1
|
Zhang Y, Yang Y, Hu Z, Zhu M, Qin S, Yu P, Li B, Xu J, Ondrejcak T, Klyubin I, Rowan MJ, Hu NW. Long-Term Depression-Inducing Low Frequency Stimulation Enhances p-Tau181 and p-Tau217 in an Age-Dependent Manner in Live Rats. J Alzheimers Dis 2022; 89:335-350. [PMID: 35871344 PMCID: PMC9484260 DOI: 10.3233/jad-220351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Cognitive decline in Alzheimer’s disease (AD) correlates with the extent of tau pathology, in particular tau hyperphosphorylation, which is strongly age-associated. Although elevation of cerebrospinal fluid or blood levels of phosphorylated tau (p-Tau) at residues Thr181 (p-Tau181), Thr217 (p-Tau217), and Thr231 (p-Tau231) are proposed to be particularly sensitive markers of preclinical AD, the generation of p-Tau during brain activity is poorly understood. Objective: To study whether the expression levels of p-Tau181, p-Tau217, and p-Tau231 can be enhanced by physiological synaptic long-term depression (LTD) which has been linked to the enhancement of p-Tau in hippocampus. Methods: In vivo electrophysiology was performed in urethane anesthetized young adult and aged male rats. Low frequency electrical stimulation (LFS) was used to induce LTD at CA3 to CA1 synapses. The expression level of p-Tau and total tau was measured in dorsal hippocampus using immunofluorescent staining and/or western blotting. Results: We found that LFS enhanced p-Tau181 and p-Tau217 in an age-dependent manner in the hippocampus of live rats. In contrast, phosphorylation at residues Thr231, Ser202/Thr205, and Ser396 appeared less sensitive to LFS. Pharmacological antagonism of either N-methyl-D-aspartate or metabotropic glutamate 5 receptors inhibited the elevation of both p-Tau181 and p-Tau217. Targeting the integrated stress response, which increases with aging, using a small molecule inhibitor ISRIB, prevented the enhancement of p-Tau by LFS in aged rats. Conclusion: Together, our data provide a novel in vivo means to uncover brain plasticity-related cellular and molecular processes of tau phosphorylation at key sites in health and aging.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yin Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhengtao Hu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Manyi Zhu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuangying Qin
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pengpeng Yu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Bo Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jitian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Michael J. Rowan
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Neng-Wei Hu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
2
|
Sathler MF, Doolittle MJ, Cockrell JA, Nadalin IR, Hofmann F, VandeWoude S, Kim S. HIV and FIV glycoproteins increase cellular tau pathology via cGMP-dependent kinase II activation. J Cell Sci 2022; 135:jcs259764. [PMID: 35638570 PMCID: PMC9270957 DOI: 10.1242/jcs.259764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
As the development of combination antiretroviral therapy (cART) against human immunodeficiency virus (HIV) drastically improves the lifespan of individuals with HIV, many are now entering the prime age when Alzheimer's disease (AD)-like symptoms begin to manifest. It has been shown that hyperphosphorylated tau, a known AD pathological characteristic, is prematurely increased in the brains of HIV-infected individuals as early as in their 30s and that its levels increase with age. This suggests that HIV infection might lead to accelerated AD phenotypes. However, whether HIV infection causes AD to develop more quickly in the brain is not yet fully determined. Interestingly, we have previously revealed that the viral glycoproteins HIV gp120 and feline immunodeficiency virus (FIV) gp95 induce neuronal hyperexcitation via cGMP-dependent kinase II (cGKII; also known as PRKG2) activation in cultured hippocampal neurons. Here, we use cultured mouse cortical neurons to demonstrate that the presence of HIV gp120 and FIV gp95 are sufficient to increase cellular tau pathology, including intracellular tau hyperphosphorylation and tau release to the extracellular space. We further reveal that viral glycoprotein-induced cellular tau pathology requires cGKII activation. Taken together, HIV infection likely accelerates AD-related tau pathology via cGKII activation.
Collapse
Affiliation(s)
- Matheus F. Sathler
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael J. Doolittle
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, USA
| | - James A. Cockrell
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO 80523, USA
| | - India R. Nadalin
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Franz Hofmann
- Technical University of Munich, Arcisstraße 21, D-80333 Munich, Germany
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Seonil Kim
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
3
|
Matthews DC, Mao X, Dowd K, Tsakanikas D, Jiang CS, Meuser C, Andrews RD, Lukic AS, Lee J, Hampilos N, Shafiian N, Sano M, David Mozley P, Fillit H, McEwen BS, Shungu DC, Pereira AC. Riluzole, a glutamate modulator, slows cerebral glucose metabolism decline in patients with Alzheimer's disease. Brain 2021; 144:3742-3755. [PMID: 34145880 PMCID: PMC8719848 DOI: 10.1093/brain/awab222] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/07/2021] [Accepted: 05/22/2021] [Indexed: 11/14/2022] Open
Abstract
Dysregulation of glutamatergic neural circuits has been implicated in a cycle of toxicity, believed among the neurobiological underpinning of Alzheimer's disease. Previously, we reported preclinical evidence that the glutamate modulator riluzole, which is FDA approved for the treatment of amyotrophic lateral sclerosis, has potential benefits on cognition, structural and molecular markers of ageing and Alzheimer's disease. The objective of this study was to evaluate in a pilot clinical trial, using neuroimaging biomarkers, the potential efficacy and safety of riluzole in patients with Alzheimer's disease as compared to placebo. A 6-month phase 2 double-blind, randomized, placebo-controlled study was conducted at two sites. Participants consisted of males and females, 50 to 95 years of age, with a clinical diagnosis of probable Alzheimer's disease, and Mini-Mental State Examination between 19 and 27. Ninety-four participants were screened, 50 participants who met inclusion criteria were randomly assigned to receive 50 mg riluzole (n = 26) or placebo (n = 24) twice a day. Twenty-two riluzole-treated and 20 placebo participants completed the study. Primary end points were baseline to 6 months changes in (i) cerebral glucose metabolism as measured with fluorodeoxyglucose-PET in prespecified regions of interest (hippocampus, posterior cingulate, precuneus, lateral temporal, inferior parietal, frontal); and (ii) changes in posterior cingulate levels of the neuronal viability marker N-acetylaspartate as measured with in vivo proton magnetic resonance spectroscopy. Secondary outcome measures were neuropsychological testing for correlation with neuroimaging biomarkers and in vivo measures of glutamate in posterior cingulate measured with magnetic resonance spectroscopy as a potential marker of target engagement. Measures of cerebral glucose metabolism, a well-established Alzheimer's disease biomarker and predictor of disease progression, declined significantly less in several prespecified regions of interest with the most robust effect in posterior cingulate, and effects in precuneus, lateral temporal, right hippocampus and frontal cortex in riluzole-treated participants in comparison to the placebo group. No group effect was found in measures of N-acetylaspartate levels. A positive correlation was observed between cognitive measures and regional cerebral glucose metabolism. A group × visit interaction was observed in glutamate levels in posterior cingulate, potentially suggesting engagement of glutamatergic system by riluzole. In vivo glutamate levels positively correlated with cognitive performance. These findings support our main primary hypothesis that cerebral glucose metabolism would be better preserved in the riluzole-treated group than in the placebo group and provide a rationale for more powered, longer duration studies of riluzole as a potential intervention for Alzheimer's disease.
Collapse
Affiliation(s)
| | - Xiangling Mao
- Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | | | | | | | - Caroline Meuser
- Department of Psychiatry, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Ana S Lukic
- ADM Diagnostics Inc., Northbrook, IL 60062, USA
| | - Jihyun Lee
- Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nicholas Hampilos
- Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Neeva Shafiian
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mary Sano
- Department of Psychiatry, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - P David Mozley
- Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Howard Fillit
- Alzheimer's Drug Discovery Foundation, New York, NY 10019, USA
| | | | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ana C Pereira
- The Rockefeller University, New York, NY 10065, USA
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
4
|
Hugon J, Paquet C. The PKR/P38/RIPK1 Signaling Pathway as a Therapeutic Target in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22063136. [PMID: 33808629 PMCID: PMC8003462 DOI: 10.3390/ijms22063136] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Neuropathological lesions in Alzheimer’s disease (AD) include amyloid plaques formed by the accumulation of amyloid peptides, neurofibrillary tangles made of hyperphosphorylated tau protein, synaptic and neuronal degenerations, and neuroinflammation. The cause of AD is unknown, but according to the amyloid hypothesis, amyloid oligomers could lead to the activation of kinases such as eukaryotic translation initiation factor 2-alpha kinase 2 (PKR), p38, and receptor-interacting serine/threonine-protein kinase 1 (RIPK1), which all belong to the same stress-activated pathway. Many toxic kinase activations have been described in AD patients and in experimental models. A p38 mitogen-activated protein kinase inhibitor was recently tested in clinical trials but with unsuccessful results. The complex PKR/P38/RIPK1 (PKR/dual specificity mitogen-activated protein kinase kinase 6 (MKK6)/P38/MAP kinase-activated protein kinase 2 (MK2)/RIPK1) is highly activated in AD brains and in the brains of AD transgenic animals. To delineate the implication of this pathway in AD, we carried out a search on PubMed including PKR/MKK6/p38/MK2/RIPK1, Alzheimer, and therapeutics. The involvement of this signaling pathway in the genesis of AD lesions, including Aβ accumulations and tau phosphorylation as well as cognitive decline, is demonstrated by the reports described in this review. A future combination strategy with kinase inhibitors should be envisaged to modulate the consequences for neurons and other brain cells linked to the abnormal activation of this pathway.
Collapse
Affiliation(s)
- Jacques Hugon
- Correspondence: ; Tel.: +33-140-054-313; Fax: +33-140-054-339
| | | |
Collapse
|
5
|
Therapeutic Strategies to Target Calcium Dysregulation in Alzheimer's Disease. Cells 2020; 9:cells9112513. [PMID: 33233678 PMCID: PMC7699688 DOI: 10.3390/cells9112513] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, affecting millions of people worldwide. Unfortunately, none of the current treatments are effective at improving cognitive function in AD patients and, therefore, there is an urgent need for the development of new therapies that target the early cause(s) of AD. Intracellular calcium (Ca2+) regulation is critical for proper cellular and neuronal function. It has been suggested that Ca2+ dyshomeostasis is an upstream factor of many neurodegenerative diseases, including AD. For this reason, chemical agents or small molecules aimed at targeting or correcting this Ca2+ dysregulation might serve as therapeutic strategies to prevent the development of AD. Moreover, neurons are not alone in exhibiting Ca2+ dyshomeostasis, since Ca2+ disruption is observed in other cell types in the brain in AD. In this review, we examine the distinct Ca2+ channels and compartments involved in the disease mechanisms that could be potential targets in AD.
Collapse
|
6
|
Dinkelbach L, Südmeyer M, Hartmann CJ, Roeber S, Arzberger T, Felsberg J, Ferrea S, Moldovan AS, Amunts K, Schnitzler A, Caspers S. Somatosensory area 3b is selectively unaffected in corticobasal syndrome: combining MRI and histology. Neurobiol Aging 2020; 94:89-100. [PMID: 32593032 DOI: 10.1016/j.neurobiolaging.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/04/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
An increasing number of neuroimaging studies addressing patients with corticobasal syndrome use macroscopic definitions of brain regions. As a closer link to functionally relevant units, we aimed at identifying magnetic resonance-based atrophy patterns in regions defined by probability maps of cortical microstructure. For this purpose, three analyses were conducted: (1) Whole-brain cortical thickness was compared between 36 patients with corticobasal syndrome and 24 controls. A pattern of pericentral atrophy was found, covering primary motor area 4, premotor area 6, and primary somatosensory areas 1, 2, and 3a. Within the central region, only area 3b was without atrophy. (2) In 18 patients, longitudinal measures with follow-ups of up to 59 months (mean 21.3 ± 15.4) were analyzed. Areas 1, 2, and 6 showed significantly faster atrophy rates than primary somatosensory area 3b. (3) In an individual autopsy case, longitudinal in vivo morphometry and postmortem pathohistology were conducted. The rate of magnetic resonance-based atrophy was significantly correlated with tufted-astrocyte load in those cytoarchitectonically defined regions also seen in the group study, with area 3b being selectively unaffected.
Collapse
Affiliation(s)
- Lars Dinkelbach
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Institute for Anatomy I, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Martin Südmeyer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Ernst von Bergmann Klinikum, Potsdam, Germany
| | - Christian Johannes Hartmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Jörg Felsberg
- Department of Neuropathology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Stefano Ferrea
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Alexia-Sabine Moldovan
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
7
|
Liu J, Chang L, Song Y, Li H, Wu Y. The Role of NMDA Receptors in Alzheimer's Disease. Front Neurosci 2019; 13:43. [PMID: 30800052 PMCID: PMC6375899 DOI: 10.3389/fnins.2019.00043] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
In Alzheimer’s disease (AD), early synaptic dysfunction is associated with the increased oligomeric amyloid-beta peptide, which causes NMDAR-dependent synaptic depression and spine elimination. Memantine, low-affinity NMDAR channel blocker, has been used in the treatment of moderate to severe AD. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between NMDARs dysfunction and AD. This review focuses on not only changes in expression of different NMDAR subunits, but also some unconventional modes of NMDAR action.
Collapse
Affiliation(s)
- Jinping Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Miyamoto T, Stein L, Thomas R, Djukic B, Taneja P, Knox J, Vossel K, Mucke L. Phosphorylation of tau at Y18, but not tau-fyn binding, is required for tau to modulate NMDA receptor-dependent excitotoxicity in primary neuronal culture. Mol Neurodegener 2017; 12:41. [PMID: 28526038 PMCID: PMC5438564 DOI: 10.1186/s13024-017-0176-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hyperexcitability of neuronal networks can lead to excessive release of the excitatory neurotransmitter glutamate, which in turn can cause neuronal damage by overactivating NMDA-type glutamate receptors and related signaling pathways. This process (excitotoxicity) has been implicated in the pathogenesis of many neurological conditions, ranging from childhood epilepsies to stroke and neurodegenerative disorders such as Alzheimer's disease (AD). Reducing neuronal levels of the microtubule-associated protein tau counteracts network hyperexcitability of diverse causes, but whether this strategy can also diminish downstream excitotoxicity is less clear. METHODS We established a cell-based assay to quantify excitotoxicity in primary cultures of mouse hippocampal neurons and investigated the role of tau in exicitotoxicity by modulating neuronal tau expression through genetic ablation or transduction with lentiviral vectors expressing anti-tau shRNA or constructs encoding wildtype versus mutant mouse tau. RESULTS We demonstrate that shRNA-mediated knockdown of tau reduces glutamate-induced, NMDA receptor-dependent Ca2+ influx and neurotoxicity in neurons from wildtype mice. Conversely, expression of wildtype mouse tau enhances Ca2+ influx and excitotoxicity in tau-deficient (Mapt -/-) neurons. Reconstituting tau expression in Mapt -/- neurons with mutant forms of tau reveals that the tau-related enhancement of Ca2+ influx and excitotoxicity depend on the phosphorylation of tau at tyrosine 18 (pY18), which is mediated by the tyrosine kinase Fyn. These effects are most evident at pathologically elevated concentrations of glutamate, do not involve GluN2B-containing NMDA receptors, and do not require binding of Fyn to tau's major interacting PxxP motif or of tau to microtubules. CONCLUSIONS Although tau has been implicated in diverse neurological diseases, its most pathogenic forms remain to be defined. Our study suggests that reducing the formation or level of pY18-tau can counteract excitotoxicity by diminishing NMDA receptor-dependent Ca2+ influx.
Collapse
Affiliation(s)
- Takashi Miyamoto
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Liana Stein
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Reuben Thomas
- Gladstone Institutes, Convergence Zone, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Biljana Djukic
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Praveen Taneja
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Joseph Knox
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Keith Vossel
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA. .,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
9
|
Age and Alzheimer's disease gene expression profiles reversed by the glutamate modulator riluzole. Mol Psychiatry 2017; 22:296-305. [PMID: 27021815 PMCID: PMC5042881 DOI: 10.1038/mp.2016.33] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/27/2016] [Accepted: 02/12/2016] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) and age-related cognitive decline represent a growing health burden and involve the hippocampus, a vulnerable brain region implicated in learning and memory. To understand the molecular effects of aging on the hippocampus, this study characterized the gene expression changes associated with aging in rodents using RNA-sequencing (RNA-seq). The glutamate modulator, riluzole, which was recently shown to improve memory performance in aged rats, prevented many of the hippocampal age-related gene expression changes. A comparison of the effects of riluzole in rats against human AD data sets revealed that many of the gene changes in AD are reversed by riluzole. Expression changes identified by RNA-Seq were validated by qRT-PCR open arrays. Riluzole is known to increase the glutamate transporter EAAT2's ability to scavenge excess glutamate, regulating synaptic transmission. RNA-seq and immunohistochemistry confirmed an increase in EAAT2 expression in hippocampus, identifying a possible mechanism underlying the improved memory function after riluzole treatment.
Collapse
|
10
|
Gardiner J, Overall R, Marc J. The microtubule cytoskeleton acts as a key downstream effector of neurotransmitter signaling. Synapse 2011; 65:249-56. [PMID: 20687109 DOI: 10.1002/syn.20841] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microtubules are well known to play a key role in the trafficking of neurotransmitters to the synapse. However, less attention has been paid to their role as downstream effectors of neurotransmitter signaling in the target neuron. Here, we show that neurotransmitter-based signaling to the microtubule cytoskeleton regulates downstream microtubule function through several mechanisms. These include tubulin posttranslational modification, binding of microtubule-associated proteins, release of microtubule-interacting second messenger molecules, and regulation of tubulin expression levels. We review the evidence for neurotransmitter regulation of the microtubule cytoskeleton, focusing on the neurotransmitters serotonin, melatonin, dopamine, glutamate, glycine, and acetylcholine. Some evidence suggests that microtubules may even play a more direct role in propagating action potentials through conductance of electric current. In turn, there is evidence for the regulation of neurotransmission by the microtubule cytoskeleton.
Collapse
Affiliation(s)
- John Gardiner
- The School of Biological Sciences, The University of Sydney 2006, New South Wales, Australia.
| | | | | |
Collapse
|
11
|
The Activation of Excitatory Amino Acid Receptors Is Involved in tau Phosphorylation Induced by Cold Water Stress*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Ichihara K, Uchihara T, Nakamura A, Suzuki Y, Mizutani T. Selective Deposition of 4-Repeat Tau in Cerebral Infarcts. J Neuropathol Exp Neurol 2009; 68:1029-36. [DOI: 10.1097/nen.0b013e3181b56bf4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Kuszczyk M, Gordon-Krajcer W, Lazarewicz JW. Homocysteine-induced acute excitotoxicity in cerebellar granule cells in vitro is accompanied by PP2A-mediated dephosphorylation of tau. Neurochem Int 2009; 55:174-80. [DOI: 10.1016/j.neuint.2009.02.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 01/27/2009] [Accepted: 02/17/2009] [Indexed: 12/29/2022]
|
14
|
Cosman KM, Boyle LL, Porsteinsson AP. Memantine in the treatment of mild-to-moderate Alzheimer's disease. Expert Opin Pharmacother 2007; 8:203-14. [PMID: 17257090 DOI: 10.1517/14656566.8.2.203] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Memantine is the first and only medication that has been approved by European, US and Canadian regulatory agencies for the treatment of moderate-to-severe Alzheimer's disease (AD). It is an NMDA receptor antagonist that works to prevent excitotoxicity and cell death, which are mediated by the excessive influx of calcium during a sustained release of glutamate. Preclinical studies of memantine reveal that it has the potential to improve memory and learning processes after impairment has occurred, as well as to prevent further neuronal damage. Although memantine has been considered for the treatment of earlier AD, it has not yet been approved for this. Randomized controlled trials of memantine in the treatment of mild-to-moderate AD have demonstrated small treatment effects in measures of cognition, global assessment and behavior favoring the use of memantine. However, the differences between treatment groups were not consistently significant. Two ongoing long-term trials are further investigating the efficacy of memantine in the treatment of mild-to-moderate AD.
Collapse
Affiliation(s)
- Kelly M Cosman
- University of Rochester School of Medicine, Alzheimer's Disease Care Research and Education Program (AD-CARE), Monroe Community Hospital, 435 East Henrietta Road, Rochester, NY 14620, USA.
| | | | | |
Collapse
|
15
|
Ikeda Y, Ishiguro K, Fujita SC. Ether stress-induced Alzheimer-like tau phosphorylation in the normal mouse brain. FEBS Lett 2007; 581:891-7. [PMID: 17289030 DOI: 10.1016/j.febslet.2007.01.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 01/08/2007] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
Tau is reversibly hyperphosphorylated in the mouse brain by starvation or cold water swimming. Here, we report tau phosphorylation in the hippocampus of normal mouse after ether anesthesia, known to trigger typical stress reactions. Robust phosphorylation of tau was observed immediately and 10min after ether vapor exposure at Ser202/Thr205 and Thr231/Ser235, sites typically phosphorylated in Alzheimer brains. The phosphorylation levels returned to baseline by 1h. The most conspicuous and consistent change in the protein kinases studied was the inactivating phosphorylation of Ser9 of TPKI/GSK3beta in close correspondence with tau phosphorylation. These findings show that tau phosphorylation is a rapid physiological process integral to stress response system, and suggest involvement therein of TPKI/GSK3beta.
Collapse
Affiliation(s)
- Yoshiko Ikeda
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | |
Collapse
|
16
|
Wenk GL, Parsons CG, Danysz W. Potential role of N-methyl-D-aspartate receptors as executors of neurodegeneration resulting from diverse insults: focus on memantine. Behav Pharmacol 2007; 17:411-24. [PMID: 16940762 DOI: 10.1097/00008877-200609000-00007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glutamatergic neurotransmission is critical to normal learning and memory and when the activity of glutamate neurons becomes excessive, or the normal function of its primary receptors becomes dysfunctional, this may lead to pathological changes associated with age-related neurodegenerative diseases. Anomalous glutamatergic activity associated with Alzheimer's disease may be due to a postsynaptic receptor and downstream defects that produce inappropriately timed or sustained glutamate activation of N-methyl-D-aspartate receptors, leading to neuronal injury and death and cognitive deficits associated with dementia. The mechanisms leading to the condition of chronically depolarized membranes on vulnerable neurons in the Alzheimer's disease brain are likely due to a complex interaction between oxidative stress, mitochondrial failure, chronic brain inflammation and the presence of amyloid-beta and hyperphosphorylated-tau; each of these factors are highly interrelated with each other and are discussed with an emphasis upon potential therapeutic mechanisms underlying the neuroprotective actions of memantine.
Collapse
Affiliation(s)
- Gary L Wenk
- Department Psychology & Neuroscience, Ohio State University, Ohio, USA
| | | | | |
Collapse
|
17
|
Abstract
Memantine is a moderate-affinity glutamate antagonist that primarily takes action at the N-methyl-D-aspartate receptor site. It has US FDA and European Medicines Agency approval for the treatment of moderate-to-severe Alzheimer’s disease. Memantine replaces Mg2+ at the N-methyl-D-aspartate receptor, blocking pathological glutamate activity but allowing normal glutamate action at this site. Consequently, calcium homeostasis is better maintained, reducing slow after hyperpolarization and preventing neuronal excitotoxicity and cell death. Clinical trials have shown that memantine is generally safe and well tolerated, and have provided evidence for its efficacy as assessed by cognitive, behavioral, functional and global measures. It has also been shown to be well tolerated and effective in the treatment of moderate-to-severe Alzheimer’s disease when patients received previous and ongoing treatment with donepezil. The tolerability and efficacy of memantine is under continued investigation in milder Alzheimer’s disease and other forms of dementia.
Collapse
Affiliation(s)
- Anton P Porsteinsson
- University of Rochester School of Medicine, Monroe Community Hospital, 435 East Henrietta Road, Rochester, NY 14620, USA. www.memoryhelp.us
| | - Kelly M Cosman
- University of Rochester School of Medicine, Monroe Community Hospital, 435 East Henrietta Road, Rochester, NY 14620, USA. www.memoryhelp.us
| |
Collapse
|
18
|
Alzheimer' s disease, oxidative stress and gammahydroxybutyrate. Neurobiol Aging 2006; 28:1340-60. [PMID: 16837107 DOI: 10.1016/j.neurobiolaging.2006.06.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 05/14/2006] [Accepted: 06/12/2006] [Indexed: 12/21/2022]
Abstract
Although the cause of Alzheimer's disease is unknown, oxidative stress, energy depletion, excitotoxicity and vascular endothelial pathology are all considered to play a part in its pathogenesis. In reaction to these adverse events, the Alzheimer brain appears to deploy a highly conserved biological response to tissue stress. Oxidative metabolism is turned down, the expression of antioxidative enzymes is increased and intermediary metabolism is shifted in the direction of the pentose phosphate shunt to promote reductive detoxification, repair and biosynthesis. Gathering evidence suggests that the release of beta-amyloid and the formation of neurofibrillary tangles, the two hallmarks of Alzheimer's disease, are components of this protective response. Gammahydroxybutyrate (GHB), an endogenous short chain fatty acid, may be able to buttress this response. GHB can reduce glucose utilization, shift intermediary metabolism in the direction the pentose phosphate shunt and generate NADPH, a key cofactor in the activity of many antioxidative and reductive enzymes. GHB has been shown to spare cerebral energy utilization, block excitotoxicity and maintain vascular integrity in the face of impaired perfusion. Most important, GHB has repeatedly been shown to prevent the tissue damaging effects of oxidative stress. It may therefore be possible to utilize GHB to strengthen the brain's innate defences against the pathological processes operating in the Alzheimer brain and, in this way, stem the advance of Alzheimer's disease.
Collapse
|
19
|
Han P, Dou F, Li F, Zhang X, Zhang YW, Zheng H, Lipton SA, Xu H, Liao FF. Suppression of cyclin-dependent kinase 5 activation by amyloid precursor protein: a novel excitoprotective mechanism involving modulation of tau phosphorylation. J Neurosci 2006; 25:11542-52. [PMID: 16354912 PMCID: PMC6726015 DOI: 10.1523/jneurosci.3831-05.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease is cytopathologically characterized by loss of synapses and neurons, neuritic amyloid plaques consisting of beta-amyloid (Abeta) peptides, and neurofibrillary tangles consisting of hyperphosphorylated tau protein in susceptible brain regions. Abeta, which triggers a cascade of pathogenic events including tau phosphorylation and neuronal excitotoxicity, is proteolytically derived from beta-amyloid precursor protein (APP); the pathological and physiological functions of APP, however, remain undefined. Here we demonstrate that the level of tau phosphorylation in cells and brains deficient in APP is significantly higher than that in wild-type controls, resulting from activation of cyclin-dependent kinase 5 (CDK5) but not glycogen synthase kinase 3, the two major tau kinases. In addition, we show that overexpression of APP or its non-amyloidogenic homolog amyloid precursor-like protein 1 suppresses both basal and stress-induced CDK5 activation. The ectodomain of APP, sAPPalpha, is responsible for inhibiting CDK5 activation. Furthermore, neurons derived from APP-deficient mice exhibit reduced metabolism and survival rates and are more susceptible to excitotoxic glutamate-induced apoptosis. These neurons also manifest significant defects in neurite outgrowth compared with neurons from the wild-type littermates. The observed neuronal excitotoxicity/apoptosis is mediated through a mechanism involving CDK5 activation. Our study defines a novel neuroprotective function for APP in preventing tau hyperphosphorylation via suppressing overactivation of CDK5. We suggest that CDK5 activation, through a calcium/calpain/p25 pathway, plays a key role in neuronal excitotoxicity and represents an underlying mechanism for the physiological functions of APP.
Collapse
Affiliation(s)
- Ping Han
- Center for Neuroscience and Aging, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Goodenough S, Conrad S, Skutella T, Behl C. Inactivation of glycogen synthase kinase-3β protects against kainic acid-induced neurotoxicity in vivo. Brain Res 2004; 1026:116-25. [PMID: 15476703 DOI: 10.1016/j.brainres.2004.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2004] [Indexed: 11/19/2022]
Abstract
Many neurodegenerative diseases involve oxidative stress and excitotoxic cell death. In an attempt to further elucidate the signal transduction pathways involved in the cell death/cell survival associated with excitotoxicity, we have used an in vivo model of excitotoxicity employing kainic acid (KA)-induced neurotoxicity. Here, we show that extracellular signal-related kinase (ERK) 2, but not ERK 1, is phosphorylated and thereby activated in the hippocampus and cerebellum of kainic acid-treated mice. Phosphorylation and hence inactivation of glycogen synthase kinase 3beta (GSK-3beta), a general survival factor, is often a downstream consequence of mitogen-activated protein kinase pathway activation. Indeed, GSK-3beta phosphorylation occurred in response to kainic acid exclusively in the affected hippocampus, but not as a consequence of ERK activation. This may represent a compensatory attempt at self-protection by the cells in this particular brain region. A role for GSK-3beta inhibition in cell survival was further supported by the fact that pharmacological inhibition of GSK-3beta using lithium chloride was protective against kainic acid-induced excitotoxicity in hippocampal slice cultures. This work supports a role for GSK-3beta in cell death in response to excitotoxins in vivo and further confirms that GSK-3beta plays a role in cell death/cell survival pathways.
Collapse
Affiliation(s)
- Sharon Goodenough
- Department of Pathobiochemistry, Johannes Gutenberg University, Mainz, Germany
| | | | | | | |
Collapse
|
21
|
Canu N, Calissano P. In vitro cultured neurons for molecular studies correlating apoptosis with events related to Alzheimer disease. THE CEREBELLUM 2004; 2:270-8. [PMID: 14964686 DOI: 10.1080/14734220310004289] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This short review analyses the possible molecular events linking a general program of death such as apoptosis to highly specific intracellular pathways involving the function and degradation of two proteins--tau and amyloid precursor protein--which in their aggregated state constitute the hallmark of Alzheimer disease. By surveying the recent studies carried out in 'in vitro' neuronal cultures--with special emphasis to cerebellar granule neurons--the apparent correlation between onset of apoptosis, tau cleavage with formation of potential toxic fragments, and activation of an amyloidogenic route are discussed. Within this framework, proteasomes seem to play a crucial role upstream of the proteolytic cascade involving calpain(s) and caspase(s) by contributing to tau and amyloid precursor protein-altered breakdown and consequent tendency to aggregation of their degradation fragments. Thus, apoptotic death due to altered supply of anti apoptotic agents, neurotrophic factors, deafferentiation or other causes, may constitute a major trigger of the onset of Alzheimer disease.
Collapse
Affiliation(s)
- Nadia Canu
- Department of Neuroscience, University of Tor Vergata, Rome, Italy.
| | | |
Collapse
|
22
|
Zheng WH, Bastianetto S, Mennicken F, Ma W, Kar S. Amyloid beta peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience 2003; 115:201-11. [PMID: 12401334 DOI: 10.1016/s0306-4522(02)00404-9] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neuropathological features associated with Alzheimer's disease (AD) brain include the presence of extracellular neuritic plaques composed of amyloid beta protein (Abeta), intracellular neurofibrillary tangles containing phosphorylated tau protein and the loss of basal forebrain cholinergic neurons which innervate regions such as the hippocampus and the cortex. Studies of the pathological changes that characterize AD and several other lines of evidence indicate that Abeta accumulation in vivo may initiate phosphorylation of tau protein, which by disrupting neuronal network may trigger the process of neurodegeneration observed in AD brains. However, the underlying cause of degeneration of the basal forebrain cholinergic neurons and their association, if any, to Abeta peptides or phosphorylated tau remains mostly unknown. In the present study, using rat primary septal cultures, we have shown that aggregated Abeta peptides, in a time (18-96 h)- and concentration (0.7-60 microM)-dependent manner, induce toxicity and decrease choline acetyltransferase enzyme activity in cultured neurons. Using immunocytochemistry and immunoblotting, we have also demonstrated that Abeta treatment can significantly increase the phosphorylation of tau protein in septal cultures. At the cellular level, hyperphosphorylated tau is mostly apparent in the somatodendritic compartment of the neurons. Abeta peptide (10 microM), in addition to tau phosphorylation, also activates mitogen-activated protein kinase and glycogen synthase kinase-3beta, the two kinases which are known to be involved in the formation of hyperphosphorylated tau in the AD brain. Exposure to specific inhibitors of the mitogen-activated protein kinase (i.e. PD98059) or glycogen synthase kinase-3beta (i.e. LiCl) attenuated the hyperphosphorylation of the tau protein in cultured neurons. Given the evidence that tau phosphorylation can induce cell loss by disrupting neuronal cytoskeleton, it is likely that aggregated Abeta peptide triggers degeneration of septal neurons, including those expressing the cholinergic phenotype, by phosphorylation of the tau protein activated by mitogen-activated protein kinase and glycogen synthase kinase-3beta. These results, taken together, suggest that cultured septal cholinergic neurons are vulnerable to Abeta-mediated toxicity and tau phosphorylation may play an important role in Abeta-induced neurodegeneration.
Collapse
Affiliation(s)
- W-H Zheng
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 La Salle Boulevard, Verdun, QC, Canada H4H 1R3
| | | | | | | | | |
Collapse
|
23
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a late onset, rapidly progressive and ultimately fatal neurological disorder, caused by the loss of motor neurons in the brain and spinal cord. Familial aggregation of ALS, with an age-dependent but high penetrance, is a major risk factor for ALS. Familial ALS (FALS) is clinically and genetically heterogeneous. Three genes and linkage to four additional gene loci have been identified so far and may either predominantly lead to ALS (ALSI-ALS6) or cause multisystem neurodegeneration with ALS as an occasional symptom (tauopathies, ALS-dementia complex). This review presents a tentative classification of the "major" ALS genes and ALS "susceptibility" genes, that may act as susceptibility factors for neurodegeneration in interaction with other genetic or environmental risk factors. Considering that mutations in ALS genes explain approximately 10% of familial as well as sporadic ALS, and most remaining cases of the discase are thought to result form the interaction of several genes and environmental factors, ALS is a paradigm for multifactorial discases.
Collapse
Affiliation(s)
- D Majoor-Krakauer
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands.
| | | | | |
Collapse
|
24
|
Kerokoski P, Suuronen T, Salminen A, Soininen H, Pirttilä T. Cleavage of the cyclin-dependent kinase 5 activator p35 to p25 does not induce tau hyperphosphorylation. Biochem Biophys Res Commun 2002; 298:693-8. [PMID: 12419309 DOI: 10.1016/s0006-291x(02)02543-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hyperphosphorylated tau protein is the primary component of neurofibrillary tangles observed in several neurodegenerative disorders. It has been hypothesized that in certain pathological conditions, the calcium activated protease, calpain, would cleave the cyclin-dependent kinase 5 (cdk5) activator p35 to a p25 fragment, which would lead to augmented cdk5 activity, and cdk5-mediated tau hyperphosphorylation. To test this hypothesis, we induced calpain-mediated p35 cleavage in rat hippocampal neuronal cultures and studied the relationship between p25 production, cdk5 activity, and tau phosphorylation. In glutamate-treated cells p35 was cleaved to p25 and this was associated with elevated cdk5 activity. However, tau phosphorylation was concomitantly decreased at multiple sites. The calpain inhibitor MDL28170 prevented the cleavage of p35 but had no effect on tau phosphorylation, suggesting that calpain-mediated processes, i.e., the cleavage of p35 to p25 and cdk5 activation, do not contribute to tau phosphorylation in these conditions. Treatment of the neuronal cultures with N-methyl-D-aspartic acid or with calcium ionophores resulted in an outcome highly similar to that of glutamate. We conclude that, in neuronal cells, the cleavage of p35 to p25 is associated with increased activity of cdk5 but not with tau hyperphosphorylation.
Collapse
Affiliation(s)
- Petri Kerokoski
- Department of Neuroscience and Neurology, University of Kuopio, Finland.
| | | | | | | | | |
Collapse
|
25
|
Elyaman W, Terro F, Wong NS, Hugon J. In vivo activation and nuclear translocation of phosphorylated glycogen synthase kinase-3beta in neuronal apoptosis: links to tau phosphorylation. Eur J Neurosci 2002; 15:651-60. [PMID: 11886446 DOI: 10.1046/j.1460-9568.2002.01899.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The roles of glycogen synthase kinase-3beta (GSK-3beta) and tau phosphorylation were examined in seven-day-old rats injected with the NMDA receptor antagonist (MK801) that is known to induce neuronal apoptosis. Immunoblot and immunohistochemical analysis of brain samples demonstrated a site-specific increase in tau phosphorylation associated with the relocalization of the protein to the nuclear/perinuclear region of apoptotic neurons. In addition, a tau 32-kDa fragment was detected, suggesting that tau was a target of intracellular proteolysis in MK801-treated brains. The proteolytically modified form of tau has reduced ability to bind to microtubules. GSK-3beta kinase assay and immunoblottings of active (tyrosine-216) and inactive (serine-9) forms of GSK-3beta revealed a rapid and transient increase in the kinase activity. Lithium chloride, a GSK-3beta inhibitor, prevented tau phosphorylation suggesting that tau phosphorylation is mediated by the activation of GSK-3beta. Confocal microscopy using double labelling of tau and GSK-3beta revealed that the activation of GSK-3beta in neurons was associated with early (2 h) nuclear translocation of tyrosine-216 GSK-3beta. The execution phase of neuronal apoptosis was accompanied by a selective phosphorylation of serine-9 and dephosphorylation of tyrosine-216 GSK-3beta. These findings demonstrate that in vivo, GSK-3beta kinase activation and nuclear translocation are early stress signals of neuronal apoptosis.
Collapse
Affiliation(s)
- W Elyaman
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR
| | | | | | | |
Collapse
|
26
|
Battu S, Elyaman W, Hugon J, Cardot PJ. Cortical cell elution by sedimentation field-flow fractionation. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1528:89-96. [PMID: 11687294 DOI: 10.1016/s0304-4165(01)00174-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As a cell sorter, Sedimentation field-flow fractionation (SdFFF) can be defined as an effective tool for cell separation and purification, respecting integrity and viability as well as providing enhanced recovery and purified sterile fraction collection. The complex cell suspension containing both neurons and glial cells of all types, obtained from cerebral cortices of 17-day-old rat fetuses, is routinely used as a model of primary neuronal culture. Using SdFFF, this complex cell mixture was eluted in sterile fractions which were collected and cultured. SdFFF cell elution was conducted under strictly defined conditions: rapid cell elution, high recovery (negligible cell trapping), short- and long-term cell viability, sterile collection. After immunological cellular type characterization (neurons and glial cells) of cultured cells, our results demonstrated the effectiveness of SdFFF to provide, in less than 6 min, viable and enriched neurons which can be cultured for further investigations.
Collapse
Affiliation(s)
- S Battu
- Laboratoire de Chimie Analytique et Bromatologie, Faculté de Pharmacie, Université de Limoges, France.
| | | | | | | |
Collapse
|
27
|
Hellström-Lindahl E. Modulation of beta-amyloid precursor protein processing and tau phosphorylation by acetylcholine receptors. Eur J Pharmacol 2000; 393:255-63. [PMID: 10771022 DOI: 10.1016/s0014-2999(00)00028-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurofibrillary lesions and senile plaques that are composed mainly of hyperphosphorylated tau protein and the amyloid-beta peptide derived from the amyloid precursor protein, respectively, are classical hallmarks of Alzheimer's disease. A number of studies strongly suggests that amyloid-beta formation and amyloid depositions are linked to the pathogenesis of Alzheimer's disease. Recent findings suggest that very low concentrations of the amyloid-beta can inhibit various cholinergic neurotransmitter functions independently of apparent neurotoxicity. Many factors have been shown to influence the processing of amyloid precursor protein, including activation of muscarinic and nicotinic receptors. This review focus on some recent studies concerning the regulation of amyloid precursor protein processing and modulation of tau phosphorylation by acetylcholine receptor stimulation and how cholinergic deficits and amyloid-beta might be related to one another.
Collapse
Affiliation(s)
- E Hellström-Lindahl
- Department of Clinical Neuroscience, Occupational Therapy and Elderly Care Research, Division of Molecular Neuropharmacology, Karolinska Institutet, Huddinge University Hospital, Sweden.
| |
Collapse
|
28
|
Hellström-Lindahl E, Moore H, Nordberg A. Increased levels of tau protein in SH-SY5Y cells after treatment with cholinesterase inhibitors and nicotinic agonists. J Neurochem 2000; 74:777-84. [PMID: 10646530 DOI: 10.1046/j.1471-4159.2000.740777.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several cholinesterase inhibitors used in the treatment of Alzheimer's disease (AD) have been shown to interact with an allosteric site on the nicotinic acetylcholine receptor (nAChR). A possible linkage between the phosphorylation state of tau, the major component of paired helical filaments found in AD brain, and stimulation of nAChRs by cholinesterase inhibitors and nicotinic agonists was investigated. Western blot analysis showed that treatment of SH-SY5Y cells for 72 h with the cholinesterase inhibitors tacrine (10(-5) M), donepezil (10(-5) M), and galanthamine (10(-5) M), nicotine (10(-5) M), and epibatidine (10(-7) M) increased tau levels as detected with Tau-1, AT 8, and AT 270 monoclonal antibodies and binding of [3H]epibatidine. The increase in tau immunoreactivity induced by nicotine, epibatidine, and tacrine, but not the up-regulation of nAChRs, was prevented by the antagonists d-tubocurarine and mecamylamine. Both antagonists were synergistic with the nicotinic agonists in causing up-regulation, but only d-tubocurarine showed a synergistic effect with tacrine. The increased tau immunoreactivity induced by tacrine was not prevented by atropine, indicating that in terms of cholinergic receptors, tacrine modulates tau levels mainly through interactions with nAChRs and not with muscarinic receptors. Additional work is needed to determine the exact mechanism by which cholinesterase inhibitors and nicotinic agonists modulate phosphorylation and levels of tau protein.
Collapse
Affiliation(s)
- E Hellström-Lindahl
- Department of Clinical Neuroscience, Occupational Therapy, and Elderly Care Research, Karolinska Institute, Huddinge University Hospital, Sweden.
| | | | | |
Collapse
|
29
|
Hugon J, Esclaire F, Lesort M, Kisby G, Spencer P. Toxic neuronal apoptosis and modifications of tau and APP gene and protein expressions. Drug Metab Rev 1999; 31:635-47. [PMID: 10461544 DOI: 10.1081/dmr-100101939] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The causes and the mechanisms of neuronal death in Alzheimer's disease are not elucidated, although some new insights have been proposed over the past years, including free-radical toxicity, beta-amyloid toxicity, excitotoxicity, and disturbed cellular calcium metabolism. Some authors have also pointed out that apoptosis could play a role in neuronal degeneration, but it is still largely debated. Here, we review some recent data linking the induction of experimental neuronal apoptosis in vitro and the molecular pathology of the tau protein and amyloid precursor protein (APP). In cultures exposed to mild glutamate toxicity, tau mRNA expression, not beta-actin, is enhanced in stressed neurons. The Guam cycad toxin metabolite methylazoxymethanol also produces an increase of tau gene transcription that exacerbates changes induced by glutamate. In serum-deprived cultures or glutamate-exposed cultures, neurons committed to apoptosis have a reduced tau gene expression, whereas resistant neurons display a stable or even augmented tau mRNA expression accompanied by a persistent tau phosphorylation near serine 202. In the same conditions, stressed neurons produce membrane blebbings strongly immunopositive for APP and putative amyloidogenic fragments that are subsequently released in the extracellular space. Experimental apoptosis in neurons can recapitulate tau and APP modifications that could be associated with a selective vulnerability and a progression of cellular degeneration along the neuronal network.
Collapse
Affiliation(s)
- J Hugon
- Department of Histology and Cell Biology, Faculty of Medicine, University of Limoges, France.
| | | | | | | | | |
Collapse
|
30
|
Esclaire F, Kisby G, Spencer P, Milne J, Lesort M, Hugon J. The Guam cycad toxin methylazoxymethanol damages neuronal DNA and modulates tau mRNA expression and excitotoxicity. Exp Neurol 1999; 155:11-21. [PMID: 9918700 DOI: 10.1006/exnr.1998.6962] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As in Alzheimer's disease, brains of Guam Chamorros with amyotrophic lateral sclerosis (ALS) and Parkinsonism-dementia complex (PDC) contain intraneuronal-paired helical filaments composed of accumulated phosphorylated tau protein. Tau mRNA expression in rat neuronal cultures-normally modulated by glutamate-increases after treatment with the aglycone of cycasin, a cycad-derived toxin whose concentration in Chamorro food varies with disease incidence. Elevated Tau gene expression in vitro is coincident with increased cycasin-related DNA adducts and reduced DNA repair. Cycasin and endogenous glutamate may together promote the accumulation of tau protein and neuronal degeneration in Western Pacific ALS/PDC.
Collapse
Affiliation(s)
- F Esclaire
- Faculty of Medicine, University of Limoges, 87025 Limoges, ERS CNRS 6101, France
| | | | | | | | | | | |
Collapse
|
31
|
Glutamate Receptors and Excitotoxic Mechanisms in Alzheimer’s Disease. Cereb Cortex 1999. [DOI: 10.1007/978-1-4615-4885-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
32
|
|
33
|
Adamec E, Mercken M, Beermann ML, Didier M, Nixon RA. Acute rise in the concentration of free cytoplasmic calcium leads to dephosphorylation of the microtubule-associated protein tau. Brain Res 1997; 757:93-101. [PMID: 9200503 DOI: 10.1016/s0006-8993(97)00166-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The objective of this study was to asses the response of the microtubule-associated protein tau to acute rise in the concentration of free cytoplasmic calcium ([Ca2+]i) in rat cortical neurons and mouse cerebellar granule cells in culture. One-hour exposure to glutamate (100 microM), N-methyl-D-aspartate (100 microM), KCl (50 mM), and ionomycin (5 microM) led to tau protein dephosphorylation as indicated by an appearance of additional faster moving bands on Western immunoblots with a phosphorylation-independent antibody and an increase in the tau-1 immunoreactivity associated with the appearance of an additional faster moving band. Lowering the extracellular concentration of Ca2+ to less than 1 microM fully prevented the drug-induced tau protein dephosphorylation indicating a dependence on Ca2+ influx from the extracellular environment. Administration of okadaic acid (inhibitor of phosphatase 1/2A) simultaneously with the above mentioned drugs decreased the drug-mediated dephosphorylation. Pre-incubation with okadaic acid fully prevented the dephosphorylation. Treatment with cypermethrin (inhibitor of phosphatase 2B) was without effect when administered either alone, simultaneously with the drugs, or pre-incubated. These findings indicate that, independently of the influx pathway, [Ca2+]i elevation leads to dephosphorylation of the microtubule-associated protein tau and implicate phosphatase 1 and/or 2A in the process.
Collapse
Affiliation(s)
- E Adamec
- Laboratories for Molecular Neuroscience, Mailman Research Center, McLean Hospital, Belmont, MA 02178, USA.
| | | | | | | | | |
Collapse
|
34
|
Lesort M, Blanchard C, Yardin C, Esclaire F, Hugon J. Cultured neurons expressing phosphorylated tau are more resistant to apoptosis induced by NMDA or serum deprivation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 45:127-32. [PMID: 9105678 DOI: 10.1016/s0169-328x(96)00284-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Apoptosis is a programmed cell death that occurs during the development of the nervous system and in neurodegenerative disorders. Tau protein is a cytoskeletal component that promotes microtubule polymerization and stabilization. Apoptosis was induced in primary neuronal cultures by a prolonged exposure (16 h) to the NMDA (N-methyl-D-aspartate 20 microM) or by serum deprivation. The percentages of apoptotic neurons expressing phosphorylated tau (AT8) immunoreactivity are comparable in control and NMDA-exposed cultures (7.5 +/- 1.9 and 6.9 +/- 1.9%, respectively). At the opposite, the percentage of apoptotic neurons expressing de-phosphorylated tau (tau 1) immunolabelings is dramatically increased in NMDA-treated cultures (X 2.3 of controls). Similar results were also observed 48 h after serum deprivation. These results demonstrate in vitro that under these conditions, resistant and sensitive cortical neurons to apoptosis can be partly differentiated according to their phosphorylated tau immunoreactivities.
Collapse
Affiliation(s)
- M Lesort
- Neurobiology and Cellular Pathology Unit (CNRS 1485), Department of Histology and Cell Biology, Faculty of Medicine, Limoges, France
| | | | | | | | | |
Collapse
|
35
|
Couratier P, Lesort M, Sindou P, Esclaire F, Yardin C, Hugon J. Modifications of neuronal phosphorylated tau immunoreactivity induced by NMDA toxicity. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1996; 27:259-73. [PMID: 9147412 DOI: 10.1007/bf02815108] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glutamate toxicity has been involved in the pathophysiology of a large variety of neurodegenerative disorders. Tau Protein is a micro-tubule-associated protein that promotes microtubule polymerization and stabilization. Phosphorylated tau protein accumulates in paired helical neurofilaments, the major constituent of neurofibrillary tangles observed in the brain of patients suffering from Alzheimer disease (AD). In this study, using confocal laser microscopy and immunoblot analysis, we report that acute (500 mu M for 15 min) or chronic (20 mu M for 16 h) N-methyl-D-aspartate (NMDA) neuronal toxicities modify the immunoreactivity of phosphorylated tau. Neuronal degeneration produced by N-methyl-D-aspartate is associated with an augmented immunolabeling of phosphorylated tau proteins at serine 202 (AT8 antibody) as observed in paired helical neurofilaments. This finding could help to determine the cellular mechanisms at the origin of neuronal degeneration associated with modifications of phosphorylated tau immunoreactivity produced by receptor-mediated extracellular signals.
Collapse
Affiliation(s)
- P Couratier
- Unite de Neurobiologie Cellulaire, Laboratoire d'Histologie Faculte de Medecine, France
| | | | | | | | | | | |
Collapse
|
36
|
Hugon J, Hugon F, Esclaire F, Lesort M, Diop AG. The presence of calbindin in rat cortical neurons protects in vitro from oxydative stress. Brain Res 1996; 707:288-92. [PMID: 8919307 DOI: 10.1016/0006-8993(95)01393-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Free radicals are highly reactive chemicals containing an unpaired electron and are normally produced by the cellular metabolism. The oxydative stress is defined as a lack of balance between the production of free radicals and the activity of antioxydant metabolites. It induces cellular damages to lipids, proteins and membranes. Abnormal calcium metabolism can be a consequence of oxydative stress leading to increased intracellular concentrations. Calbindin D28K is a calcium binding protein which could have a neuroprotective action against various cellular insults. In this study rat cortical cell cultures were exposed during various times and at different concentrations to the couple Xanthine/Xanthine oxydase (XA/XO), which produces the superoxyde radical O2-.. Neuronal survival revealed that XA/XO is toxic for cortical cell cultures. The Calbindin D28K immunocytochemical study shows that the percentages of Calbindin positive cells are greater in surviving neurons following the XA/XO exposure compared to controls. There is a time-dependent and a dose-dependent relation between the number of surviving neurons and the percentage of Calbindin positive neurons. These results suggest that the presence of cytosolic neuronal Calbindin D28k is associated with a greater resistance to oxydative stress.
Collapse
Affiliation(s)
- J Hugon
- Cellular Neurobiology Unit, Laboratory of Histology, Faculty of Medicine, Limoges, France
| | | | | | | | | |
Collapse
|
37
|
Couratier P, Lesort M, Condamines O, Mourton-Gilles C, Delacourte A, Hugon J. Phorbol ester enhances phosphorylated tau protein immunoreactivity in neuronal cultures. Neurosci Lett 1996; 203:155-8. [PMID: 8742016 DOI: 10.1016/0304-3940(96)12302-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
One of the hallmarks of Alzheimer's disease (AD) is neurofibrillary degeneration which results from the aggregation of phosphorylated tau proteins into paired helical filament (PHF) structures. AD2 is a new monoclonal antibody raised against PHF tau which detects neurofibrillary tangles in AD brain. In primary neuronal cultures, phorbol ester treatment induced a time- and dose-dependent increase in AD2 immunoreactivity quantified by laser confocal microscopy and immunoblottings. Alkaline phosphatase treatment reversed these immunocytochemical changes. These results suggest that the modifications of neuronal metabolism induced by phorbol ester including protein kinase C activation produce an increase in phosphorylated tau immunoreactivity.
Collapse
Affiliation(s)
- P Couratier
- Unite de Neurobiologie et Pathologie Cellulaire, Laboratoire d'Histologie, Faculte de Medecine, Limoges Cedex, France
| | | | | | | | | | | |
Collapse
|
38
|
Terro F, Lesort M, Dussartre C, Barthe D, Hugon J. Phosphorylated neurofilament expression and resistance to kainate toxicity. Brain Res Bull 1996; 41:231-5. [PMID: 8924033 DOI: 10.1016/s0361-9230(96)00193-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Antibodies directed against phosphorylated neurofilaments, which are major proteins of the neuronal cytoskeleton, usually do not label neuronal cell bodies except in some neurological diseases. In the present study, we show that in rat cortical cell cultures exposed to kainate there is an inverse relation between neuronal survival and the proportion of neuronal cell bodies stained by a monoclonal antibody (clone SMI31) that recognizes extensively phosphorylated neurofilament proteins (150 kDa and 200 kDa). The immunoblot analysis also revealed an increase in 150-kDa phosphorylated neurofilament expression in kainate-treated cell cultures. Furthermore, the direct quantification of viable neurons SMI31-immunopositive or immunonegative in perikarya showed that the majority of neurons resistant to kainate toxicity expressed phosphorylated neurofilaments in their cell bodies. The percentage of viable neurons displaying SMI31-immunoreactivity in their cell bodies increased from 14.7% in control cultures to 30.0% in cultures treated with 10 microM kainate. These data suggest that phosphorylated neurofilament expression is associated with a reduced cell vulnerability to excitotoxicity induced by kainate.
Collapse
Affiliation(s)
- F Terro
- Unit of Neurobiology and Cellular Pathology, Laboratory of Histology and Cellular Biology, Faculty of Medicine, Limoges, France
| | | | | | | | | |
Collapse
|
39
|
Przyborski SA, Cambray-Deakin MA. Heterogeneity of tau protein and mRNA expression during the development of cerebellar granule cell neurons in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 87:29-45. [PMID: 7554230 DOI: 10.1016/0165-3806(95)00050-n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tau microtubule-associated proteins constitute a group of developmentally regulated neuronal proteins which promote microtubule polymerization and stabilization and hence have important implications during neuronal morphogenesis. We have examined the expression of tau mRNA and protein levels during the differentiation of cerebellar granule neurons over a period of 3 weeks in vitro. Oligonucleotide probes directed towards either immature or mature forms of tau mRNA were detected by in situ hybridization. Such experiments demonstrated that the time interval between 1 and 4 days in vitro represents a developmental epoch in the regulation of tau mRNA whereby the dominant immature tau messages were gradually replaced by mature mRNAs. Analysis of the profile of the various tau isoforms showed further developmental regulation with the transient rise in immature tau variants followed by the appearance of mature isoforms in older cultures. The increase in tau heterogeneity during granule neuron differentiation was enhanced by and could be attributed to intensive post-translational phosphorylation. Dephosphorylation of cell cultures demonstrated that the majority of tau was phosphorylated and that such a modification had profound affects on the localization of tau within developing neurons by immunocytochemistry. This study describes the profile of tau protein and mRNA levels expressed by differentiating cerebellar granule neurons in vitro and clearly demonstrates that tau is developmentally regulated and that important changes in tau expression occur at a time when processes are consolidating their first contacts.
Collapse
Affiliation(s)
- S A Przyborski
- Department of Biomedical Science, University of Sheffield, UK
| | | |
Collapse
|
40
|
Nuydens R, De Jong M, Nuyens R, Cornelissen F, Geerts H. Neuronal kinase stimulation leads to aberrant tau phosphorylation and neurotoxicity. Neurobiol Aging 1995; 16:465-75; discussion 475-7. [PMID: 7566353 DOI: 10.1016/0197-4580(94)00166-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neurofibrillary tangles in Alzheimer's disease brain consist mainly of abnormally phosphorylated tau proteins organised in paired helical filaments. Induction of tau phosphorylation in living neurons by hyperstimulation is monitored by specific monoclonal antibodies, such as AT-8 and PHF-1. By quantitative immunocytochemistry, we show that aberrant phosphorylation at the Ser199/Ser202 epitope (AT-8) and at the Ser 396 epitope (PHF-1) are moderately induced, proportionally to the degree of kinase stimulation. Whereas AT8 expression is prominent after 48 h, cell death becomes significant at 72 h and is related to the degree of stimulation and the expression level of aberrant tau phosphorylation. Time-lapse videomicroscopy of individual neuroblastoma cells suggest that hyperstimulation leads to a form of morphological over-differentiation. Immediately before cell death, some cells tend to display some features of mitosis. The data suggest a strong correlation between the expression of specific PHF-epitopes and subsequent cell death. The extended time scale of toxicity in this model may be appropriate to study in more detail the steps leading to aberrant phosphorylation associated neurotoxicity.
Collapse
Affiliation(s)
- R Nuydens
- Department of Cellular Physiology, Janssen Research Foundation, Beerse, Belgium
| | | | | | | | | |
Collapse
|
41
|
Cullen KM, Halliday GM. Mechanisms of cell death in cholinergic basal forebrain neurons in chronic alcoholics. Metab Brain Dis 1995; 10:81-91. [PMID: 7596331 DOI: 10.1007/bf01991785] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tau immunoreactivity was examined in post mortem tissue from patients in three groups: neurologically-asymptomatic and neuropathologically normal alcoholics, alcoholics with Wernicke's Encephalopathy (WE) and age matched non-alcoholic controls. Tau-positive granular and fibrillary inclusions were frequently observed within the magnocellular neurons of the cholinergic nucleus basalis, within occasional nucleus basalis neurons in non-WE alcoholics, but not in controls. Tau immunoreactivity was not however observed in cortical, brainstem, diencephalic or non-cholinergic forebrain structures. Peroxidase activity was also examined within the nucleus basalis using diaminobenzidine as an indicator. The majority of neurons in the basal forebrain showed increased peroxidase activity in all WE alcoholics and in some nucleus basalis neurons of non-WE alcoholics, but was rarely seen in controls. Neighboring astrocytes also showed increased peroxidase activity. These results suggest a link between peroxidase activity and the abnormal accumulation of phosphorylated tau. The presence of tau in the nucleus basalis of alcoholics with WE suggests a thiamine-dependent mechanism in tau accumulation and cell death in the cholinergic basal forebrain.
Collapse
Affiliation(s)
- K M Cullen
- Neuropathology Unit, University of Sydney, NSW, Australia
| | | |
Collapse
|