophic factor for cultured rat cortical neurons. Ann N Y Acad Sci 1996; 805:476-81. [PMID: 8993427 DOI: 10.1111/j.1749-6632.1996.tb17507.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- H Morio
- Second Department of Internal Medicine, Chiba University School of Medicine, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Morio H, Tatsuno I, Hirai A, Tamura Y, Saito Y. Pituitary adenylate cyclase-activating polypeptide protects rat-cultured cortical neurons from glutamate-induced cytotoxicity. Brain Res 1996; 741:82-8. [PMID: 9001708 DOI: 10.1016/s0006-8993(96)00920-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have investigated the effects of pituitary adenylate cyclase-activating polypeptide with 38 residues (PACAP38) on glutamate-induced neuronal cell death in rat-cultured cortical neurons. The rat-cultured neurons were obtained from E17 day-old embryos and cultured in a chemically defined medium without serum for 10 days, after which more than 95% of the cells were stained by a specific antibody against MAP-2, a specific marker for neurons. The number of viable neurons was identified by the mitochondrial conversion of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) to formazan, which was detected by the associated change in optical density at 570 nm. Glutamate-induced neuronal cell death was suppressed by PACAP38 at concentrations as low as 10(-13) M, and at 10(-11) M maximally suppressed half of the amount of glutamate-induced cell death seen in a control situation (no PACAP38). The dose-response curve was bell-shaped. Dibutyryl cAMP (dbcAMP) also increased the number of neurons that were protected from damage with a bell-shaped dose-response curve suggesting that PACAP exerts its neuroprotective effect through the activation of a cAMP signal transduction system. However, cAMP accumulation in the media of neurons was stimulated by PACAP38 at concentrations as low as 10(-11) M, a much higher concentration than the minimal effective dose of PACAP38 required for protection against glutamate-induced neuronal cell death. Among the three neuropeptides of PACAP38, arginine vasopressin (AVP) and C-type natriuretic peptide (CNP), only PACAP38 exhibited a neurotrophic effect in the glutamate-induced neuronal cell death at the indicated concentrations. These data indicate that PACAP38 is one of the more important neuroprotective factors. The kind of intracellular signal transduction system involved in the neuroprotective effect of PACAP38 still remains to be established.
Collapse
Affiliation(s)
- H Morio
- Second Department of Internal Medicine, Chiba University, School of Medicine, Japan
| | | | | | | | | |
Collapse
|
20
|
Sklair-Tavron L, Nestler EJ. Opposing effects of morphine and the neurotrophins, NT-3, NT-4, and BDNF, on locus coeruleus neurons in vitro. Brain Res 1995; 702:117-25. [PMID: 8846066 DOI: 10.1016/0006-8993(95)01029-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of noradrenergic locus coeruleus (LC) neurons is subject to regulation by multiple epigenetic signals. To examine the potential regulation of LC ontogeny by opiates and neurotrophins, we studied the effects of morphine and NT-3, NT-4, and BDNF on the survival and differentiation of LC neurons from prenatal rats in dissociated cell culture. Noradrenergic cells were identified and counted following tyrosine hydroxylase (TH) immunocytochemistry, and their state of differentiation was assessed by measuring norepinephrine (NE) uptake. Treating LC cultures with morphine starting on day 1 after plating resulted in a 20% decrease in NE uptake and a small (12%) but significant decrease in the number of TH-immunoreactive (TH +) cells. Application of morphine on day 4 after plating had the same effect on NE uptake without influencing TH + cell number. This effect of morphine was blocked by concomitant exposure to naloxone (an opioid receptor antagonist), and mimicked by exposure to opioid peptides. Treatment of cultures with the neurotrophins, NT-3 or NT-4, increased NE uptake and TH + cell number, as reported previously. Moreover, we show for the first time that brain-derived neurotrophic factor (BDNF) exerts similar effects, with a large (110%) increase in NE uptake and a modest (20%) increase in TH + cell number. Cotreatment of LC cultures with morphine and NT-3 resulted in an attenuation of the NT-3 effect on both NE uptake and the number of TH + cells. In contrast, cotreatment of LC cultures with morphine and NT-4 or BDNF attenuated the neurotrophin effect on TH + cell number but not on NE uptake. Our results raise the possibility that opioid peptides may modulate the influence of neurotrophins on LC neuronal survival and differentiation.
Collapse
Affiliation(s)
- L Sklair-Tavron
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA
| | | |
Collapse
|
21
|
Hulley P, Hartikka J, Abdel'Al S, Engels P, Buerki HR, Wiederhold KH, Müller T, Kelly P, Lowe D, Lübbert H. Inhibitors of type IV phosphodiesterases reduce the toxicity of MPTP in substantia nigra neurons in vivo. Eur J Neurosci 1995; 7:2431-40. [PMID: 8845948 DOI: 10.1111/j.1460-9568.1995.tb01041.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The neuropathology of Parkinson's disease is characterized by the degeneration of dopaminergic neurons in the substantia nigra. We have recently shown that the activation of protein kinase A improves the survival of dopaminergic neurons in culture and, furthermore, protects them from the dopaminergic neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP+) in vitro. We have now analysed the potential of phosphodiesterase inhibitors to increase cAMP levels in dopaminergic neurons, to improve their survival in culture and to protect them from the toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in vivo. Increasing intracellular cAMP with phosphodiesterase type IV-specific inhibitors enhanced the survival of dopaminergic neurons in culture. Inhibitors of other phosphodiesterase types were not active. In vivo, phosphodiesterase type IV inhibitors reduced the MPTP-induced dopamine depletion in the striatum of C57BL/6 mice. Furthermore, the loss of tyrosine hydroxylase-immunopositive neurons in the substantia nigra of these animals was diminished. After Nissl staining, a similar reduction of the MPTP-induced loss of neurons was observed in the substantia nigra. The protective effect of protein kinase A activation did not appear to be due to the blocking of MPP+ uptake into dopaminergic neurons. This was not decreased after treatment with forskolin or 8-(4-chlorophenylthio)-cAMP. Thus, protein kinase A regulates the survival and differentiation of dopaminergic substantia nigra neurons in vivo, implicating a therapeutic potential for substances which regulate cAMP turnover in these neurons.
Collapse
Affiliation(s)
- P Hulley
- Preclinical Research, Sandoz Pharma Ltd., Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sklair-Tavron L, Nestler EJ, Segal M. Locus coeruleus (LC)--target interaction and cAMP in control of LC development. Brain Res Bull 1994; 35:397-402. [PMID: 7859095 DOI: 10.1016/0361-9230(94)90150-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The epigenetic stimuli that regulate the development of noradrenergic LC neurons were studied in an vitro system of LC primary cultures. Noradrenergic cells were identified using immunocytochemical staining for tyrosine hydroxylase (TH). Maturation of noradrenergic neurons was assessed by measuring the high affinity uptake of norepinephrine (NE). Coculturing target cells with LC neurons exerts both stimulatory and inhibitory effects on NE uptake, depending on the density of plated cells. The target stimulatory effect may be mediated by glial soluble factors, whereas the inhibitory effect may be mediated by glial membranal molecules. In addition to target derived trophic factors, the effect of elevated cAMP levels was examined. cAMP analogs and forskolin dramatically increase the number of TH+ cells, possibly by supporting their survival. This phenomenon is not dependent on calcium or calcium requiring processes and is not mediated by glial cells. The trophic activity of cAMP appears to be exerted by protein phosphorylation via cAMP dependent protein kinase. Norepinephrine is suggested to be one signal that triggers cAMP elevation through the beta-adrenergic receptor and thereby affects LC development. Morphine, which is known to inhibit adenylate cyclase, reduces NE uptake and number of TH+ neurons. Morphine also inhibits the NT-3 induced increase in noradrenergic survival. We hypothesize that morphine exerts these effects by modulating the cAMP cascade.
Collapse
Affiliation(s)
- L Sklair-Tavron
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508
| | | | | |
Collapse
|
23
|
Nestler EJ, Alreja M, Aghajanian GK. Molecular and cellular mechanisms of opiate action: studies in the rat locus coeruleus. Brain Res Bull 1994; 35:521-8. [PMID: 7859110 DOI: 10.1016/0361-9230(94)90166-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have studied the molecular and cellular mechanisms underlying the acute and chronic effects of opiate on neurons of the rat locus coeruleus (LC). Acutely, opiates inhibit LC neurons by activating K+ channels and inhibiting a novel sodium-dependent inward current. Both of these actions are mediated via pertussis toxin-sensitive G-proteins, and regulation of the sodium current occurs through inhibition of the cyclic AMP pathway. In contrast to the acute effects of opiates, chronic treatment of rats with opiates increases levels of specific G-protein subunits, adenylate cyclase, cyclic AMP-dependent protein kinase, and a number of phosphoproteins (including tyrosine hydroxylase) in this brain region. Electrophysiological data have provided direct support for the possibility that this upregulation of the cyclic AMP system contributes to opiate tolerance, dependence, and withdrawal exhibited by these noradrenergic LC neurons. As the adaptations in G-proteins and the cyclic AMP system appear to occur at least in part at the level of gene expression, current efforts are aimed at identifying the mechanisms by which opiates regulate the expression of these intracellular messenger proteins in the LC. These studies will lead to an improved understanding of the molecular and cellular basis of opiate addiction.
Collapse
Affiliation(s)
- E J Nestler
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven 06508
| | | | | |
Collapse
|