1
|
Ozarda Ilcol Y, Uncu G, Ulus IH. Free and phospholipid-bound choline concentrations in serum during pregnancy, after delivery and in newborns. Arch Physiol Biochem 2002; 110:393-9. [PMID: 12530624 DOI: 10.1076/apab.110.5.393.11832] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aims of this study were to determine whether serum free choline and phospholipid-bound choline concentrations change during the pregnancy or after childbirth and to determine if the serum choline concentrations of the mother and newborn are correlated. Serum free and bound choline concentrations were 10.7 +/- 0.5 microM and 2780 +/- 95 microM in control, non-pregnant women, and rose significantly (p < 0.001) to 14.5 +/- 0.6 microM and 3370 +/- 50 microM or to 16.5 +/- 0.7 microM and 3520 +/- 150 microM after 16-20 weeks or 36-40 weeks of pregnancy, respectively. Serum free and phospholipid-bound choline fell by 14-22% (p < 0.05-01) after either vaginal delivery or caesarian section, and remained low (by 15-42%; p < 0.05-0.001) for 12 h and then rose toward the baseline within 24 h. In amniotic fluid, free choline and phospholipid-bound choline concentrations were 22.8 +/- 1.0 and 19.6 +/- 0.8 microM or 24.0 +/- 1.5 and 516 +/- 43 microM at 16-20 weeks of gestational age or at term, respectively. In newborns, serum free choline concentrations were higher (p < 0.001) and phospholipid-bound choline concentrations were lower (p < 0.001) than in their mothers. These results show that serum free choline and phospholipid-bound choline concentrations are elevated during the pregnancy, which may be required for an adequate maternal supply of choline to the fetus. These observations are clinically important to determine the ideal dietary intake of choline during the pregnancy.
Collapse
Affiliation(s)
- Y Ozarda Ilcol
- Department of Biochemistry, Uludag University Medical School, Bursa, Turkey.
| | | | | |
Collapse
|
2
|
Ilcol YO, Dönmez O, Yavuz M, Dilek K, Yurtkuran M, Ulus IH. Free choline and phospholipid-bound choline concentrations in serum and dialysate during peritoneal dialysis in children and adults. Clin Biochem 2002; 35:307-13. [PMID: 12135694 DOI: 10.1016/s0009-9120(02)00319-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES This study tested whether continuous ambulatory peritoneal dialysis (CAPD) changes free or phospholipid-bound choline concentrations in serum or peritoneal dialysis fluid of patients with end stage renal disease (ESRD). DESIGN AND METHODS Serum and dialysate choline and phospholipid-bound choline were measured before, during and after 6 h CAPD. RESULTS Serum choline concentrations were higher in patients with ESRD compared with age-matched controls. CAPD lowered serum choline concentrations significantly although it did not influence phospholipid-bound choline. Choline accumulated in the dialysate, reaching 28.4 +/- 2.7 microM in children and 18.2 +/- 1.4 microM in adults, during six hours CAPD; phospholipid-bound choline increased to 22.9 +/- 2.5 microM and 10.8 +/- 1.4 microM in children and adults, respectively. The total daily loss of choline into the dialysate was 181 +/- 20 micromoles in children and 260 +/- 18 micromoles in adults. CONCLUSION CAPD causes a substantial loss of choline into peritoneal dialysates and reduces serum choline concentrations significantly.
Collapse
Affiliation(s)
- Yesim Ozarda Ilcol
- Department of Biochemistry, Uludag University Medical School, Bursa, Turkey.
| | | | | | | | | | | |
Collapse
|
3
|
Ilcol YO, Dilek K, Yurtkuran M, Ulus IH. Changes of plasma free choline and choline-containing compounds' concentrations and choline loss during hemodialysis in ESRD patients. Clin Biochem 2002; 35:233-9. [PMID: 12074832 DOI: 10.1016/s0009-9120(02)00298-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES This study was undertaken to determine the changes in plasma free choline and choline-containing compounds in end stage renal disease (ESRD) and to determine if they were lost into the dialysate during hemodialysis. DESIGN AND METHODS Plasma and dialysate free choline, phosphocholine and phospholipid-, phosphatidylcholine-, sphingomyelin-bound choline were measured before, during and after hemodialysis. RESULTS Plasma free and bound choline concentrations (mean +/- standard error of the mean) were 12.9 +/- 0.6 and 2697 +/- 57 microM or 37.3 +/- 0.9 and 2792 +/- 98 microM in controls or in ESRD patients, respectively. Free choline concentrations were correlated (r = 0.598; p < 0.001) with the time the patients were subjected to hemodialysis. Plasma free choline and phosphocholine concentrations are decreased by a total of -8.1 +/- 0.6 micromol/L and -88 +/- 8 micromol/L, respectively; phospholipid-, phosphatidylcholine- and sphingomyelin-bound choline are increased, during hemodialysis. Patients lost about 350 micromoles of choline into the dialysate during hemodialysis. CONCLUSION Plasma free choline concentrations are elevated in ESRD, and a considerable amount of choline is lost into the hemodialysate.
Collapse
Affiliation(s)
- Yesim Ozarda Ilcol
- Department of Biochemistry, Uludag University Medical School, Bursa, Turkey
| | | | | | | |
Collapse
|
4
|
Gürün MS, Ilçöl YO, Taga Y, Ulus IH. Hyperglycemia induced by intracerebroventricular choline: involvement of the sympatho-adrenal system. Eur J Pharmacol 2002; 438:197-205. [PMID: 11909612 DOI: 10.1016/s0014-2999(02)01312-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Intracerebroventricular (i.c.v.) injection of choline (75-300 microg) produced a dose-dependent increase in blood glucose levels. Pre-treatment with the nicotinic acetylcholine receptor antagonist, mecamylamine (50 microg, i.c.v.) blocked the hyperglycemia induced by choline (150 microg, i.c.v.), but the response was not affected by pre-treatment with the muscarinic acetylcholine receptor antagonist, atropine (10 microg, i.c.v.). Pre-treatment with the neuronal choline uptake inhibitor, hemicholinium-3 (20 microg, i.c.v.), attenuated the hyperglycemia induced by choline. The hyperglycemic response to choline was associated increased plasma levels of adrenaline and noradrenaline. The hyperglycemia elicited by choline was greatly attenuated by bilateral adrenalectomy, and entirely blocked by either surgical transection of the splanchnic nerves or by pre-treatment with the alpha-adrenoceptor antagonist, phentolamine. These data show that choline, a precursor of acetylcholine, increases blood glucose and this effect is mediated by central nicotinic acetylcholine receptor activation. An increase in sympatho-adrenal activity appears to be involved in the hyperglycemic effect of choline.
Collapse
Affiliation(s)
- M Sibel Gürün
- Department of Pharmacology and Clinical Pharmacology, Uludag University Medical School, Bursa, Turkey
| | | | | | | |
Collapse
|
5
|
Wurtman RJ, Regan M, Ulus I, Yu L. Effect of oral CDP-choline on plasma choline and uridine levels in humans. Biochem Pharmacol 2000; 60:989-92. [PMID: 10974208 DOI: 10.1016/s0006-2952(00)00436-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Twelve mildly hypertensive but otherwise normal fasting subjects received each of four treatments in random order: CDP-choline (citicoline; 500, 2000, and 4000 mg) or a placebo orally at 8:00 a.m. on four different treatment days. Eleven plasma samples from each subject, obtained just prior to treatment (8:00 a.m.) and 1-12 hr thereafter, were assayed for choline, cytidine, and uridine. Fasting terminated at noon with consumption of a light lunch that contained about 100 mg choline. Plasma choline exhibited dose-related increases in peak values and areas under the curves (AUCs), remaining significantly elevated, after each of the three doses, for 5, 8, and 10 hr, respectively. Plasma uridine was elevated significantly for 5-6 hr after all three doses, increasing by as much as 70-90% after the 500 mg dose, and by 100-120% after the 2000 mg dose. No further increase was noted when the dose was raised from 2000 to 4000 mg. Plasma cytidine was not reliably detectable, since it was less than twice blank, or less than 100 nM, at all of the doses. Uridine is known to enter the brain and to be converted to UTP; moreover, we found that uridine was converted directly to CTP in neuron-derived PC-12 cells. Hence, it seems likely that the circulating substrates through which oral citicoline increases membrane phosphatide synthesis in the brains of humans involve uridine and choline, and not cytidine and choline as in rats.
Collapse
Affiliation(s)
- R J Wurtman
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
6
|
Abstract
Choline (75-300 microg) produced dose-dependent hypothermia when injected intracerebroventricularly (i.c.v.). Pre-treatment with the muscarinic receptor antagonist, atropine (10 microg, i.c.v.), blocked the hypothermic effect of choline (150 microg), but the response was only partially attenuated by pre-treatment with the nicotinic receptor antagonist, mecamylamine (20 microg, i.c.v.). Pirenzepine (25 microg), a muscarinic M1 receptor antagonist, or hexahydro-siladifenidol (HHSD) (100 microg), a muscarinic M3 receptor antagonist, also blocked choline-induced hypothermia when injected centrally. Unlike the other muscarinic receptor antagonists, M2-selective 11-[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyri do[2,3-b][1,4]benzodiazepin-6-one (AF-DX116) (10 microg), did not affect choline-induced hypothermia. We also found that choline-induced hypothermia was very sensitive to the ambient temperature. Similar to its effect at room temperature, choline produced dose-dependent hypothermia at 4 degrees C, but this effect was abolished at 32 degrees C. These data suggest that choline produces hypothermia and this effect is mediated by muscarinic receptors.
Collapse
Affiliation(s)
- C B Unal
- Department of Pharmacology, Medical Faculty, Uludag University, Bursa, Turkey
| | | | | |
Collapse
|
7
|
Savci V, Ulus IH. Choline administration reverses hypotension in spinal cord transected rats: the involvement of vasopressin. Neurochem Res 1998; 23:733-41. [PMID: 9566613 DOI: 10.1023/a:1022407409727] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intracerebroventricular (i.c.v.) choline (50-150 microg) increased blood pressure and decreased heart rate in spinal cord transected, hypotensive rats. Choline administered intraperitoneally (60 mg/kg), also, increased blood pressure, but to a lesser extent. The pressor response to i.c.v. choline was associated with an increase in plasma vasopressin. Mecamylamine pretreatment (50 microg; i.c.v.) blocked the pressor, bradycardic and vasopressin responses to choline (150 microg). Atropine pretreatment (10 microg; i.c.v.) abolished the bradycardia but failed to alter pressor and vasopressin responses. Hemicholinium-3 [HC-3 (20 microg; i.c.v.)] pretreatment attenuated both bradycardia and pressor responses to choline. The vasopressin V1 receptor antagonist, (beta-mercapto-beta,beta-cyclopenta-methylenepropionyl1, O-Me-Tyr2, Arg8)-vasopressin (10 microg/kg) administered intravenously 5 min after choline abolished the pressor response and attenuated the bradycardia-induced by choline. These data show that choline restores hypotension effectively by activating central nicotinic receptors via presynaptic mechanisms, in spinal shock. Choline-induced bradycardia is mediated by central nicotinic and muscarinic receptors. Increase in plasma vasopressin is involved in cardiovascular effects of choline.
Collapse
Affiliation(s)
- V Savci
- Department of Pharmacology, Uludag University Medical Faculty, Bursa, Turkey.
| | | |
Collapse
|
8
|
Ulus IH, Ozyurt G, Korfali E. Decreased serum choline concentrations in humans after surgery, childbirth, and traumatic head injury. Neurochem Res 1998; 23:727-32. [PMID: 9566612 DOI: 10.1023/a:1022455325657] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The serum levels of choline decreased by approximately 50% in patients having a surgery under general as well as epidural anesthesia. The decrease is lasts for two days after surgery. Intravenous administration of succinylcholine, either by a single bolus injection or by a slow continuous infusion, increased the serum choline levels several folds during surgery. In these patients, a significant decrease in the serum choline levels was observed one and two days after surgery. In 16 pregnant women at the term, serum choline levels were higher than the value observed in 19 nonpregnant women. The serum choline levels decreased by about 40% or 60% after having a childbirth either by vaginal delivery or caesarean section, respectively. Serum choline levels in blood obtained from 9 patients with traumatic head injury were significantly lower than the observed levels in blood samples obtained from healthy volunteers. These observations show that serum choline levels increase during pregnancy and decrease during stressful situations in humans.
Collapse
Affiliation(s)
- I H Ulus
- Uludag University Medical Faculty, Department of Pharmacology and Clinical Pharmacology, Bursa, Turkey
| | | | | |
Collapse
|
9
|
Abstract
The cardiovascular effects of intracerebroventricular (i.c.v.) administration of choline were studied in endotoxin-treated rats. Intravenous (i.v.) endotoxin (20 mg/kg) caused a moderate hypotension and tachycardia within 10 min of treatment. Choline (50, 100, and 150 microg; i.c.v.) increased blood pressure and decreased heart rate in this condition in a dose-dependent manner. Mecamylamine (50 microg; i.c.v.) pretreatment prevented the pressor and bradycardic responses to choline, whereas atropine (10 microg; i.c.v.) failed to alter both responses. Atropine pretreatment, alone, inhibited endotoxin-induced hypotension. The pressor responses to choline in endotoxin-treated rats were attenuated by pretreatment with hemicholinium-3 (20 microg; i.c.v.), a high-affinity neuronal choline-uptake inhibitor. Plasma vasopressin levels of endotoxin-treated rats were severalfold higher than those of control animals, and choline (50-150 microg; i.c.v.) produced further increases in plasma vasopressin in this condition. Mecamylamine abolished vasopressin response to endotoxin as well as to choline. The vasopressin receptor antagonist, (beta-mercapto-beta,beta-cyclopentamethylene-propionyl(1)-O-Me-Tyr2,Arg8 )-vasopressin (10 microg/kg; i.v.) administered 5 min after choline decreased blood pressure from the increased level to the precholine levels but did not alter bradycardia. These results indicate that, in rats treated with endotoxin, choline increases blood pressure and decreases heart rate by a presynaptic mechanism leading to the activation of central nicotinic cholinergic pathways. An increase in plasma vasopressin levels seems to be involved in the pressor, but not in the bradycardic response, to choline.
Collapse
Affiliation(s)
- V Savci
- Department of Pharmacology, Uludag University Medical Faculty, Bursa, Turkey
| | | |
Collapse
|
10
|
Farber SA, Bogdanov M, Marshall DL, Tehovnik EJ. Excitability of neural elements within the rat corpus striatum. J Neurosci Methods 1997; 76:93-104. [PMID: 9334944 DOI: 10.1016/s0165-0270(97)00090-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The excitability of cholinergic, glutamatergic and dopaminergic elements within the rat neostriatum was studied in both in vivo and in vitro preparations. In vivo, the microdialysis technique was used to measure the release of striatal acetylcholine and dopamine under basal and electrically evoked conditions. For comparison, acetylcholine, dopamine and glutamate release was assayed in media obtained from superfused rat striatal slices. Electrical stimulation was used to derive the strength-duration functions and their chronaxies of stimulated elements containing the three neurotransmitter types. The chonaxies for experiments in vitro and in vivo were similar: the chronaxy values for elements containing acetylcholine were the shortest, the values for glutamate were intermediate, and the values for those containing dopamine were the longest. Based on the chronaxy estimates, it is proposed that the elements containing acetylcholine are the large cholinergic interneurons of striatum, and the elements containing glutamate and dopamine are the terminals of corticostriatal and nigrostriatal neurons, respectively. These results indicate that electrical stimulation of neural elements surrounding a microdialysis probe can be an additional tool to examine the factors that regulate neurotransmitter release. Likewise, investigators can activate specific striatal elements by using pulse durations that coincide with their chronaxies.
Collapse
Affiliation(s)
- S A Farber
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | | | | | |
Collapse
|
11
|
Gürün MS, Savci V, Ulus IH, Kiran BK. Centrally administered choline increases plasma prolactin levels in conscious rats. Neurosci Lett 1997; 232:79-82. [PMID: 9302091 DOI: 10.1016/s0304-3940(97)00580-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Intracerebroventricular (i.c.v.) administration of choline, a precursor of acetylcholine (ACh) increased plasma prolactin levels in a time and dose-dependent manner in conscious rats. Pretreatment of rats with the cholinergic muscarinic antagonist, atropine (10 microg, i.c.v.), blocked the increase in plasma prolactin level. The increase was not influenced by pretreatment with the cholinergic nicotinic antagonist, mecamylamine (50 microg, i.c.v.). Pretreatment with hemicholinium-3 (HC-3; 20 microg, i.c.v.), a high affinity choline uptake inhibitor, attenuated the choline-induced increase of plasma prolactin levels. These results show that choline increases plasma prolactin levels by activating muscarinic receptors via presynaptic mechanisms.
Collapse
Affiliation(s)
- M S Gürün
- Department of Pharmacology, Uludag University Medical Faculty, Bursa, Turkey
| | | | | | | |
Collapse
|
12
|
Rocher C, Bert L, Robert F, Trouvin JH, Renaud B, Jacquot C, Gardier AM. Microdialysis monitoring of variations in extracellular levels of serotonin, GABA and excitatory amino acids in the frontal cortex of awake rats in response to a single peripheral or central administration of dexfenfluramine. Brain Res 1996; 737:221-30. [PMID: 8930369 DOI: 10.1016/0006-8993(96)00735-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of a single dexfenfluramine (D-fen) administration on the release of endogenous serotonin (5-hydroxytryptamine, 5-HT), excitatory (glutamate, Glu, aspartate, Asp) and inhibitory (gamma-aminobutyric acid, GABA) amino acids from the frontal cortex were studied by using in vivo microdialysis in freely-moving rats. Extracellular levels of these neurotransmitters were measured with HPLC coupled to electrochemical detection or with capillary electrophoresis coupled to laser-induced fluoresence detection (CE-LIFD). In a first study, single intraperitoneal administration of D-fen (0.5, 1.3, 5 and 10 mg/kg) increased extracellular 5-HT levels in a dose-dependent manner (maximal increase by 982% over baseline for the highest dose) while changes in Glu, Asp or GABA never reached statistical significance. In a second study, 73 nM of D-fen applied locally through the frontocortical dialysis probe, at a flow rate of 1.5 microliters/min in 30 microliters of perfusion fluid for 20 min, increased extracellular 5-HT and Asp levels [the maximal increases were to 1804% and 280% of the respective basal values (100%)] without altering extracellular levels of Glu and GABA. Thus, the order of magnitude of the changes induced by systemic administration or local infusion of D-fen on frontocortical extracellular levels of several neurotransmitters (5-HT > > Asp > GABA = Glu) demonstrate that D-fen, an indirect serotoninergic agonist, mainly increases 5-HT release while producing slight (Asp) or no (Glu, GABA) short-term in vivo variations in amino acid extracellular levels in the rat frontal cortex.
Collapse
Affiliation(s)
- C Rocher
- Faculté de Pharmacie, Laboratoire de Pharmacologie, Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Savci V, Ulus IH. Central choline reverses hypotension caused by alpha-adrenoceptor or ganglion blockade in rats: the role of vasopressin. Eur J Pharmacol 1996; 311:153-61. [PMID: 8891595 DOI: 10.1016/0014-2999(96)00424-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of intracerebrovenricularly (i.c.v.) injected choline on blood pressure was investigated in rats made hypotensive by blocking peripheral alpha-adrenoceptors or autonomic ganglionic transmission. Choline (50-150 micrograms; i.c.v.) increased blood pressure in a dose-dependent manner and 150 micrograms of choline restored blood pressure to the resting level. The pressor response to choline was associated with an increase in plasma vasopressin levels. Pretreatment with mecamylamine (50 micrograms; i.c.v.), but not atropine (10 micrograms; i.c.v.), blocked both the pressor and vasopressin responses to i.c.v. choline. The vasopressin receptor antagonist, [beta-mercapto-beta,beta-cyclopenta-methylene-propionyl1,O-Me-T ry2,Arg8] vasopressin (10 micrograms/kg; i.v.), given 5 min after i.c.v. choline (150 micrograms), abolished the pressor effect of choline and blood pressure returned to the pre-choline levels. It is concluded that the precursor of acetylcholine, choline, can increase blood pressure and reverse hypotension in alpha-adrenoceptor or ganglionic transmission blocked rats, by increasing plasma vasopressin.
Collapse
Affiliation(s)
- V Savci
- Department of Pharmacology, Uludag University Medical Faculty, Bursa, Turkey
| | | |
Collapse
|
14
|
Savci V, Gürün MS, Ulus IH, Kiran BK. Effect of intracerebroventricularly injected choline on plasma ACTH and beta-endorphin levels in conscious rats. Eur J Pharmacol 1996; 309:275-80. [PMID: 8874151 DOI: 10.1016/0014-2999(96)00330-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the present study, we examined the effect of intracerebroventricularly injected choline on plasma ACTH (adrenocorticotrophin) and beta-endorphin levels in conscious rats. The intracerebroventricularly injection of choline (50-150 micrograms) elevated plasma ACTH levels in a dose-dependent manner. Plasma beta-endorphin levels were also significantly increased. Pretreatment of rats with mecamylamine (50 micrograms; intracerebroventricularly), the nicotinic receptor antagonist, completely inhibited the ACTH and beta-endorphin response to choline (150 micrograms; intracerebroventricularly). An antagonist of the muscarinic receptor, atropine (10 micrograms; intracerebroventricularly), failed to alter these effects. Pretreatment of rats with hemicholinium-3 (20 micrograms; intracerebroventricularly), a drug which inhibits the uptake of choline into cholinergic neurons, abolished the choline-induced increases in both plasma ACTH and beta-endorphin levels. These results indicate that choline can increase plasma concentrations of ACTH and beta-endorphin through the activation of central nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- V Savci
- Department of Pharmacology, Uludag University Medical Faculty, Bursa, Turkey
| | | | | | | |
Collapse
|
15
|
Farber SA, Savci V, Wei A, Slack BE, Wurtman RJ. Choline's phosphorylation in rat striatal slices is regulated by the activity of cholinergic neurons. Brain Res 1996; 723:90-9. [PMID: 8813385 DOI: 10.1016/0006-8993(96)00221-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanism by which populations of brain cells regulate the flux of choline (Ch) into membrane or neurotransmitter biosynthesis was investigated using electrically stimulated superfused slices of rat corpus striatum. [Me-14C]Ch placed in the superfusion medium for 30 min during a 1-h stimulation period was incorporated into tissue [14C] phosphorylcholine (PCh) and [14C]phosphatidylcholine (PtdCh). Stimulation also caused a profound inhibition of PCh synthesis and a 10-fold increase in [14C]ACh release into the medium; it failed to affect tissue [14C]ACh levels. This effect was not explained by changes in ATP levels nor in the kinetic properties of Ch kinase (E.C. 2.7.1.32) or Ch acetyltransferase (ChAT) (E.C.2.3.1.7). To investigate the mechanism of these effects, Ch uptake studies were performed with and without hemicholinium-3 (HC3), a selective inhibitor of high affinity Ch uptake. A two-compartment model accurately fit the observed data and yielded a K(m) for Ch uptake of 5 microM into cholinergic structures and 72 microM into all other cells. Using this model it was estimated that cholinergic neurons account for 60% of observed uptake of Ch at physiologic Ch concentrations, even though they represent fewer than 1% of the total cells in the slice. The model also predicts that an increase in Ch uptake within cholinergic neurons, reported to be associated with depolarization [4,27,32], would significantly inhibit Ch uptake into all other cells, and would account for the observed decrease in PCh synthesis.
Collapse
Affiliation(s)
- S A Farber
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | |
Collapse
|
16
|
Contant C, Umbriaco D, Garcia S, Watkins KC, Descarries L. Ultrastructural characterization of the acetylcholine innervation in adult rat neostriatum. Neuroscience 1996; 71:937-47. [PMID: 8684624 DOI: 10.1016/0306-4522(95)00507-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ultrastructural features of acetylcholine axon terminals (varicosities) in adult rat neostriatum were characterized by electron microscopy after immunostaining with a sensitive monoclonal antibody against rat choline acetyltransferase. Several hundred single sections from these varicosities were analysed for shape, size and content, presence of a synaptic membrane specialization, and composition of the microenvironment. An equivalent number of unlabeled varicosities selected at random from the same micrographs were similarly examined. The immunostained varicosity profiles were relatively small and seldom showed a junctional membrane specialization. Stereological extrapolation to the whole volume of these varicosities indicated that less than 10% were synaptic. Far fewer dendritic spines were juxtaposed to these predominantly asynaptic profiles than to their unlabeled counterparts. This difference seemed imputable to the low synaptic incidence of the acetylcholine varicosities and was consistent with the view that these are randomly distributed in relation to surrounding elements. The bulk of the data was suggestive of volume transmission. This raised the possibility that, in such a densely innervated area, a basal level of acetylcholine is permanently maintained around all cellular elements, contributing to the modulatory properties of this transmitter. This basal level of acetylcholine could also serve as a regulatory signal controlling the expression of different receptor subtypes in neurons, glia and blood vessels.
Collapse
Affiliation(s)
- C Contant
- Département de pathologie, Université de Montréal, Succursale Centre-ville, Québec, Canada
| | | | | | | | | |
Collapse
|
17
|
Marshall DL, De Micheli E, Bogdanov MB, Wurtman RJ. Effects of ethanolamine (Etn) administration on Etn and choline (Ch) levels in plasma, brain extracellular fluid (ECF) and brain tissue, and on brain phospholipid levels in rats: an in vivo study. NEUROSCIENCE RESEARCH COMMUNICATIONS 1996; 18:87-96. [PMID: 11540106 DOI: 10.1002/(sici)1520-6769(199603)18:2<87::aid-nrc144>3.0.co;2-c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The sources and fates of brain ethanolamine (Etn) are poorly known and the effects of its administration have not been investigated, even though cortical levels are known to be reduced in certain neurodegenerative diseases. We studied the effect of different Etn doses (10(-3), 5 x 10(-3) and 10(-2) mol/kg, i. p.) on its and choline's (Ch) levels in arterial plasma and brain extracellular fluid (ECF) of awake rats. We also studied its effects on brain levels of Etn, Ch, and their respective major phospholipids. Etn administration caused dose dependent increases in Etn levels within both plasma and brain ECF. For the 10(-2) mol/kg dose, Etn levels were significantly (p<0.01) greater than pre-injection values in both the plasma and ECF. Whole brain Etn and phosphatidylethanolamine were also significantly (p<0.05) increased by 10(-2) mol/kg Etn. Exogenous Etn significantly (p<0.05) increased Ch levels in plasma and whole brain; Etn also increased brain ECF Ch levels. Our data show for the first time that circulating Etn can act as a source of brain Ch. Metabolic pathways that might mediate the increases in Etn and Ch are discussed, as are possible mechanisms of the decreases in brain Eth seen in Alzheimer's disease.
Collapse
Affiliation(s)
- D L Marshall
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139-4307, USA
| | | | | | | |
Collapse
|
18
|
Malagié I, Trillat AC, Jacquot C, Gardier AM. Effects of acute fluoxetine on extracellular serotonin levels in the raphe: an in vivo microdialysis study. Eur J Pharmacol 1995; 286:213-7. [PMID: 8605960 DOI: 10.1016/0014-2999(95)00573-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acute administration of fluoxetine (1, 10 and 20 mg/kg i.p.) increased extracellular levels of serotonin (5-hydroxytryptamine, 5-HT) in the frontal cortex, ventral hippocampus and raphe nuclei as measured by in vivo microdialysis in anaesthetized rats. In the frontal cortex, fluoxetine showed a marked dose-response effect whereas in the ventral hippocampus and raphe nuclei the fluoxetine-induced effect was maximum at 10 mg/kg. However, the maximal increase in 5-HT was observed in the cell body-containing area, the raphe nuclei. The order of changes in extracellular 5-HT was raphe nuclei > ventral hippocampus > frontal cortex. Our results add further arguments in favour of the key role played by raphe nuclei in the mechanism of action of serotoninergic antidepressant drugs.
Collapse
Affiliation(s)
- I Malagié
- Faculté de Pharmacie, Laboratorie de Pharmacologie JE 92-372, Chatenay-Malabry, France
| | | | | | | |
Collapse
|
19
|
Buyukuysal RL, Ulus IH, Aydin S, Kiran BK. 3,4-Diaminopyridine and choline increase in vivo acetylcholine release in rat striatum. Eur J Pharmacol 1995; 281:179-85. [PMID: 7589205 DOI: 10.1016/0014-2999(95)00241-c] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We investigated the effects of choline, 3,4-diaminopyridine and their combination on acetylcholine release from the corpus striatum of freely moving rats which were treated or not with atropine. Intraperitoneal administration of choline or intrastriatal administration of 3,4-diaminopyridine increased acetylcholine levels in striatal dialysates in a dose-dependent manner. When 3,4-diaminopyridine treatment was combined with choline, the observed effect was considerably greater than the sum of the increases produced by choline or 3,4-diaminopyridine alone. Administration of atropine (1 microM) in the dialysing medium was also found to be effective to stimulate striatal acetylcholine levels. 3,4-Diaminopyridine did not affect acetylcholine levels under these conditions. Whereas the choline-induced increase in acetylcholine release was significantly potentiated by atropine, co-administration of 3,4-diaminopyridine with choline failed to produce a further significant increase in the presence of atropine. These results suggest that a highly effective means for increasing acetylcholine release involves two concurrent treatments that increase neuronal choline levels and inhibition of the negative feedback modulation of acetylcholine release.
Collapse
Affiliation(s)
- R L Buyukuysal
- Uludag University, Medical School, Department of Pharmacology, Bursa, Turkey
| | | | | | | |
Collapse
|
20
|
Micheau J, Messier C, Jaffard R. Glucose enhancement of scopolamine-induced increase of hippocampal high-affinity choline uptake in mice: relation to plasma glucose levels. Brain Res 1995; 685:99-104. [PMID: 7583258 DOI: 10.1016/0006-8993(95)00415-m] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The administration of glucose has been shown to improve memory for various learning tasks in rodents. In humans, glucose also increases declarative memory performance in elderly people and in some patients with mild Alzheimer's disease. One of the possible physiological bases for the effect of glucose on memory processes is a facilitation of cholinergic function through increased synthesis. In support of this hypothesis, glucose was shown to attenuate the amnesia induced by scopolamine and, in similar conditions, glucose increased extracellular levels of acetylcholine following a scopolamine injection. To further examine the interaction between glucose and cholinergic function, the present experiment measured the effects of combined injections of glucose and scopolamine on hippocampal sodium-dependent high-affinity choline uptake, an indirect index of cholinergic activity. Results showed that the injection of 3 g/kg glucose enhanced the increase in high affinity choline uptake in hippocampal synaptosomes produced by scopolamine. A regression analysis revealed the existence of a positive correlation between plasma blood glucose level and hippocampal choline uptake particularly in the animals receiving a combined injection of scopolamine and glucose. These data further support the hypothesis that glucose administration can facilitate acetylcholine synthesis under certain conditions and that this action could explain how glucose attenuates scopolamine-induced amnesia.
Collapse
Affiliation(s)
- J Micheau
- Laboratoire de Neurosciences Comportementales et Cognitives, CNRS URA 339, Université de Bordeaux I, Talence, France
| | | | | |
Collapse
|
21
|
Marshall DL, Wurtman RJ. Effect of choline on basal and stimulated acetylcholine release: an in vivo microdialysis study using a low neostigmine concentration. Brain Res 1993; 629:269-74. [PMID: 8111630 DOI: 10.1016/0006-8993(93)91330-u] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using in vivo microdialysis, we examined the ability of choline (Ch) chloride (120 mg/kg i.p.) to amplify basal and stimulated acetylcholine (ACh) release from rat striatum in the presence of high (10(-5) M) and low (5 x 10(-8) M) neostigmine concentration. High concentrations might suppress ACh release, and thus Ch dependence, by excessively stimulating presynaptic cholinergic receptors; alternatively, they could enhance Ch dependence by depriving the cholinergic terminals of Ch that would otherwise be formed intrasynaptically from the hydrolysis of ACh. Both basal and stimulated ACh release were found to be tetrodotoxin (TTX) sensitive. The concentration of neostigmine in the microdialysis fluid positively affected basal ACh levels, but had no effect on Ch levels. Ch administration significantly increased ACh release (to 136% of basal values; P < 0.01) in the presence of the low neostigmine concentration, but failed to significantly increase ACh release following local electrical depolarization of striatal neurons. In contrast, Ch failed to affect basal ACh release in the presence of the high neostigmine concentration, but did increase electrically evoked release to 408% of basal values, as compared with 250% in rats receiving saline instead of the Ch (P < 0.05). Ch administration significantly increased microdialysate Ch levels in the presence of both of the neostigmine concentrations. Local administration of oxotremorine, a muscarinic agonist, to animals receiving the lower neostigmine concentration reduced basal ACh release and reduced the increase in basal release produced by Ch administration.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D L Marshall
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
22
|
Kischka U, Farber SA, Marshall D, Wurtman RJ. Carbachol and naloxone synergistically elevate dopamine release in rat striatum: an in vivo microdialysis study. Brain Res 1993; 613:288-90. [PMID: 8186978 DOI: 10.1016/0006-8993(93)90912-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Striatal dopamine (DA) release increased to 184% of baseline after 10-20 min of continuous intrastriatal perfusion with 10 mM carbachol, dropping to 124% after 30-40 min. The addition of 100 microM naloxone amplified (to 236% of baseline) and prolonged the increase in DA release, but naloxone alone (up to 1 mM) had no effect. These data suggest that activation of opiate-releasing striatal neurons suppresses cholinergic stimulation of DA release.
Collapse
Affiliation(s)
- U Kischka
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|