1
|
Bud Craig AD. Central neural substrates involved in temperature discrimination, thermal pain, thermal comfort, and thermoregulatory behavior. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:317-338. [PMID: 30454598 DOI: 10.1016/b978-0-444-63912-7.00019-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A phylogenetically novel pathway that emerged with primate encephalization is described, which conveys high-fidelity cutaneous thermosensory activity in "labeled lines" to a somatotopic map in the dorsal posterior insular cortex. It originates in lamina I of the superficial dorsal horn and ascends by way of the lateral spinothalamic tract and a distinct region in posterolateral thalamus. It evolved from the homeostatic sensory activity that represents the physiologic (interoceptive) condition of the body and drives the central autonomic network, which underlies all affective feelings from the body. Accordingly, human discriminative thermal sensations are accompanied by thermally motivated behaviors and thermal feelings of comfort or discomfort (unless neutral), which evidence suggests are associated with activity in the insular, cingulate, and orbitofrontal cortices, respectively. Yet, the substrates for thermoregulatory behavior have not been established, and several strong candidates (including the hypothalamus and the bed nucleus of the stria terminalis) are discussed. Finally, the neural underpinnings for relationships between thermal affect and social feelings (warm-positive/cold-negative) are addressed, including the association of hyperthermia with clinical depression.
Collapse
Affiliation(s)
- Arthur D Bud Craig
- Atkinson Research Laboratory, Barrow Neurological Institute, Phoenix, AZ, United States.
| |
Collapse
|
2
|
Gonzáles MA, Miranda AP, Orrego H, Silva R, Forray MI. Enduring attenuation of norepinephrine synaptic availability and augmentation of the pharmacological and behavioral effects of desipramine by repeated immobilization stress. Neuropharmacology 2017; 117:249-259. [PMID: 28232061 DOI: 10.1016/j.neuropharm.2017.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/16/2023]
Abstract
Here we provide evidence that repeated immobilization stress (RIS) in rats induces a persistent increase in noradrenergic activity in the anterior aspects of the anterolateral bed nucleus of the stria terminalis (alBNST). This increase in noradrenergic activity results from both enhanced synthesis and reuptake of norepinephrine (NE). It leads to a decrease in the synaptic availability of NE, which elicits an augmented noradrenergic response to the inhibitors of NE reuptake (NRIs), such as desipramine (DMI), an antidepressant. The enduring depression-like behavior and the augmentation of the climbing behavior seen in repeatedly stressed rats following subchronic administration of DMI in the forced swimming test (FST) might be explained by a dysregulation of noradrenergic transmission observed in alBNST. Taken together, we propose that dysregulation of noradrenergic transmission such as the one described in the present work may represent a mechanism underlying major depressive disorders (MDD) with melancholic features in humans.
Collapse
Affiliation(s)
- Marco A Gonzáles
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana Pamela Miranda
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Horacio Orrego
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodolfo Silva
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Inés Forray
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Crestani CC, Alves FH, Gomes FV, Resstel LB, Correa FM, Herman JP. Mechanisms in the bed nucleus of the stria terminalis involved in control of autonomic and neuroendocrine functions: a review. Curr Neuropharmacol 2013; 11:141-59. [PMID: 23997750 PMCID: PMC3637669 DOI: 10.2174/1570159x11311020002] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/21/2012] [Accepted: 12/03/2012] [Indexed: 12/22/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is a heterogeneous and complex limbic forebrain structure, which plays an important role in controlling autonomic, neuroendocrine and behavioral responses. The BNST is thought to serve as a key relay connecting limbic forebrain structures to hypothalamic and brainstem regions associated with autonomic and neuroendocrine functions. Its control of physiological and behavioral activity is mediated by local action of numerous neurotransmitters. In the present review we discuss the role of the BNST in control of both autonomic and neuroendocrine function. A description of BNST control of cardiovascular and hypothalamus-pituitary-adrenal axisactivity at rest and during physiological challenges (stress and physical exercise) is presented. Moreover, evidence for modulation of hypothalamic magnocellular neurons activity is also discussed. We attempt to focus on the discussion of BNST neurochemical mechanisms. Therefore, the source and targets of neurochemical inputs to BNST subregions and their role in control of autonomic and neuroendocrine function is discussed in details.
Collapse
Affiliation(s)
- Carlos C Crestani
- Laboratory of Pharmacology, Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, SP, 14801-902, Brazil
| | | | | | | | | | | |
Collapse
|
4
|
Smith CD, Piasecki CC, Weera M, Olszewicz J, Lonstein JS. Noradrenergic alpha-2 receptor modulators in the ventral bed nucleus of the stria terminalis: effects on anxiety behavior in postpartum and virgin female rats. Behav Neurosci 2013; 127:582-97. [PMID: 23796237 PMCID: PMC3947518 DOI: 10.1037/a0032776] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Emotional hyperreactivity can inhibit maternal responsiveness in female rats and other animals. Maternal behavior in postpartum rats is disrupted by increasing norepinephrine release in the ventral bed nucleus of the stria terminalis (BSTv) with the α2-autoreceptor antagonist, yohimbine, or the more selective α2-autoreceptor antagonist, idazoxan (Smith et al., 2012). Because high noradrenergic activity in the BSTv can also increase anxiety-related behaviors, increased anxiety may underlie the disrupted mothering of dams given yohimbine or idazoxan. To assess this possibility, anxiety-related behaviors in an elevated plus maze were assessed in postpartum rats after administration of yohimbine or idazoxan. It was further assessed if the α2-autoreceptor agonist clonidine (which decreases norepinephrine release) would, conversely, reduce dams' anxiety. Groups of diestrous virgins were also examined. It was found that peripheral or intra-BSTv yohimbine did increase anxiety-related behavior in postpartum females. However, BSTv infusion of idazoxan did not reproduce yohimbine's anxiogenic effects and anxiety was not reduced by peripheral or intra-BSTv clonidine. Because yohimbine is a weak 5HT1A receptor agonist, other groups of females received BSTv infusion of the 5HT1A receptor agonist 8OH-DPAT, but it did not alter their anxiety-related behavior. Lastly, levels of norepinephrine and serotonin in tissue punches from the BSTv did not differ between postpartum and diestrous rats, but serotonin turnover was lower in mothers. These results suggest that the impaired maternal behavior after BSTv infusion of yohimbine or idazoxan cannot both be readily explained by an increase in dams' anxiety, and that BSTv α2-autoreceptor modulation alone has little influence on anxiety-related behaviors in postpartum or diestrous rats.
Collapse
Affiliation(s)
- Carl D. Smith
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| | - Christopher C. Piasecki
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| | - Marcus Weera
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| | - Joshua Olszewicz
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| | - Joseph S. Lonstein
- Department of Psychology & Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI USA 48824
| |
Collapse
|
5
|
Effects of noradrenergic alpha-2 receptor antagonism or noradrenergic lesions in the ventral bed nucleus of the stria terminalis and medial preoptic area on maternal care in female rats. Psychopharmacology (Berl) 2012; 224:263-76. [PMID: 22644129 PMCID: PMC3652389 DOI: 10.1007/s00213-012-2749-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/12/2012] [Indexed: 12/22/2022]
Abstract
RATIONALE Maternal behavior in laboratory rats requires a network of brain structures including the ventral bed nucleus of the stria terminalis (BSTv) and medial preoptic area (mPOA). Neurotransmitter systems in the BSTv and mPOA influencing maternal behaviors are not well understood, although norepinephrine is an excellent candidate because the BSTv contains the densest noradrenergic fiber plexus in the forebrain and norepinephrine in the mPOA is known to influence other female reproductive functions. OBJECTIVES We hypothesized that downregulated noradrenergic activity in the BSTv and mPOA is necessary for mothering. METHODS Postpartum mother-litter interactions were observed after BSTv infusion of yohimbine (an α2 autoreceptor antagonist that increases norepinephrine release), and after BSTv or mPOA infusion of the more selective α2 autoreceptor antagonist idazoxan. Lastly, noradrenergic input to the BSTv/mPOA was selectively lesioned in nulliparous rats with anti-DBH-saporin to determine if this would facilitate mothering. RESULTS BSTv yohimbine almost abolished retrieval of pups but did not significantly affect dams' ability to initiate contact, lick, or nurse them. BSTv idazoxan disrupted retrieval somewhat less than yohimbine, but significantly reduced nursing. mPOA idazoxan impaired retrieval more severely than that found after BSTv infusion. Anti-DBH-saporin almost eliminated noradrenergic terminals in the BSTv and reduced them by over 60% in the mPOA, but did not promote maternal responding. It also did not affect females' anxiety-related behavior. CONCLUSIONS Downregulated noradrenergic activity in the BSTv and mPOA is necessary for postpartum maternal behavior in rats, but eliminating this system alone is insufficient to promote maternal behaviors in nulliparous females.
Collapse
|
6
|
Palma-Rigo K, Bassi JK, Nguyen-Huu TP, Jackson KL, Davern PJ, Chen D, Elghozi JL, Thomas WG, Allen AM, Head GA. Angiotensin 1A receptors transfected into caudal ventrolateral medulla inhibit baroreflex gain and stress responses. Cardiovasc Res 2012; 96:330-9. [PMID: 22869618 DOI: 10.1093/cvr/cvs252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS The caudal ventrolateral medulla (CVLM) is important for autonomic regulation and is rich in angiotensin II type 1A receptors (AT(1A)R). To determine their function, we examined whether the expression of AT(1A)R in the CVLM of mice lacking AT(1A)R (AT(1A)(-/-)) alters baroreflex sensitivity and cardiovascular responses to stress. METHODS AND RESULTS Bilateral microinjections into the CVLM of AT(1A)(-/-) mice of lentivirus with the phox-2 selective promoter (PRSx8) were made to express either AT(1A)R (Lv-PRSx8-AT(1A)) or green fluorescent protein (Lv-PRSx8-GFP) as a control. Radiotelemetry was used to record mean arterial pressure (MAP), heart rate (HR), and locomotor activity. Following injection of Lv-PRSx8-GFP, robust neuronal expression of GFP was observed with ∼60% of the GFP-positive cells also expressing the catecholamine-synthetic enzyme tyrosine hydroxylase. After 5 weeks, there were no differences in MAP or HR between groups, but the Lv-PRSx8-AT(1A)- injected mice showed reduced baroreflex sensitivity (-25%, P = 0.003) and attenuated pressor responses to cage-switch and restraint stress compared with the Lv-PRSx8-GFP-injected mice. Reduced MAP mid-frequency power during cage-switch stress reflected attenuated sympathetic activation (Pgroup × stress = 0.04). Fos-immunohistochemistry indicated greater activation of forebrain and hypothalamic neurons in the Lv-PRSx8-AT(1A) mice compared with the control. CONCLUSION The expression of AT(1A)R in CVLM neurons, including A1 neurons, while having little influence on the basal blood pressure or HR, may play a tonic role in inhibiting cardiac vagal baroreflex sensitivity. However, they strongly facilitate the forebrain response to aversive stress, yet reduce the pressor response presumably through greater sympatho-inhibition. These findings outline novel and specific roles for angiotensin II in the CVLM in autonomic regulation.
Collapse
Affiliation(s)
- Kesia Palma-Rigo
- Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, 75 Commercial Road, PO Box 6492 St Kilda Road Central, Melbourne, VIC 8008, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bienkowski MS, Rinaman L. Common and distinct neural inputs to the medial central nucleus of the amygdala and anterior ventrolateral bed nucleus of stria terminalis in rats. Brain Struct Funct 2012; 218:187-208. [PMID: 22362201 DOI: 10.1007/s00429-012-0393-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/31/2012] [Indexed: 02/04/2023]
Abstract
The central nucleus of the amygdala (CEA) and lateral bed nucleus of stria terminalis (BST) are highly interconnected limbic forebrain regions that share similar connectivity with other brain regions that coordinate behavioral and physiological responses to internal and environmental stressors. Their similar connectivity is frequently referred to when describing the CEA and lateral BST together as a unified "central extended amygdala". However, the CEA and BST reportedly play distinct roles in behavioral and physiological responses associated with fear, anxiety, and social defeat, presumably due to differences in connectivity. To identify common and unique sources of input to the CEA and lateral BST, we performed dual retrograde tracing. Fluorogold and cholera toxin β were iontophoresed into the medial CEA (CEAm) and the anterior ventrolateral BST (BSTvl) of adult male rats. The anatomical distribution of tracer-labeled neurons was mapped throughout the brain. Regions with overlapping populations of CEAm- and BSTvl-projecting neurons were further examined for the presence of double-labeled neurons. Although most regions with input to the mCEA also projected to the BSTvl, and vice versa, cortical and sensory system-related regions projected more robustly to the CEAm, while motor system-related regions primarily innervated the BSTvl. The incidence of double-labeled neurons with collateralized axonal inputs to the CEAm and BSTvl was relatively small (~2 to 13%) and varied across regions, suggesting regional differences in the degree of coordinated CEAm and BSTvl input. The demonstrated similarities and differences in inputs to CEAm and BSTvl provide new anatomical insights into the functional organization of these limbic forebrain regions.
Collapse
Affiliation(s)
- Michael S Bienkowski
- Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
8
|
Role of the lateral paragigantocellular nucleus in the network of paradoxical (REM) sleep: an electrophysiological and anatomical study in the rat. PLoS One 2012; 7:e28724. [PMID: 22235249 PMCID: PMC3250413 DOI: 10.1371/journal.pone.0028724] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/14/2011] [Indexed: 11/29/2022] Open
Abstract
The lateral paragigantocellular nucleus (LPGi) is located in the ventrolateral medulla and is known as a sympathoexcitatory area involved in the control of blood pressure. In recent experiments, we showed that the LPGi contains a large number of neurons activated during PS hypersomnia following a selective deprivation. Among these neurons, more than two-thirds are GABAergic and more than one fourth send efferent fibers to the wake-active locus coeruleus nucleus. To get more insight into the role of the LPGi in PS regulation, we combined an electrophysiological and anatomical approach in the rat, using extracellular recordings in the head-restrained model and injections of tracers followed by the immunohistochemical detection of Fos in control, PS-deprived and PS-recovery animals. With the head-restrained preparation, we showed that the LPGi contains neurons specifically active during PS (PS-On neurons), neurons inactive during PS (PS-Off neurons) and neurons indifferent to the sleep-waking cycle. After injection of CTb in the facial nucleus, the neurons of which are hyperpolarized during PS, the largest population of Fos/CTb neurons visualized in the medulla in the PS-recovery condition was observed in the LPGi. After injection of CTb in the LPGi itself and PS-recovery, the nucleus containing the highest number of Fos/CTb neurons, moreover bilaterally, was the sublaterodorsal nucleus (SLD). The SLD is known as the pontine executive PS area and triggers PS through glutamatergic neurons. We propose that, during PS, the LPGi is strongly excited by the SLD and hyperpolarizes the motoneurons of the facial nucleus in addition to local and locus coeruleus PS-Off neurons, and by this means contributes to PS genesis.
Collapse
|
9
|
Gysling K. Relevance of both type-1 and type-2 corticotropin releasing factor receptors in stress-induced relapse to cocaine seeking behaviour. Biochem Pharmacol 2011; 83:1-5. [PMID: 21843515 DOI: 10.1016/j.bcp.2011.07.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
The essential role of corticotropin releasing factor (CRF) and its type-1 receptor (CRF1) in stress-induced relapse to drug seeking has been demonstrated. The bed nucleus of the stria terminalis is the major anatomical substrate for this CRF/CRF1 receptor action. More recently, the role of type-2 CRF (CRF2) receptors in stress-induced relapse to cocaine seeking has also has been documented. The ventral tegmental area is the anatomical substrate for this CRF/CRF2 receptor action. The new information involving CRF2 receptors in stress-induced relapse to cocaine seeking has generated a need for a reappraisal of the existing anatomical and pharmacological evidence that have been used to support the critical role of CRF1 receptors. The role of CRF2 receptors in stress-induced relapse to drug seeking also opens the question of the putative role of the other peptides of the CRH family (urocotin-1, urocortin-2 and urocortin-3) that have high affinity for CRF2 receptors. In this commentary, the available evidence supporting the role of both CRF1 and CRF2 receptors in stress-induced relapse to drug seeking is reviewed.
Collapse
Affiliation(s)
- Katia Gysling
- Millennium Science Nucleus in Stress and Addiction and Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Carvalho AF, Reyes ARS, Sterling RC, Unterwald E, Van Bockstaele EJ. Contribution of limbic norepinephrine to cannabinoid-induced aversion. Psychopharmacology (Berl) 2010; 211:479-91. [PMID: 20602088 PMCID: PMC3272334 DOI: 10.1007/s00213-010-1923-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/15/2010] [Indexed: 11/26/2022]
Abstract
RATIONALE The cannabinoid system has risen to the forefront in the development of novel treatments for a number of pathophysiological processes. However, significant side effects have been observed in clinical trials raising concerns regarding the potential clinical utility of cannabinoid-based agents. Understanding the neural circuits and neurochemical substrates impacted by cannabinoids will provide a better means of gaging their actions within the central nervous system that may contribute to the expression of unwanted side effects. OBJECTIVES In the present study, we investigated whether norepinephrine (NE) in the limbic forebrain is a critical determinant of cannabinoid receptor agonist-induced aversion and anxiety in rats. METHODS An immunotoxin lesion approach was combined with behavioral analysis using a place conditioning paradigm and the elevated zero maze. RESULTS Our results show that the non-selective CB1/CB2 receptor agonist, WIN 55,212-2, produced a significant place aversion in rats. Further, NE in the nucleus accumbens was critical for WIN 55,212-2-induced aversion but did not affect anxiety-like behaviors. Depletion of NE from the bed nucleus of the stria terminalis was ineffective in altering WIN 55,212-2-induced aversion and anxiety. CONCLUSIONS These results indicate that limbic, specifically accumbal, NE is required for cannabinoid-induced aversion but is not essential to cannabinoid-induced anxiety.
Collapse
Affiliation(s)
- Ana Franky Carvalho
- Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
11
|
Pereira A, Rawson J, Jakubowska A, Clarke IJ. Estradiol-17beta-responsive A1 and A2 noradrenergic cells of the brain stem project to the bed nucleus of the stria terminalis in the ewe brain: a possible route for regulation of gonadotropin releasing hormone cells. Neuroscience 2009; 165:758-73. [PMID: 19857554 DOI: 10.1016/j.neuroscience.2009.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 10/13/2009] [Accepted: 10/14/2009] [Indexed: 11/16/2022]
Abstract
We have studied brain stem cells in the ewe brain that project to the bed nucleus of the stria terminalis (BNST) and determined if these cells are activated by estradiol-17beta. This would predicate an indirect role in the estradiol-17beta regulation of gonadotropin releasing hormone (GnRH) cells, since these receive input from the BNST. Ovariectomized ewes received 50 mug estradiol-17beta benzoate (i.m.) 1 h prior to brain collection, so that activated cells could be identified by Fos immunohistochemistry. Retrograde tracer (FluoroGold; FG), was injected into the three divisions of the BNST and labeled cells were mapped to the A1 and A2 regions and the parabrachial nucleus (PBN) of the brain stem. With FG injection into the dorsal and lateral BNST, all FG-containing cells in the caudal A1 and 45% of those in A2 stained for dopamine-beta-hydroxylase (DBH), indicating noradrenergic type. No FG-labelled cells in the PBN were DBH-positive. In A1 and A2 respectively, 42% and 46% of FG-labelled cells were Fos-positive, with no double-labeling in cells of the PBN. In ewes receiving FG injections into the ventral BNST, estrogen receptor (ER)alpha-immunoreactive nuclei were found in 82% of A1-FG labeled and 38% of A2-FG labeled cells. No FG-labelled cells of the PBN were ERalpha-positive. Anterograde tracing from A1 with microruby injection identified projections to the PBN, BNST and preoptic area (POA). Thus, A1 and A2 noradrenergic neurons project to the BNST in the ewe brain, express ERalpha and are activated by estradiol-17beta. These noradrenergic, estrogen-responsive cells may provide indirect input to GnRH cells, via the BNST.
Collapse
Affiliation(s)
- A Pereira
- Department of Physiology, Building 13F, Monash University, Clayton, VIC 3800, Australia
| | | | | | | |
Collapse
|
12
|
Crestani CC, Alves FH, Resstel LB, Correa FM. Bed nucleus of the stria terminalis α1-adrenoceptor modulates baroreflex cardiac component in unanesthetized rats. Brain Res 2008; 1245:108-15. [DOI: 10.1016/j.brainres.2008.09.082] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/24/2008] [Accepted: 09/28/2008] [Indexed: 02/05/2023]
|
13
|
Chen JC, Tsai HW, Yeh KY, Tai MY, Tsai YF. Correlation of Catecholamine Levels in the Bed Nucleus of the Stria Terminalis and Reduced Sexual Behavior in Middle-Aged Male Rats. J Gerontol A Biol Sci Med Sci 2008; 63:678-82. [DOI: 10.1093/gerona/63.7.678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Lonstein JS. Regulation of anxiety during the postpartum period. Front Neuroendocrinol 2007; 28:115-41. [PMID: 17604088 DOI: 10.1016/j.yfrne.2007.05.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 04/25/2007] [Accepted: 05/29/2007] [Indexed: 11/18/2022]
Abstract
Healthy mother-infant interactions are critical for the physical, cognitive, and psychological development of offspring. Such interactions rely on numerous factors, including a positive maternal emotional state. However, many postpartum women experience emotional dysregulation, often involving elevated anxiety. Neuroendocrine factors contributing to the onset of postpartum anxiety symptoms are mostly unknown, but irregularities in hypothalamic-pituitary-adrenal axis function, reduced prolactin and oxytocin signaling, or parturitional withdrawal of ovarian, placental and neural steroids could contribute to anxiety in susceptible women. Although the causes of initial onset are unclear, postpartum anxiety can be mitigated by recent contact with infants. Numerous neurochemical systems, including oxytocin, prolactin, GABA, and norepinephrine mediate this anxiolytic effect of infant contact. Insight into the etiology of postpartum anxiety disorders, and how contact with infants helps counter existing anxiety dysregulation, will surely facilitate the diagnosis and treatment of postpartum women at risk for, or experiencing, an anxiety disorder.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Neuroscience Program & Department of Psychology, Giltner Hall, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
15
|
Gaykema RPA, Chen CC, Goehler LE. Organization of immune-responsive medullary projections to the bed nucleus of the stria terminalis, central amygdala, and paraventricular nucleus of the hypothalamus: evidence for parallel viscerosensory pathways in the rat brain. Brain Res 2006; 1130:130-45. [PMID: 17169348 DOI: 10.1016/j.brainres.2006.10.084] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 10/03/2006] [Accepted: 10/12/2006] [Indexed: 01/25/2023]
Abstract
Immune-responsive neurons in the brainstem, primarily in the nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM), contribute to a significant drive on forebrain nuclei responsible for brain-mediated host defense responses. The current study investigated the relative contribution of brainstem-derived ascending pathways to forebrain immune-responsive nuclei in the rat by means of retrograde tract tracing and c-Fos immunohistochemistry. Fluorogold was iontophoresed into the bed nucleus of stria terminalis (BST), central nucleus of the amygdala (CEA), paraventricular nucleus of the hypothalamus (PVN), and the pontine lateral parabrachial nucleus (PBL; an important component of ascending viscerosensensory pathways) followed 2 weeks later by intraperitoneal injection of lipopolysaccharide (LPS, 0.1 mg/kg) or saline. The NTS and VLM provide immune-responsive input to all four regions, via direct, predominantly catecholaminergic, projections to the PVN, the lateral BST, and the CEA, and mostly non-catecholaminergic projections to the PBL. The PBL provides a major LPS-activated input to the BST and CEA. The pattern of LPS-activated catecholaminergic projections from the VLM and NTS to the forebrain is characterized by a strong predominance of VLM input to the PVN, whereas the NTS provides a greater contribution to the BST. These findings indicate that direct and indirect pathways originate in the caudal brainstem that propagate immune-related information from the periphery with multiple levels of processing en route to the forebrain nuclei, which may allow for integration of brain responses to infection.
Collapse
Affiliation(s)
- Ronald P A Gaykema
- Program in Sensory and Systems Neuroscience, Department of Psychology, P.O. Box 400400, University of Virginia, Charlottesville, VA 22904-4400, USA
| | | | | |
Collapse
|
16
|
Usunoff KG, Itzev DE, Rolfs A, Schmitt O, Wree A. Brain stem afferent connections of the amygdala in the rat with special references to a projection from the parabigeminal nucleus: a fluorescent retrograde tracing study. ACTA ACUST UNITED AC 2006; 211:475-96. [PMID: 16763808 DOI: 10.1007/s00429-006-0099-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2006] [Indexed: 02/04/2023]
Abstract
A recently revealed important function of the amygdala (Am) is that it acts as the brain's "lighthouse", which constantly monitors the environment for stimuli which signal a threat to the organism. The data from patients with extensive lesions of the striate cortex indicate that "unseen" fearful and fear-conditioned faces elicit increased Am responses. Thus, also extrageniculostriate pathways are involved. A multisynaptic pathway from the retina to the Am via the superior colliculus (SC) and the pulvinar was recently suggested. We here present data based on retrograde neuronal labeling following injection of the fluorescent tracer Fluoro-Gold in the rat Am that the parabigeminal nucleus (Pbg) emits a substantial, bilateral projection to the Am. This small cholinergic nucleus (Ch8 group) in the midbrain tegmentum is a subcortical relay visual center that is reciprocally connected with the SC. We suggest the existence of a second extrageniculostriate multisynaptic connection to Am: retina-SC-Pbg-Am, that might be very effective since all tracts listed above are bilateral. In addition, we present hodological details on other brainstem afferent connections of the Am, some of which are only recently described, and some others that still remain equivocal. Following selective injections of Fluoro-Gold in the Am, retrogradely labeled neurons were observed in parasubthalamic nucleus, peripeduncular nucleus, periaqueductal gray, dopaminergic nuclear complex (substantia nigra pars lateralis and pars compacta, paranigral, parabrachial pigmented and interfascicular nuclei, rostral and caudal linear nuclei, retrorubral area), deep mesencephalic nucleus, serotoninergic structures (dorsal, median and pontine raphe nuclei), laterodorsal and pedunculopontine tegmental nuclei (Ch6 and Ch5 groups), parabrachial nuclear complex, locus coeruleus, nucleus incertus, ventrolateral pontine tegmentum (A5 group), dorsomedial medulla (nucleus of the solitary tract, A2 group), ventrolateral medulla (A1/C1 group), and pars caudalis of the spinal trigeminal nucleus. A bilateral labeling of the upper cervical spinal cord was also observed.
Collapse
Affiliation(s)
- K G Usunoff
- Department of Anatomy and Histology, Faculty of Medicine, Medical University, Sofia 1431, Bulgaria
| | | | | | | | | |
Collapse
|
17
|
Myers EA, Banihashemi L, Rinaman L. The anxiogenic drug yohimbine activates central viscerosensory circuits in rats. J Comp Neurol 2006; 492:426-41. [PMID: 16228990 DOI: 10.1002/cne.20727] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Systemic administration of the alpha(2)-adrenoceptor antagonist yohimbine (YO) activates the HPA stress axis and promotes anxiety in humans and experimental animals. We propose that visceral malaise contributes to the stressful and anxiogenic effects of systemic YO and that YO recruits brainstem noradrenergic (NA) and peptidergic neurons that relay viscerosensory signals to the hypothalamus and limbic forebrain. To begin testing these hypotheses, the present study explored dose-related effects of YO on food intake, conditioned flavor avoidance (CFA), and Fos immunolabeling in rats. Systemic YO (5.0 mg/kg BW, i.p.) inhibited food intake, supported CFA, and increased Fos immunolabeling in identified NA neurons in the ventrolateral medulla, nucleus of the solitary tract, and locus coeruleus. YO also increased Fos in the majority of corticotropin releasing hormone-positive neurons in the paraventricular nucleus of the hypothalamus. YO administered at 1.0 mg/kg BW did not inhibit food intake, did not support CFA, and did not increase Fos immunolabeling. Retrograde neural tracing demonstrated that neurons activated by YO at 5.0 mg/kg BW included medullary and pontine neurons that project to the central nucleus of the amygdala and to the lateral bed nucleus of the stria terminalis, the latter region receiving comparatively greater input by Fos-positive neurons. We conclude that YO produces anorexigenic and aversive effects that correlate with activation of brainstem viscerosensory inputs to the limbic forebrain. These findings invite continued investigation of how central viscerosensory signaling pathways interact with hypothalamic and limbic regions to influence interrelated physiological and behavioral components of anxiety, stress, and visceral malaise.
Collapse
|
18
|
Beveridge TJR, Smith HR, Nader MA, Porrino LJ. Effects of chronic cocaine self-administration on norepinephrine transporters in the nonhuman primate brain. Psychopharmacology (Berl) 2005; 180:781-8. [PMID: 15739079 DOI: 10.1007/s00213-005-2162-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 12/22/2004] [Indexed: 02/04/2023]
Abstract
RATIONALE While cocaine blocks dopamine and serotonin transporters, considerably less emphasis has been placed on its effects following blockade of the norepinephrine transporter (NET). To date, no studies have made a systematic investigation of the effects of chronic cocaine on primate NET density. OBJECTIVE We previously reported increases in NET density in portions of the monkey bed nucleus of stria terminalis after 100 days of cocaine self-administration. In the present study we extend these findings and assess the changes in [3H]nisoxetine binding in additional brain regions of rhesus monkeys chronically self-administrating cocaine. RESULTS [3H]Nisoxetine binding sites in the A1 noradrenergic cell group were significantly higher after 5 days of cocaine exposure. One hundred days of self-administration also induced a higher density of NET binding within the A1 cell group; however, in addition, the effects extended to the nucleus prepositus, as well as forebrain regions such as hypothalamic nuclei, basolateral amygdala, parasubiculum, and entorhinal cortex. CONCLUSIONS These data demonstrate that cocaine self-administration alters the noradrenergic system of nonhuman primates. Although cocaine affected NET binding sites in the forebrain projections of both the ventral (VNAB) and dorsal (DNAB) noradrenergic bundles, the alteration in the A1 cell group at the early time-point suggests that the VNAB appears to be more sensitive than the DNAB to the effects of cocaine. Given the role of norepinephrine in arousal and attention, as well as mediating responses to stress, long-term exposure to cocaine is likely to result in significant changes in the way in which information is perceived and processed by the central nervous system of long-term cocaine users.
Collapse
Affiliation(s)
- Thomas J R Beveridge
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
19
|
Forray MI, Gysling K. Role of noradrenergic projections to the bed nucleus of the stria terminalis in the regulation of the hypothalamic-pituitary-adrenal axis. ACTA ACUST UNITED AC 2005; 47:145-60. [PMID: 15572169 DOI: 10.1016/j.brainresrev.2004.07.011] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2004] [Indexed: 10/26/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) plays an important role in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis during stress and it is a major extrahypothalamic relay to the paraventricular nucleus of the hypothalamus (PVN) from the amygdala and the hippocampus. In this review, we discuss the anatomical, neurochemical and behavioral evidence that substantiate a role for noradrenergic terminals of the anterior BNST in the regulation of the HPA axis. We propose the hypothesis that BNST noradrenaline (NA) participates in the regulation of the hippocampal inhibitory influence on the HPA axis activation. The observation that NA exerts a tonic inhibitory effect upon glutamatergic transmission in the anterior BNST supports this hypothesis. We also discuss the known mechanisms involved in the regulation of BNST NA extracellular levels and the possible interactions between NA and corticotropin-releasing hormone (CRH), and of CRH with glutamate (GLU) in the regulation of the HPA axis activity exerted by the BNST. The evidence discussed in the present review situates the BNST as a key extrahypothalamic center that relays and integrates limbic and autonomic information related to stress responses suggesting that dysregulation in the functioning of the BNST may underlie the pathophysiology of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- María Inés Forray
- Department of Pharmacy, Faculty of Chemistry, Catholic University of Chile, Santiago, Chile.
| | | |
Collapse
|
20
|
Abstract
In recent years, the amygdala has emerged as a critical site of plasticity for the acquisition of various forms of Pavlovian learning, either aversive or appetitive. In most of these models, the critical site of plasticity has been localized to the basolateral complex of the amygdala (BLA). In contrast, the central nucleus of the amygdala has emerged as a passive relay of potentiated BLA outputs toward downstream effectors. At odds with this view, however, recent studies suggest that the central nucleus may also be a site of plasticity and play an active role in some forms of Pavlovian learning. The present review summarizes the evidence supporting this possibility.
Collapse
Affiliation(s)
- Rachel D Samson
- Center for Molecular & Behavioral Neuroscience, Rutgers State University, Newark, NJ 07102, USA
| | | | | |
Collapse
|
21
|
Santibañez M, Gysling K, Forray MI. Adrenalectomy decreases corticotropin-releasing hormone gene expression and increases noradrenaline and dopamine extracellular levels in the rat lateral bed nucleus of the stria terminalis. J Neurosci Res 2005; 81:140-52. [PMID: 15931675 DOI: 10.1002/jnr.20538] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) has a high density of corticotropin-releasing hormone (CRH)-containing neurons that are significantly innervated by noradrenergic and dopaminergic nerve terminals. This limbic structure is involved in the extrahypothalamic response to stress. The purpose of the present work is to study whether the absence of glucocorticoids, induced by a long-term adrenalectomy, regulates CRH gene expression and noradrenaline and dopamine extracellular levels in the rat BNST. The results showed that adrenalectomy decreases CRH mRNA in the dorsal lateral BNST but not in the ventral lateral BNST. Adrenalectomy also decreases CRH-like immunoreactivity both in BNST subnuclei and in the central nucleus of the amygdala. In addition, adrenalectomy significantly increases noradrenaline and dopamine extracellular levels in the lateral BNST. The present results suggest that adrenalectomy regulates CRH gene expression and noradrenaline and dopamine extracellular levels in the BNST in an opposite way. Thus, the present study adds novel evidence further supporting that the BNST and the central nucleus of the amygdala form part of an adrenal steroid-sensitive extrahypothalamic circuit that has been involved in fear and anxiety responses and in clinical syndromes such as melancholic depression, posttraumatic stress disorders, and addiction.
Collapse
Affiliation(s)
- Marcos Santibañez
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Santiago, Chile
| | | | | |
Collapse
|
22
|
Chronic cocaine self-administration upregulates the norepinephrine transporter and alters functional activity in the bed nucleus of the stria terminalis of the rhesus monkey. J Neurosci 2003. [PMID: 12514195 DOI: 10.1523/jneurosci.23-01-00012.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is in a key position to influence the integration of motivational and visceral functions, receiving inputs from limbic regions, including the amygdala, and sending projections to areas central to reward processing, including the ventral tegmental area and nucleus accumbens. The BNST also possesses a high density of noradrenergic fibers. The purpose of the present studies was to characterize the effects of cocaine self-administration on the regulation of norepinephrine transporter (NET) distribution and functional activity in the BNST of rhesus monkeys in the initial (5 d) or chronic (100 d) phases of cocaine self-administration. NET binding site densities in the BNST were assessed with quantitative in vitro receptor autoradiography using [(3)H]nisoxetine, and rates of local cerebral glucose utilization in the BNST were measured in the same monkeys using the 2-[(14)C]deoxyglucose method. Chronic exposure to cocaine self-administration resulted in significantly higher NET binding site densities (up to 52% relative to controls) throughout the BNST. Furthermore, cerebral metabolism was depressed significantly in a time-dependent manner with larger decreases after 100 d of cocaine self-administration. These data represent the first report of significant changes in the regulation of the NET resulting from cocaine exposure in primates. Furthermore, given the role of the BNST in cocaine withdrawal and stress-related reinstatement of self-administration, the changes reported here may provide a substrate for these phenomena.
Collapse
|
23
|
Fraley GS, Ritter S. Immunolesion of norepinephrine and epinephrine afferents to medial hypothalamus alters basal and 2-deoxy-D-glucose-induced neuropeptide Y and agouti gene-related protein messenger ribonucleic acid expression in the arcuate nucleus. Endocrinology 2003; 144:75-83. [PMID: 12488332 DOI: 10.1210/en.2002-220659] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuropeptide Y (NPY) and agouti gene-related protein (AGRP) are orexigenic peptides of special importance for control of food intake. In situ hybridization studies have shown that NPY and AGRP mRNAs are increased in the arcuate nucleus of the hypothalamus (ARC) by glucoprivation. Other work has shown that glucoprivation stimulates food intake by activation of hindbrain glucoreceptor cells and requires the participation of rostrally projecting norepinephrine (NE) or epinephrine (E) neurons. Here we determine the role of hindbrain catecholamine afferents in glucoprivation-induced increase in ARC NPY and AGRP gene expression. The selective NE/E immunotoxin saporin-conjugated antidopamine-beta-hydroxylase (anti-dbetah) was microinjected into the medial hypothalamus and expression of AGRP and NPY mRNA was analyzed subsequently in the ARC under basal and glucoprivic conditions using (33)P-labeled in situ hybridization. Saporin-conjugated anti-dbetah virtually eliminated dbetah-immunoreactive terminals in the ARC without causing nonspecific damage. These lesions significantly increased basal but eliminated 2-deoxy-D-glucose-induced increases in AGRP and NPY mRNA expression. Results indicate that hindbrain catecholaminergic neurons contribute to basal NPY and AGRP gene expression and mediate the responsiveness of NPY and AGRP neurons to glucose deficit. Our results also suggest that catecholamine neurons couple potent orexigenic neural circuitry within the hypothalamus with hindbrain glucose sensors that monitor brain glucose supply.
Collapse
Affiliation(s)
- G S Fraley
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, Washington 99164-6520, USA
| | | |
Collapse
|
24
|
Buller KM, Day TA. Systemic administration of interleukin-1beta activates select populations of central amygdala afferents. J Comp Neurol 2002; 452:288-96. [PMID: 12353224 DOI: 10.1002/cne.10389] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The central nucleus of the amygdala (CeA) is activated robustly by an immune challenge such as the systemic administration of the proinflammatory cytokine interleukin-1beta (IL-1beta). Because IL-1beta is not believed to cross the blood-brain barrier in any significant amount, it is likely that IL-1beta elicits CeA cell recruitment by means of activation of afferents to the CeA. However, although many studies have investigated the origins of afferent inputs to the CeA, we do not know which of these also respond to IL-1beta. Therefore, to identify candidate neurons responsible for the recruitment of CeA cells by an immune challenge, we iontophoretically deposited a retrograde tracer, cholera toxin b-subunit (CTb), into the CeA of rats 7 days before systemic delivery of IL-1beta (1 microg/kg, i.a.). By using combined immunohistochemistry, we then quantified the number of Fos-positive CTb cells in six major regions known to innervate the CeA. These included the medial prefrontal cortex, paraventricular thalamus (PVT), ventral tegmental area, parabrachial nucleus (PB), nucleus tractus solitarius, and ventrolateral medulla. Our results show that after deposit of CTb into the CeA, the majority of double-labeled cells were located in the PB and the PVT, suggesting that CeA cell activation by systemic IL-1beta is likely to arise predominantly from cell bodies located in these regions. These findings may have significant implications in determining the central pathways involved in generating acute central responses to a systemic immune challenge.
Collapse
Affiliation(s)
- Kathryn M Buller
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| | | |
Collapse
|
25
|
Miles PR, Mundorf ML, Wightman RM. Release and uptake of catecholamines in the bed nucleus of the stria terminalis measured in the mouse brain slice. Synapse 2002; 44:188-97. [PMID: 11954051 DOI: 10.1002/syn.10069] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The release and clearance of electrically evoked catecholamine (CA) in the ventral portion of the bed nucleus of the stria terminalis (BSTV) in mouse brain slices was evaluated with fast-scan cyclic voltammetry at carbon-fiber microelectrodes (CFME). Uptake in this region was observed to be markedly slower than in the caudate putamen (CPu). Clearance rates were reduced in the BSTV in both norepinephrine transporter knockout (NET KO) and dopamine transporter knockout (DAT KO) mice when compared to results in wild-type (WT) mice. However, uptake was faster in the BSTV in both the DAT and NET KO mice than in the CPu of DAT KO mice. This indicates that both transporters play a role in CA clearance in the BSTV. The transporters restrict extracellular CA to the general area of the BSTV, as revealed by the diminished signal as the CFME is moved sequentially further and further from the site where CA release is evoked. However, in slices from the DAT KOs and NET KOs, CA release could be observed outside of the BSTV region during such experiments. These results show that the low rate uptake in the BSTV facilitates extrasynaptic diffusion of catecholamine, but that uptake still regulates and limits the range of the transmitter to the region. Slower clearance from the extracellular fluid allows the released CA to act as a volume transmitter and diffuse to distant sites within the region to exert its neurochemical action.
Collapse
Affiliation(s)
- Petrise Runnels Miles
- Department of Chemistry and Neuroscience Center, University of North Carolina-Chapel Hill, North Carolina 27599-3290, USA
| | | | | |
Collapse
|
26
|
Buller KM, Crane JW, Day TA. The central nucleus of the amygdala; a conduit for modulation of HPA axis responses to an immune challenge? Stress 2001; 4:277-87. [PMID: 22432147 DOI: 10.3109/10253890109014752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Physical stressors such as infection, inflammation and tissue injury elicit activation of the hypothalamic-pituitary-adrenal (HPA) axis. This response has significant implications for both immune and central nervous system function. Investigations in rats into the neural substrates responsible for HPA axis activation to an immune challenge have predominantly utilized an experimental paradigm involving the acute administration of the pro-inflammatory cytokine interleukin- 1β (IL-1β). It is well recognized that medial parvocellular corticotrophin-releasing factor cells of the paraventricular nucleus (mPVN CRF) are critical in generating HPA axis responses to an immune challenge but little is known about how peripheral immune signals can activate and/or modulate the mPVN CRF cells. Studies that have examined the afferent control of the mPVN CRF cell response to systemic IL-1β have centred largely on the inputs from brainstem catecholamine cells. However, other regulatory neuronal populations also merit attention and one such region is a component of the limbic system, the central nucleus of the amygdala (CeA). A large number of CeA cells are recruited following systemic IL-lβ administration and there is a significant body of work indicating that the CeA can influence HPA axis function. However, the contribution of the CeA to HPA axis responses to an immune challenge is only just beginning to be addressed. This review examines three aspects of HPA axis control by systemic IL-1β: (i) whether the CeA has a role in generating HPA axis responses to systemic IL-1β, (ii) the identity of the neural connections between the CeA and mPVN CRF cells that might be important to HPA axis responses and(iii) the mechanisms by which systemic IL-Iβ triggers the recruitment of CeA cells.
Collapse
Affiliation(s)
- K M Buller
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Qld 4072, Australia.
| | | | | |
Collapse
|
27
|
Dong HW, Petrovich GD, Watts AG, Swanson LW. Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. J Comp Neurol 2001; 436:430-55. [PMID: 11447588 DOI: 10.1002/cne.1079] [Citation(s) in RCA: 400] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The organization of axonal projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis (BST) was characterized with the Phaseolus vulgaris-leucoagglutinin (PHAL) anterograde tracing method in adult male rats. Within the BST, the oval nucleus (BSTov) projects very densely to the fusiform nucleus (BSTfu) and also innervates the caudal anterolateral area, anterodorsal area, rhomboid nucleus, and subcommissural zone. Outside the BST, its heaviest inputs are to the caudal substantia innominata and adjacent central amygdalar nucleus, retrorubral area, and lateral parabrachial nucleus. It generates moderate inputs to the caudal nucleus accumbens, parasubthalamic nucleus, and medial and ventrolateral divisions of the periaqueductal gray, and it sends a light input to the anterior parvicellular part of the hypothalamic paraventricular nucleus and nucleus of the solitary tract. The BSTfu displays a much more complex projection pattern. Within the BST, it densely innervates the anterodorsal area, dorsomedial nucleus, and caudal anterolateral area, and it moderately innervates the BSTov, subcommissural zone, and rhomboid nucleus. Outside the BST, the BSTfu provides dense inputs to the nucleus accumbens, caudal substantia innominata and central amygdalar nucleus, thalamic paraventricular nucleus, hypothalamic paraventricular and periventricular nuclei, hypothalamic dorsomedial nucleus, perifornical lateral hypothalamic area, and lateral tegmental nucleus. Moderately dense inputs are found in the parastrial, tuberal, dorsal raphé, and parabrachial nuclei and in the retrorubral area, ventrolateral division of the periaqueductal gray, and pontine central gray. Light projections end in the olfactory tubercle, lateral septal nucleus, posterior basolateral amygdalar nucleus, supramammillary nucleus, and nucleus of the solitary tract. These and other results suggest that the BSTov and BSTfu are basal telencephalic parts of a circuit that coordinates autonomic, neuroendocrine, and ingestive behavioral responses during stress.
Collapse
Affiliation(s)
- H W Dong
- Neuroscience Program, University of Southern California, Los Angeles, California 90089-2520, USA
| | | | | | | |
Collapse
|
28
|
Fuentealba JA, Forray MI, Gysling K. Chronic morphine treatment and withdrawal increase extracellular levels of norepinephrine in the rat bed nucleus of the stria terminalis. J Neurochem 2000; 75:741-8. [PMID: 10899950 DOI: 10.1046/j.1471-4159.2000.0750741.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extracellular levels of norepinephrine (NE) and glutamate (Glu) in the ventral bed nucleus of the stria terminalis (vBNST) of saline- and chronic morphine-treated rats, with or without withdrawal, were studied by means of the in vivo microdialysis technique in anesthetized rats. In addition, the tissue concentration of NE was studied at different rostrocaudal levels of the vBNST. Chronic morphine treatment significantly increased extracellular levels of NE, but not Glu, in vBNST. At 48 h after naloxone-induced morphine withdrawal there was a further significant increase in the extracellular levels of NE, but not Glu, in vBNST. The presence of UK 14304, an alpha(2)-adrenergic agonist, induced a significant decrease in NE extracellular levels in all experimental groups. In contrast, UK 14304 induced a significant decrease in Glu extracellular levels only in saline-treated rats. The results also show that the vBNST presents a rostrocaudal gradient of NE and contains 9.4% of total brain NE. The increase in NE extracellular levels in vBNST induced by chronic morphine treatment and the further increase in NE levels 48 h after naloxone-induced morphine withdrawal suggest that NE in vBNST may be involved in the pharmacological effects of chronic morphine and withdrawal.
Collapse
Affiliation(s)
- J A Fuentealba
- Laboratory of Biochemical Pharmacology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Santiago, Chile
| | | | | |
Collapse
|
29
|
Forray MI, Gysling K, Andrés ME, Bustos G, Araneda S. Medullary noradrenergic neurons projecting to the bed nucleus of the stria terminalis express mRNA for the NMDA-NR1 receptor. Brain Res Bull 2000; 52:163-9. [PMID: 10822157 DOI: 10.1016/s0361-9230(00)00229-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The bed nucleus of the stria terminalis pars ventralis (vBNST) receives dense noradrenergic terminals and contains the highest concentration of noradrenaline (NA) in the brain. We used autoradiography following retrograde axonal transport of [(3)H]-NA to identify selectively whether noradrenergic neurons innervating the vBNST originate in the medulla oblongata and/or the locus coeruleus. In combination with this technique, non-isotopic in situ hybridization for the NMDA-NR1 receptor subunit mRNA was used to examine, on the same brain sections, its expression in noradrenergic neurons that innervate the vBNST. The results showed that 60 +/- 6% and 35 +/- 7% of the total number of radiolabeled cells detected after injection of [(3)H]-NA in the vBNST were located in brainstems A1 and A2 noradrenergic cell groups, respectively. In addition, 18.5 +/- 4.2% of radiolabeled cells in A1 and 15.7 +/- 5% in A2 also expressed the mRNA for the NMDA-NR1 receptor subunit. In contrast, only 4 +/- 3% of the radiolabeled cells were present in the locus coeruleus, and none of these cells was positive to NMDA-NR1 receptor subunit mRNA. The present results provide evidence that BNST noradrenergic fibers and terminals originate predominantly from A1 and A2 noradrenergic cell groups, and that a significant number of these noradrenergic neurons also express the mRNA for the NMDA-NR1 receptor subunit. The observation that brainstem noradrenergic neurons innervating the vBNST express NMDA receptor mRNA gives anatomical support to the regulation of NA release by NMDA presynaptic receptors.
Collapse
Affiliation(s)
- M I Forray
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Santiago, Chile.
| | | | | | | | | |
Collapse
|
30
|
Rodríguez JJ, Doherty MD, Pickel VM. N-methyl-D-aspartate (NMDA) receptors in the ventral tegmental area: subcellular distribution and colocalization with 5-hydroxytryptamine(2A) receptors. J Neurosci Res 2000; 60:202-11. [PMID: 10740225 DOI: 10.1002/(sici)1097-4547(20000415)60:2<202::aid-jnr9>3.0.co;2-j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glutamate receptors of the N-methyl-D-aspartate (NMDA) subtype have been implicated in behavioral sensitization to psychostimulants and in psychotic behaviors involving excitation of ventral tegmental area (VTA) dopaminergic neurons. Antagonists of serotonin (5-hydroxytryptamine, 5-HT) receptors of the 5-HT(2A) subtype are potent antipsychotics that attenuate these NMDA-evoked responses. We examined the electron microscopic immunocytochemical localization of antisera against the NMDA R1 subunit (NMDAR1) and 5-HT(2A) receptors to determine potential sites for their dual activation in the rat paranigral and parabrachial VTA subdivisions that are distinguished, in part, by their respective striatolimbic and cortical projections. In both regions, NMDAR1 immunoreactivity was localized mainly to the cytoplasm of somata and dendrites, and was only occasionally seen near or within excitatory-type asymmetric synapses. Many of the NMDAR1-labeled somata and dendrites also expressed 5-HT(2A) receptors, having a similar, but largely non-overlapping, neuronal distribution. The mean area density of NMDAR1 and dually labeled dendritic profiles was significantly greater in the paranigral than in the parabrachial VTA. NMDAR1 was also present in small axons showing a similar regional difference in area density. No regional difference in area density was seen in dendrites or small axons containing only 5-HT(2A) receptors. Our results indicate that NMDA and 5-HT(2A) receptors in the VTA are transiently expressed on synaptic plasma membranes of single neurons showing widespread cytoplasmic distributions of each of the receptors. They also suggest a major role for NMDA receptors in modulating the output of paranigral neurons and the release of transmitters from axons passing through this region.
Collapse
Affiliation(s)
- J J Rodríguez
- Division of Neurobiology, Department of Neurology, Weill Medical College of Cornell University, New York, New York, USA
| | | | | |
Collapse
|
31
|
Roder S, Rosas-Arellano MP, Ciriello J. Effect of noradrenergic inputs on the cardiovascular depressor responses to stimulation of central nucleus of the amygdala. Brain Res 1999; 818:531-5. [PMID: 10082842 DOI: 10.1016/s0006-8993(98)01267-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experiments were done in chloralose anesthetized, paralyzed and artificially ventilated male Wistar rats to investigate the effects of microinjections of either norepinephrine (NE) or tyramine into the central nucleus of the amygdala (ACe) on the arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation of the ACe. Microinjections of Glu into the ACe elicited decreases in mean AP (-23+/-3 mmHg) and HR (-11+/-3 bpm). Microinjections of NE or tyramine into these sites did not elicit cardiovascular responses. However, Glu into the ACe in the presence of NE or tyramine elicited depressor or bradycardic response that were significantly smaller (70-100%) in magnitude than to Glu alone. These data suggest that noradrenergic mechanisms in the ACe alter the excitability of ACe neurons involved in mediating changes in systemic AP and HR.
Collapse
Affiliation(s)
- S Roder
- Department of Physiology, Health Science Centre, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
32
|
Forray MI, Bustos G, Gysling K. Noradrenaline inhibits glutamate release in the rat bed nucleus of the stria terminalis: in vivo microdialysis studies. J Neurosci Res 1999; 55:311-20. [PMID: 10348662 DOI: 10.1002/(sici)1097-4547(19990201)55:3<311::aid-jnr6>3.0.co;2-e] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The microdialysis technique was used to simultaneously study the in vivo extracellular levels of noradrenaline, glutamate, and gamma aminobutyric acid (GABA) in the bed nucleus of the stria terminalis in order to assess the regulation that noradrenaline may exert upon the release of amino acid neurotransmitters. Perfusion through the probe with UK14304, a selective alpha2-adrenergic agonist, produced a significant decrease of noradrenaline and glutamate extracellular levels. Perfusion through the probe with RX821002, a selective alpha2-adrenergic antagonist, produced a significant increase of noradrenaline and glutamate basal extracellular levels. Perfusion with prazosine, a selective alpha1-adrenergic antagonist, produced a significant decrease of noradrenaline basal extracellular levels without affecting glutamate levels. Under the same conditions, GABA basal extracellular levels were not changed in the presence of any of the alpha-adrenergic ligands studied. The perfusion of high potassium through the probe induced a significant Ca++dependent release of the three neurotransmitters; however, extracellular noradrenaline returned to normal levels even though potassium was still present. In addition, it was observed that alpha-adrenergic receptor ligands exerted differential effects upon K+-induced release of noradrenaline and glutamate. Perfusion with the nonselective alpha-adrenergic antagonist, phenoxybenzamine, presented a biphasic effect upon K+-induced release of noradrenaline; a significant decrease during the first 5 min of stimulation followed by a significant increase in the next 5 min of stimulation. Perfusion with RX821002 produced a significant increase in K+-induced release of noradrenaline that returned to normal basal values before the end of the stimulation period. In contrast, local perfusion with prazosine caused a significant decrease of K+-induced noradrenaline release. In the case of glutamate, perfusion through the probe with phenoxybenzamine produced a significant increase in K+-induced release of glutamate. In addition, RX821002 and prazosine produced a significant increase in K+-induced release of glutamate. Perfusion through the probe with UK14304 produced a significant decrease of both noradrenaline and glutamate K+-induced release. The present results show that noradrenaline in the bed nucleus of stria terminalis exerts a significant inhibition over its own release through alpha2-adrenergic receptors and over glutamate release mainly through alpha2-adrenergic receptors. Thus, the results suggest that noradrenaline in the bed nucleus of the stria terminalis maintains an inhibitory tone over the information flow mediated by glutamate.
Collapse
Affiliation(s)
- M I Forray
- Department of Cell and Molecular Biochemistry, Faculty of Biological Sciences, Catholic University of Chile, Santiago
| | | | | |
Collapse
|
33
|
Delfs JM, Zhu Y, Druhan JP, Aston-Jones GS. Origin of noradrenergic afferents to the shell subregion of the nucleus accumbens: anterograde and retrograde tract-tracing studies in the rat. Brain Res 1998; 806:127-40. [PMID: 9739125 DOI: 10.1016/s0006-8993(98)00672-6] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nucleus accumbens (NAcc) can be subdivided into 'core' and 'shell' based on anatomical connections and histochemical markers. Previous studies have demonstrated dopamine-beta-hydroxylase immunoreactive (DBH-ir) fibers in the NAcc shell, but the source of these noradrenergic (NE) afferents has not been determined. Therefore, we have investigated in detail the anatomy of NE afferents to this subregion. Dual immunohistochemistry for DBH and substance P demonstrated numerous DBH-ir fibers in the caudal NAcc shell. Neurons projecting to the NAcc were identified with Fluoro-Gold (FG) or cholera toxin B (CTb) retrograde tracing and tyrosine hydroxylase (TH) immunohistochemistry. Single- and double-labeled neurons were observed in the A2 and A1 NE cell groups following FG injections into the caudal NAcc shell. Numerous FG and CTb single-labeled neurons were found in the rostral locus coeruleus (LC), subcoeruleus and pericoerulear dendritic region, with an occasional double-labeled neuron in the LC. Few labeled neurons were seen in the brainstem after FG injections into the NAcc core, consistent with the lack of DBH-ir in this subterritory. To confirm these results, injections of Phaseolus vulgaris leucoagglutinin or biotinylated dextran amine were made into the LC or nucleus tractus solitarius (NTS). Virtually no labeled fibers were observed in the NAcc following injections into central LC. However, fibers were observed in the NAcc shell after injections in the NTS. These results indicate that the primary source(s) of NE afferents to the NAcc shell is the A2 region of the NTS, with lesser contributions from A1 and LC.
Collapse
Affiliation(s)
- J M Delfs
- University of Pennsylvania School of Medicine, Department of Psychiatry, Laboratory of Neuromodulation and Behavior, VA Medical Center, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
34
|
Buller KM, Xu Y, Day TA. Indomethacin attenuates oxytocin and hypothalamic-pituitary-adrenal axis responses to systemic interleukin-1 beta. J Neuroendocrinol 1998; 10:519-28. [PMID: 9700679 DOI: 10.1046/j.1365-2826.1998.00231.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Systemic administration of the cytokine IL-1 beta produces a significant release of ACTH into the plasma and activation of hypothalamic oxytocin (OT) and corticotropin releasing factor (CRF) cells. However, the mechanism(s) by which systemic IL-1 beta induces these responses is not clear. In the present study, we have investigated the proposal that catecholamine cells of the ventrolateral medulla (VLM) and nucleus of the solitary tract (NTS) can relay circulating IL-1 signals via a prostaglandin-dependent mechanism to effect the HPA axis responses in the rat. Intra-arterial administration of IL-1 beta (1 pg/kg) to otherwise untreated animals produced a prominent release of ACTH into the plasma, substantial c-fos expression in paraventricular medial parvocellular (mPVN) corticotropin releasing factor (CRF) cells, supraoptic (SON) and paraventricular nucleus (PVN) OT cells, area postrema cells, NTS and VLM catecholamine cells and cells of the central amygdala. Pretreatment with the prostaglandin synthesis inhibitor, indomethacin (10 mg/kg body weight ia) 15 min before IL-1 beta administration (1 pg/kg ia) significantly reduced plasma ACTH release and c-fos expression in PVN and SON OT cells and MPVN CRF cells, in addition, the area postrema, A1 and C1 catecholamine cell groups of the VLM and A2 and C2 catecholamine cell groups of the NTS, all exhibited concomitant reductions in c-fos expression. Conversely indomethacin administration did not alter the IL1 beta-induced expression of c-fos in the central amygdala. These data suggest that central pathways involved in the IL-1 beta-induced activation of the HPA axis and OT cells are, at least in part, dependent upon prostaglandin synthesis. It is proposed that neurons in the area postrema, NTS and VLM might mediate this IL-1 beta-induced activation of hypothalamic CRF and OT cells and release of ACTH into the plasma.
Collapse
Affiliation(s)
- K M Buller
- Department of Physiology and Pharmacology, University of Queensland, Australia
| | | | | |
Collapse
|
35
|
Werka T, Zieliński K. CS modality transfer of two-way avoidance in rats with central and basolateral amygdala lesions. Behav Brain Res 1998; 93:11-24. [PMID: 9659982 DOI: 10.1016/s0166-4328(97)00131-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Post-lesion acquisition of two-way avoidance and subsequent transfer to two warning signals (conditioned stimulus, CS) of different modality were investigated in 60 rats. In Experiment I the animals were originally trained with less salient (darkness) CS, then transferred to more salient compound (darkness and white noise), and finally to white noise CS. The opposite arrangement of the conditioned stimuli (CSi) during the subsequent stages was employed in Experiment II. In control animals, avoidance acquisition was faster and the intertrial responding (ITR) rate lower with the auditory than with the visual CS. Lesioned rats learned avoidance responses more slowly, independently of CS modality. The transfer to other CSi revealed dramatic between-group difference in the level and consistency of avoidance response, shuttle-box latencies and ITR rate. In control animals, transfer to more salient CSi enhanced avoidance performance, whereas change to less salient CS decreased it. Rather small changes in shuttle-box performance and consistency of avoidance response due to CS modality were seen in rats with the basolateral lesions. In contrast, central nucleus injury caused a strong deterioration in the avoidance transfer, especially when the visual CS followed the acoustic one. The results indicate differential involvement of the basolateral and central amygdala nuclei in stimulus-processing mechanisms of instrumental defensive behavior.
Collapse
Affiliation(s)
- T Werka
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | |
Collapse
|
36
|
Onaka T, Yagi K. Role of noradrenergic projections to the bed nucleus of the stria terminalis in neuroendocrine and behavioral responses to fear-related stimuli in rats. Brain Res 1998; 788:287-93. [PMID: 9555060 DOI: 10.1016/s0006-8993(98)00012-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) receives dense noradrenergic projections from the brainstem and has been claimed to play a role in expression of a variety of stress responses. Fear-related stimuli suppress vasopressin and facilitate oxytocin release from the neurohypophysis and induce behavioral suppression. Here we investigated in male rats whether conditioned fear stimuli increase noradrenergic activity in the BNST and whether depletion of epinephrine content in the BNST prevents neuroendocrine and behavioral responses to fear stimuli. Environmental stimuli previously paired with electric footshocks increased the ratio of 3-methoxy-4-hydroxyphenylglycol to norepinephrine contents in the BNST, suggesting that the stimuli activated noradrenergic projections to the BNST. 5-Amino-2, 4-dihydroxy-alpha-methylphenylethylamine, a neurotoxin relatively selective for noradrenergic fibers, when injected into the BNST 7 days before measurement, decreased the content of norepinephrine by 95% and that of dopamine or serotonin by about 50%. In the rats that received the neurotoxin, the suppressive vasopressin but not the augmentative oxytocin response to intermittent footshocks was abolished. In the experiments with conditioned fear stimuli, the neurotoxin given before training partially but significantly impaired the suppressive vasopressin and behavioral responses to testing stimuli. The neurotoxin given after training, however, did not prevent the vasopressin, oxytocin or behavioral responses. The results suggest that noradrenergic fibers in the BNST mediate the suppressive vasopressin but not the augmentative oxytocin response to nonassociatively applied fear stimuli and that they modulate, in a facilitative fashion, acquisition but not retention or recall of the emotional memory associated with the vasopressin and behavioral responses to conditioned fear stimuli.
Collapse
Affiliation(s)
- T Onaka
- Department of Physiology, Jichi Medical School, Minamikawachi-machi, Tochigi-ken 329-0498, Japan.
| | | |
Collapse
|
37
|
Forray MI, Bustos G, Gysling K. Regulation of norepinephrine release from the rat bed nucleus of the stria terminalis: in vivo microdialysis studies. J Neurosci Res 1997; 50:1040-6. [PMID: 9452019 DOI: 10.1002/(sici)1097-4547(19971215)50:6<1040::aid-jnr15>3.0.co;2-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The microdialysis technique was used to study the in vivo extracellular levels of norepinephrine in the bed nucleus of the stria terminalis. A basal level of 2.34 +/-0.25 fmol/microl of norepinephrine was observed. Desipramine (2 and 10 microM), a norepinephrine uptake blocker, significantly increased extracellular levels of norepinephrine. Reversed perfusion with high potassium in the presence of 2 microM desipramine induced the release of norepinephrine. Instead, in the presence of 10 microM desipramine, a significant decrease in the induced release of norepinephrine was observed. Clonidine, an alpha2-adrenergic agonist, significantly decreased basal extracellular levels of norepinephrine and the K+-induced release of norepinephrine. In contrast, yohimbine and RX821002, two alpha2-adrenergic antagonists, significantly increased basal extracellular levels of norepinephrine but not the release of norepinephrine induced by 70 mM K+. Perfusion of tetrodotoxin through the probe located in the bed nucleus of the stria terminalis significantly decreased both the basal extracellular level and the K+-induced release of norepinephrine. Furthermore, perfusion of tetrodotoxin through a microdialysis probe implanted in the medial forebrain bundle also decreased basal extracellular levels of norepinephrine in the bed nucleus of the stria terminalis. The results show that in vivo there is a significant noradrenergic tonic activity in the bed nucleus of the stria terminalis. This tonic activity depends on the impulse flow through medial forebrain bundle nerve fibers. Under these conditions, extracellular levels of norepinephrine in the bed nucleus of the stria terminalis are regulated by the magnitude of norepinephrine uptake and by presynaptic alpha2-adrenergic receptors.
Collapse
Affiliation(s)
- M I Forray
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Santiago
| | | | | |
Collapse
|
38
|
Abstract
The role of the medial, and cortical nuclei of amygdala was studied in 54 Möll-Wistar rats under two modes of foot-shock analgesia. In all but control animals bilateral electrolytic lesions were performed. Pre- and post-stress pain reactivity were measured in the hot-plate and the tail-flick tests. The damage of the medial nucleus decreases animals' primordial pain reactivity. Four minutes of continuous foot-shock produced post-stress analgesia in all control and lesioned rats, but 20 min of regularly intermittent foot-shock failed to evoke analgesia in the lesioned rats, especially in subjects with the dorsal part of the medial nucleus injuries. The results indicate that the medial and cortical nuclei are important in regulation of the post-stress antinociceptive processes evoked only by prolonged intermittent shock action. It has been previously shown that the behaviour evoked by this stressor is related to opioid mechanisms, and modulated by the hypothalamic-pituitary-adrenocortical system. Present finding is in agreement with our concept of the dorsomedial amygdala involvement in painful and stressful stimuli processing.
Collapse
Affiliation(s)
- T Werka
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
39
|
Solano-Flores LP, Rosas-Arellano MP, Ciriello J. Fos induction in central structures after afferent renal nerve stimulation. Brain Res 1997; 753:102-19. [PMID: 9125437 DOI: 10.1016/s0006-8993(96)01497-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Experiments were done in the conscious and unrestrained rat to identify central structures activated by electrical stimulation of afferent renal nerves (ARN) using the immunohistochemical detection of Fos-like proteins. Fos-labelled neurons were found in a number of forebrain and brainstem structures bilaterally, but with a contralateral predominance. Additionally, Fos-labelled neurons were found in the lower thoracolumbar spinal cord predominantly ipsilateral to the side of ARN stimulation. Within the forebrain, neurons containing Fos-like immunoreactivity after ARN stimulation were primarily found along the outer edge of the rostral organum vasculosum of the laminae terminalis, in the medial regions of the subfornical organ, in the median preoptic nucleus, in the ventral subdivision of the bed nucleus of the stria terminalis, along the lateral part of the central nucleus of the amygdala, throughout the deeper layers of the dysgranular insular cortex, in the parvocellular component of the paraventricular nucleus of the hypothalamus (PVH), and in the paraventricular nucleus of the thalamus. Additionally, a smaller number of Fos-labelled neurons was observed in the supraoptic nucleus, in the magnocellular component of the PVH and along the lateral border of the arcuate nucleus. Within the brainstem, Fos-labelled neurons were found predominantly in the commissural and medial subnuclei of the nucleus of the solitary tract and in the external subnucleus of the lateral parabrachial nucleus. A smaller number were observed near the caudal pole of the locus coeruleus, and scattered throughout the ventrolateral medullary and pontine reticular formation in the regions known to contain the A1, C1 and A5 catecholamine cell groups. The final area observed to contain Fos-labelled neurons in the central nervous system was the thoracolumbar spinal cord (T9-L1) which contained cells in laminae I-V of the dorsal horn ipsilateral to side of stimulation and in the intermediolateral cell column at the same levels bilaterally, but with an ipsilateral predominance. Few, if any Fos-labelled neurons were observed in the same structures of control animals in which the ARN were stimulated, but the renal nerves proximal to the site of stimulation were transected, or in the sham operated animals. These data indicate that ARN information originating in renal receptors is conveyed to a number of central areas known to be involved in the regulation of body fluid balance and arterial pressure, and suggest that this afferent information is an important component of central mechanisms regulating these homeostatic functions.
Collapse
Affiliation(s)
- L P Solano-Flores
- Department of Physiology, Faculty of Medicine, Health Sciences Centre, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
40
|
Roder S, Ciriello J. Convergence of ventrolateral medulla and aortic baroreceptor inputs onto amygdala neurons. Brain Res 1995; 705:71-8. [PMID: 8821735 DOI: 10.1016/0006-8993(95)01140-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Experiments were done to investigate the effect of stimulation of neurons in ventrolateral medulla (VLM) and aortic baroreceptors on the discharge rate of amygdala neurons. The region of central nucleus of the amygdala (ACe) was explored for spontaneously active single units that altered their discharge rate to electrical stimulation of VLM in the alpha-chloralose anesthetized rat. Responsive units were also assessed for their response to electrical stimulation of the aortic depressor nerve (ADN). Stimulation of VLM altered the discharge rate of 47% (43/92) of the units tested in and around the region of ACe. Of these units, 60% (26/43) were excited (mean latency, 13.6 +/- 3.6 ms) and 40% (17/43) were inhibited (mean latency, 23.1 +/- 4.3 ms) by VLM stimulation. Of the 43 units that responded to stimulation of VLM, 19 (44%) also responded to ADN stimulation with a mean latency of 32.5 +/- 7.6 ms. These data demonstrate that inputs from VLM and ADN converge onto ACe neurons and suggest that VLM may function as a relay for cardiovascular afferent information to the amygdala.
Collapse
Affiliation(s)
- S Roder
- Department of Physiology, University of Western Ontario, London, Canada
| | | |
Collapse
|
41
|
Terenzi MG, Ingram CD. A combined immunocytochemical and retrograde tracing study of noradrenergic connections between the caudal medulla and bed nuclei of the stria terminalis. Brain Res 1995; 672:289-97. [PMID: 7749750 DOI: 10.1016/0006-8993(94)01453-o] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Region-specific noradrenergic inputs to the bed nuclei of the stria terminalis (BST) from the caudal medulla were studied using combined Fast Blue injections and tyrosine hydroxylase immunoreactivity (TH-ir). Injections into the rostral, dorsal, ventral and lateral BST resulted in predominantly ipsilateral retrograde labelling restricted to the mediodorsal and ventrolateral caudal medulla. Mediodorsal projecting neurones comprised the A2 TH-ir and a second non-aminergic group medial to A2. All ventrolateral retrogradely labelled neurons showed TH-ir and corresponded to A1. Injections into the caudal BST did not label the A2 and very few A1 neurones, indicating a paucity of noradrenergic inputs from this area of the medulla.
Collapse
Affiliation(s)
- M G Terenzi
- Department of Anatomy, University of Bristol, UK
| | | |
Collapse
|
42
|
Ciriello J, Schultz CG, Roder S. Collateral axonal projections from ventrolateral medullary non-catecholaminergic neurons to central nucleus of the amygdala. Brain Res 1994; 663:346-51. [PMID: 7874522 DOI: 10.1016/0006-8993(94)91285-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Retrograde tract-tracing techniques were used to investigate whether catecholaminergic neurons in the ventrolateral medulla (VLM) send collateral axonal projections to both central nuclei of the amygdala (ACe) in the rat. Rhodamine-labelled latex microspheres or fluorogold (2%) were microinjected into the region of either the right or left ACe. After a survival period of 10-12 days, the rats were sacrificed and transverse sections of the brainstem were processed immunohistochemically for the identification of cell bodies containing the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH) or phenylethanolamine-N-methyltransferase (PNMT). Neuronal perikarya containing the retrogradely transported tracers were observed throughout the rostrocaudal extent of VLM, bilaterally. Approximately 10% of the retrogradely labelled neurons were observed to contain both retrograde tracers. The majority (79 +/- 6.8%) of these double labelled neurons were located within the caudal VLM and their number decreased rostrally. In addition, the proportion of double labelled neurons to single labelled neurons in VLM decreased rostrally; approximately 11% in the caudal VLM and 6% in the rostral VLM. Furthermore, approximately 21% of all VLM neurons that projected to ACe were found to be catecholaminergic: 75% of these were immunoreactive to TH and 25% to PNMT. However, no neurons were found in VLM that contained both retrograde tracers and immunoreactivity to TH or PNMT. These data demonstrate that axons originating from non-catecholaminergic neurons in VLM bifurcate to innervate ACe bilaterally. Although the function of these VLM neurons that project to both ACe is not known, they may be the anatomical substrate by which VLM neurons relay simultaneously autonomic and/or visceral sensory information to influence the activity of ACe.
Collapse
Affiliation(s)
- J Ciriello
- Department of Physiology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|