1
|
Pluta R. A Look at the Etiology of Alzheimer's Disease based on the Brain Ischemia Model. Curr Alzheimer Res 2024; 21:166-182. [PMID: 38963100 DOI: 10.2174/0115672050320921240627050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Alzheimer's disease (AD) is the frequent form of dementia in the world. Despite over 100 years of research into the causes of AD, including amyloid and tau protein, the research has stalled and has not led to any conclusions. Moreover, numerous projects aimed at finding a cure for AD have also failed to achieve a breakthrough. Thus, the failure of anti-amyloid and anti-tau protein therapy to treat AD significantly influenced the way we began to think about the etiology of the disease. This situation prompted a group of researchers to focus on ischemic brain episodes, which, like AD, mostly present alterations in the hippocampus. In this context, it has been proposed that cerebral ischemic incidents may play a major role in promoting amyloid and tau protein in neurodegeneration in AD. In this review, we summarized the experimental and clinical research conducted over several years on the role of ischemic brain episodes in the development of AD. Studies have shown changes typical of AD in the course of brain neurodegeneration post-ischemia, i.e., progressive brain and hippocampal atrophy, increased amyloid production, and modification of tau protein. In the post-ischemic brain, the diffuse and senile amyloid plaques and the development of neurofibrillary tangles characteristic of AD were revealed. The above data evidently showed that after brain ischemia, there are modifications in protein folding, leading to massive neuronal death and damage to the neuronal network, which triggers dementia with the AD phenotype.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
2
|
Pluta R, Kiś J, Januszewski S, Jabłoński M, Czuczwar SJ. Cross-Talk between Amyloid, Tau Protein and Free Radicals in Post-Ischemic Brain Neurodegeneration in the Form of Alzheimer’s Disease Proteinopathy. Antioxidants (Basel) 2022; 11:antiox11010146. [PMID: 35052650 PMCID: PMC8772936 DOI: 10.3390/antiox11010146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 02/04/2023] Open
Abstract
Recent years have seen remarkable progress in research into free radicals oxidative stress, particularly in the context of post-ischemic recirculation brain injury. Oxidative stress in post-ischemic tissues violates the integrity of the genome, causing DNA damage, death of neuronal, glial and vascular cells, and impaired neurological outcome after brain ischemia. Indeed, it is now known that DNA damage and repair play a key role in post-stroke white and gray matter remodeling, and restoring the integrity of the blood-brain barrier. This review will present one of the newly characterized mechanisms that emerged with genomic and proteomic development that led to brain ischemia to a new level of post-ischemic neuropathological mechanisms, such as the presence of amyloid plaques and the development of neurofibrillary tangles, which further exacerbate oxidative stress. Finally, we hypothesize that modified amyloid and the tau protein, along with the oxidative stress generated, are new key elements in the vicious circle important in the development of post-ischemic neurodegeneration in a type of Alzheimer’s disease proteinopathy.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 Str., 02-106 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-608-6540
| | - Jacek Kiś
- Department of Urology, 1st Military Clinical Hospital with the Outpatient Clinic, Al. Racławickie 23, 20-049 Lublin, Poland;
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 Str., 02-106 Warsaw, Poland;
| | - Mirosław Jabłoński
- Department of Rehabilitation and Orthopedics, Medical University of Lublin, Jaczewskiego 8 Str., 20-090 Lublin, Poland;
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b Str., 20-090 Lublin, Poland;
| |
Collapse
|
3
|
Edler MK, Mhatre-Winters I, Richardson JR. Microglia in Aging and Alzheimer's Disease: A Comparative Species Review. Cells 2021; 10:1138. [PMID: 34066847 PMCID: PMC8150617 DOI: 10.3390/cells10051138] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are the primary immune cells of the central nervous system that help nourish and support neurons, clear debris, and respond to foreign stimuli. Greatly impacted by their environment, microglia go through rapid changes in cell shape, gene expression, and functional behavior during states of infection, trauma, and neurodegeneration. Aging also has a profound effect on microglia, leading to chronic inflammation and an increase in the brain's susceptibility to neurodegenerative processes that occur in Alzheimer's disease. Despite the scientific community's growing knowledge in the field of neuroinflammation, the overall success rate of drug treatment for age-related and neurodegenerative diseases remains incredibly low. Potential reasons for the lack of translation from animal models to the clinic include the use of a single species model, an assumption of similarity in humans, and ignoring contradictory data or information from other species. To aid in the selection of validated and predictive animal models and to bridge the translational gap, this review evaluates similarities and differences among species in microglial activation and density, morphology and phenotype, cytokine expression, phagocytosis, and production of oxidative species in aging and Alzheimer's disease.
Collapse
Affiliation(s)
- Melissa K. Edler
- Department of Anthropology, School of Biomedical Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44240, USA;
| | - Isha Mhatre-Winters
- School of Biomedical Sciences, College of Arts and Sciences, Kent State University, Kent, OH 44240, USA;
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Jason R. Richardson
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
4
|
Pluta R, Januszewski S, Czuczwar SJ. Brain Ischemia as a Prelude to Alzheimer's Disease. Front Aging Neurosci 2021; 13:636653. [PMID: 33679381 PMCID: PMC7931451 DOI: 10.3389/fnagi.2021.636653] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
Transient ischemic brain injury causes massive neuronal death in the hippocampus of both humans and animals. This was accompanied by progressive atrophy of the hippocampus, brain cortex, and white matter lesions. Furthermore, it has been noted that neurodegenerative processes after an episode of ischemia-reperfusion in the brain can continue well-beyond the acute stage. Rarefaction of white matter was significantly increased in animals at 2 years following ischemia. Some rats that survived 2 years after ischemia developed severe brain atrophy with dementia. The profile of post-ischemic brain neurodegeneration shares a commonality with neurodegeneration in Alzheimer's disease. Furthermore, post-ischemic brain injury is associated with the deposition of folding proteins, such as amyloid and tau protein, in the intracellular and extracellular space. Recent studies on post-ischemic brain neurodegeneration have revealed the dysregulation of Alzheimer's disease-associated genes such as amyloid protein precursor, α-secretase, β-secretase, presenilin 1, presenilin 2, and tau protein. The latest data demonstrate that Alzheimer's disease-related proteins and their genes play a key role in the development of post-ischemic brain neurodegeneration with full-blown dementia in disease types such as Alzheimer's. Ongoing interest in the study of brain ischemia has provided evidence showing that ischemia may be involved in the development of the genotype and phenotype of Alzheimer's disease, suggesting that brain ischemia can be considered as a useful model for understanding the mechanisms responsible for the initiation of Alzheimer's disease.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland,*Correspondence: Ryszard Pluta
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
5
|
Pluta R, Ułamek-Kozioł M, Januszewski S, Czuczwar SJ. Participation of Amyloid and Tau Protein in Neuronal Death and Neurodegeneration after Brain Ischemia. Int J Mol Sci 2020; 21:ijms21134599. [PMID: 32605320 PMCID: PMC7370213 DOI: 10.3390/ijms21134599] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Current evidence indicates that postischemic brain injury is associated with the accumulation of folding proteins, such as amyloid and tau protein, in the intra- and extracellular spaces of neuronal cells. In this review, we summarize protein changes associated with Alzheimer’s disease and their gene expression (amyloid protein precursor and tau protein) after brain ischemia, and their roles in the postischemic period. Recent advances in understanding the postischemic mechanisms in development of neurodegeneration have revealed dysregulation of amyloid protein precursor, α-, β- and γ-secretase and tau protein genes. Reduced expression of the α-secretase gene after brain ischemia with recirculation causes neuronal cells to be less resistant to injury. We present the latest data that Alzheimer’s disease-related proteins and their genes play a crucial role in postischemic neurodegeneration. Understanding the underlying processes of linking Alzheimer’s disease-related proteins and their genes in development of postischemic neurodegeneration will provide the most significant goals to date for therapeutic development.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.U.-K.); (S.J.)
- Correspondence: ; Tel.: +48-22-6086-540/6086-469; Fax: +48-22-6086-627/668-55-32
| | - Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.U.-K.); (S.J.)
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.U.-K.); (S.J.)
| | | |
Collapse
|
6
|
Pluta R, Ułamek-Kozioł M, Januszewski S, Czuczwar SJ. Shared Genomic and Proteomic Contribution of Amyloid and Tau Protein Characteristic of Alzheimer's Disease to Brain Ischemia. Int J Mol Sci 2020; 21:ijms21093186. [PMID: 32366028 PMCID: PMC7246538 DOI: 10.3390/ijms21093186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/07/2023] Open
Abstract
Post-ischemic brain damage is associated with the deposition of folding proteins such as the amyloid and tau protein in the intra- and extracellular spaces of brain tissue. In this review, we summarize the protein changes associated with Alzheimer's disease and their gene expression (amyloid protein precursor and tau protein) after ischemia-reperfusion brain injury and their role in the post-ischemic injury. Recent advances in understanding the post-ischemic neuropathology have revealed dysregulation of amyloid protein precursor, α-secretase, β-secretase, presenilin 1 and 2, and tau protein genes after ischemic brain injury. However, reduced expression of the α-secretase in post-ischemic brain causes neurons to be less resistant to injury. In this review, we present the latest evidence that proteins associated with Alzheimer's disease and their genes play a key role in progressive brain damage due to ischemia and reperfusion, and that an ischemic episode is an essential and leading supplier of proteins and genes associated with Alzheimer's disease in post-ischemic brain. Understanding the underlying processes of linking Alzheimer's disease-related proteins and their genes in post-ischemic brain injury with the risk of developing Alzheimer's disease will provide the most significant goals for therapeutic development to date.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.U.-K.); (S.J.)
- Correspondence:
| | - Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.U.-K.); (S.J.)
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.U.-K.); (S.J.)
| | | |
Collapse
|
7
|
Ułamek-Kozioł M, Czuczwar SJ, Januszewski S, Pluta R. Substantiation for the Use of Curcumin during the Development of Neurodegeneration after Brain Ischemia. Int J Mol Sci 2020; 21:ijms21020517. [PMID: 31947633 PMCID: PMC7014172 DOI: 10.3390/ijms21020517] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/21/2023] Open
Abstract
Currently available pharmacological treatment of post-ischemia-reperfusion brain injury has limited effectiveness. This review provides an assessment of the current state of neurodegeneration treatment due to ischemia-reperfusion brain injury and focuses on the role of curcumin in the diet. The purpose of this review was to provide a comprehensive overview of what was published about the benefits of curcumin influence on post-ischemic brain damage. Some data on the clinical benefits of curcumin treatment of post-ischemic brain in terms of clinical symptoms and adverse reactions have been reviewed. The data in this review contributes to a better understanding of the potential benefits of curcumin in the treatment of neurodegenerative changes after ischemia and informs scientists, clinicians, and patients, as well as their families and caregivers about the possibilities of such treatment. Due to the pleotropic properties of curcumin, including anti-amyloid, anti-tau protein hyperphosphorylation, anti-inflammatory, anti-apoptotic, and neuroprotective action, as well as increasing neuronal lifespan and promoting neurogenesis, curcumin is a promising candidate for the treatment of post-ischemic neurodegeneration with misfolded proteins accumulation. In this way, it may gain interest as a potential therapy to prevent the development of neurodegenerative changes after cerebral ischemia. In addition, it is a safe substance and inexpensive, easily accessible, and can effectively penetrate the blood–brain barrier and neuronal membranes. In conclusion, the evidence available in a review of the literature on the therapeutic potential of curcumin provides helpful insight into the potential clinical utility of curcumin in the treatment of neurological neurodegenerative diseases with misfolded proteins. Therefore, curcumin may be a promising supplementary agent against development of neurodegeneration after brain ischemia in the future. Indeed, there is a rational scientific basis for the use of curcumin for the prophylaxis and treatment of post-ischemic neurodegeneration.
Collapse
Affiliation(s)
- Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.U.-K.)
- First Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | | | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.U.-K.)
| | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.U.-K.)
- Correspondence: ; Tel.: +48-22-6086-540/6086-469
| |
Collapse
|
8
|
Ross JA, Reyes BAS, Thomas SA, Van Bockstaele EJ. Localization of endogenous amyloid-β to the coeruleo-cortical pathway: consequences of noradrenergic depletion. Brain Struct Funct 2018; 223:267-284. [PMID: 28779307 PMCID: PMC5773352 DOI: 10.1007/s00429-017-1489-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/26/2017] [Indexed: 12/28/2022]
Abstract
The locus coeruleus (LC)-norepinephrine (NE) system is an understudied circuit in the context of Alzheimer's disease (AD), and is thought to play an important role in neurodegenerative and neuropsychiatric diseases involving catecholamine neurotransmitters. Understanding the expression and distribution of the amyloid beta (Aβ) peptide, a primary component of AD, under basal conditions and under conditions of NE perturbation within the coeruleo-cortical pathway may be important for understanding its putative role in pathological states. Thus, the goal of this study is to define expression levels and the subcellular distribution of endogenous Aβ with respect to noradrenergic profiles in the rodent LC and medial prefrontal cortex (mPFC) and, further, to determine the functional relevance of NE in modulating endogenous Aβ42 levels. We report that endogenous Aβ42 is localized to tyrosine hydroxylase (TH) immunoreactive somatodendritic profiles of the LC and dopamine-β-hydroxylase (DβH) immunoreactive axon terminals of the infralimbic mPFC (ILmPFC). Male and female naïve rats have similar levels of amyloid precursor protein (APP) cleavage products demonstrated by western blot, as well as similar levels of endogenous Aβ42 as determined by enzyme-linked immunosorbent assay. Two models of NE depletion, DSP-4 lesion and DβH knockout (KO) mice, were used to assess the functional relevance of NE on endogenous Aβ42 levels. DSP-4 lesioned rats and DβH-KO mice show significantly lower levels of endogenous Aβ42. Noradrenergic depletion did not change APP-cleavage products resulting from β-secretase processing. Thus, resultant decreases in endogenous Aβ42 may be due to decreased neuronal activity of noradrenergic neurons, or, by decreased stimulation of adrenergic receptors which are known to contribute to Aβ42 production by enhancing γ-secretase processing under normal physiological conditions.
Collapse
Affiliation(s)
- Jennifer A Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, 245 S. 15th Street, Philadelphia, PA, 19102, USA.
| | - Beverly A S Reyes
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, 245 S. 15th Street, Philadelphia, PA, 19102, USA
| | - Steven A Thomas
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, 245 S. 15th Street, Philadelphia, PA, 19102, USA
| |
Collapse
|
9
|
Ułamek-Kozioł M, Pluta R, Bogucka-Kocka A, Januszewski S, Kocki J, Czuczwar SJ. Brain ischemia with Alzheimer phenotype dysregulates Alzheimer's disease-related proteins. Pharmacol Rep 2016; 68:582-91. [PMID: 26940197 DOI: 10.1016/j.pharep.2016.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 02/04/2023]
Abstract
There are evidences for the influence of Alzheimer's proteins on postischemic brain injury. We present here an overview of the published evidence underpinning the relationships between β-amyloid peptide, hyperphosphorylated tau protein, presenilins, apolipoproteins, secretases and neuronal survival/death decisions after ischemia and development of postischemic dementia. The interactions of above molecules and their influence and contribution to final ischemic brain degeneration resulting in dementia of Alzheimer phenotype are reviewed. Generation and deposition of β-amyloid peptide and tau protein pathology are essential factors involved in Alzheimer's disease development as well as in postischemic brain dementia. Postischemic injuries demonstrate that ischemia may stimulate pathological amyloid precursor protein processing by upregulation of β- and γ-secretases and therefore are capable of establishing a vicious cycle. Functional postischemic brain recovery is always delayed and incomplete by an injury-related increase in the amount of the neurotoxic C-terminal of amyloid precursor protein and β-amyloid peptide. Finally, we present here the concept that Alzheimer's proteins can contribute to and/or precipitate postischemic brain neurodegeneration including dementia with Alzheimer's phenotype.
Collapse
Affiliation(s)
- Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland.
| | - Anna Bogucka-Kocka
- Department of Pharmaceutical Botany, Medical University of Lublin, Lublin, Poland
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
10
|
Luo J, Chen G, Wei L, Qian H, Lai X, Wang D, Lv J, Yu X. Severe diffuse axon injury in chronic alcoholic rat medulla oblongata following a concussion blow. Alcohol Alcohol 2014; 49:231-7. [PMID: 24595328 DOI: 10.1093/alcalc/agu009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIMS We investigated the axonal morphological changes and expression of both tau protein and β-APP following concussion to the medulla oblongata, in a rat model of chronic alcoholism. METHODS Fifty-nine male Sprague-Dawley rats were randomly divided into EtOH, EtOH-TBI and control groups (water group, water-TBI group). To establish chronic alcoholic rats, rats were intragastrically given edible spirituous liquor twice daily. Rats also received a blow on the occipital tuberosity with an iron pendulum. Morphological changes and expression of tau and β-APP proteins in the medulla oblongata were examined. RESULTS (a) Nerve fibre thickening and twisting were observed in alcoholic rats, with nerve fibre changes becoming more significant following a concussion blow, which leads to some nerve fibres fracturing. (b) Transmission electron microscopy revealed that the nerve fibre myelin became loosened and displayed lamellar separation, which became more significant following concussion. (c) The integral optical density (IOD) sum value of β-APP of the EtOH-TBI group was lower than that in the EtOH group (P < 0.05); the Tau IOD sum value of the EtOH-TBI group was higher than that in the EtOH group (P < 0.05). CONCLUSION (a) Chronic alcoholism caused nerve fibre and neuronal morphology damage in the rat medulla oblongata, with structural damage becoming more significant following concussion. (b) Concussion changed the expression of β-APP and tau protein in chronic alcoholic rat medulla oblongata, suggesting that chronic alcoholism can lead to severe axonal injury following a concussion blow. (c) The effect of chronic alcoholism may be synergistic the concussion blow to promote animal injury and death.
Collapse
Affiliation(s)
- Jianming Luo
- Corresponding author: Department of Forensic Medicine, Shantou University Medical College, Xinling Road 22, Shantou City, Guangdong Province 515031, China;
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Fang L, Zheng Q, Yang T, Zhao H, Zhang Q, Li K, Zhou L, Gong H, Fan Y, Wang L. Bushen Yisui Capsule ameliorates axonal injury in experimental autoimmune encephalomyelitis. Neural Regen Res 2013; 8:3306-15. [PMID: 25206652 PMCID: PMC4145949 DOI: 10.3969/j.issn.1673-5374.2013.35.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 11/15/2013] [Indexed: 12/28/2022] Open
Abstract
A preliminary clinical study by our group demonstrated Bushen Yisui Capsule (formerly called Erhuang Formula) in combination with conventional therapy is an effective prescription for the treatment of multiple sclerosis. However, its effect on axonal injury during early multiple sclerosis remains unclear. In this study, a MOG35-55-immunized C57BL/6 mouse model of experimental autoimmune encephalomyelitis was intragastrically administered Bushen Yisui Capsule. The results showed that Bushen Yisui Capsule effectively improved clinical symptoms and neurological function of experimental autoimmune encephalomyelitis. In addition, amyloid precursor protein expression was down-regulated and microtubule-associated protein 2 was up-regulated. Experimental findings indicate that the disease-preventive mechanism of Bushen Yisui Capsule in experimental autoimmune encephalomyelitis was mediated by amelioration of axonal damage and promotion of regeneration. But the effects of the high-dose Bushen Yisui Capsule group was not better than that of the medium-dose and low-dose Bushen Yisui Capsule group in preventing neurological dysfunction.
Collapse
Affiliation(s)
- Ling Fang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Qi Zheng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Tao Yang
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Qiuxia Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Kangning Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Li Zhou
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Haiyang Gong
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Yongping Fan
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
12
|
Yang Y, Wu Y, Zhang S, Song W. High glucose promotes Aβ production by inhibiting APP degradation. PLoS One 2013; 8:e69824. [PMID: 23894546 PMCID: PMC3720941 DOI: 10.1371/journal.pone.0069824] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/17/2013] [Indexed: 12/21/2022] Open
Abstract
Abnormal deposition of neuriticplaques is the uniqueneuropathological hallmark of Alzheimer’s disease (AD).Amyloid β protein (Aβ), the major component of plaques, is generated from sequential cleavage of amyloidβ precursor protein (APP) by β-secretase and γ-secretase complex. Patients with diabetes mellitus (DM), characterized by chronic hyperglycemia,have increased risk of AD development.However, the role of high blood glucose in APP processing and Aβ generation remains elusive. In this study, we investigated the effect of high glucose on APP metabolism and Aβ generation in cultured human cells. We found that high glucose treatment significantly increased APP protein level in both neuronal-like and non-neuronal cells, and promoted Aβ generation. Furthermore, we found that high glucose-induced increase of APP level was not due to enhancement of APP gene transcription but resulted from inhibition of APP protein degradation. Taken together, our data indicated that hyperglycemia could promote AD pathogenesis by inhibiting APP degradation and enhancing Aβ production. More importantly, the elevation of APP level and Aβ generation by high glucose was caused by reduction of APP turnover rate.Thus,our study provides a molecular mechanism of increased risk of developing AD in patients withDMand suggests thatglycemic control might be potentially beneficial for reducing the incidence of AD in diabetic patients and delaying the AD progression.
Collapse
Affiliation(s)
- Yi Yang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
| | - Yili Wu
- The Ministry of Education Key Laboratory of Child Development and Disorders, and Chongqing City Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Shuting Zhang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- The Ministry of Education Key Laboratory of Child Development and Disorders, and Chongqing City Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
13
|
Pluta R, Jabłoński M, Ułamek-Kozioł M, Kocki J, Brzozowska J, Januszewski S, Furmaga-Jabłońska W, Bogucka-Kocka A, Maciejewski R, Czuczwar SJ. Sporadic Alzheimer's disease begins as episodes of brain ischemia and ischemically dysregulated Alzheimer's disease genes. Mol Neurobiol 2013; 48:500-15. [PMID: 23519520 PMCID: PMC3825141 DOI: 10.1007/s12035-013-8439-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/05/2013] [Indexed: 12/22/2022]
Abstract
The study of sporadic Alzheimer’s disease etiology, now more than ever, needs an infusion of new concepts. Despite ongoing interest in Alzheimer’s disease, the basis of this entity is not yet clear. At present, the best-established and accepted “culprit” in Alzheimer’s disease pathology by most scientists is the amyloid, as the main molecular factor responsible for neurodegeneration in this disease. Abnormal upregulation of amyloid production or a disturbed clearance mechanism may lead to pathological accumulation of amyloid in brain according to the “amyloid hypothesis.” We will critically review these observations and highlight inconsistencies between the predictions of the “amyloid hypothesis” and the published data. There is still controversy over the role of amyloid in the pathological process. A question arises whether amyloid is responsible for the neurodegeneration or if it accumulates because of the neurodegeneration. Recent evidence suggests that the pathophysiology and neuropathology of Alzheimer’s disease comprises more than amyloid accumulation, tau protein pathology and finally brain atrophy with dementia. Nowadays, a handful of researchers share a newly emerged view that the ischemic episodes of brain best describe the pathogenic cascade, which eventually leads to neuronal loss, especially in hippocampus, with amyloid accumulation, tau protein pathology and irreversible dementia of Alzheimer type. The most persuasive evidences come from investigations of ischemically damaged brains of patients and from experimental ischemic brain studies that mimic Alzheimer-type dementia. This review attempts to depict what we know and do not know about the triggering factor of the Alzheimer’s disease, focusing on the possibility that the initial pathological trigger involves ischemic episodes and ischemia-induced gene dysregulation. The resulting brain ischemia dysregulates additionally expression of amyloid precursor protein and amyloid-processing enzyme genes that, in addition, ultimately compromise brain functions, leading over time to the complex alterations that characterize advanced sporadic Alzheimer’s disease. The identification of the genes involved in Alzheimer’s disease induced by ischemia will enable to further define the events leading to sporadic Alzheimer’s disease-related abnormalities. Additionally, knowledge gained from the above investigations should facilitate the elaboration of the effective treatment and/or prevention of Alzheimer’s disease.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str., 02-106, Warsaw, Poland,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pluta R, Furmaga-Jabłońska W, Maciejewski R, Ułamek-Kozioł M, Jabłoński M. Brain ischemia activates β- and γ-secretase cleavage of amyloid precursor protein: significance in sporadic Alzheimer's disease. Mol Neurobiol 2012; 47:425-34. [PMID: 23080191 PMCID: PMC3538125 DOI: 10.1007/s12035-012-8360-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/27/2012] [Indexed: 12/21/2022]
Abstract
Amyloid precursor protein cleavage through β- and γ-secretases produces β-amyloid peptide, which is believed to be responsible for death of neurons and dementia in Alzheimer’s disease. Levels of β- and γ-secretase are increased in sensitive areas of the Alzheimer’s disease brain, but the mechanism of this process is unknown. In this review, we prove that brain ischemia generates expression and activity of both β- and γ-secretases. These secretases are induced in association with oxidative stress following brain ischemia. Data suggest that ischemia promotes overproduction and aggregation of β-amyloid peptide in brain, which is toxic for ischemic neuronal cells. In our review, we demonstrated the role of brain ischemia as a molecular link between the β- and the γ-secretase activities and provided a molecular explanation of the possible neuropathogenesis of sporadic Alzheimer’s disease.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106, Warsaw, Pawińskiego 5 Str., Poland.
| | | | | | | | | |
Collapse
|
15
|
Increased expression of β amyloid precursor gene in the hippocampus of streptozotocin-induced diabetic mice with memory deficit and anxiety induction. J Neural Transm (Vienna) 2010; 117:1411-8. [PMID: 21069392 DOI: 10.1007/s00702-010-0516-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
Diabetes has been associated with memory and behavioral dysfunctions such as anxiety. However, exact mechanisms of how diabetes affect such changes remain to be characterized. The purpose of present study is to search for streptozotocin-regulated genes in hippocampus of the mice using a differential display PCR technique, in the hope of type I diabetes-related hippocampal gene(s). It has been found that expression of a PCR product was increased by streptozotocin treatment and it was identified as β amyloid precursor protein. These results were further confirmed by performing RT-PCR analysis. In addition, the protein expression of β amyloid precursor protein as evidenced by Western blot analysis was increased in the hippocampus of streptozotocin-induced diabetic mice. To explore if the changes in amyloid β precursor protein could be related with functional changes in the brain regarding memory activity and anxiety, passive avoidance test and elevated plus maze test were performed, respectively. There is significant reduction of memory formation and marked induction of anxiety in the streptozotocin-induced diabetic mice. These results suggest that increase of β amyloid precursor protein may play a role in the memory loss and anxiety induction in type I diabetic mice.
Collapse
|
16
|
Pluta R, Ułamek M, Jabłoński M. Alzheimer's mechanisms in ischemic brain degeneration. Anat Rec (Hoboken) 2010; 292:1863-81. [PMID: 19943340 DOI: 10.1002/ar.21018] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There is increasing evidence for influence of Alzheimer's proteins and neuropathology on ischemic brain injury. This review investigates the relationships between beta-amyloid peptide, apolipoproteins, presenilins, tau protein, alpha-synuclein, inflammation factors, and neuronal survival/death decisions in brain following ischemic episode. The interactions of these molecules and influence on beta-amyloid peptide synthesis and contribution to ischemic brain degeneration and finally to dementia are reviewed. Generation and deposition of beta-amyloid peptide and tau protein pathology are important key players involved in mechanisms in ischemic neurodegeneration as well as in Alzheimer's disease. Current evidence suggests that inflammatory process represents next component, which significantly contribute to degeneration progression. Although inflammation was initially thought to arise secondary to ischemic neurodegeneration, recent studies present that inflammatory mediators may stimulate amyloid precursor protein metabolism by upregulation of beta-secretase and therefore are able to establish a vicious cycle. Functional brain recovery after ischemic lesion was delayed and incomplete by an injury-related increase in the amount of the neurotoxic C-terminal of amyloid precursor protein and beta-amyloid peptide. Moreover, ischemic neurodegeneration is strongly accelerated with aging, too. New therapeutic alternatives targeting these proteins and repairing related neuronal changes are under development for the treatment of ischemic brain consequences including memory loss prevention.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 Str., Warsaw, Poland.
| | | | | |
Collapse
|
17
|
Kitaguchi H, Tomimoto H, Ihara M, Shibata M, Uemura K, Kalaria RN, Kihara T, Asada-Utsugi M, Kinoshita A, Takahashi R. Chronic cerebral hypoperfusion accelerates amyloid beta deposition in APPSwInd transgenic mice. Brain Res 2009; 1294:202-10. [PMID: 19646974 DOI: 10.1016/j.brainres.2009.07.078] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 07/21/2009] [Accepted: 07/22/2009] [Indexed: 11/19/2022]
Abstract
Chronic cerebral ischemia may accelerate clinicopathological changes in Alzheimer's disease. We have examined whether chronic cerebral hypoperfusion accelerates amyloid beta deposition in amyloid protein precursor transgenic (APP-Tg) mouse. At 5, 8, and 11 months of age, C57Bl/6J male mice overexpressing a mutant form of the human APP bearing the both Swedish (K670N/M671L) and the Indiana (V717F) mutations (APPSwInd) and their litterrmates were subjected to either sham operation or bilateral carotid artery stenosis (BCAS) using microcoils with an internal diameter of 0.18 mm (short-period group). One month after the sham operation or BCAS, these animals were examined by immunohistochemistry for glial fibrillary acidic protein, amyloid beta(1-40) (Abeta(1-40)), amyloid beta(1-42) (Abeta(1-42)), as well as Western blotting and filter assay for Abeta. Another batch of the littermates of APPSwInd mice were subjected to either sham operation or BCAS at 3 months and were examined in the same manner after survival for 9 months (long-period group). In the BCAS-treated group, the white matter was rarefied and astroglia was proliferated. Amyloid beta(1-40) immunoreactivity was found in a few axons in the white matter after BCAS, whereas Abeta(1-42) was accumulated in the scattered cortical neurons and the axons at ages of 6 months and thereafter in the short- and long-period groups. In the neuropil, both Abeta(1-40) and Abeta(1-42) were deposited in the sham-operated and BCAS-treated mice at ages of 9 and 12 months. There were no differences between the short-period group at ages of 12 months and the long-period group. Filter assay showed an increase of Abeta fibrils in the extracellular enriched fraction. Taken together, chronic cerebral hypoperfusion increased Abeta fibrils and induced Abeta deposition in the intracellular compartment and, therefore, may accelerate the pathological changes of Alzheimer's disease.
Collapse
Affiliation(s)
- Hiroshi Kitaguchi
- Department of Neurology, Kyoto University, Sakyo-ku, Kyoto 606-8504, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Santos SF, Pierrot N, Morel N, Gailly P, Sindic C, Octave JN. Expression of human amyloid precursor protein in rat cortical neurons inhibits calcium oscillations. J Neurosci 2009; 29:4708-18. [PMID: 19369541 PMCID: PMC6665322 DOI: 10.1523/jneurosci.4917-08.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 02/12/2009] [Accepted: 02/27/2009] [Indexed: 12/19/2022] Open
Abstract
Synchronous calcium oscillations are observed in primary cultures of rat cortical neurons when mature networks are formed. This spontaneous neuronal activity needs an accurate control of calcium homeostasis. Alteration of intraneuronal calcium concentration is described in many neurodegenerative disorders, including Alzheimer disease (AD). Although processing of amyloid precursor protein (APP) that generates Abeta peptide has critical implications for AD pathogenesis, the neuronal function of APP remains unclear. Here, we report that expression of human APP (hAPP) in rat cortical neurons increases L-type calcium currents, which stimulate SK channels, calcium-dependent K(+) channels responsible for medium afterhyperpolarization (mAHP). In a neuronal network, increased mAHP in some neurons expressing hAPP leads to inhibition of calcium oscillations in all the cells of the network. This inhibition is independent of production and secretion of Abeta and other APP metabolites. In a neuronal network, reduction of endogenous APP expression using shRNA increases the frequency and reduces the amplitude of calcium oscillations. Altogether, these data support a key role for APP in the control of neuronal excitability.
Collapse
Affiliation(s)
| | | | - Nicole Morel
- Laboratory of Cell Physiology, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Philippe Gailly
- Laboratory of Cell Physiology, Université catholique de Louvain, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
19
|
Katsumata N, Kuroiwa T, Ishibashi S, Li S, Endo S, Ohno K. Heterogeneous hyperactivity and distribution of ischemic lesions after focal cerebral ischemia in Mongolian gerbils. Neuropathology 2006; 26:283-92. [PMID: 16961063 DOI: 10.1111/j.1440-1789.2006.00696.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Various types of poststroke hyperactivity exist in humans, but studies of each mechanism using animal models are scarce. We aimed to analyze the heterogeneity of postischemic hyperlocomotion and to identify the ischemic lesions responsible for postischemic hyperlocomotion in rodent models of focal ischemia. Mongolian gerbils underwent right common carotid artery occlusion (CCAO) for 10 or 20 min. At 24 h, 2 days, and 7 days postischemia, we performed quantitative and qualitative locomotor analysis and correlated these results with the extent of ischemic lesions. Intermittent explosive hyperlocomotion was induced transiently in a 10-min CCAO group at 24 h after ischemia and continual unexplosive hyperlocomotion persisted for 7 days in the 20-min CCAO animals. Selective neuronal death, confined to the hippocampal cornu ammonis 1 (CA1), was observed in the 10-min CCAO group and widespread cortical and basal ganglia infarction was observed in the 20-min CCAO group. Amyloid precursor protein was transiently observed in the hippocampus at 24 h postischemia in the 10-min CCAO animals, while it was widely distributed over the ischemic regions throughout the 7 days postischemia in the 20-min CCAO animals. Incidence maps and correlation analysis revealed hippocampal neuronal death of the CA1 sector and widespread hemispheric infarction, including the cortex, as the region responsible for the 10-min and 20-min CCAO-induced hyperactivity, respectively. Two distinct types of locomotor hyperactivity were observed that varied with regard to the distribution of the ischemic lesion, that is, hippocampal neuronal death and widespread infarction involving the cortex. These two types of locomotor hyperactivity appear to be models of the different types of poststroke hyperactivity seen in stroke patients.
Collapse
Affiliation(s)
- Noriko Katsumata
- Department of Neurosurgery, Graduate School of Medicine, Tokyo Medical and Dental University, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Fukuda T, Shimizu J, Furuhata H, Abe T, Shimizu K, Oishi T, Ogihara M, Kubota J, Sasaki A, Sasaki K, Azuma T, Umemura S. Overexpression of heat shock proteins in pallido-nigral axonal spheroids of nonhuman aged primates. Acta Neuropathol 2005; 110:145-50. [PMID: 15971056 DOI: 10.1007/s00401-005-1030-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Revised: 04/09/2005] [Accepted: 04/09/2005] [Indexed: 10/25/2022]
Abstract
The occurrence of spheroids has been described in the globus pallidus (GP) and substantia nigra pars reticulata (SNr) of aged rhesus monkeys. Opinions vary as to the origin of spheroids. Ultrastructural and immunohistochemical analysis suggested that spheroids originate from degenerating axons or astroglia. In the present study, we have investigated the GP and SNr of aged monkeys (Macaca fascicularis and Macaca mulatta). Although immunoreactive for microtubule-associated protein (MAP) 1A, tau, amyloid precursor protein, synaptophysin and phosphorylated neurofilament, spheroids were not immunoreactive for MAP1B and MAP2. We confirmed the axonal nature of pallido-nigral spheroids in aged rhesus monkeys. Pallido-nigral spheroids have been reported to overexpress stress proteins, such as ubiquitin, alphaB-crystallin, and heat shock protein (Hsp) 27. We further evaluated the expression of Hsps in pallido-nigral spheroids. As well as being intensely immunoreactive for ubiquitin, alphaB-crystallin, Hsp27, and Hsp70, spheroids were immunoreactive for Hsp32 (heme oxygenase-1), Hsp40, Hsp60, and Hsp90. On the basis of these findings, we speculate that Hsp32-immunoreactive spheroids might be expressed as an oxidative stress response. Induction of other Hsps might play a role in protection of axons from the aggregation of neurofilament, MAPs and other proteins, and failure to protect degenerating axons might result in their proteolysis by the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Takahiro Fukuda
- Division of Neuropathology, Department of Neuroscience, Research Center for Medical Sciences, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, 105-8461, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Turner PR, O'Connor K, Tate WP, Abraham WC. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 2003; 70:1-32. [PMID: 12927332 DOI: 10.1016/s0301-0082(03)00089-3] [Citation(s) in RCA: 489] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Amyloid-beta precursor protein (APP) is a membrane-spanning protein with a large extracellular domain and a much smaller intracellular domain. It is the source of the amyloid-beta (Abeta) peptide found in neuritic plaques of Alzheimer's disease (AD) patients. Because Abeta shows neurotoxic properties, and because familial forms of AD promote Abeta accumulation, a massive international research effort has been aimed at understanding the mechanisms of Abeta generation, catabolism and toxicity. APP, however, is an extremely complex molecule that may be a functionally important molecule in its full-length configuration, as well as being the source of numerous fragments with varying effects on neural function. For example, one fragment derived from the non-amyloidogenic processing pathway, secreted APPalpha (sAPPalpha), is neuroprotective, neurotrophic and regulates cell excitability and synaptic plasticity, while Abeta appears to exert opposing effects. Less is known about the neural functions of other fragments, but there is a growing interest in understanding the basic biology of APP as it has become recognized that alterations in the functional activity of the APP fragments during disease states will have complex effects on cell function. Indeed, it has been proposed that reductions in the level or activity of certain APP fragments, in addition to accumulation of Abeta, may play a critical role in the cognitive dysfunction associated with AD, particularly early in the course of the disease. To test and modify this hypothesis, it is important to understand the roles that full-length APP and its fragments normally play in neuronal structure and function. Here we review evidence addressing these fundamental questions, paying particular attention to the contributions that APP fragments play in synaptic transmission and neural plasticity, as these may be key to understanding their effects on learning and memory. It is clear from this literature that APP fragments, including Abeta, can exert a powerful regulation of key neural functions including cell excitability, synaptic transmission and long-term potentiation, both acutely and over the long-term. Furthermore, there is a small but growing literature confirming that these fragments correspondingly regulate behavioral learning and memory. These data indicate that a full account of cognitive dysfunction in AD will need to incorporate the actions of the full complement of APP fragments. To this end, there is an urgent need for a dedicated research effort aimed at understanding the behavioral consequences of altered levels and activity of the different APP fragments as a result of experience and disease.
Collapse
Affiliation(s)
- Paul R Turner
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
22
|
Lin B, Ginsberg MD, Busto R. Hyperglycemic but not normoglycemic global ischemia induces marked early intraneuronal expression of beta-amyloid precursor protein. Brain Res 2001; 888:107-116. [PMID: 11146057 DOI: 10.1016/s0006-8993(00)03023-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Preischemic hyperglycemia is known to accentuate acute ischemic injury to neurons, microglia, and endothelia. In the present study, we used a monoclonal antibody to the N-terminal portion of beta-APP to examine how the immunoreactivity of this normal membrane glycoprotein is differentially influenced by transient cerebral ischemia when carried out under normoglycemic vs. hyperglycemic conditions. Anesthetized, physiologically regulated rats received 12.5 min of global forebrain ischemia by bilateral carotid artery occlusions plus systemic hypotension. Hyperglycemia was induced by intraperitoneal dextrose administration prior to ischemia. One or three days later, brains were examined by beta-APP immunohistochemistry. Ischemia under hyperglycemic conditions led to the robust, widespread intraneuronal expression of beta-APP immunoreactivity in neocortex, hippocampus, thalamus, and striatum of all 11 rats; this was most prominent at 24 h postischemia. Compared to rats with normoglycemic ischemia, numbers of beta-APP-immunopositive neurons in the parietal cortex of hyperglycemic rats were increased by 5.9 fold at 24 h, and by 10.6 fold at 3 days postischemia. beta-APP-immunopositive neurons in hyperglycemic rats often exhibited striking morphological alterations typical of ischemic necrosis; however, no beta-APP immunoreaction was observed in zones of frank infarction. Brains of normoglycemic rats (n=11), by contrast, showed only weak beta-APP immunostaining in occasional non-necrotic pyramidal neurons of parietal neocortex; no necrosis was present in thalamus. In sham-operated hyperglycemic rats, beta-APP immunostaining of thalamic neurons was somewhat increased at 24 h. Western analysis revealed that the hyperglycemia-induced intraneuronal overexpression of beta-APP was not associated with an overall increase in tissue levels. The results of this study demonstrate that transient forebrain ischemia under hyperglycemic conditions leads to the early intraneuronal expression of beta-APP within neuronal populations showing a heightened susceptibility to hyperglycemia-induced accentuation of ischemic injury. Our data suggest that beta-APP or its metabolites may be involved in the injury process.
Collapse
Affiliation(s)
- B Lin
- Cerebral Vascular Disease Research Center, Department of Neurology, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | |
Collapse
|
23
|
Kudryashov IE, Kudryashova IV, Raevskii VV. Ribonuclease improves the state of hippocampal sections in the post-ischemic period. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1998; 28:357-65. [PMID: 9762705 DOI: 10.1007/bf02464788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Living hippocampal slices from Wistar rats were used to study the dynamics of changes in population electrical responses in field CA1 to electrical stimulation of Shaffer collaterals during the development of ischemia (imposed by exclusion of oxygen and glucose from the perfusion solution). These studies showed that during ischemia, addition of ribonuclease (a blocker of protein synthesis) to the perfusion solution resulted in a significantly smaller increase in the latent period of the response and slowed the onset of the reduction in the amplitude of the evoked potential, and promoted faster recovery of the response after the ischemia session ended. It is suggested that the reduction in protein synthesis due to ribonuclease preserved energy reserves in the nerve tissue, which in turn promoted more complete recovery of neuron function in the post-ischemic period.
Collapse
Affiliation(s)
- I E Kudryashov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow
| | | | | |
Collapse
|
24
|
Buxbaum JD, Ikin A, Luo Y, Naslund J, Sabo S, Vincent B, Watanabe T, Greengard P. App Localization and Trafficking in the Central Nervous System. ACTA ACUST UNITED AC 1998. [DOI: 10.1007/978-1-4615-5337-3_70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
25
|
Ikin AF, Annaert WG, Takei K, De Camilli P, Jahn R, Greengard P, Buxbaum JD. Alzheimer amyloid protein precursor is localized in nerve terminal preparations to Rab5-containing vesicular organelles distinct from those implicated in the synaptic vesicle pathway. J Biol Chem 1996; 271:31783-6. [PMID: 8943215 DOI: 10.1074/jbc.271.50.31783] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In order to localize amyloid protein precursor (APP) in nerve terminals, we have immunoisolated vesicular organelles from nerve terminal preparations using antibodies to Rab5 and synaptophysin. These immunoisolates were then analyzed by electron microscopy and by immunoblotting. The synaptophysin immunoisolates represented a nearly homogeneous population of small synaptic vesicles, with less than 10% contamination by other organelles, and very little APP. In contrast, Rab5 immunoisolates contained, in addition to small synaptic vesicles, substantial numbers of large uni- and bilamellar vesicles and high levels of APP. Thus, it appears that nerve terminal APP is contained predominantly in large vesicular organelles, distinct from synaptic vesicles and from the synaptic vesicle recycling pathway.
Collapse
Affiliation(s)
- A F Ikin
- Laboratory of Molecular and Cellular Neurosciences and Zachary and Elizabeth M. Fisher Center, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Tomimoto H, Akiguchi I, Suenaga T, Nishimura M, Wakita H, Nakamura S, Kimura J. Alterations of the blood-brain barrier and glial cells in white-matter lesions in cerebrovascular and Alzheimer's disease patients. Stroke 1996; 27:2069-74. [PMID: 8898818 DOI: 10.1161/01.str.27.11.2069] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND PURPOSE The underlying cause of white-matter lesions, which are frequent findings in cerebrovascular disease (CVD) and Alzheimer's disease (AD), remains uncertain. We performed immunohistochemical analysis of serum protein extravasation to investigate the function of the blood-brain barrier in white-matter lesions. METHODS White-matter lesions were estimated by use of Kluver-Barrera staining in patients diagnosed clinicopathologically as having ischemic CVD (n = 14) and AD (n = 12) and from nonneurological control subjects (n = 6). Axonal damages were investigated by use of immunohistochemistry for amyloid protein precursor. Alteration of the blood-brain barrier was examined with fibrinogen and immunoglobulins used as markers. The numbers of HLA-DR-positive microglia and glial fibrillary acidic protein-positive astroglia were examined comparatively. RESULTS White-matter lesions were graded as normal (grade 0) in 14 of the 32 cases (44%), slight (grade I) in 10 cases (31%), moderate (grade II) in 6 cases (19%), and severe (grade III) in 2 cases (6%). Amyloid precursor protein was accumulated most frequently in grade II white-matter lesions. Immunohistochemistry for serum proteins labeled astroglial cell bodies and their processes, which seemed to have sequestered extravasated proteins. The groups with detectable white-matter lesions had significantly higher grading scores for fibrinogen and immunoglobulins than the control group (P < .05). Although the higher scores for serum protein extravasation were statistically significant in ischemic CVD cases (P < .05), there was no significant increase in AD cases. Activated microglia and astroglia were more numerous in the groups with white-matter lesions in both ischemic CVD and AD cases, although this increase in the number of astroglia was not evident in regions with clasmatodendrosis. CONCLUSIONS Dysfunction of the blood-brain barrier is more prominent in white-matter lesions seen in ischemic CVD than in AD and may have a role in the pathogenesis of cerebrovascular white-matter lesions.
Collapse
Affiliation(s)
- H Tomimoto
- Department of Neurology, Kyoto University, Faculty of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Tomimoto H, Akiguchi I, Suenaga T, Wakita H, Nakamura S, Kimura J, Budka H. Immunohistochemical study of apolipoprotein E in human cerebrovascular white matter lesions. Acta Neuropathol 1995; 90:608-14. [PMID: 8615081 DOI: 10.1007/bf00318573] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the brains of ine cases with cerebrovascular disease, one with mixed dementia, one with amyloid angiopathy and two non-neurological controls, we found three cases with focal accumulation of apolipoprotein E (apo-E) in dystrophic axons and accompanying macrophages. Since amyloid precursor protein (APP) and chromogranin A (CgA) accumulate after axonal damages, and are sensitive markers of the white matter lesions, the regional distribution of apo-E was compared to that of APP and CgA. apo-E-immunoreactive axons were present in the periphery of an infarction with neighboring macrophages, but not in mild white matter lesions that contained APP- or CgA-immunoreactive fiber bundles. The results suggest a role of apo-E in recycling cholesterol and other membrane components via macrophages into remodeling neurites in the brain, but this phenomenon is restricted to the periphery of infarction and may be less prominent than in the peripheral nervous system.
Collapse
Affiliation(s)
- H Tomimoto
- Department of Neurology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|