1
|
Charalambous M, Muñana K, Patterson EE, Platt SR, Volk HA. ACVIM Consensus Statement on the management of status epilepticus and cluster seizures in dogs and cats. J Vet Intern Med 2024; 38:19-40. [PMID: 37921621 PMCID: PMC10800221 DOI: 10.1111/jvim.16928] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Seizure emergencies (ie, status epilepticus [SE] and cluster seizures [CS]), are common challenging disorders with complex pathophysiology, rapidly progressive drug-resistant and self-sustaining character, and high morbidity and mortality. Current treatment approaches are characterized by considerable variations, but official guidelines are lacking. OBJECTIVES To establish evidence-based guidelines and an agreement among board-certified specialists for the appropriate management of SE and CS in dogs and cats. ANIMALS None. MATERIALS AND METHODS A panel of 5 specialists was formed to assess and summarize evidence in the peer-reviewed literature with the aim to establish consensus clinical recommendations. Evidence from veterinary pharmacokinetic studies, basic research, and human medicine also was used to support the panel's recommendations, especially for the interventions where veterinary clinical evidence was lacking. RESULTS The majority of the evidence was on the first-line management (ie, benzodiazepines and their various administration routes) in both species. Overall, there was less evidence available on the management of emergency seizure disorders in cats in contrast to dogs. Most recommendations made by the panel were supported by a combination of a moderate level of veterinary clinical evidence and pharmacokinetic data as well as studies in humans and basic research studies. CONCLUSIONS AND CLINICAL RELEVANCE Successful management of seizure emergencies should include an early, rapid, and stage-based treatment approach consisting of interventions with moderate to preferably high ACVIM recommendations; management of complications and underlying causes related to seizure emergencies should accompany antiseizure medications.
Collapse
Affiliation(s)
| | - Karen Muñana
- North Carolina State UniversityRaleighNorth CarolinaUSA
| | | | | | - Holger A. Volk
- University of Veterinary Medicine HannoverHannoverGermany
| |
Collapse
|
2
|
The Anticonvulsant Effects of Alpha-2 Adrenoceptor Agonist Dexmedetomidine on Pentylenetetrazole-Induced Seizures in Rats. Neurochem Res 2021; 47:305-314. [PMID: 34491515 DOI: 10.1007/s11064-021-03445-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/12/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Alpha2-adrenoreceptor (α2-AR) is a noradrenergic receptor that is frequently studied for modulation of seizure activity. However, the precise role of this receptor agonists in regulating seizure activity is still unclear. Our aim in this study was to investigate the effects of α2-AR agonist dexmedetomidine (DEX) and atipamezole (α2-AR antagonist, ATI) on seziures in rats. In the study, 32 adult male Wistar Albino rats (weighing 220-260 g) were used. To induce seizures in rats, pentylenetetrazole (PTZ, 35 mg/kg) was injected intraperitoneally (i.p.) and seizure stages were determined according to the Racine scale. After induction of seizures, DEX (0.1 mg/kg, i.p.) and ATI (1 mg/kg, i.p.) were administered to rats and their effects determined on seizures. GABA levels of the brain hippocampal tissue sample were measured using an ELISA kit and c-Fos positive cells of the dentate gyrus and hippocampal regions were quantitatively analyzed with Image J software. The results showed that DEX decreased the seizure stages according to the Racine scale, significantly prolonged the onset time of first myoclonic jerk (FMJ) and reduced the number of spikes and percentage seizure duration (p < 0.05). In contrast, ATI increased the seizure stage, the number of spikes and percentage seizure duration. The hippocampal GABA level was significantly decreased in rats with only PTZ injection (p < 0.05). In addition, DEX reduced the number of c-Fos positive cells in dentate gyrus and the hippocampal CA1 and CA3 regions. In conclusion, our findings showed that α2-AR agonist DEX had a reducing activity on PTZ-induced seizure, while α2-AR antagonist ATI facilitated seizure formation.
Collapse
|
3
|
Di Cesare F, Cagnardi P, Villa R, Rabbogliatti V, Lucatello L, Capolongo F, Gioeni D, Capasso M, Magnone W, Ravasio G. Dexmedetomidine and ketamine simultaneous administration in tigers ( Panthera tigris): pharmacokinetics and clinical effects. Vet Rec Open 2020; 7:e000412. [PMID: 33178436 PMCID: PMC7640590 DOI: 10.1136/vetreco-2020-000412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/04/2020] [Accepted: 09/26/2020] [Indexed: 01/15/2023] Open
Abstract
Background The study determines the pharmacokinetic profiles of dexmedetomidine (DEX), ketamine (KET) and its active metabolite, norketamine (NORKET), after simultaneous administration. Moreover, the study evaluates the sedative effects of this protocol, its influence on the main physiological variables and the occurrence of adverse effects. Methods Eighteen captive tigers were initially administered with a mixture of DEX (10 µg/kg) and KET (2 mg/kg) by remote intramuscular injection. In case of individual and specific needs, the protocol was modified and tigers could receive general anaesthesia, propofol or additional doses of DEX and KET. Results Based on the immobilisation protocol, nine animals were assigned to the standard protocol group and the other nine to the non-standard protocol group. Higher area under the first moment curve (AUMC0-last) and longer mean residence time (MRT0-last) (P<0.05) were observed in the non-standard protocol group for DEX, KET and NORKET, and higher area under the concentration-time curve from administration to the last measurable concentration (AUC0-last) only for KET. The KET metabolisation rate was similar (P=0.296) between groups. No differences between groups were detected in terms of stages of sedation and recoveries. All physiological variables remained within normality ranges during the whole observation period. During the hospitalisation period, no severe adverse reactions and signs of resedation were observed. Conclusion The simultaneous administration of 10 µg/kg of DEX and 2 mg/kg of KET can be considered an effective protocol for chemical immobilisation of captive tigers, along with dosage adjusments or when other drugs are needed.
Collapse
Affiliation(s)
- Federica Di Cesare
- Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Milano, Lombardia, Italy
| | - Petra Cagnardi
- Medicina veterinaria, Università degli Studi di Milano, Milano, Lombardia, Italy
| | - Roberto Villa
- Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, Università degli Studi di Milano, Milano, Lombardia, Italy
| | - Vanessa Rabbogliatti
- Medicina veterinaria, Università degli Studi di Milano, Milano, Lombardia, Italy
| | - Lorena Lucatello
- Biomedicina Comparata ed Alimentazione, Università degli Studi di Padova, Legnaro (PD), Veneto, Italy
| | - Francesca Capolongo
- Biomedicina Comparata ed Alimentazione, Università degli Studi di Padova, Legnaro (PD), Veneto, Italy
| | - Daniela Gioeni
- Medicina veterinaria, Università degli Studi di Milano, Milano, Lombardia, Italy
| | - Michele Capasso
- Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Campania, Italy
| | | | - Giuliano Ravasio
- Medicina veterinaria, Università degli Studi di Milano, Milano, Lombardia, Italy
| |
Collapse
|
4
|
Bortel A, Pilgram R, Yao ZS, Shmuel A. Dexmedetomidine - Commonly Used in Functional Imaging Studies - Increases Susceptibility to Seizures in Rats But Not in Wild Type Mice. Front Neurosci 2020; 14:832. [PMID: 33192234 PMCID: PMC7658317 DOI: 10.3389/fnins.2020.00832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
Functional MRI (fMRI) utilizes changes in metabolic and hemodynamic signals to indirectly infer the underlying local changes in neuronal activity. To investigate the mechanisms of fMRI responses, spontaneous fluctuations, and functional connectivity in the resting-state, it is important to pursue fMRI in animal models. Animal studies commonly use dexmedetomidine sedation. It has been demonstrated that potent sensory stimuli administered under dexmedetomidine are prone to inducing seizures in Sprague-Dawley (SD) rats. Here we combined optical imaging of intrinsic signals and cerebral blood flow with neurophysiological recordings to measure responses in rat area S1FL to electrical forepaw stimulation administered at 8 Hz. We show that the increased susceptibility to seizures starts no later than 1 h and ends no sooner than 3 h after initiating a continuous administration of dexmedetomidine. By administering different combinations of anesthetic and sedative agents, we demonstrate that dexmedetomidine is the sole agent necessary for the increased susceptibility to seizures. The increased susceptibility to seizures prevails under a combination of 0.3–0.5% isoflurane and dexmedetomidine anesthesia. The blood-oxygenation and cerebral blood flow responses to seizures induced by forepaw stimulation have a higher amplitude and a larger spatial extent relative to physiological responses to the same stimuli. The epileptic activity and the associated blood oxygenation and cerebral blood flow responses stretched beyond the stimulation period. We observed seizures in response to forepaw stimulation with 1–2 mA pulses administered at 8 Hz. In contrast, responses to stimuli administered at 4 Hz were seizure-free. We demonstrate that such seizures are generated not only in SD rats but also in Long-Evans rats, but not in C57BL6 mice stimulated with similar potent stimuli under dexmedetomidine sedation. We conclude that high-amplitude hemodynamic functional imaging responses evoked by peripheral stimulation in rats sedated with dexmedetomidine are possibly due to the induction of epileptic activity. Therefore, caution should be practiced in experiments that combine the administration of potent stimuli with dexmedetomidine sedation. We propose stimulation paradigms that elicit seizure-free, well detectable neurophysiological and hemodynamic responses in rats. We further conclude that the increased susceptibility to seizures under dexmedetomidine sedation is species dependent.
Collapse
Affiliation(s)
- Aleksandra Bortel
- Montreal Neurological Institute, McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Roland Pilgram
- Montreal Neurological Institute, McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Ze Shan Yao
- Montreal Neurological Institute, McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Amir Shmuel
- Montreal Neurological Institute, McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Spampanato J, Bealer SL, Smolik M, Dudek FE. Delayed Adjunctive Treatment of Organophosphate-Induced Status Epilepticus in Rats with Phenobarbital, Memantine, or Dexmedetomidine. J Pharmacol Exp Ther 2020; 375:59-68. [PMID: 32873622 DOI: 10.1124/jpet.120.000175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Organophosphate (OP) exposure induces status epilepticus (SE), a medical emergency with high morbidity and mortality. Current standard medical countermeasures lose efficacy with time so that treatment delays, in the range of tens of minutes, result in increasingly poor outcomes. As part of the Countermeasures Against Chemical Threats Neurotherapeutics Screening Program, we previously developed a realistic model of delayed treatment of OP-induced SE using the OP diisopropyl fluorophosphate (DFP) to screen compounds for efficacy in the termination of SE and elimination of neuronal death. Male rats were implanted for electroencephalogram (EEG) recordings 7 days prior to experimentation. Rats were then exposed to DFP, and SE was induced for 60 minutes and then treated with midazolam (MDZ) plus one of three antiseizure drugs (ASDs)-phenobarbital (PHB), memantine (MEM), or dexmedetomidine (DMT)-in conjunction with antidotes. EEG was recorded for 24 hours, and brains were stained with Fluoro-Jade B for quantification of degenerating neurons. We found that PHB + MDZ induced a prolonged suppression of SE and reduced neuronal death. MEM + MDZ treatment exacerbated SE and increased mortality; however, surviving rats had fewer degenerating neurons. DMT + MDZ significantly suppressed SE with only a minimal reduction in neuronal death. These data demonstrate that delayed treatment of OP-induced SE with other ASDs, when added to MDZ, can achieve greater seizure suppression with additional reduction in degenerating neurons throughout the brain compared with MDZ alone. The effect of a drug on the severity of seizure activity did not necessarily determine the drug's effect on neuronal death under these conditions. SIGNIFICANCE STATEMENT: This study assesses the relative effectiveness of three different delayed-treatment regimens for the control of organophosphate-induced status epilepticus and reduction of subsequent neuronal death. The data demonstrate the potential for highly effective therapies despite significant treatment delay and a potential disconnect between seizure severity and neuronal death.
Collapse
Affiliation(s)
- Jay Spampanato
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Steven L Bealer
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Melissa Smolik
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
6
|
Gaidin SG, Zinchenko VP, Sergeev AI, Teplov IY, Mal'tseva VN, Kosenkov AM. Activation of alpha‐2 adrenergic receptors stimulates GABA release by astrocytes. Glia 2020; 68:1114-1130. [DOI: 10.1002/glia.23763] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Sergei G. Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Valery P. Zinchenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Alexander I. Sergeev
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Ilia Y. Teplov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Valentina N. Mal'tseva
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Artem M. Kosenkov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| |
Collapse
|
7
|
Gioeni D, Di Cesare F, D'Urso ES, Rabbogliatti V, Ravasio G. Ketamine-dexmedetomidine combination and controlled mild hypothermia for the treatment of long-lasting and super-refractory status epilepticus in 3 dogs suffering from idiopathic epilepsy. J Vet Emerg Crit Care (San Antonio) 2020; 30:455-460. [PMID: 32372564 DOI: 10.1111/vec.12956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 10/04/2018] [Accepted: 10/31/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To describe the use of a ketamine-dexmedetomidine combination and mild hypothermia for the treatment of status epilepticus in 3 dogs that did not respond to GABAergic medication. CASE SERIES SUMMARY Three dogs, each with a diagnosis of idiopathic epilepsy, were presented to the emergency department in a state of status epilepticus. The dogs were treated unsuccessfully with benzodiazepine as a first-line therapy that was followed by IV propofol anesthesia maintained for at least 12 hours. When general anesthesia was discontinued, seizures reoccurred. All 3 dogs then received a bolus of ketamine (1 mg/kg, IV) over a period of 5 minutes that was followed by a bolus of dexmedetomidine (3 μg/kg, IV) over the same time period and then followed by a continuous infusion for 12 hours of ketamine at a constant rate of 1 mg/kg/h and dexmedetomidine at a variable rate of 3-7 μg/kg/h. Body temperature was maintained between 36.7 and 37.7°C at a state of mild hypothermia throughout treatment. The dogs recovered uneventfully over 48 hours after treatment was discontinued with no evidence of seizures. No notable alterations in physiological parameters were observed during the drug infusions. All dogs were discharged following examinations that showed normal neurological function. NEW OR UNIQUE INFORMATION PROVIDED This case series highlights the potential benefits of a ketamine-dexmedetomidine infusion combined with mild hypothermia for the treatment of status epilepticus refractory to GABAergic therapy in dogs suffering from idiopathic epilepsy. After the dogs were weaned from the ketamine-dexmedetomidine infusion, all dogs experienced complete recovery. Thus, this case series introduces a novel approach to treat this intense condition.
Collapse
Affiliation(s)
- Daniela Gioeni
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Federica Di Cesare
- Department of Health, Animal Science and Food safety, Università degli Studi di Milano, Milan, Italy
| | - Elisa Silvia D'Urso
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Vanessa Rabbogliatti
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Giuliano Ravasio
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
8
|
Moffett MC, Rauscher NA, Rice NC, Myers TM. Survey of drug therapies against acute oral tetramethylenedisulfotetramine poisoning in a rat voluntary consumption model. Neurotoxicology 2019; 74:264-271. [DOI: 10.1016/j.neuro.2019.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
|
9
|
Ghasemi M, Mehranfard N. Mechanisms underlying anticonvulsant and proconvulsant actions of norepinephrine. Neuropharmacology 2018; 137:297-308. [DOI: 10.1016/j.neuropharm.2018.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
|
10
|
McCarren HS, Arbutus JA, Ardinger C, Dunn EN, Jackson CE, McDonough JH. Dexmedetomidine stops benzodiazepine-refractory nerve agent-induced status epilepticus. Epilepsy Res 2018; 141:1-12. [PMID: 29414381 DOI: 10.1016/j.eplepsyres.2018.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/21/2017] [Accepted: 01/07/2018] [Indexed: 12/15/2022]
Abstract
Nerve agents are highly toxic chemicals that pose an imminent threat to soldiers and civilians alike. Nerve agent exposure leads to an increase in acetylcholine within the central nervous system, resulting in development of protracted seizures known as status epilepticus (SE). Currently, benzodiazepines are the standard of care for nerve agent-induced SE, but their efficacy quickly wanes as the time to treatment increases. Here, we examine the role of the α2-adrenoceptor in termination of nerve agent-induced SE using the highly specific agonist dexmedetomidine (DEX). Adult male rats were exposed to soman and entered SE as confirmed by electroencephalograph (EEG). We observed that administration of DEX in combination with the benzodiazepine midazolam (MDZ) 20 or 40 min after the onset of SE stopped seizures and returned processed EEG measurements to baseline levels. The protective effect of DEX was blocked by the α2-adrenoceptor antagonist atipamezole (ATI), but ATI failed to restore seizure activity after it was already halted by DEX in most cases, suggesting that α2-adrenoceptors may be involved in initiating SE cessation rather than merely suppressing seizure activity. Histologically, treatment with DEX + MDZ significantly reduced the number of dying neurons as measured by FluoroJade B in the amygdala, thalamus, and piriform cortex, but did not protect the hippocampus or parietal cortex even when SE was successfully halted. We conclude that DEX serves not just as a valuable potential addition to the anticonvulsant regimen for nerve agent exposure, but also as a tool for dissecting the neural circuitry that drives SE.
Collapse
Affiliation(s)
- Hilary S McCarren
- USAMRICD, Medical Toxicology Research Division, Neuroscience Branch, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States.
| | - Julia A Arbutus
- USAMRICD, Medical Toxicology Research Division, Neuroscience Branch, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States
| | - Cherish Ardinger
- USAMRICD, Medical Toxicology Research Division, Neuroscience Branch, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States
| | - Emily N Dunn
- USAMRICD, Medical Toxicology Research Division, Neuroscience Branch, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States
| | - Cecelia E Jackson
- USAMRICD, Medical Toxicology Research Division, Neuroscience Branch, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States
| | - John H McDonough
- USAMRICD, Medical Toxicology Research Division, Neuroscience Branch, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States
| |
Collapse
|
11
|
Nissinen J, Andrade P, Natunen T, Hiltunen M, Malm T, Kanninen K, Soares JI, Shatillo O, Sallinen J, Ndode-Ekane XE, Pitkänen A. Disease-modifying effect of atipamezole in a model of post-traumatic epilepsy. Epilepsy Res 2017; 136:18-34. [DOI: 10.1016/j.eplepsyres.2017.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022]
|
12
|
Batra V, Makvandi M, Zuppa AF, Patel N, Elias J, Pryma DA, Maris JM. Dexmedetomidine does not interfere with meta-iodobenzylguanidine (MIBG) uptake at clinically relevant concentrations. Pediatr Blood Cancer 2017; 64. [PMID: 27654664 DOI: 10.1002/pbc.26268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Neuroblastoma is a pediatric malignancy, and most tumor cells express the norepinephrine transporter (NET) enabling uptake of NET ligands. Meta-iodobenzylguanidine (MIBG) is a NET-specific ligand used as a highly specific imaging agent and targeted radiotherapeutic. Patients with neuroblastoma frequently require sedation during targeted radiotherapy. Dexmedetomidine has been increasingly used to achieve efficacious sedation. There are theoretical concerns that this highly selective alpha-2 adrenergic receptor agonist may interfere with active uptake of MIBG through the NET transporter. In this study, we analyzed the impact of [125-iodine]-labeled MIBG ([125 I]MIBG) uptake in the presence of dexmedetomidine in human neuroblastoma-derived cellular models. PROCEDURE Carrier-free [125 I]MIBG was synthesized using UltraTrace® resin (Molecular Insight Pharmaceuticals, Inc., Tarrytown, NY) through radioiododestannylation from a tin precursor bound by a solid-state polymer. NET (SLC6A2) protein expression was determined in human neuroblastoma cell lines (BE2C, SKNSH and IMR5). [125 I]MIBG internalization studies were performed using [125 I]MIBG alone or in combination with either desipramine or dexmedetomidine. Dexmedetomidine and desipramine competitive inhibition studies were performed and concentration at 50% maximal inhibition was calculated. Finally, NET inhibitor dissociation studies were performed in which after pre-incubation with either desipramine or dexmedetomidine, cells were washed and [125 I]MIBG was added. RESULTS We show dose-dependent inhibition of [125 I]MIBG uptake by dexmedetomidine, but at several logs lower potency than the known NET inhibitor desipramine. A review of pediatric dexmedetomidine pharmacokinetic data shows that the concentrations achieved in the serum are much lower than those required to block MIBG uptake. CONCLUSION We conclude that dexmedetomidine will not interfere with therapeutic [131 I]MIBG efficacy.
Collapse
Affiliation(s)
- Vandana Batra
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mehran Makvandi
- Division of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Athena F Zuppa
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Division of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Neil Patel
- Department of Pharmacy Services, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jimmy Elias
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Daniel A Pryma
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Division of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Heidenreich DC, Giordano P, Kirby BM. Successful treatment of refractory seizures with phenobarbital, propofol, and medetomidine following congenital portosystemic shunt ligation in a dog. J Vet Emerg Crit Care (San Antonio) 2015; 26:831-836. [DOI: 10.1111/vec.12431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 06/18/2014] [Accepted: 08/29/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Dorothee C. Heidenreich
- Section of Veterinary Clinical Studies; School of Agriculture, Food Science, and Veterinary Medicine; University College Dublin Dublin Ireland
| | - Paola Giordano
- Section of Veterinary Clinical Studies; School of Agriculture, Food Science, and Veterinary Medicine; University College Dublin Dublin Ireland
| | - Barbara M. Kirby
- Section of Veterinary Clinical Studies; School of Agriculture, Food Science, and Veterinary Medicine; University College Dublin Dublin Ireland
| |
Collapse
|
14
|
Read MI, Harrison JC, Kerr DS, Sammut IA. Atenolol offers better protection than clonidine against cardiac injury in kainic acid-induced status epilepticus. Br J Pharmacol 2015; 172:4626-38. [PMID: 25765931 DOI: 10.1111/bph.13132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 02/21/2015] [Accepted: 03/06/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Status epilepticus is increasingly associated with cardiac injury in both clinical and animal studies. The current study examined ECG activity for up to 48 h following kainic acid (KA) seizure induction and compared the potential of atenolol and clonidine to attenuate this cardiac pathology. EXPERIMENTAL APPROACH Sprague-Dawley rats (male, 300-350 g) were implanted with ECG and electrocorticogram electrodes to allow simultaneous telemetric recordings of cardiac and cortical responses during and after KA-induced seizures. Animals were randomized into saline controls, and saline vehicle-, clonidine- or atenolol-pretreated KA groups. KEY RESULTS KA administration in the saline-pretreated group produced an immediate bradycardic response (maximal decrease of 28 ± 6%), coinciding with low-level seizure activity. As high-level seizure behaviours and EEG spiking increased, tachycardia also developed, with a maximum heart rate increase of 38 ± 7% coinciding with QTc prolongation and T wave elevation. Both clonidine and atenolol pretreatment attenuated seizure activity and reduced KA-induced changes in heart rate, QTc interval and T wave amplitude observed during both bradycardic and tachycardic phases in saline-pretreated KA animals. Clonidine, however, failed to reduce the power of EEG frequencies. Atenolol and to a lesser extent clonidine attenuated the cardiac hypercontraction band necrosis, inflammatory infiltration, and oedema at 48 h after KA, relative to the saline-KA group. CONCLUSIONS AND IMPLICATIONS Severe seizure activity in this model was clearly associated with altered ECG activity and cardiac pathology. We suggest that modulation of sympathetic activity by atenolol provides a promising cardioprotective approach in status epilepticus.
Collapse
Affiliation(s)
- M I Read
- Department of Pharmacology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - J C Harrison
- Department of Pharmacology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - D S Kerr
- Department of Pharmacology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - I A Sammut
- Department of Pharmacology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| |
Collapse
|
15
|
McAdams RM, McPherson RJ, Kapur R, Phillips B, Shen DD, Juul SE. Dexmedetomidine reduces cranial temperature in hypothermic neonatal rats. Pediatr Res 2015; 77:772-8. [PMID: 25751572 DOI: 10.1038/pr.2015.45] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/21/2014] [Indexed: 01/20/2023]
Abstract
BACKGROUND The α2-adrenergic agonist dexmedetomidine (DEX) is increasingly used for prolonged sedation of critically ill neonates, but there are currently no data evaluating possible consequences of prolonged neonatal DEX exposure. We evaluated the pharmacokinetics and histological consequences of neonatal DEX exposure. METHODS DEX was administered (s.c.) to naive (uninjured) neonatal Lewis rats to provide acute (25 µg/kg, ×1) or prolonged (25 µg/kg three times daily, ×2 or ×4 d) exposure. Therapeutic hypothermia was simulated using a water-cooled blanket. Cranial temperatures were measured using an infrared thermometer. DEX concentrations were measured by LC-MS in plasma and homogenized brainstem tissue for pharmacokinetic analysis. Cortex, cerebellum, and brainstem were evaluated for evidence of inflammation or injury. RESULTS Prolonged neonatal DEX exposure was not associated with renal or brain pathology or indices of gliosis, macrophage activation, or apoptosis in either hypothermic or control rats. Plasma and brain DEX concentrations were tightly correlated. DEX peaked within 15 min in brain and reduced cranial temperature from 32 to 30 °C within 30 min after injection in cooled rats. CONCLUSION Prolonged DEX treatment in neonatal rats was not associated with abnormal brain histology. These data provide reassuring preliminary results for using DEX with therapeutic hypothermia to treat near-term brain injury.
Collapse
Affiliation(s)
- Ryan M McAdams
- 1] Department of Pediatrics, University of Washington, Seattle, Washington [2] Seattle Children's Hospital, Seattle, Washington
| | | | - Raj Kapur
- 1] Seattle Children's Hospital, Seattle, Washington [2] Department of Pathology, University of Washington, Seattle, Washington
| | - Brian Phillips
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Danny D Shen
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Sandra E Juul
- 1] Department of Pediatrics, University of Washington, Seattle, Washington [2] Seattle Children's Hospital, Seattle, Washington
| |
Collapse
|
16
|
Effects of dexmedetomidine on microregional O2 balance during reperfusion after focal cerebral ischemia. J Stroke Cerebrovasc Dis 2014; 24:163-70. [PMID: 25294058 DOI: 10.1016/j.jstrokecerebrovasdis.2014.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/10/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND This study was performed to determine whether there is an association between microregional O2 balance and neuronal survival in cerebral ischemia-reperfusion using dexmedetomidine, an α2-adrenoreceptor agonist and a sedative. METHODS Rats were subjected to 1 hour middle cerebral artery occlusion and a 2-hour reperfusion. During reperfusion, normal saline (n = 14) or dexmedetomidine 1 μg/kg/minute (n = 14) was infused intravenously. At 2 hours of reperfusion, regional cerebral blood flow using (14)C-iodoantipyrine autoradiography, microregional arterial and venous (20-60 μm in diameter) O2 saturation (SvO2) using cryomicrospectrophotometry, and the size of cortical infarction were determined. RESULTS Ischemia-reperfusion decreased microregional SvO2 (52.9 ± 3.7% vs. 61.1 ± .6%, P < .005) with increased variation or heterogeneity (P < .0001) with similar regional cerebral blood flow and O2 consumption. Dexmedetomidine during reperfusion decreased the heterogeneity of SvO2 that was analyzed with an analysis of variance (P < .01) and reported as coefficient of variation (100 × standard deviation/Mean) (11.8 vs. 16.4). The number of veins with O2 saturation less than 50% decreased with dexmedetomidine (13/80 vs. 27/81, P < .01). The percentage of cortical infarct in total cortex was smaller with dexmedetomidine (8.3 ± 2.2% vs. 12.6 ± 1.5%, P < .005). CONCLUSIONS In the cerebral ischemic reperfused cortex, dexmedetomidine decreased the heterogeneity of SvO2 and the number of small veins with low O2 saturation suggesting improved microregional O2 supply/consumption balance. The improvement was accompanied by the reduced size of cortical infarction.
Collapse
|
17
|
Do SH, Park SJ, Shin HJ, Paik HS, Zuo Z, Yoon HJ, Ryu JH. Dexmedetomidine increases the activity of excitatory amino acid transporter type 3 expressed in Xenopus oocytes: the involvement of protein kinase C and phosphatidylinositol 3-kinase. Eur J Pharmacol 2014; 738:8-13. [PMID: 24876058 DOI: 10.1016/j.ejphar.2014.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
Dexmedetomidine, an α2 adrenergic agonist, has neuroprotective and anticonvulsant properties in addition to its sedative and anxiolytic effects. We hypothesized that dexmedetomidine would increase the activity of excitatory amino acid transporter type 3 (EAAT3) and that this effect would involve protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K), two protein kinases known to regulate EAAT3 activity. EAAT3 was expressed in Xenopus oocytes by injecting its mRNA. Two-electrode voltage clamping was used to record membrane currents before, during, and after application of 30 μM l-glutamate in the presence of 0.1-30 nM dexmedetomidine. Dexmedetomidine-treated oocytes were also exposed to a PKC activator (phorbol-12-myristate-13-acetate [PMA]), PKC inhibitors (chelerythrine, staurosporine, and calphostin C), and PI3K inhibitors (wortmannin and LY294002) before current measurement. Dexmedetomidine application resulted in a concentration-dependent increase in the EAAT3 activity in response to l-glutamate. The kinetic study showed that dexmedetomidine significantly increased the Vmax without changing Km. Treatment of oocytes with PMA significantly increased transporter currents compared with controls, but treatment with dexmedetomidine plus PMA did not further increase the response compared with PMA or dexmedetomidine alone. In addition, pre-treatment of oocytes with PKC inhibitors and PI3K inhibitors significantly abolished the dexmedetomidine-enhanced EAAT3 activity. These results suggest that dexmedetomidine increases the activity of EAAT3 expressed in Xenopus oocytes. PKC and PI3K seem to mediate this effect. These findings may explain the neuroprotective and anticonvulsant effects of dexmedetomidine.
Collapse
Affiliation(s)
- Sang-Hwan Do
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, 463-707 Gyeonggi-do, South Korea
| | - Seong-Joo Park
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, 463-707 Gyeonggi-do, South Korea
| | - Hyun-Jung Shin
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, 463-707 Gyeonggi-do, South Korea
| | - Hye-Sun Paik
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Hea-Jo Yoon
- Department of Anesthesiology and Pain Medicine, Cheil General Hospital, Kwandong University, Seoul, South Korea
| | - Jung-Hee Ryu
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, 463-707 Gyeonggi-do, South Korea.
| |
Collapse
|
18
|
Kaminski RM, Rogawski MA, Klitgaard H. The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments. Neurotherapeutics 2014; 11:385-400. [PMID: 24671870 PMCID: PMC3996125 DOI: 10.1007/s13311-014-0266-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A major goal of contemporary epilepsy research is the identification of therapies to prevent the development of recurrent seizures in individuals at risk, including those with brain injuries, infections, or neoplasms; status epilepticus; cortical dysplasias; or genetic epilepsy susceptibility. In this review we consider the evidence largely from preclinical models for the antiepileptogenic activity of a diverse range of potential therapies, including some marketed antiseizure drugs, as well as agents that act by immune and inflammatory mechanisms; reduction of oxidative stress; activation of the mammalian target of rapamycin or peroxisome proliferator-activated receptors γ pathways; effects on factors related to thrombolysis, hematopoesis, and angiogenesis; inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reducatase; brain-derived neurotrophic factor signaling; and blockade of α2 adrenergic and cannabinoid receptors. Antiepileptogenesis refers to a therapy of which the beneficial action is to reduce seizure frequency or severity outlasting the treatment period. To date, clinical trials have failed to demonstrate that antiseizure drugs have such disease-modifying activity. However, studies in animal models with levetiracetam and ethosuximide are encouraging, and clinical trials with these agents are warranted. Other promising strategies are inhibition of interleukin 1β signaling by drugs such as VX-765; modulation of sphingosine 1-phosphate signaling by drugs such as fingolimod; activation of the mammalian target of rapamycin by drugs such as rapamycin; the hormone erythropoietin; and, paradoxically, drugs such as the α2 adrenergic receptor antagonist atipamezole and the CB1 cannabinoid antagonist SR141716A (rimonabant) with proexcitatory activity. These approaches could lead to a new paradigm in epilepsy drug therapy where treatment for a limited period prevents the occurrence of spontaneous seizures, thus avoiding lifelong commitment to symptomatic treatment.
Collapse
Affiliation(s)
| | - Michael A. Rogawski
- />Department of Neurology, University of California, Davis School of Medicine, Sacramento, CA USA
| | | |
Collapse
|
19
|
Dorandeu F, Dhote F, Barbier L, Baccus B, Testylier G. Treatment of status epilepticus with ketamine, are we there yet? CNS Neurosci Ther 2013; 19:411-27. [PMID: 23601960 PMCID: PMC6493567 DOI: 10.1111/cns.12096] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/23/2013] [Accepted: 02/23/2013] [Indexed: 12/24/2022] Open
Abstract
Status epilepticus (SE), a neurological emergency both in adults and in children, could lead to brain damage and even death if untreated. Generalized convulsive SE (GCSE) is the most common and severe form, an example of which is that induced by organophosphorus nerve agents. First- and second-line pharmacotherapies are relatively consensual, but if seizures are still not controlled, there is currently no definitive data to guide the optimal choice of therapy. The medical community seems largely reluctant to use ketamine, a noncompetitive antagonist of the N-methyl-d-aspartate glutamate receptor. However, a review of the literature clearly shows that ketamine possesses, in preclinical studies, antiepileptic properties and provides neuroprotection. Clinical evidences are scarcer and more difficult to analyze, owing to a use in situations of polytherapy. In absence of existing or planned randomized clinical trials, the medical community should make up its mind from well-conducted preclinical studies performed on appropriate models. Although potentially active, ketamine has no real place for the treatment of isolated seizures, better accepted drugs being used. Its best usage should be during GCSE, but not waiting for SE to become totally refractory. Concerns about possible developmental neurotoxicity might limit its pediatric use for refractory SE.
Collapse
Affiliation(s)
- Frederic Dorandeu
- Département de Toxicologie et risques chimiques, Institut de Recherche Biomédicale des Armées - Centre de Recherches du Service de Santé des Armées (IRBA-CRSSA), La Tronche Cedex, France.
| | | | | | | | | |
Collapse
|
20
|
Abdallah FW, Brull R. Facilitatory effects of perineural dexmedetomidine on neuraxial and peripheral nerve block: a systematic review and meta-analysis. Br J Anaesth 2013; 110:915-25. [PMID: 23587874 DOI: 10.1093/bja/aet066] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Nerve blocks improve postoperative analgesia, but their benefits may be short-lived. This quantitative review examines whether perineural dexmedetomidine as a local anaesthetic (LA) adjuvant for neuraxial and peripheral nerve blocks can prolong the duration of analgesia compared with LA alone. All randomized controlled trials (RCTs) comparing the effect of dexmedetomidine as an LA adjuvant to LA alone on neuraxial and peripheral nerve blocks were reviewed. Sensory block duration, motor block duration, block onset times, analgesic consumption, time to first analgesic request, and side-effects were analysed. RESULTS were combined using random-effects modelling. A total of 516 patients were analysed from nine RCTs. Five trials investigated dexmedetomidine as part of spinal anaesthesia and four as part of a brachial plexus (BP) block. Sensory block duration was prolonged by 150 min [95% confidence interval (CI): 96, 205, P<0.00001] with intrathecal dexmedetomidine. Perineural dexmedetomidine used in BP block may prolong the mean duration of sensory block by 284 min (95% CI: 1, 566, P=0.05), but this difference did not reach statistical significance. Motor block duration and time to first analgesic request were prolonged for both intrathecal and BP block. Dexmedetomidine produced reversible bradycardia in 7% of BP block patients, but no effect on the incidence of hypotension. No patients experienced respiratory depression. Dexmedetomidine is a potential LA adjuvant that can exhibit a facilitatory effect when administered intrathecally as part of spinal anaesthesia or peripherally as part of a BP block. However, there are presently insufficient safety data to support perineural dexmedetomidine use in the clinical setting.
Collapse
Affiliation(s)
- F W Abdallah
- Department of Anesthesia and Pain Management, St Michael's Hospital, and Women's College Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|
21
|
Rattka M, Brandt C, Löscher W. Do proconvulsants modify or halt epileptogenesis? Pentylenetetrazole is ineffective in two rat models of temporal lobe epilepsy. Eur J Neurosci 2012; 36:2505-20. [DOI: 10.1111/j.1460-9568.2012.08143.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Abstract
We assessed the neuroprotective potential of α(2)-adrenoceptors in ischemic stroke using mice with targeted deletions of individual α(2)-adrenoceptor subtypes (α(2A)(-/-), α(2B)(-/-), α(2C)(-/-), α(2A/C)(-/-)). The effects of the α(2)-adrenoceptor agonist clonidine were studied in parallel. Focal cerebral ischemia was induced with or without clonidine pretreatment by transient middle cerebral artery occlusion. Neurologic outcome and infarct volumes were evaluated on day 1. Cerebral blood flow (CBF) and mean arterial pressure were determined. α(2)-Adrenoceptor null mice did not display larger infarct volumes compared with wild-type (WT) mice under basal conditions (P>0.05). In line with this finding, pretreatment with clonidine did not protect from ischemic brain damage in WT mice or α(2A)(-/-), α(2B)(-/-), and α(2C)(-/-) mice. Clonidine induced smaller infarct volumes only in α(2A/C)(-/-) mice (P<0.05), but this did not translate into improved neurologic function (P>0.05). Importantly, while clonidine caused a significant decrease in arterial blood pressure in all groups, it had no blood pressure lowering effect in α(2A/C)(-/-) mice, and this correlated with higher CBF and smaller infarct volumes in this group. In summary, we could not demonstrate a neuroprotective function of α(2)-adrenoceptors in focal cerebral ischemia. Careful controlling of physiological parameters relevant for stroke outcome is recommended in experimental stroke studies.
Collapse
|
23
|
Chi OZ, Hunter C, Liu X, Weiss HR. The Effects of Dexmedetomidine on Regional Cerebral Blood Flow and Oxygen Consumption During Severe Hemorrhagic Hypotension in Rats. Anesth Analg 2011; 113:349-55. [DOI: 10.1213/ane.0b013e31822071db] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Choy M, Wells J, Thomas D, Gadian D, Scott R, Lythgoe M. Cerebral blood flow changes during pilocarpine-induced status epilepticus activity in the rat hippocampus. Exp Neurol 2010; 225:196-201. [DOI: 10.1016/j.expneurol.2010.06.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/01/2010] [Accepted: 06/20/2010] [Indexed: 01/07/2023]
|
25
|
Abstract
Prevention of epileptogenesis is an unmet need in medicine. During the last 3 years, however, several preclinical studies have demonstrated remarkable favorable effects of novel treatments on genetic and acquired epileptogenesis. These include the use of immunosuppressants and treatments that modify cellular adhesion, proliferation, and/or plasticity. In addition, the use of antiepileptic drugs in rats with genetic epilepsy or proconvulsants in acquired epilepsy models has provided somewhat unexpected favorable effects. This review summarizes these studies, and introduces some caveats when interpreting the data. In particular, the effect of genetic background, the severity of epileptogenic insult, the method and duration of seizure monitoring, and size of animal population are discussed. Furthermore, a novel scheme for defining epileptogenesis-related terms is presented.
Collapse
Affiliation(s)
- Asla Pitkänen
- Epilepsy Research Laboratory, AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
26
|
Ayoglu H, Gul S, Hanci V, Bahadir B, Bektas S, Mungan AG, Turan IO, Acikgoz B. The effects of dexmedetomidine dosage on cerebral vasospasm in a rat subarachnoid haemorrhage model. J Clin Neurosci 2010; 17:770-3. [PMID: 20381357 DOI: 10.1016/j.jocn.2009.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 10/13/2009] [Accepted: 10/14/2009] [Indexed: 11/16/2022]
Abstract
We investigated the effect of two different doses of dexmedetomidine on vasospasm in a rat model of subarachnoid haemorrhage (SAH). SAH was induced by injecting 0.3 mL blood into the cisterna magna in all rat groups except the control (Group C). At 1 hour and 24 hours after SAH, 5 microg/kg dexmedetomidine was given to group D5, and 10 microg/kg dexmedetomidine was given to group D10. No medication was administered to the haemorrhage group (Group H). Malondialdehyde (MDA) and paraoxonase (PON) levels were measured at 48 hours after SAH. Mean wall thickness (MWT), mean luminal diameter (MLD), and proliferating cell nuclear antigen (PCNA) expression of the basilar artery were evaluated. MDA levels and MWT were lower in the dexmedetomidine groups. The lowest MDA levels and MWT were found in Group D10. The MLD was lowest in Group H. PCNA expression was observed only in Group D10. We concluded that dexmedetomidine reduces oxidative stress and vasospasm following SAH in a dose-dependent manner.
Collapse
Affiliation(s)
- Hilal Ayoglu
- Department of Anesthesiology and Reanimation, School of Medicine, Zonguldak Karaelmas University, Kozlu, Zonguldak 67600, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Esmaoglu A, Ulgey A, Akin A, Boyaci A. Comparison between dexmedetomidine and midazolam for sedation of eclampsia patients in the intensive care unit. J Crit Care 2009; 24:551-5. [DOI: 10.1016/j.jcrc.2009.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 12/31/2008] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
|
28
|
Nakano T, Okamoto H. Dexmedetomidine-induced cerebral hypoperfusion exacerbates ischemic brain injury in rats. J Anesth 2009; 23:378-84. [DOI: 10.1007/s00540-009-0777-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
|
29
|
|
30
|
Dean JM, George S, Naylor AS, Mallard C, Gunn AJ, Bennet L. Partial neuroprotection with low-dose infusion of the alpha2-adrenergic receptor agonist clonidine after severe hypoxia in preterm fetal sheep. Neuropharmacology 2008; 55:166-74. [PMID: 18572205 DOI: 10.1016/j.neuropharm.2008.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/12/2008] [Accepted: 05/07/2008] [Indexed: 10/22/2022]
Abstract
We have previously shown that brief alpha(2)-adrenergic receptor blockade increased neuronal injury after severe hypoxia in preterm fetal sheep. We now examine whether infusion of an alpha(2)-adrenergic receptor agonist, clonidine, is neuroprotective. Preterm fetal sheep (70% gestation) received either saline-vehicle or clonidine at either 10 microg/kg/h (low-dose) or 100 microg/kg/h (high-dose) from 15 min until 4 h after 25 min of umbilical cord occlusion. Both low- and high-dose clonidine infusions after sham-occlusion were associated with transient EEG suppression but no neuronal loss. Low-dose but not high-dose clonidine infusions after umbilical cord occlusion were associated with a significant overall increase in numbers of surviving neurons after three days' recovery. High-dose clonidine was associated with transient hyperglycemia and increased numbers of delayed electrographic seizures. These results provide further evidence that alpha(2)-adrenergic receptor activation shortly after perinatal hypoxia-ischemia can promote neural recovery, but highlight the complex dose-response of exogenous therapy.
Collapse
Affiliation(s)
- Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
31
|
Tie L, Zhang JZ, Lin YH, Su TH, Li YH, Wu HL, Zhang YY, Yu HM, Li XJ. Epinephrine Increases Phosphorylation of MAP-2c in Rat Pheochromocytoma Cells (PC12 Cells) via a Protein Kinase C- and Mitogen Activated Protein Kinase-Dependent Mechanism. J Proteome Res 2008; 7:1704-11. [DOI: 10.1021/pr700711s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Jian-Zhao Zhang
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Yan-Hua Lin
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Tian-Hao Su
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Yu-Hua Li
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Hong-Li Wu
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - You-Yi Zhang
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - He-Ming Yu
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Xue-Jun Li
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| |
Collapse
|
32
|
Talke P, Stapelfeldt C, Garcia P. Dexmedetomidine Does Not Reduce Epileptiform Discharges in Adults With Epilepsy. J Neurosurg Anesthesiol 2007; 19:195-9. [PMID: 17592352 DOI: 10.1097/ana.0b013e318060d281] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There are limited data on the effect of dexmedetomidine on epileptiform electroencephalogram (EEG). The aim of this study was to investigate if dexmedetomidine will abolish epileptiform discharges in patients with medically refractory seizure disorders who were candidates for surgery to resect foci of epileptic activity. With approval from the Institutional Review Board and written informed consent, we enrolled 5 patients with medically intractable seizures who were undergoing continuous video/EEG monitoring. EEG and hemodynamic values were recorded from 15 minutes before, during, and for 60 minutes after a 60-minute dexmedetomidine infusion. Epileptiform discharges were counted for each 15-minute epoch during the study. Two of the 5 patients had a discrete spike focus in each hemisphere. Thus, we analyzed the activity of 7 distinct foci. Epileptiform activity did not decrease in any individual focus during dexmedetomidine infusion. Although dexmedetomidine did not have a statistically significant effect on interictal epileptiform activity for the group as a whole, the activity of 4 foci increased during dexmedetomidine infusion. Dexmedetomidine did not reduce seizure focus activity and thus may be a suitable anesthetic adjunct during seizure surgery.
Collapse
Affiliation(s)
- Pekka Talke
- Department of Anesthesia and Perioperative Medicine, University of California, San Francisco, CA 94143-048, USA.
| | | | | |
Collapse
|
33
|
Dean JM, Gunn AJ, Wassink G, George S, Bennet L. Endogenous alpha2-adrenergic receptor-mediated neuroprotection after severe hypoxia in preterm fetal sheep. Neuroscience 2006; 142:615-28. [PMID: 16952424 DOI: 10.1016/j.neuroscience.2006.06.066] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 06/20/2006] [Accepted: 06/21/2006] [Indexed: 11/28/2022]
Abstract
Central alpha-adrenergic receptor activity is important for fetal adaptation to hypoxia before birth. It is unclear whether it is also important during recovery. We therefore tested the hypothesis that an infusion of the specific alpha(2)-adrenergic receptor antagonist idazoxan (1 mg/kg/h i.v.) from 15 min to 4 h after profound hypoxia induced by 25 min umbilical cord occlusion in fetal sheep at 70% of gestation (equivalent to the 28-32 weeks in humans) would increase neural injury. After 3 days' recovery, idazoxan infusion was associated with a significant increase in neuronal loss in the hippocampus (P<0.05), expression of cleaved caspase-3 (P<0.05), and numbers of activated microglia (P<0.05). There was no significant effect on other neuronal regions or on loss of O4-positive premyelinating oligodendrocytes in the subcortical white matter. Idazoxan was associated with an increase in evolving epileptiform electroencephalographic (EEG) transient activity after occlusion (difference at peak 2.5+/-1.0 vs. 11.7+/-4.7 counts/min, P<0.05) and significantly reduced average spectral edge frequency, but not EEG intensity, from 54 until 72 h after occlusion (P<0.05). Hippocampal neuronal loss was correlated with total numbers of epileptiform transients during idazoxan infusion (P<0.01; r(2)=0.7). In conclusion, endogenous inhibitory alpha(2)-adrenergic receptor activation after severe hypoxia appears to significantly limit evolving hippocampal damage in the immature brain.
Collapse
Affiliation(s)
- J M Dean
- Department of Physiology, Faculty of Medicine and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
34
|
Pertovaara A, Haapalinna A, Sirviö J, Virtanen R. Pharmacological properties, central nervous system effects, and potential therapeutic applications of atipamezole, a selective alpha2-adrenoceptor antagonist. CNS DRUG REVIEWS 2006; 11:273-88. [PMID: 16389294 PMCID: PMC6741735 DOI: 10.1111/j.1527-3458.2005.tb00047.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atipamezole is an alpha2-adrenoceptor antagonist with an imidazole structure. Receptor binding studies indicate that its affinity for alpha2-adrenoceptors and its alpha2/alpha1 selectivity ratio are considerably higher than those of yohimbine, the prototype alpha2-adrenoceptor antagonist. Atipamezole is not selective for subtypes of alpha2-adrenoceptors. Unlike many other alpha2-adrenoceptor antagonists, it has negligible affinity for 5-HT1A and I2 binding sites. Atipamezole is rapidly absorbed and distributed from the periphery to the central nervous system. In humans, atipamezole at doses up to 30 mg/subject produced no cardiovascular or subjective side effects, while at a high dose (100 mg/subject) it produced subjective symptoms, such as motor restlessness, and an increase in blood pressure. Atipamezole rapidly reverses sedation/anesthesia induced by alpha2-adrenoceptor agonists. Due to this property, atipamezole is commonly used by veterinarians to awaken animals from sedation/anesthesia induced by alpha2-adrenoceptor agonists alone or in combination with various anesthetics. Atipamezole increased sexual activity in rats and monkeys. In animals with sustained nociception, atipamezole increased pain-related responses by blocking the noradrenergic feedback inhibition of pain. In tests assessing cognitive functions, atipamezole at low doses has beneficial effects on alertness, selective attention, planning, learning, and recall in experimental animals, but not necessarily on short-term working memory. At higher doses atipamezole impaired performance in tests of cognitive functions, probably due to noradrenergic overactivity. Recent experimental animal studies suggest that atipamezole might have beneficial effects in the recovery from brain damage and might potentiate the anti-Parkinsonian effects of dopaminergic drugs. In phase I studies atipamezole has been well tolerated by human subjects.
Collapse
Affiliation(s)
- Antti Pertovaara
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
35
|
Paris A, Mantz J, Tonner PH, Hein L, Brede M, Gressens P. The Effects of Dexmedetomidine on Perinatal Excitotoxic Brain Injury are Mediated by the ??2A-Adrenoceptor Subtype. Anesth Analg 2006; 102:456-61. [PMID: 16428542 DOI: 10.1213/01.ane.0000194301.79118.e9] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We performed the current study in mice lacking individual alpha2-adrenoceptor subtypes to elucidate the contribution of alpha(2)-adrenoceptor subtypes to the neuroprotective properties of dexmedetomidine in a model of perinatal excitotoxic brain injury. On postnatal Day 5, wild-type mice and mice lacking alpha2A-adrenoceptor (alpha2A-KO) or alpha2C-adrenoceptor subtypes (alpha2C-KO) were randomly assigned to receive dexmedetomidine (3 microg/kg) or phosphate-buffered saline intraperitoneally. Thirty minutes after the intraperitoneal injection, the glutamatergic agonist ibotenate (10 microg) was intracerebrally injected, producing transcortical necrosis and white matter lesions that mimic perinatal human hypoxic-like lesions. Quantification of the lesions was performed on postnatal Day 10 by histopathologic examination. Dexmedetomidine reduced mean lesion size in the cortex of wild-type mice and alpha2C-KO mice by 44% and 49%, respectively. Ibotenate-induced white matter lesions were reduced by 71% (wild-type mice) and 75% (alpha2C-KO mice) after pretreatment with dexmedetomidine. In contrast, in alpha2A-KO mice, dexmedetomidine did not protect against the cortical excitotoxic insult, and white matter lesions were even more pronounced (82% increase of mean lesion size). Dexmedetomidine provides potent neuroprotection in a model of perinatal excitotoxic brain damage. This effect was completely abolished in alpha2A-KO mice, suggesting that the neuroprotective effect is mediated via the alpha2A-adrenoceptor subtype.
Collapse
Affiliation(s)
- Andrea Paris
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Zhang Y, Kimelberg HK. Neuroprotection by alpha 2-adrenergic agonists in cerebral ischemia. Curr Neuropharmacol 2005; 3:317-23. [PMID: 18369397 PMCID: PMC2268994 DOI: 10.2174/157015905774322534] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 07/17/2005] [Indexed: 11/22/2022] Open
Abstract
Ischemic brain injury is implicated in the pathophysiology of stroke and brain trauma, which are among the top killers worldwide, and intensive studies have been performed to reduce neural cell death after cerebral ischemia. Alpha 2-adrenergic agonists have been shown to improve the histomorphological and neurological outcome after cerebral ischemic injury when administered during ischemia, and recent studies have provided considerable evidence that alpha 2-adrenergic agonists can protect the brain from ischemia/reperfusion injury. Thus, alpha 2-adrenergic agonists are promising potential drugs in preventing cerebral ischemic injury, but the mechanisms by which alpha 2-adrenergic agonists exert their neuroprotective effect are unclear. Activation of both the alpha 2-adrenergic receptor and imidazoline receptor may be involved. This mini review examines the recent progress in alpha 2-adrenergic agonists - induced neuroprotection and its proposed mechanisms in cerebral ischemic injury.
Collapse
Affiliation(s)
- Yonghua Zhang
- Neural and Vascular Biology Theme, Ordway Research Institute, 150 New Scotland Avenue, Albany, New York 12208, USA.
| | | |
Collapse
|
37
|
Kaminski RM, Shippenberg TS, Witkin JM, Rocha BA. Genetic deletion of the norepinephrine transporter decreases vulnerability to seizures. Neurosci Lett 2005; 382:51-5. [PMID: 15911120 PMCID: PMC1352306 DOI: 10.1016/j.neulet.2005.02.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 01/28/2005] [Accepted: 02/24/2005] [Indexed: 11/20/2022]
Abstract
Norepinephrine (NE) has been reported to modulate neuronal excitability and act as endogenous anticonvulsant. In the present study we used NE transporter knock-out mice (NET-KO), which are characterized by high levels of extracellular NE, to investigate the role of endogenous NE in seizure susceptibility. Seizure thresholds for cocaine (i.p.), pentylenetetrazol (i.v.) and kainic acid (i.v.) were compared in NET-KO, heterozygous (NET-HT) and wild type (NET-WT) female mice. The dose-response curve for cocaine-induced convulsions was significantly shifted to the right in NET-KO mice, indicating higher seizure thresholds. The threshold doses of pentylenetetrazol that induced clonic and tonic seizures were also significantly higher in NET-KO when compared to NET-WT mice. Similarly, NET-KO mice displayed higher resistance to convulsions engendered by kainic acid. For all drugs tested, the response of NET-HT mice was always intermediate. These data provide further support for a role of endogenous NE in the control of seizure susceptibility.
Collapse
|
38
|
Tanaka K, Oda Y, Funao T, Takahashi R, Hamaoka N, Asada A. Dexmedetomidine Decreases the Convulsive Potency of Bupivacaine and Levobupivacaine in Rats: Involvement of α2-Adrenoceptor for Controlling Convulsions. Anesth Analg 2005; 100:687-696. [PMID: 15728053 DOI: 10.1213/01.ane.0000144420.87770.fe] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dexmedetomidine, a highly selective alpha(2)-adrenoceptor agonist, is used in combination with local anesthetics for sedation and analgesia. We tested the hypothesis that dexmedetomidine used for sedation alters the convulsive potency of racemic bupivacaine and levobupivacaine in awake, spontaneously breathing rats. In the first experiments, male Sprague-Dawley rats were randomly divided into six groups: bupivacaine with no dexmedetomidine (bupivacaine control; BC), bupivacaine with small-dose dexmedetomidine (BS), bupivacaine with large-dose dexmedetomidine (BL), levobupivacaine with no dexmedetomidine (levobupivacaine control; LC), levobupivacaine with small-dose dexmedetomidine (LS), and levobupivacaine with large-dose dexmedetomidine (LL) (n = 10 for each group). Continuous infusion of dexmedetomidine (Groups BC and LC, 0 microg x kg(-1) x h(-1); Groups BS and LS, 3.6 microg x kg(-1) x h(-1); and Groups BL and LL, 10.8 microg x kg(-1) x h(-1)) was started after bolus injection (Groups BC and LC, 0 microg/kg; Groups BS and LS, 0.5 microg/kg; and Groups BL and LL, 1.5 microg/kg). Fifteen minutes after the start of the dexmedetomidine infusion, continuous infusion of bupivacaine (Groups BC, BS, and BL) or levobupivacaine (Groups LC, LS, and LL) at 1 mg x kg(-1) x min(-1) was started and continued until tonic/clonic convulsions occurred. Dexmedetomidine achieved significantly different sedation levels both in Groups BC, BS, and BL and in Groups LC, LS, and LL (P < 0.05). Convulsive doses of bupivacaine and levobupivacaine were significantly larger in Groups BL and LL than in Groups BC and LC, respectively (P < 0.01 for both). Concentrations of bupivacaine and levobupivacaine in plasma and in brain at the onset of convulsions were also larger in Groups BL and LL than in Groups BC and LC (P < 0.01 for both). In the second experiment, yohimbine (1 mg/kg) administered 10 min before and 5 min after the start of dexmedetomidine infusion completely reversed the sedative effect of dexmedetomidine (bolus 1.5 microg/kg, followed by 10.8 microg x kg(-1) x h(-1)). Convulsive doses and plasma and brain concentrations of bupivacaine and levobupivacaine at the onset of convulsions in rats receiving yohimbine and dexmedetomidine were significantly smaller than in those receiving only dexmedetomidine (P < 0.05 for all) and were similar to those without dexmedetomidine or yohimbine. We conclude that dexmedetomidine used for sedation decreases the convulsive potency of both bupivacaine and levobupivacaine in rats. Alpha(2)-adrenoceptor agonism may be involved in this anticonvulsant potency.
Collapse
Affiliation(s)
- Katsuaki Tanaka
- Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Pitkänen A, Narkilahti S, Bezvenyuk Z, Haapalinna A, Nissinen J. Atipamezole, an alpha(2)-adrenoceptor antagonist, has disease modifying effects on epileptogenesis in rats. Epilepsy Res 2004; 61:119-40. [PMID: 15451014 DOI: 10.1016/j.eplepsyres.2004.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 07/07/2004] [Accepted: 07/08/2004] [Indexed: 11/26/2022]
Abstract
Stimulation of alpha(2)-adrenoceptors delays the development of kindling, a model of epileptogenesis in humans. Blocking alpha(2)-adrenoceptors is proconvulsant, but has beneficial effects on somatomotor recovery after experimental stroke. We investigated whether atipamezole, a selective alpha(2)-adrenoceptor antagonist, affects the recovery process from status epilepticus (SE)-induced brain damage, which affects the risk of epileptogenesis. Vehicle or atipamezole (100 microg/kg/h) treatment was started 1 week after the induction of SE and continued for 9 weeks using Alzet minipumps (n = 70). Development and severity of epilepsy, spatial and emotional learning, and histologic analysis were used as outcome measures. There were no differences in the percentage of animals with epilepsy in the different treatment groups. In the atipamezole group, however, daily seizure frequency was lower (P < 0.01), a higher percentage of epileptic animals had mild epilepsy (<1 seizure/day; P < 0.01), and seizure frequency did not increase over time compared with the vehicle group. The atipamezole group had milder hilar cell damage (P < 0.05) and less intense mossy fiber sprouting (P < 0.05). Behavioral impairments were similar between groups. Our data indicate that chronic treatment with atipamezole does not prevent epileptogenesis. There is, however, a disease-modifying effect; that is, the epilepsy that develops is milder and non-progressive. These data warrant further studies.
Collapse
Affiliation(s)
- Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O. Box 1627, FIN-70 211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
40
|
Ma D, Hossain M, Rajakumaraswamy N, Arshad M, Sanders RD, Franks NP, Maze M. Dexmedetomidine produces its neuroprotective effect via the α2A-adrenoceptor subtype. Eur J Pharmacol 2004; 502:87-97. [PMID: 15464093 DOI: 10.1016/j.ejphar.2004.08.044] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 08/09/2004] [Accepted: 08/19/2004] [Indexed: 10/26/2022]
Abstract
Which of the three alpha2-adrenoceptor subtypes of alpha2A, alpha2B, or alpha2C mediates the neuroprotective effect of dexmedetomidine was examined in cell culture as well as in an in vivo model of neonatal asphyxia. Dexmedetomidine dose-dependently attenuated neuronal injury (IC50=83+/-1 nM) in neuronal-glial co-cultures derived from wild-type mice; contrastingly, dexmedetomidine did not exert neuroprotection in injured cells from transgenic mice (D79N) expressing dysfunctional alpha2A-adrenoceptors. An alpha2A-adrenoceptor subtype-preferring antagonist 2-[(4,5-Dihydro-1H-imidazol-2-yl)methyl]-2,3-dihydro-1-methyl-1H-isoindole maleate (BRL44408) completely reversed dexmedetomidine-induced neuroprotection, while other subtype-preferring antagonists 2-[2-(4-(2-Methoxyphenyl)piperazin-1-yl)ethyl]-4,4-dimethyl-1,3-(2H,4H)-isoquinolindione dihydrochloride (ARC239) (alpha2B) and rauwolscine (alpha2C) had no significant effect on the neuroprotective effect of dexmedetomidine in neuronal-glial co-cultures. Dexmedetomidine also protected against exogenous glutamate induced cell death in pure cortical neuron cultures assessed by flow cytometry and reduced both apoptotic and necrotic types of cell death. Likewise this neuroprotective effect was antagonised by BRL44408 but not ARC239 or rauwolscine. Dexmedetomidine exhibited dose-dependent protection against brain matter loss in vivo (IC50=40.3+/-6.1 microg/kg) and improved the neurologic functional deficit induced by the hypoxic-ischemic insult. Protection by dexmedetomidine against hypoxic-ischemic-induced brain matter loss was reversed by the alpha2A-adrenoceptor subtype-preferring antagonist BRL44408; neither ARC239 nor rauwolscine reversed the neuroprotective effect of dexmedetomidine in vivo. Our data suggest that the neuroprotective effect of dexmedetomidine is mediated by activation of the alpha2A adrenergic receptor subtype.
Collapse
Affiliation(s)
- Daqing Ma
- Department of Anaesthetics, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Bialer M, Johannessen SI, Kupferberg HJ, Levy RH, Perucca E, Tomson T. Progress report on new antiepileptic drugs: a summary of the Seventh Eilat Conference (EILAT VII). Epilepsy Res 2004; 61:1-48. [PMID: 15570674 DOI: 10.1016/j.eplepsyres.2004.07.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Seventh Eilat Conference on New Antiepileptic Drugs (AEDs) (EILAT VII) took place in Villasimius, Sardinia, Italy from the 9th to 13th May 2004. Basic scientists, clinical pharmacologists and neurologists from 24 countries attended the conference,whose main themes included advances in pathophysiology of drug resistance, new AEDs in pediatric epilepsy syndromes, modes of AED action and spectrum of adverse effects and a re-appraisal of comparative responses to AED combinations. Consistent with previous formats of this conference, the central part of the conference was devoted to a review of AEDs in development, as well as updates on second-generation AEDs. This article summarizes the information presented on drugs in development, including atipamezole, BIA-2-093, fluorofelbamate, NPS 1776, pregabalin, retigabine, safinamide, SPM 927, stiripentol, talampanel,ucb 34714 and valrocemide (TV 1901). Updates on felbamate, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, tiagabine,topiramate, vigabatrin, zonisamide, new oral and parenteral formulations of valproic acid and SPM 927 and the antiepileptic vagal stimulator device are also presented.
Collapse
Affiliation(s)
- Meir Bialer
- Department of Pharmaceutics, Faculty of Medicine, School of Pharmacy and David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Although alpha(2)-adrenoceptor agonists are widely used for analgesia, anxiolysis, sedation, sympatholysis and as anaesthetic-adjuncts for many years, their potential use as neuroprotectants has so far been confined to laboratory experiments. Despite the large body of evidence from both in vivo and in vitro studies, their exact neuroprotective mechanisms remain elusive. Herein, we review the available literature pertaining to the neuroprotective effect of alpha(2)-adrenoceptor agonists and the possible biochemical and physiological cascades involved in their mechanisms of action. The remarkable safety profile of alpha(2)-adrenoceptor agonists and their high potency of neuroprotection should prompt clinical trials to evaluate their neuroprotective efficacy in humans.
Collapse
Affiliation(s)
- Daqing Ma
- Department of Anaesthetics, Imperial College London, Chelsea & Westminster Campus, London SW10 9NH, UK.
| | | | | |
Collapse
|
43
|
Zhang Y. Clonidine preconditioning decreases infarct size and improves neurological outcome from transient forebrain ischemia in the rat. Neuroscience 2004; 125:625-31. [PMID: 15099676 DOI: 10.1016/j.neuroscience.2004.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2004] [Indexed: 11/16/2022]
Abstract
Clonidine, a alpha(2)-adrenergic receptor agonist, has been demonstrated to be neuroprotective when administered during ischemia. It is not known whether clonidine can precondition brain against ischemia. We examined this possibility using a transient forebrain ischemia model. Rats received 40 microg/kg of clonidine intraperitoneally at 6, 18, 24 and 72 h as well as 1 week before the forebrain ischemia that was produced by bilateral common carotid arterial occlusion combined with hemorrhagic hypotension to mean arterial pressure 50 mm Hg for 30 min. They were intubated and ventilated with a gas mixture of 1.0% halothane in 30% O(2)/balance air during the procedure. Rats that received clonidine at 6, 18 and 24 h before the ischemia had significantly improved neurological deficit scores and reduced infarct sizes evaluated 3 days after the ischemia. A selective alpha(2)-adrenoceptor antagonist, yohimbine, abolished the neuroprotective effects of clonidine preconditioning. We conclude that there is time window for clonidine preconditioning to be neuroprotective and that alpha(2)-adrenoceptors are important in mediating clonidine preconditioning-induced neuroprotection.
Collapse
Affiliation(s)
- Y Zhang
- Department of Neurosurgery, Nantong Medical College Second Affiliated Hospital, Nantong, Jiangsu Province 226001, PR China.
| |
Collapse
|
44
|
|
45
|
Niittykoski M, Haapalinna A, Sirviö J. Diminution of N-methyl-D-aspartate-induced perturbation of neurotransmission by dexmedetomidine in the CA1 field of rat hippocampus in vitro. Neurosci Lett 2000; 281:95-8. [PMID: 10704751 DOI: 10.1016/s0304-3940(00)00811-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of alpha(2)-adrenoceptor activation on N-methyl-D-aspartic acid (NMDA)-induced perturbation of neurotransmission and normal NMDA-receptor dependent function (long-term potentiation, (LTP)) were investigated in the hippocampal CA1 field in vitro. Bath perfusion of dexmedetomidine hydrochloride (50 nM), which was initiated before NMDA (100 microM) exposure, enhanced the extent of recovery of extracellular field excitatory postsynaptic potentials after NMDA infusion. On the other hand, the induction and early maintenance of LTP was normal in the presence of dexmedetomidine. Thus, dexmedetomidine can diminish acute NMDA-induced perturbation of neurotransmission while the same dose of this drug does not influence the normal activation of NMDA receptors.
Collapse
Affiliation(s)
- M Niittykoski
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O. Box 1627, FIN-70211, Kuopio, Finland.
| | | | | |
Collapse
|
46
|
Jolkkonen J, Puurunen K, Koistinaho J, Kauppinen R, Haapalinna A, Nieminen L, Sivenius J. Neuroprotection by the alpha2-adrenoceptor agonist, dexmedetomidine, in rat focal cerebral ischemia. Eur J Pharmacol 1999; 372:31-6. [PMID: 10374712 DOI: 10.1016/s0014-2999(99)00186-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study was undertaken to explore the possible neuroprotective effect of the selective alpha2-adrenoceptor agonist, dexmedetomidine in a rat model of focal cerebral ischemia. The effect of dexmedetomidine (9 microg kg(-1)) on infarct volume was assessed and compared to that of glutamate receptor antagonists cis-4(phosphonomethyl)-2-piperidine carboxylic acid (CGS-19755) (20 mg kg(-1)) or 2,3-dihydro-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) (50 mg kg(-1)). Dexmedetomidine decreased total ischemic volume by 40% in the cortex (P<0.05) compared to NaCl-treated control rats, whereas NBQX reduced the infarct by 73% in the cortex (P<0.001) and by 43% in the striatum (P<0.01). Dexmedetomidine infusion was associated with some minor degree of hyperglycemia and hypotension. Drug-induced kidney changes were only seen in NBQX-treated rats. These results suggest that dexmedetomidine reduced ischemic volume despite causing a minor increase in blood glucose concentrations and hypotension. Its neuroprotective efficacy was better than that produced by CGS-19775, and dexmedetomidine was safer with respect to kidney toxicity when compared to NBQX.
Collapse
Affiliation(s)
- J Jolkkonen
- Department of Neurology, University of Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
47
|
Riihioja P, Jaatinen P, Haapalinna A, Kiianmaa K, Hervonen A. Effects of Dexmedetomidine on Rat Locus Coeruleus and Ethanol Withdrawal Symptoms During Intermittent Ethanol Exposure. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04134.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
48
|
Nakai T, Milusheva E, Baranyi M, Uchihashi Y, Satoh T, Vizi ES. Excessive release of [3H]noradrenaline and glutamate in response to simulation of ischemic conditions in rat spinal cord slice preparation: effect of NMDA and AMPA receptor antagonists. Eur J Pharmacol 1999; 366:143-50. [PMID: 10082194 DOI: 10.1016/s0014-2999(98)00917-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study we investigated the effects of NMDA and non-NMDA glutamate receptor antagonists on the ischemia-evoked release of [3H]noradrenaline from rat spinal cord slices. An in vitro ischemia model (oxygen and glucose deprivation) was used to simulate the ischemic conditions known to cause neuronal injury. Spinal cord slices were loaded with [3H]noradrenaline and superfused with Krebs solution in a micro-organ bath. Both axonal stimulation and ischemia increased the release of [3H]noradrenaline, but the release in response to glucose and oxygen deprivation was [Ca2+]o independent. Dizocilpine (MK-801), an NMDA receptor antagonist, suppressed the release of [3H]noradrenaline produced by ischemia, while it enhanced the release of [3H]noradrenaline evoked by electrical field stimulation. In contrast, LY300168 (GYKI-53655) [(+/-)-3-N-methylcarbamyde-1-(4-aminophenyl)-4-methyl-1.8-methylen e-dioxy-5H-2.3-benzodiazepine] and its (-)isomer LY303070 (GYKI-53784) [(-)-3-N-methylcarbamyde-1-(4-aminophenyl)-4-methyl-1.8-methylene- dioxy-5H-2.3-benzodiazepine] AMPA receptor antagonists, had no effect on the release of [3H]noradrenaline evoked by either electrical stimulation or ischemia. Desipramine, a noradrenaline uptake inhibitor, potentiated the release of [3H]noradrenaline evoked by ischemia, while in the absence of [Ca2+]o but under conditions when [3H]noradrenaline release was further increased, it reduced the release. Dizocilpine also decreased glutamate and aspartate release, measured by high performance liquid chromatography, during ischemia. It is concluded that glutamate release and NMDA receptors, but not AMPA receptors, are involved in the acute effect of oxygen and glucose deprivation on the excessive release of noradrenaline and that this release is not related to physiological axonal conduction.
Collapse
Affiliation(s)
- T Nakai
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest
| | | | | | | | | | | |
Collapse
|
49
|
Miettinen R, Kotti T, Tuunanen J, Toppinen A, Riekkinen P, Halonen T. Hippocampal damage after injection of kainic acid into the rat entorhinal cortex. Brain Res 1998; 813:9-17. [PMID: 9824657 DOI: 10.1016/s0006-8993(98)00915-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several experimental models of epilepsy have used kainic acid in animals to induce seizures and neuropathological changes which mimic those observed in human temporal lobe epilepsy. These models differ in the location and manner in which kainic acid is applied. In the present study, we characterized the seizure activity and neuropathological changes that occur in awake rats after kainic acid (25 ng/250 nl) is injected into the entorhinal cortex of freely moving rats. In 91% of the animals, this induced generalized motor seizures. Moreover, all of the animals survived status epilepticus. Animals were perfused two weeks after the injection for neuropathological examination. Silver-impregnation revealed that kainic acid caused pyramidal cell damage which was most severe in the CA1 subfield and to a lesser degree in the CA3c area. A loss of NADPH diaphorase-containing neurons in the hilus and the CA1 area was also consistently seen and, in most cases, a population of somatostatin-immunoreactive neurons was diminished. Our findings show that a minute amount of kainic acid delivered directly to the entorhinal cortex on unanesthetized animals reliably produces generalized seizures as well as a consistent pattern of cell damage in the hippocampus. Therefore, this model may be suitable for investigating the mechanisms underlying temporal lobe epilepsy, and may prove useful in assessing different treatment strategies for preventing seizure-induced structural damage.
Collapse
Affiliation(s)
- R Miettinen
- Department of Neuroscience and Neurology, University and University Hospital of Kuopio, P.O. Box 1627, FIN-70211, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
50
|
Milner TA, Lee A, Aicher SA, Rosin DL. Hippocampal ?2A-adrenergic receptors are located predominantly presynaptically but are also found postsynaptically and in selective astrocytes. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980808)395:3<310::aid-cne4>3.0.co;2-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|