1
|
Gruber J, Hanssen R, Qubad M, Bouzouina A, Schack V, Sochor H, Schiweck C, Aichholzer M, Matura S, Slattery DA, Zopf Y, Borgland SL, Reif A, Thanarajah SE. Impact of insulin and insulin resistance on brain dopamine signalling and reward processing- an underexplored mechanism in the pathophysiology of depression? Neurosci Biobehav Rev 2023; 149:105179. [PMID: 37059404 DOI: 10.1016/j.neubiorev.2023.105179] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Type 2 diabetes and major depressive disorder (MDD) are the leading causes of disability worldwide and have a high comorbidity rate with fatal outcomes. Despite the long-established association between these conditions, the underlying molecular mechanisms remain unknown. Since the discovery of insulin receptors in the brain and the brain's reward system, evidence has accumulated indicating that insulin modulates dopaminergic (DA) signalling and reward behaviour. Here, we review the evidence from rodent and human studies, that insulin resistance directly alters central DA pathways, which may result in motivational deficits and depressive symptoms. Specifically, we first elaborate on the differential effects of insulin on DA signalling in the ventral tegmental area (VTA) - the primary DA source region in the midbrain - and the striatum as well as its effects on behaviour. We then focus on the alterations induced by insulin deficiency and resistance. Finally, we review the impact of insulin resistance in DA pathways in promoting depressive symptoms and anhedonia on a molecular and epidemiological level and discuss its relevance for stratified treatment strategies.
Collapse
Affiliation(s)
- Judith Gruber
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Ruth Hanssen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Policlinic for Endocrinology, Diabetology and Prevention Medicine, Germany
| | - Mishal Qubad
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Aicha Bouzouina
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Vivi Schack
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Hannah Sochor
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Carmen Schiweck
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Mareike Aichholzer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Yurdaguel Zopf
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Canada
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Sharmili Edwin Thanarajah
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany.
| |
Collapse
|
2
|
O'Dell LE, Nazarian A. Enhanced vulnerability to tobacco use in persons with diabetes: A behavioral and neurobiological framework. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:288-96. [PMID: 26092247 DOI: 10.1016/j.pnpbp.2015.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/15/2015] [Accepted: 06/08/2015] [Indexed: 11/18/2022]
Abstract
Tobacco use significantly magnifies the negative health complications associated with diabetes. Although tobacco use is strongly discouraged in persons with diabetes, clinical evidence suggests that they often continue to smoke and have more difficulty quitting despite serious contraindications. Here, we suggest that a potential reason for enhanced vulnerability to tobacco use in persons with diabetes is greater rewarding effects of nicotine. This review summarizes pre-clinical evidence indicating that the rewarding effects of nicotine are enhanced in rodent models of type 1 and type 2 diabetes. We also provide a framework of neurobiological mechanisms that are posited to promote tobacco use in persons with diabetes. This framework suggests that diabetes induces a disruption in insulin signaling that leads to a suppression of dopamine systems in the mesolimbic reward pathway. Lastly, we consider the clinical implications of enhanced rewarding effects of nicotine that may promote tobacco use in persons with diabetes. The clinical efficacy of smoking cessation medications that enhance dopamine are important to consider, given that persons with diabetes may display disrupted dopaminergic mechanisms. Future work is needed to better understand the complex interaction of dopamine and insulin in order to develop better smoking cessation medications for persons with diabetes.
Collapse
Affiliation(s)
- Laura E O'Dell
- Department of Psychology, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Arbi Nazarian
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA.
| |
Collapse
|
3
|
O'Dell LE, Natividad LA, Pipkin JA, Roman F, Torres I, Jurado J, Torres OV, Friedman TC, Tenayuca JM, Nazarian A. Enhanced nicotine self-administration and suppressed dopaminergic systems in a rat model of diabetes. Addict Biol 2014; 19:1006-19. [PMID: 23834715 DOI: 10.1111/adb.12074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with diabetes display a heightened propensity to use tobacco; however, it is unclear whether they experience enhanced rewarding effects of nicotine. Thus, this study examined the reinforcing effects of nicotine in a rodent model of diabetes involving administration of streptozotocin (STZ), a drug that is toxic to pancreatic insulin-producing cells. The first study compared STZ- and vehicle-treated rats that had 23-hour access to intravenous self-administration (IVSA) of nicotine or saline and concomitant access to food and water. In order to examine the contribution of dopamine to our behavioral effects, dopamine transporter (DAT), D1 and D2 receptor levels were compared in the nucleus accumbens (NAc) following 10 days of nicotine or saline IVSA. Dopamine levels in the NAc were also compared following nicotine administration. Lastly, nicotine metabolism and dose-dependent effects of nicotine IVSA were assessed. The results revealed that STZ-treated rats displayed enhanced nicotine intake and a robust increase in food and water intake relative to controls. Protein analysis revealed an increase in DAT and a decrease in D1 receptor levels in the NAc of STZ- versus vehicle-treated rats regardless of IVSA condition. STZ-treated rats also displayed suppressed NAc dopamine levels during baseline and in response to nicotine. STZ treatment did not alter our assessment of nicotine metabolism. Furthermore, STZ treatment increased nicotine IVSA in a dose-dependent manner. Our findings suggest that STZ-treatment increased the rewarding effects of nicotine. This suggests that strong reinforcing effects of nicotine may contribute to greater tobacco use in patients with diabetes.
Collapse
Affiliation(s)
- Laura E. O'Dell
- Department of Psychology; University of Texas at El Paso; El Paso TX USA
| | - Luis A. Natividad
- Department of Psychology; University of Texas at El Paso; El Paso TX USA
| | - Joseph A. Pipkin
- Department of Psychology; University of Texas at El Paso; El Paso TX USA
| | - Francisco Roman
- Department of Psychology; University of Texas at El Paso; El Paso TX USA
| | - Ivan Torres
- Department of Psychology; University of Texas at El Paso; El Paso TX USA
| | - Jesus Jurado
- Department of Psychology; University of Texas at El Paso; El Paso TX USA
| | - Oscar V. Torres
- Department of Psychology; University of Texas at El Paso; El Paso TX USA
| | - Theodore C. Friedman
- Division of Endocrinology, Molecular Medicine and Metabolism; Department of Internal Medicine; Charles Drew University of Medicine and Sciences-UCLA School of Medicine; Los Angeles CA USA
| | - John M. Tenayuca
- Department of Pharmaceutical Sciences; Western University of Health Sciences; Pomona CA USA
| | - Arbi Nazarian
- Department of Pharmaceutical Sciences; Western University of Health Sciences; Pomona CA USA
| |
Collapse
|
4
|
Ho N, Balu DT, Hilario MRF, Blendy JA, Lucki I. Depressive phenotypes evoked by experimental diabetes are reversed by insulin. Physiol Behav 2011; 105:702-8. [PMID: 21945451 DOI: 10.1016/j.physbeh.2011.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/01/2011] [Accepted: 09/03/2011] [Indexed: 01/16/2023]
Abstract
Clinical studies suggest a bidirectional relationship between diabetes and depression, where diabetes may increase risk for depressive symptoms and depression may increase risk for diabetes. Preclinical models examining the effects of diabetes on brain and behavior can provide insights to the pathophysiology underlying this relationship. The current study comprehensively examined, in C57BL/6 mice, the development of depressive phenotypes evoked by diabetes induced by streptozotocin (STZ) and determined if insulin treatment was able to reverse the diabetes-related changes on brain and affective behavior. Since anxiety is often comorbid with mood disturbances, behavioral tests for both anxiety and depression were administered. Possible physiological correlates of behavioral changes, including hippocampal cell proliferation, brain derived neurotrophic factor, and plasma corticosterone, were also measured. STZ-induced diabetes resulted in increased immobility in the tail suspension test, increased intracranial self-stimulation thresholds, decreased hippocampal cell proliferation, and increased corticosterone levels. Insulin treatment, on the other hand, reduced hyperglycemia, reversed the behavioral effects, and returned hippocampal cell proliferation and corticosterone to levels comparable to the control group. Anxiety-related behaviors were unaffected. This study showed that experimental diabetes in the mouse produced depressive phenotypes that were reversed by insulin therapy. Changes in reward-related behaviors and hippocampal cell proliferation may be useful markers to identify therapeutic interventions for comorbid diabetes and depression.
Collapse
Affiliation(s)
- Nancy Ho
- School of Nursing, University of Pennsylvania, 418 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
5
|
Fulton S. Appetite and reward. Front Neuroendocrinol 2010; 31:85-103. [PMID: 19822167 DOI: 10.1016/j.yfrne.2009.10.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 12/14/2022]
Abstract
The tendency to engage in or maintain feeding behaviour is potently influenced by the rewarding properties of food. Affective and goal-directed behavioural responses for food have been assessed in response to various physiological, pharmacological and genetic manipulations to provide much insight into the neural mechanisms regulating motivation for food. In addition, several lines of evidence tie the actions of metabolic signals, neuropeptides and neurotransmitters to the modulation of the reward-relevant circuitry including midbrain dopamine neurons and corticolimbic nuclei that encode emotional and cognitive aspects of feeding. Along these lines, this review pulls together research describing the peripheral and central signalling molecules that modulate the rewarding effects of food and the underlying neural pathways.
Collapse
Affiliation(s)
- Stephanie Fulton
- CRCHUM and Montreal Diabetes Research Center, Department of Nutrition, Faculty of Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
6
|
Bodnar RJ. Endogenous opioids and feeding behavior: a 30-year historical perspective. Peptides 2004; 25:697-725. [PMID: 15165728 DOI: 10.1016/j.peptides.2004.01.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 01/15/2004] [Accepted: 01/16/2004] [Indexed: 11/25/2022]
Abstract
This invited review, based on the receipt of the Third Gayle A. Olson and Richard D. Olson Prize for the publication of the outstanding behavioral article published in the journal Peptides in 2002, examines the 30-year historical perspective of the role of the endogenous opioid system in feeding behavior. The review focuses on the advances that this field has made over the past 30 years as a result of the timely discoveries that were made concerning this important neuropeptide system, and how these discoveries were quickly applied to the analysis of feeding behavior and attendant homeostatic processes. The discoveries of the opioid receptors and opioid peptides, and the establishment of their relevance to feeding behavior were pivotal in studies performed in the 1970s. The 1980s were characterized by the establishment of opioid receptor subtype agonists and antagonists and their relevance to the modulation of feeding behavior as well as by the use of general opioid antagonists in demonstrating the wide array of ingestive situations and paradigms involving the endogenous opioid system. The more recent work from the 1990s to the present, utilizes the advantages created by the cloning of the opioid receptor genes, the development of knockout and knockdown techniques, the systematic utilization of a systems neuroscience approach, and establishment of the reciprocity of how manipulations of opioid peptides and receptors affect feeding behavior with how feeding states affect levels of opioid peptides and receptors. The role of G-protein effector systems in opioid-mediated feeding responses, which was the subject of the prize-winning article, is then reviewed.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Subprogram, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
7
|
Sipols AJ, Bayer J, Bennett R, Figlewicz DP. Intraventricular insulin decreases kappa opioid-mediated sucrose intake in rats. Peptides 2002; 23:2181-7. [PMID: 12535697 DOI: 10.1016/s0196-9781(02)00246-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hormone insulin acts in the central nervous system (CNS) as a regulator of body adiposity and food intake. Recent work from our laboratory has provided evidence that one way by which insulin may decrease food intake is by decreasing the rewarding properties of food. Evidence from others suggests that endogenous opioids may mediate the palatable properties of foods, and insulin may decrease nonfood-related reward via interaction with some CNS kappa opioid systems. In the present study we examined the ability of insulin to interact with exogenous or endogenous kappa opioids to modulate feeding of palatable sucrose pellets by nondeprived rats. Insulin (5 mU intracerebroventricular (i.c.v.), t=-3h) completely reversed the ability of the exogenous kappa agonist U50,488 (26 microg, i.c.v., t=-15 min) to stimulate 90-min sucrose feeding (211+/-32% reduced to 125+/-23% of 90-min baseline intake). Further, i.c.v. insulin (5 mU, t=-3h) interacted with a subthreshold dose of the kappa receptor antagonist norbinaltorphimine (5 microg, i.c.v., t=-15 min) to decrease the 90-min sucrose intake baseline (77+/-11% versus 109+/-10% of 90 min baseline intake, insulin/norbinaltorphimine versus norbinaltorphimine). Together these studies provide new evidence that insulin in the CNS may decrease the action of CNS kappa opioid system(s) that mediate palatable feeding.
Collapse
Affiliation(s)
- A J Sipols
- Institute of Experimental and Clinical Medicine, and Faculty of Medicine, University of Latvia, Riga, Latvia
| | | | | | | |
Collapse
|
8
|
Carr KD, Kim G, Cabeza de Vaca S. Hypoinsulinemia may mediate the lowering of self-stimulation thresholds by food restriction and streptozotocin-induced diabetes. Brain Res 2000; 863:160-8. [PMID: 10773204 DOI: 10.1016/s0006-8993(00)02143-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
7 days beyond cessation of insulin treatment) elevation of threshold in ad libitum fed rats and, more transiently, reversed the threshold-lowering effect of food restriction. Acute insulin treatment (3 mU, 15 min prior) also elevated threshold in food-restricted rats. These results are consistent with the hypothesis that insulin modulates sensitivity of a brain reward system and that hypoinsulinemia may be the common factor in food restriction and diabetes that accounts for the enhancement of perifornical LHSS.
Collapse
Affiliation(s)
- K D Carr
- Millhauser Laboratories, Department of Psychiatry, New York University, School of Medicine, 550 First Avenue, New York, NY, USA.
| | | | | |
Collapse
|
9
|
Berman Y, Devi L, Spangler R, Kreek MJ, Carr KD. Chronic food restriction and streptozotocin-induced diabetes differentially alter prodynorphin mRNA levels in rat brain regions. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 46:25-30. [PMID: 9191075 DOI: 10.1016/s0169-328x(96)00175-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It was previously reported that chronic food restriction and streptozotocin-induced diabetes lead to brain region-specific changes in levels of Prodyn-derived peptides. These changes parallel behavioral adaptations that are reversed by opioid antagonists. In the present study, effects of food restriction and diabetes on Prodyn gene expression were measured in rat brain regions using a quantitative solution hybridization mRNA assay. Picogram amounts of Prodyn mRNA were determined in extracts of five brain regions. The highest density of Prodyn mRNA was observed in extracts of nucleus accumbens (4.68 pg/microg total RNA), bed nucleus of the stria terminalis (4.18 pg/microg), and in caudate nucleus (3.51 pg/microg). Lower levels were observed in the lateral hypothalamus (1.87 pg/microg) and central nucleus of the amygdala (1.22 pg/microg). Food restriction and diabetes both markedly increased the levels of Prodyn mRNA in the central amygdala (163% and 93%, respectively). Levels in the lateral hypothalamus were also increased (35% and 29%, respectively), though only the food-restriction effect was statistically significant. Neither treatment altered prodynorphin mRNA levels in the caudate nucleus, nucleus accumbens or bed nucleus of the stria terminalis. These results suggest that dynorphin neurons in central amygdala and lateral hypothalamus may be involved in behavioral or physiological adaptations to sustained metabolic need.
Collapse
Affiliation(s)
- Y Berman
- Department of Psychiatry, New York University Medical Center, NY 10016, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
The incentive-motivating effects of external stimuli are dependent, in part, upon the internal need state of the organism. The increased rewarding efficacy of food as a function of energy deficit, for example, has obvious adaptive value. The enhancement of food reward extends, however, to drugs of abuse and electrical brain stimulation, probably due to a shared neural substrate. Research reviewed in this paper uses lateral hypothalamic electrical stimulation to probe the sensitivity of the brain reward system and investigate mechanisms through which metabolic need, induced by chronic food restriction and streptozotocin-induced diabetes, sensitizes this system. Results indicate that sensitivity to rewarding brain stimulation varies inversely with declining body weight. The effect is not mimicked by pharmacological glucoprivation or lipoprivation in ad libitum fed animals; sensitization appears to depend on persistent metabolic need or adipose depletion. While the literature suggests elevated plasma corticosterone as a peripheral trigger of reward sensitization, sensitization was not reversed by meal-induced or pharmacological suppression of plasma corticosterone. Centrally, reward sensitization is mediated by opioid receptors, since the effect is reversed by intracerebroventricular (i.c.v.) infusion of naltrexone, TCTAP (mu antagonist) and nor-binaltorphimine (kappa antagonist). The fact that these same treatments, as well as i.c.v. infusion of dynorphin A antiserum, block the feeding response to lateral hypothalamic stimulation suggests that feeding and reward sensitization are mediated by a common opioid mechanism. Using in vitro autoradiography, radioimmunoassays and a solution hybridization mRNA assay, brain regional mu and kappa opioid receptor binding, levels of prodynorphin-derived peptides, and prodynorphin mRNA, respectively, were measured in food-restricted and diabetic rats. Changes that could plausibly be involved in reward sensitization are discussed, with emphasis on the increased dynorphin A1-3 and prodynorphin mRNA levels in lateral hypothalamic neurons that innervate the pontine parabrachial nucleus, where mu binding decreased and kappa binding increased. Finally, the possible linkage between metabolic need and activation of a brain opioid mechanism is discussed, as is evidence supporting the relevance of these findings to drug abuse.
Collapse
Affiliation(s)
- K D Carr
- Department of Psychiatry New York University Medical Center, New York 10016, USA
| |
Collapse
|
11
|
Wolinsky TD, Abrahamsen GC, Carr KD. Diabetes alters mu and kappa opioid binding in rat brain regions: comparison with effects of food restriction. Brain Res 1996; 738:167-71. [PMID: 8949943 DOI: 10.1016/0006-8993(96)00994-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Diabetic rats display changes in opioid pharmacology and brain regional levels of opioid peptides and prodynorphin mRNA. Previous investigations of opioid receptor binding, carried out in whole-brain homogenates, have, however, failed to detect changes. In the present study, quantitative autoradiography was used to measure mu and kappa opioid receptor binding in discrete brain regions of streptozotocin-treated diabetic rats. Measurement was limited to regions that previously displayed opioid binding changes in chronically food-restricted rats, since our primary aim is to identify brain mechanisms that mediate adaptive responses to persistent metabolic need and adipose depletion. Diabetics displayed strong trends or statistically significant changes which matched seven of the thirteen binding changes observed in food-restricted rats. In no case did diabetics display changes in the opposite direction. The two statistically significant changes common to food-restricted and diabetic rats are increased kappa binding in the medial preoptic area and decreased mu binding in the lateral habenula. The possible functional significance of these changes is discussed.
Collapse
Affiliation(s)
- T D Wolinsky
- Millhauser Laboratories, Department of Psychiatry, New York University Medical Center, NY 10016, USA
| | | | | |
Collapse
|
12
|
Berman Y, Devi L, Carr KD. Effects of streptozotocin-induced diabetes on prodynorphin-derived peptides in rat brain regions. Brain Res 1995; 685:129-34. [PMID: 7583238 DOI: 10.1016/0006-8993(95)00419-q] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pharmacological studies suggest that diabetes produces changes in the brain opioid system, affecting several behavioral functions including analgesia, feeding and self-stimulation. Previous investigations of opioid receptor binding have failed to explain the unusual opioid pharmacology of the diabetic animal. In the present study, the effects of streptozotocin-induced diabetes on levels of three immunoreactive (ir)-prodynorphin-derived peptides, ir-dynorphin A1-17 (A1-17), ir-dynorphin A1-8 (A1-8) and ir-dynorphin B1-13 (B1-13), were determined in eleven brain regions known to be involved in appetite, taste and reward. Diabetes was found to increase levels of A1-17 in the ventromedial and dorsomedial hypothalamic nuclei (+60% and +25%, respectively) and levels of A1-8 in the dorsomedial and lateral hypothalamus (+45% and +35%, respectively). The possible significance of these results is discussed in relation to (i) diabetic hyperphagia, (ii) medial hypothalamic transduction of circulating insulin levels, and (iii) the potentiation of reward by metabolic need states.
Collapse
Affiliation(s)
- Y Berman
- Department of Psychiatry, New York University Medical Center, New York 10016, USA
| | | | | |
Collapse
|
13
|
Abstract
This article is the 17th installment of our annual review of research concerning the opiate system. It includes papers published during 1994 involving the behavioral, nonanalgesic, effects of the endogenous opiate peptides. The specific topics covered this year include stress; tolerance and dependence; eating; drinking; gastrointestinal, renal, and hepatic function; mental illness and mood; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurological disorders; electrical-related activity; general activity and locomotion; sex, pregnancy, and development; immunological responses; and other behaviors.
Collapse
Affiliation(s)
- G A Olson
- Department of Psychology, University of New Orleans, LA 70148, USA
| | | | | |
Collapse
|