1
|
Yoldaş MA, Bekdaş M, Danış A, Çetinkaya A, Düzcü SE, Alışık M, Kocabey H, Türel İ, Dinçel GK. Protective and therapeutic effects of okra seed in acute nontraumatic brain injury. Int J Neurosci 2025; 135:148-157. [PMID: 38060590 DOI: 10.1080/00207454.2023.2292948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 02/04/2025]
Abstract
AIM The purpose of this study was to examine the protective and therapeutic effects of okra (Abelmoschus esculentus [AE]) seed extract, with its known antioxidant, immunomodulatory, and anti-inflammatory properties, in an acetaminophen (paracetamol, N-acetyl- para-aminophenol)-induced model of hepatotoxicity and subsequent acute non-traumatic brain damage. MATERIAL AND METHOD Forty male Wistar rats were randomly divided into five equal groups, control, paracetamol (P), okra seed extract (AE), okra seed extract + paracetamol (P + AE), and okra seed extract + paracetamol + N-acetyl cysteine (NAC) (P + AE + N). AE was administered by oral gavage through a gastric tube at 600 mg/kg/day for seven days. On the eighth day of the procedure, a single 1 g/kg dose of paracetamol and 300 mg/kg NAC were injected via the intraperitoneal route 1.5 h after AE administration. Rat tissue specimens were subsequently subjected to biochemical and histopathological analyses. Levels of markers such as S100 calcium-binding protein B (S100B), neuron-specific enolase (NSE), and matrix membrane metalloproteinase-9 (MMP-9) were investigated from rat serum specimens. Malondialdehyde (MDA) and superoxide dismutase (SOD) were also measured to determine oxidant-antioxidant status. RESULTS S100B, NSE, MMP-9, MDA levels, and SOD enzyme activities were examined using biochemical methods. MDA levels were significantly lower in the P + AE group and MMP-9 levels in the AE, P + AE, and P + AE + N groups compared to the P group. Histopathological examination results supported the biochemical findings. CONCLUSION Okra seed extract exhibits a protective and therapeutic effect against non-traumatic brain damage resulting from acute paracetamol intoxication. We think that this benefit of AE derives from its antioxidant property.
Collapse
Affiliation(s)
- Meyri Arzu Yoldaş
- Department of Pediatrics, Bolu Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Mervan Bekdaş
- Department of Pediatrics, Bolu Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Ayşegül Danış
- Department of Pediatric Neurology, Bolu Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Ayhan Çetinkaya
- Department of Physiology, Bolu Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Selma Erdoğan Düzcü
- Department of Pathology, Bolu Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Murat Alışık
- Department of Medical Biochemistry, Bolu Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Hüseyin Kocabey
- Department of Pediatrics, Bolu Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - İdris Türel
- Department of Pharmacology, Bolu Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Gökçe Kaya Dinçel
- Department of Pediatrics, Bolu Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| |
Collapse
|
2
|
Moreira GG, Gomes CM. Tau liquid-liquid phase separation is modulated by the Ca 2+ -switched chaperone activity of the S100B protein. J Neurochem 2023; 166:76-86. [PMID: 36621842 DOI: 10.1111/jnc.15756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/03/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023]
Abstract
Aggregation of the microtubule-associated protein tau is implicated in several neurodegenerative tauopathies including Alzheimer's disease (AD). Recent studies evidenced tau liquid-liquid phase separation (LLPS) into droplets as an early event in tau pathogenesis with the potential to enhance aggregation. Tauopathies like AD are accompanied by sustained neuroinflammation and the release of alarmins at early stages of inflammatory responses encompass protective functions. The Ca2+ -binding S100B protein is an alarmin augmented in AD that was recently implicated as a proteostasis regulator acting as a chaperone-type protein, inhibiting aggregation and toxicity through interactions of amyloidogenic clients with a regulatory surface exposed upon Ca2+ -binding. Here we expand the regulatory functions of S100B over protein condensation phenomena by reporting its Ca2+ -dependent activity as a modulator of tau LLPS induced by crowding agents (PEG) and metal ions (Zn2+ ). We observe that apo S100B has a negligible effect on PEG-induced tau demixing but that Ca2+ -bound S100B prevents demixing, resulting in a shift of the phase diagram boundary to higher crowding concentrations. Also, while incubation with apo S100B does not compromise tau LLPS, addition of Ca2+ results in a sharp decrease in turbidity, indicating that interactions with S100B-Ca2+ promote transition of tau to the mixed phase. Further, electrophoretic analysis and FLIM-FRET studies revealed that S100B incorporates into tau liquid droplets, suggesting an important stabilizing and chaperoning role contributing to minimize toxic tau aggregates. Resorting to Alexa488-labeled tau we observed that S100B-Ca2+ reduces the formation of tau fluorescent droplets, without compromising liquid-like behavior and droplet fusion events. The Zn2+ -binding properties of S100B also contribute to regulate Zn2+ -promoted tau LLPS as droplets are decreased by Zn2+ buffering by S100B, in addition to the Ca2+ -triggered interactions with tau. Altogether this work uncovers the versatility of S100B as a proteostasis regulator acting on protein condensation phenomena of relevance across the neurodegeneration continuum.
Collapse
Affiliation(s)
- Guilherme G Moreira
- BioISI-Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudio M Gomes
- BioISI-Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
S100B Affects Gut Microbiota Biodiversity. Int J Mol Sci 2023; 24:ijms24032248. [PMID: 36768570 PMCID: PMC9916897 DOI: 10.3390/ijms24032248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
This in vivo study in mice addresses the relationship between the biodiversity of the microbiota and the levels of S100B, a protein present in enteroglial cells, but also in foods such as milk. A positive significant correlation was observed between S100B levels and Shannon values, which was reduced after treatment with Pentamidine, an inhibitor of S100B function, indicating that the correlation was influenced by the modulation of S100B activity. Using the bootstrap average method based on the distribution of the S100B concentration, three groups were identified, exhibiting a significant difference between the microbial profiles. Operational taxonomic units, when analyzed by SIMPER analysis, showed that genera regarded to be eubiotic were mainly concentrated in the intermediate group, while genera potentially harboring pathobionts often appeared to be more concentrated in groups where the S100B amounts were very low or high. Finally, in a pilot experiment, S100B was administered orally, and the microbial profiles appeared to be modified accordingly. These data may open novel perspectives involving the possibility of S100B-mediated regulation in the intestinal microbiota.
Collapse
|
4
|
Lapergola G, Graziosi A, D'Adamo E, Brindisino P, Ferrari M, Romanelli A, Strozzi M, Libener R, Gavilanes DAW, Maconi A, Satriano A, Varrica A, Gazzolo D. S100B in cardiac surgery brain monitoring: friend or foe? Clin Chem Lab Med 2022; 60:317-331. [PMID: 35001583 DOI: 10.1515/cclm-2021-1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/29/2021] [Indexed: 11/15/2022]
Abstract
Recent advances in perioperative management of adult and pediatric patients requiring open heart surgery (OHS) and cardiopulmonary bypass (CPB) for cardiac and/or congenital heart diseases repair allowed a significant reduction in the mortality rate. Conversely morbidity rate pattern has a flat trend. Perioperative period is crucial since OHS and CPB are widely accepted as a deliberate hypoxic-ischemic reperfusion damage representing the cost to pay at a time when standard of care monitoring procedures can be silent or unavailable. In this respect, the measurement of neuro-biomarkers (NB), able to detect at early stage perioperative brain damage could be especially useful. In the last decade, among a series of NB, S100B protein has been investigated. After the first promising results, supporting the usefulness of the protein as predictor of short/long term adverse neurological outcome, the protein has been progressively abandoned due to a series of limitations. In the present review we offer an up-dated overview of the main S100B pros and cons in the peri-operative monitoring of adult and pediatric patients.
Collapse
Affiliation(s)
| | | | - Ebe D'Adamo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | | | | | - Anna Romanelli
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | - Mariachiara Strozzi
- Department of Maternal, Fetal and Neonatal Medicine, ASO SS Antonio, Biagio and C. Arrigo, Alessandria, Italy
| | - Roberta Libener
- Department of Maternal, Fetal and Neonatal Medicine, ASO SS Antonio, Biagio and C. Arrigo, Alessandria, Italy
| | - Danilo A W Gavilanes
- Department of Pediatrics and Neonatology, Maastricht University, Maastricht, The Netherlands
| | - Antonio Maconi
- Department of Maternal, Fetal and Neonatal Medicine, ASO SS Antonio, Biagio and C. Arrigo, Alessandria, Italy
| | - Angela Satriano
- Department of Pediatric Cardiac Surgery, IRCCS San Donato Milanese Hospital, Milan, Italy
| | - Alessandro Varrica
- Department of Pediatric Cardiac Surgery, IRCCS San Donato Milanese Hospital, Milan, Italy
| | - Diego Gazzolo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| |
Collapse
|
5
|
Moreira GG, Cantrelle FX, Quezada A, Carvalho FS, Cristóvão JS, Sengupta U, Puangmalai N, Carapeto AP, Rodrigues MS, Cardoso I, Fritz G, Herrera F, Kayed R, Landrieu I, Gomes CM. Dynamic interactions and Ca 2+-binding modulate the holdase-type chaperone activity of S100B preventing tau aggregation and seeding. Nat Commun 2021; 12:6292. [PMID: 34725360 PMCID: PMC8560819 DOI: 10.1038/s41467-021-26584-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022] Open
Abstract
The microtubule-associated protein tau is implicated in the formation of oligomers and fibrillar aggregates that evade proteostasis control and spread from cell-to-cell. Tau pathology is accompanied by sustained neuroinflammation and, while the release of alarmin mediators aggravates disease at late stages, early inflammatory responses encompass protective functions. This is the case of the Ca2+-binding S100B protein, an astrocytic alarmin which is augmented in AD and which has been recently implicated as a proteostasis regulator, acting over amyloid β aggregation. Here we report the activity of S100B as a suppressor of tau aggregation and seeding, operating at sub-stoichiometric conditions. We show that S100B interacts with tau in living cells even in microtubule-destabilizing conditions. Structural analysis revealed that tau undergoes dynamic interactions with S100B, in a Ca2+-dependent manner, notably with the aggregation prone repeat segments at the microtubule binding regions. This interaction involves contacts of tau with a cleft formed at the interface of the S100B dimer. Kinetic and mechanistic analysis revealed that S100B inhibits the aggregation of both full-length tau and of the microtubule binding domain, and that this proceeds through effects over primary and secondary nucleation, as confirmed by seeding assays and direct observation of S100B binding to tau oligomers and fibrils. In agreement with a role as an extracellular chaperone and its accumulation near tau positive inclusions, we show that S100B blocks proteopathic tau seeding. Together, our findings establish tau as a client of the S100B chaperone, providing evidence for neuro-protective functions of this inflammatory mediator across different tauopathies. The calcium binding protein S100B is an abundantly expressed protein in the brain and has neuro-protective functions by inhibiting Aβ aggregation and metal ion toxicity. Here, the authors combine cell biology and biochemical experiments with chemical kinetics and NMR measurements and show that S100B protein is an extracellular Tau chaperone and further characterize the interactions between S100B and Tau.
Collapse
Affiliation(s)
- Guilherme G Moreira
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - François-Xavier Cantrelle
- CNRS ERL9002 Integrative Structural Biology, F-59000, Lille, France.,Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Andrea Quezada
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa S Carvalho
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Joana S Cristóvão
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX, 77555-1045, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX, 77555-1045, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ana P Carapeto
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mário S Rodrigues
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Isabel Cardoso
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013, Porto, Portugal
| | - Güenter Fritz
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Stuttgart, 70599, Germany
| | - Federico Herrera
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX, 77555-1045, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Isabelle Landrieu
- CNRS ERL9002 Integrative Structural Biology, F-59000, Lille, France.,Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Cláudio M Gomes
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal. .,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
6
|
Michetti F, Di Sante G, Clementi ME, Sampaolese B, Casalbore P, Volonté C, Romano Spica V, Parnigotto PP, Di Liddo R, Amadio S, Ria F. Growing role of S100B protein as a putative therapeutic target for neurological- and nonneurological-disorders. Neurosci Biobehav Rev 2021; 127:446-458. [PMID: 33971224 DOI: 10.1016/j.neubiorev.2021.04.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
S100B is a calcium-binding protein mainly expressed by astrocytes, but also localized in other definite neural and extra-neural cell types. While its presence in biological fluids is widely recognized as a reliable biomarker of active injury, growing evidence now indicates that high levels of S100B are suggestive of pathogenic processes in different neural, but also extra-neural, disorders. Indeed, modulation of S100B levels correlates with the occurrence of clinical and/or toxic parameters in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, muscular dystrophy, multiple sclerosis, acute neural injury, inflammatory bowel disease, uveal and retinal disorders, obesity, diabetes and cancer, thus directly linking the levels of S100B to pathogenic mechanisms. In general, deletion/inactivation of the protein causes the improvement of the disease, whereas its over-expression/administration induces a worse clinical presentation. This scenario reasonably proposes S100B as a common therapeutic target for several different disorders, also offering new clues to individuate possible unexpected connections among these diseases.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
| | - Gabriele Di Sante
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Beatrice Sampaolese
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Patrizia Casalbore
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Cinzia Volonté
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy; Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy.
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy.
| | - Rosa Di Liddo
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy.
| | - Susanna Amadio
- Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| |
Collapse
|
7
|
Su X, Vasilkovska T, Fröhlich N, Garaschuk O. Characterization of cell type-specific S100B expression in the mouse olfactory bulb. Cell Calcium 2021; 94:102334. [PMID: 33460952 DOI: 10.1016/j.ceca.2020.102334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
S100B is an EF-hand type Ca2+-binding protein of the S100 family, known to support neurogenesis and to promote the interactions between brain's nervous and immune systems. Here, we characterized the expression of S100B in the mouse olfactory bulb, a neurogenic niche comprising mature and adult-born neurons, astrocytes, oligodendrocytes and microglia. Besides astrocytes, for which S100B is a classical marker, S100B was also expressed in NG2 cells and, surprisingly, in APC-positive myelinating oligodendrocytes but not in mature/adult-born neurons or microglia. Various layers of the bulb differed substantially in the composition of S100B-positive cells, with the highest fraction of the APC-positive oligodendrocytes found in the granule cell layer. Across all layers, ∼50 % of NG2 cells were S100B-negative. Finally, our data revealed a strong correlation between the fraction of myelinating oligodendrocytes among the S100B-positive cells and the oligodendrocyte density in different brain areas, underscoring the importance of S100B for the establishment and maintenance of myelin sheaths.
Collapse
Affiliation(s)
- Xin Su
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tamara Vasilkovska
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Nicole Fröhlich
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Orsini M, Di Liddo R, Valeriani F, Mancin M, D’Incà R, Castagnetti A, Aceti A, Parnigotto PP, Romano Spica V, Michetti F. In Silico Evaluation of Putative S100B Interacting Proteins in Healthy and IBD Gut Microbiota. Cells 2020; 9:cells9071697. [PMID: 32679810 PMCID: PMC7407188 DOI: 10.3390/cells9071697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
The crosstalk between human gut microbiota and intestinal wall is essential for the organ’s homeostasis and immune tolerance. The gut microbiota plays a role in healthy and pathological conditions mediated by inflammatory processes or by the gut-brain axes, both involving a possible role for S100B protein as a diffusible cytokine present not only in intestinal mucosa but also in faeces. In order to identify target proteins for a putative interaction between S100B and the microbiota proteome, we developed a bioinformatics workflow by integrating the interaction features of known domains with the proteomics data derived from metataxonomic studies of the gut microbiota from healthy and inflammatory bowel disease (IBD) subjects. On the basis of the microbiota composition, proteins putatively interacting with S100B domains were in fact found, both in healthy subjects and IBD patients, in a reduced number in the latter samples, also exhibiting differences in interacting domains occurrence between the two groups. In addition, differences between ulcerative colitis and Crohn disease samples were observed. These results offer the conceptual framework for where to investigate the role of S100B as a candidate signalling molecule in the microbiota/gut communication machinery, on the basis of interactions differently conditioned by healthy or pathological microbiota.
Collapse
Affiliation(s)
- Massimiliano Orsini
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10, 35020 Legnaro PD, Italy; (M.O.); (M.M.)
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy;
| | - Federica Valeriani
- Laboratory of Epidemiology and Biotechnologies, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis, 6, 00135 Rome, Italy;
| | - Marzia Mancin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10, 35020 Legnaro PD, Italy; (M.O.); (M.M.)
| | - Renata D’Incà
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Unit, University Hospital of Padua, 35121 Padua, Italy;
| | | | - Antonio Aceti
- Clinical Infectious Diseases, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy;
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling T.E.S. onlus Padua, Via De Sanctis 10, Caselle di Selvazzano Dentro, 35030 Padua, Italy;
| | - Vincenzo Romano Spica
- Laboratory of Epidemiology and Biotechnologies, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis, 6, 00135 Rome, Italy;
- Correspondence: ; Tel.: +3906-3673-32-47
| | - Fabrizio Michetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
- IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| |
Collapse
|
9
|
Bersani I, Pluchinotta F, Dotta A, Savarese I, Campi F, Auriti C, Chuklantseva N, Piersigilli F, Gazzolo F, Varrica A, Satriano A, Gazzolo D. Early predictors of perinatal brain damage: the role of neurobiomarkers. Clin Chem Lab Med 2020; 58:471-486. [PMID: 31851609 DOI: 10.1515/cclm-2019-0725] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/31/2019] [Indexed: 09/17/2023]
Abstract
The early detection of perinatal brain damage in preterm and term newborns (i.e. intraventricular hemorrhage, periventricular leukomalacia and perinatal asphyxia) still constitute an unsolved issue. To date, despite technological improvement in standard perinatal monitoring procedures, decreasing the incidence of perinatal mortality, the perinatal morbidity pattern has a flat trend. Against this background, the measurement of brain constituents could be particularly useful in the early detection of cases at risk for short-/long-term brain injury. On this scenario, the main European and US international health-care institutions promoted perinatal clinical and experimental neuroprotection research projects aimed at validating and including a panel of biomarkers in the clinical guidelines. Although this is a promising attempt, there are several limitations that do not allow biomarkers to be included in standard monitoring procedures. The main limitations are: (i) the heterogeneity of neurological complications in the perinatal period, (ii) the small cohort sizes, (iii) the lack of multicenter investigations, (iv) the different techniques for neurobiomarkers assessment, (iv) the lack of consensus for the validation of assays in biological fluids such as urine and saliva, and (v), the lack of reference curves according to measurement technique and biological fluid. In the present review we offer an up-to-date overview of the most promising developments in the use of biomarkers in the perinatal period such as calcium binding proteins (S100B protein), vasoactive agents (adrenomedullin), brain biomarkers (activin A, neuron specific enolase, glial fibrillary acidic protein, ubiquitin carboxyl-terminal hydrolase-L1) and oxidative stress markers.
Collapse
Affiliation(s)
- Iliana Bersani
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Pluchinotta
- Laboratory Research Department of Pediatric Cardiovascular Surgery, SanDonato Milanese Univerity Hospital, San Donato Milanese, Milan, Italy
| | - Andrea Dotta
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Immacolata Savarese
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Campi
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cinzia Auriti
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Natalia Chuklantseva
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fiammetta Piersigilli
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Alessandro Varrica
- Laboratory Research Department of Pediatric Cardiovascular Surgery, SanDonato Milanese Univerity Hospital, San Donato Milanese, Milan, Italy
| | - Angela Satriano
- Laboratory Research Department of Pediatric Cardiovascular Surgery, SanDonato Milanese Univerity Hospital, San Donato Milanese, Milan, Italy
| | - Diego Gazzolo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
- Neonatal Intesive Care Unit, AO S.S. Antonio, Biagio, C. Arrigo Hospital, Spalto Marengo 46, 15100 Alessandria, Italy
| |
Collapse
|
10
|
Kondor Y, Tykholaz V, Huminskyi Y. Morphology of the pathways of intracellular circulation in the brain. PAIN MEDICINE 2020. [DOI: 10.31636/pmjua.v4i4.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The article reflects the current position of the issue of morphologies of the pathways of intercellular circulation in the brain. There are covered main, known at present time, data on the features of the exchange between the spinal fluid and intercellular fluid, the ways of elimination of the intertissued fluid of the brain through the so-called “glymphatic system”, its components: transarterial, transvenous, and transglial ways of intercellular fluid outflow from brain tissue. It also raises the question of the role of glia namely astrocytes and ependymocytes – as the main cells forming the haemato-encephalic barrier and participating in the intercellular circulation.
Collapse
|
11
|
Cristóvão JS, Gomes CM. S100 Proteins in Alzheimer's Disease. Front Neurosci 2019; 13:463. [PMID: 31156365 PMCID: PMC6532343 DOI: 10.3389/fnins.2019.00463] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/24/2019] [Indexed: 01/05/2023] Open
Abstract
S100 proteins are calcium-binding proteins that regulate several processes associated with Alzheimer's disease (AD) but whose contribution and direct involvement in disease pathophysiology remains to be fully established. Due to neuroinflammation in AD patients, the levels of several S100 proteins are increased in the brain and some S100s play roles related to the processing of the amyloid precursor protein, regulation of amyloid beta peptide (Aβ) levels and Tau phosphorylation. S100 proteins are found associated with protein inclusions, either within plaques or as isolated S100-positive puncta, which suggests an active role in the formation of amyloid aggregates. Indeed, interactions between S100 proteins and aggregating Aβ indicate regulatory roles over the aggregation process, which may either delay or aggravate aggregation, depending on disease stage and relative S100 and Aβ levels. Additionally, S100s are also known to influence AD-related signaling pathways and levels of other cytokines. Recent evidence also suggests that metal-ligation by S100 proteins influences trace metal homeostasis in the brain, particularly of zinc, which is also a major deregulated process in AD. Altogether, this evidence strongly suggests a role of S100 proteins as key players in several AD-linked physiopathological processes, which we discuss in this review.
Collapse
Affiliation(s)
- Joana S. Cristóvão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudio M. Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
12
|
The Ca 2+-Binding S100B Protein: An Important Diagnostic and Prognostic Neurobiomarker in Pediatric Laboratory Medicine. Methods Mol Biol 2019; 1929:701-728. [PMID: 30710306 DOI: 10.1007/978-1-4939-9030-6_44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In recent decades a significant scientific effort has focused on projects regarding the use of neurobiomarkers in perinatal medicine with a view to understanding the mechanisms that interfere with physiological patterns of brain development and lead to ominous effects in several human diseases. Numerous potential neurobiomarkers have been proposed for use in monitoring high-risk fetuses and newborns, including markers of oxidative stress, neuroproteins, and vasoactive agents. Nonetheless, the use of these markers in clinical practice remains a matter of debate. Recently, the calcium-binding S100B protein has been proposed as being an ideal neurobiomarker, thanks to its simple availability and easy reproducibility, to the possibility of detecting it noninvasively in biological fluids with good reproducibility, and to the possibility of a longitudinal evaluation in relation to reference curves. The present chapter contains an overview of the most significant studies on the assessment of S100B in different biological fluids as a trophic factor and/or marker of brain damage in high-risk fetuses and newborns.
Collapse
|
13
|
Michetti F, D'Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, Corvino V, Geloso MC. The S100B story: from biomarker to active factor in neural injury. J Neurochem 2018; 148:168-187. [DOI: 10.1111/jnc.14574] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/19/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Fabrizio Michetti
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
- IRCCS San Raffaele Scientific Institute; Università Vita-Salute San Raffaele; Milan Italy
| | - Nadia D'Ambrosi
- Department of Biology; Università degli Studi di Roma Tor Vergata; Rome Italy
| | - Amelia Toesca
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | | | - Alessia Serrano
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| |
Collapse
|
14
|
Sawikr Y, Yarla NS, Peluso I, Kamal MA, Aliev G, Bishayee A. Neuroinflammation in Alzheimer's Disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 108:33-57. [PMID: 28427563 DOI: 10.1016/bs.apcsb.2017.02.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Use of early biomarkers in neonatal brain damage and sepsis: state of the art and future perspectives. BIOMED RESEARCH INTERNATIONAL 2015; 2015:253520. [PMID: 25685774 PMCID: PMC4313065 DOI: 10.1155/2015/253520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/11/2014] [Indexed: 12/19/2022]
Abstract
The identification of early noninvasive biochemical markers of disease is a crucial issue of the current scientific research, particularly during the first period of life, since it could provide useful and precocious diagnostic information when clinical and radiological signs are still silent. The ideal biomarker should be practical and sensitive in the precocious identification of at risk patients. An earlier diagnosis may lead to a larger therapeutic window and improve neonatal outcome. Brain damage and sepsis are common causes of severe morbidity with poor outcome and mortality during the perinatal period. A large number of potential biomarkers, including neuroproteins, calcium binding proteins, enzymes, oxidative stress markers, vasoactive agents, and inflammatory mediators, have been so far investigated. The aim of the present review was to provide a brief overview of some of the more commonly investigated biomarkers used in case of neonatal brain damage and sepsis.
Collapse
|
16
|
Hydrogen peroxide administered into the rat spinal cord at the level elevated by contusion spinal cord injury oxidizes proteins, DNA and membrane phospholipids, and induces cell death: attenuation by a metalloporphyrin. Neuroscience 2014; 285:81-96. [PMID: 25451281 DOI: 10.1016/j.neuroscience.2014.10.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 01/23/2023]
Abstract
We previously demonstrated that hydrogen peroxide concentration ([H2O2]) significantly increases after spinal cord injury (SCI). The present study explored (1) whether SCI-elevated [H2O2] is sufficient to induce oxidation and cell death, (2) if apoptosis is a pathway of H2O2-induced cell death, and (3) whether H2O2-induced oxidation and cell death could be reversed by treatment with the catalytic antioxidant Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP). H2O2 was perfused through a microcannula into the uninjured rat spinal cord to mimic the conditions induced by SCI. Protein and DNA oxidation, membrane phospholipids peroxidation (MLP), cell death and apoptosis were characterized by histochemical and immunohistochemical staining with antibodies against markers of oxidation and apoptosis. Stained cells were quantified in sections of H2O2-, or artificial cerebrospinal fluid (ACSF)-exposed with vehicle-, or MnTBAP-treated groups. Compared with ACSF-exposed animals, SCI-elevated [H2O2] significantly increased intracellular protein and DNA oxidation by threefold and MLP by eightfold in neurons, respectively. H2O2-elevated extracellular malondialdehyde was measured by microdialysis sampling. We demonstrated that SCI-elevated [H2O2] significantly increased extracellular malondialdehyde above pre-injury levels. H2O2 also significantly increased cell loss and the numbers of terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate-(dUTP)-biotin nick end labeling (TUNEL)-positive and active caspase-3-positive neurons by 2.3-, 2.8-, and 5.6-fold compared to ACSF controls, respectively. Our results directly and unequivocally demonstrate that SCI-elevated [H2O2] contributes to post-SCI MLP, protein, and DNA oxidation to induce cell death. Therefore, we conclude that (1) the role of H2O2 in secondary SCI is pro-oxidation and pro-cell death, (2) apoptosis is a pathway for SCI-elevated [H2O2] to induce cell death, (3) caspase activation is a mechanism of H2O2-induced apoptosis after SCI, and (4) MnTBAP treatment significantly decreased H2O2-induced oxidation, cell loss, and apoptosis to the levels of ACSF controls, further supporting MnTBAP's ability to scavenge H2O2 by in vivo evidence.
Collapse
|
17
|
Lundgaard I, Osório MJ, Kress BT, Sanggaard S, Nedergaard M. White matter astrocytes in health and disease. Neuroscience 2013; 276:161-73. [PMID: 24231735 DOI: 10.1016/j.neuroscience.2013.10.050] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022]
Abstract
Myelination by oligodendrocytes is a highly specialized process that relies on intimate interactions between the axon and the oligodendrocytes. Astrocytes have an important part in facilitating myelination in the CNS, however, comparatively less is known about how they affect myelination. This review therefore summarizes the literature and explores lingering questions surrounding differences between white matter and gray matter astrocytes, how astrocytes support myelination, how their dysfunction in pathological states contributes to myelin pathologies and how astrocytes may facilitate remyelination. We discuss how astrocytes in the white matter are specialized to promote myelination and myelin maintenance by clearance of extracellular ions and neurotransmitters and by secretion of pro-myelinating factors. Additionally, astrocyte-oligodendrocyte coupling via gap junctions is crucial for both myelin formation and maintenance, due to K(+) buffering and possibly metabolic support for oligodendrocytes via the panglial syncytium. Dysfunctional astrocytes aberrantly affect oligodendrocytes, as exemplified by a number of leukodystrophies in which astrocytic pathology is known as the direct cause of myelin pathology. Conversely, in primary demyelinating diseases, such as multiple sclerosis, astrocytes may facilitate remyelination. We suggest that specific manipulation of astrocytes could help prevent myelin pathologies and successfully restore myelin sheaths after demyelination.
Collapse
Affiliation(s)
- I Lundgaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - M J Osório
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - B T Kress
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - S Sanggaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - M Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
18
|
Michetti F, Corvino V, Geloso MC, Lattanzi W, Bernardini C, Serpero L, Gazzolo D. The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem 2012; 120:644-59. [PMID: 22145907 DOI: 10.1111/j.1471-4159.2011.07612.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
S100B is a calcium-binding protein concentrated in glial cells, although it has also been detected in definite extra-neural cell types. Its biological role is still debated. When secreted, S100B is believed to have paracrine/autocrine trophic effects at physiological concentrations, but toxic effects at higher concentrations. Elevated S100B levels in biological fluids (CSF, blood, urine, saliva, amniotic fluid) are thus regarded as a biomarker of pathological conditions, including perinatal brain distress, acute brain injury, brain tumors, neuroinflammatory/neurodegenerative disorders, psychiatric disorders. In the majority of these conditions, high S100B levels offer an indicator of cell damage when standard diagnostic procedures are still silent. The key question remains as to whether S100B is merely leaked from injured cells or is released in concomitance with both physiological and pathological conditions, participating at high concentrations in the events leading to cell injury. In this respect, S100B levels in biological fluids have been shown to increase in physiological conditions characterized by stressful physical and mental activity, suggesting that it may be physiologically regulated and raised during conditions of stress, with a putatively active role. This possibility makes this protein a candidate not only for a biomarker but also for a potential therapeutic target.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica Sacro Cuore, Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Adipocytes as an Important Source of Serum S100B and Possible Roles of This Protein in Adipose Tissue. Cardiovasc Psychiatry Neurol 2010; 2010:790431. [PMID: 20672003 PMCID: PMC2905897 DOI: 10.1155/2010/790431] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/17/2010] [Indexed: 12/01/2022] Open
Abstract
Adipocytes contain high levels of S100B and in vitro assays indicate a modulated secretion of this protein by hormones that regulate lipolysis, such as glucagon, adrenaline, and insulin. A connection between lipolysis and S100B release has been proposed but definitive evidence is lacking. Although the biological significance of extracellular S100B from adipose tissue is still unclear, it is likely that this tissue might be an important source of serum S100B in situations related, or not, to brain damage. Current knowledge does not preclude the use of this protein in serum as a marker of brain injury or astroglial activation, but caution is recommended when discussing the significance of changes in serum levels where S100B may function as an adipokine, a neurotrophic cytokine, or an alarmin.
Collapse
|
20
|
Perinatal S100B Protein Assessment in Human Unconventional Biological Fluids: A Minireview and New Perspectives. Cardiovasc Psychiatry Neurol 2010; 2010:703563. [PMID: 20634930 PMCID: PMC2903947 DOI: 10.1155/2010/703563] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/03/2010] [Indexed: 11/18/2022] Open
Abstract
Growing evidence is now available on the use of S100B protein as a valuable marker of brain damage and its role as a neurotrophic factor. Bearing in mind, among different S100B protein properties that are still being investigated, the possibility of measuring this protein in different biological fluids renders it suitable for use in several disciplines. This is the case with perinatal medicine where even more noninvasive techniques are particularly desirable in order to ensure the minimal handling diagnostic and therapeutic strategies. In this setting, the present minireview reports data on the presence and the usefulness of S100B protein as brain damage marker and as a neurotrophic factor in the so-called unconventional biological fluids such as saliva and human milk, respectively. Results offer new possibilities for the use of S100B in perinatal medicine as a key-protein for the investigations focusing on central nervous system development and damage.
Collapse
|
21
|
Gazzolo D, Abella R, Marinoni E, di Iorio R, Li Volti G, Galvano F, Frigiola A, Temporini F, Moresco L, Colivicchi M, Sabatini M, Ricotti A, Strozzi MC, Crivelli S, Risso FM, Sannia A, Florio P. New markers of neonatal neurology. J Matern Fetal Neonatal Med 2010; 22 Suppl 3:57-61. [PMID: 19718579 DOI: 10.1080/14767050903181468] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypoxia-ischemia (H-I) constitutes the main phenomenon responsible for brain-blood barrier permeability modifications leading to cerebral vascular auto-regulation loss in newborns. Hypotension, cerebral ischemia, and reperfusion are the main events involved in vascular auto-regulation loss leading to cell death and tissue damage. Reperfusion could be critical since organ damage, particularly of the brain, may be amplified during this period. An exaggerated activation of vasoactive agents, of calcium mediated effects could be responsible for reperfusion injury (R-I), which, in turns, leads to cerebral hemorrhage and damage. These phenomena represent a common repertoire in newborns complicated by perinatal acute or chronic hypoxia treated by risky procedures such as mechanical ventilation, nitric oxide supplementation, brain cooling, and extracorporeal membrane oxygenation (ECMO). Despite accurate monitoring, the post-insult period is crucial, as clinical symptoms and standard monitoring parameters may be silent at a time when brain damage is already occurring and the therapeutic window for pharmacological intervention is limited. Therefore, the measurement of circulating biochemical markers of brain damage, such as vasoactive agents and nervous tissue peptides is eagerly awaited in clinical practice to detect high risk newborns. The present review is aimed at investigating the role of biochemical markers such as adrenomedullin, a vasoactive peptide; S100B, a calcium binding protein, activin A, a glycoprotein, in the cascade of events leading to I-R injury in newborns complicated by perinatal asphyxia.
Collapse
Affiliation(s)
- Diego Gazzolo
- Department of Pediatrics and Neuroscience, G. Gaslini Children's Hospital University of Genoa, Genoa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schulpis KH, Margeli A, Akalestos A, Vlachos GD, Partsinevelos GA, Papastamataki M, Antsaklis A, Papassotiriou I. Effects of mode of delivery on maternal–neonatal plasma antioxidant status and on protein S100B serum concentrations. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 66:733-42. [PMID: 17101566 DOI: 10.1080/00365510600977737] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To investigate the effect of the mode of labour and delivery on total antioxidant status (TAS) and on the protein S100B serum concentrations in mothers and their newborns. MATERIAL AND METHODS Sixty women with normal pregnancies were divided into three groups: Group A (n = 20) with normal labour and vaginal delivery (VG), group B (n = 18) with prolonged labour+VG and group C (n = 22) with scheduled caesarean section (CS). Blood was obtained at the beginning of the labour process and immediately after delivery (pre- and post-delivery) as well as from the umbilical cord (CB). TAS and creatine kinase (CK) were measured using commercial kits. Serum S100B levels were evaluated with the electrochemiluminescence immunoassay "ECLIA" on the ROCHE ELECSYS 2010 immunoassay analyser. RESULTS Post-delivery, TAS levels were significantly decreased in group A and especially in group B. S100B levels were increased in group B (0.0712+/-0.02 microg/L) as compared with those of group A (0.0567+/-0.03 microg/L, p<0.01) and group C (0.038+/-0.03 microg/L, p<0.01), the levels in group C remaining practically unaltered (pre- versus post-delivery). In the newborns, S100B levels were almost 2-fold higher in group B (0.67+/-0.18 microg/L) than those in group A (0.40+/-0.05 microg/L p<0.001) and group C (0.31+/-0.04 microg/L p<0.001). A negative correlation was found between TAS and S100B protein (r = -0.61, p<0.001), the latter positively correlated to CK (r = 0.48, p<0.01). CONCLUSIONS The increased S100B serum levels in the mothers of group B, post-delivery, may have been due to the long-lasting, oxidative and/or psychogenic stress. The observed remarkably high levels of S100B in the group B newborns may have been due to compressive conditions on the foetus brain during this mode of delivery.
Collapse
Affiliation(s)
- K H Schulpis
- Institute of Child Health, Research Centre, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hamberger A, Viano DC, Säljö A, Bolouri H. CONCUSSION IN PROFESSIONAL FOOTBALL. Neurosurgery 2009; 64:1174-82; discussion 1182. [DOI: 10.1227/01.neu.0000316855.40986.2a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Anders Hamberger
- Institute of Biomedicine, Section of Anatomy and Cell Biology, University of Göteborg, Göteborg, Sweden
| | - David C. Viano
- Mild Traumatic Brain Injury Committee, National Football League, New York, New York; and ProBiomechanics LLC, Bloomfield Hills, Michigan
| | - Annette Säljö
- Institute of Biomedicine, Section of Anatomy and Cell Biology, University of Göteborg, Göteborg, Sweden
| | - Hayde Bolouri
- Institute of Biomedicine, Section of Anatomy and Cell Biology, University of Göteborg, Göteborg, Sweden
| |
Collapse
|
24
|
Jakovcevski I, Siering J, Hargus G, Karl N, Hoelters L, Djogo N, Yin S, Zecevic N, Schachner M, Irintchev A. Close homologue of adhesion molecule L1 promotes survival of Purkinje and granule cells and granule cell migration during murine cerebellar development. J Comp Neurol 2009; 513:496-510. [PMID: 19226508 DOI: 10.1002/cne.21981] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several L1-related adhesion molecules, expressed in a well-coordinated temporospatial pattern during development, are important for fine tuning of specific cerebellar circuitries. We tested the hypothesis that CHL1, the close homologue of L1, abundantly expressed in the developing and adult cerebellum, is also required for normal cerebellar histogenesis. We found that constitutive ablation of CHL1 in mice caused significant loss (20-23%) of Purkinje and granule cells in the mature 2-month-old cerebellum. The ratio of stellate/basket interneurons to Purkinje cells was abnormally high (+38%) in CHL1-deficient (CHL1-/-) mice compared with wild-type (CHL1+/+) littermates, but the gamma-aminobutyric acid (GABA)ergic synaptic inputs to Purkinje cell bodies and dendrites were normal, as were numbers of Golgi interneurons, microglia, astrocytes, and Bergmann glia. Purkinje cell loss occurred before the first postnatal week and was associated with enhanced apoptosis, presumably as a consequence of CHL1 deficiency in afferent axons. In contrast, generation of granule cells, as indicated by in vivo analyses of cell proliferation and death, was unaffected in 1-week-old CHL1-/- mice, but numbers of migrating granule cells in the molecular layer were increased. This increase was likely related to retarded cell migration because CHL1-/- granule cells migrated more slowly than CHL1+/+ cells in vitro, and Bergmann glial processes guiding migration in vivo expressed CHL1 in wild-type mice. Granule cell deficiency in adult CHL1-/- mice appeared to result from decreased precursor cell proliferation after the first postnatal week. Our results indicate that CHL1 promotes Purkinje and granule cell survival and granule cell migration during cerebellar development.
Collapse
Affiliation(s)
- Igor Jakovcevski
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, D-20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Germanà A, Marino F, Guerrera MC, Campo S, de Girolamo P, Montalbano G, Germanà GP, Ochoa-Erena FJ, Ciriaco E, Vega JA. Expression and distribution of S100 protein in the nervous system of the adult zebrafish (Danio rerio). Microsc Res Tech 2008; 71:248-55. [PMID: 18041782 DOI: 10.1002/jemt.20544] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
S100 proteins are EF-hand calcium-binding protein highly preserved during evolution present in both neuronal and non-neuronal tissues of the higher vertebrates. Data about the expression of S100 protein in fishes are scarce, and no data are available on zebrafish, a common model used in biology to study development but also human diseases. In this study, we have investigated the expression of S100 protein in the central nervous system of adult zebrafish using PCR, Western blot, and immunohistochemistry. The central nervous system of the adult zebrafish express S100 protein mRNA, and contain a protein of approximately 10 kDa identified as S100 protein. S100 protein immunoreactivity was detected widespread distributed in the central nervous system, labeling the cytoplasm of both neuronal and non-neuronal cells. In fact, S100 protein immunoreactivity was primarily found in glial and ependymal cells, whereas the only neurons displaying S100 immunoreactivity were the Purkinje's neurons of the cerebellar cortex and those forming the deep cerebellar nuclei. Outside the central nervous system, S100 protein immunoreactivity was observed in a subpopulation of sensory and sympathetic neurons, and it was absent from the enteric nervous system. The functional role of S100 protein in both neurons and non-neuronal cells of the zebrafish central nervous system remains to be elucidated, but present results might serve as baseline for future experimental studies using this teleost as a model.
Collapse
Affiliation(s)
- A Germanà
- Dipartmento di Morfologia, Biochimica, Fisiologia e Produzione Animale, Sezione di Morfologia, Università di Messina, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Schulpis KH, Moukas M, Parthimos T, Tsakiris T, Parthimos N, Tsakiris S. The effect of α-Tocopherol supplementation on training-induced elevation of S100B protein in sera of basketball players. Clin Biochem 2007; 40:900-6. [PMID: 17532314 DOI: 10.1016/j.clinbiochem.2007.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 04/04/2007] [Accepted: 04/10/2007] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the effect of alpha-Tocopherol (alpha-T) supplementation on S100B elevated serum levels in basketball players' training. DESIGN Blood was obtained from 10 basketball players pre-exercise (group A), post-exercise (group B) and after 30 days on alpha-T (200 mg/24 h orally) supplementation pre- (group C) and post-training (group D). Blood samples were taken for the evaluation of total antioxidant status (TAS), alpha-T and catecholamines in plasma and S100B and muscle enzyme levels in serum. METHODS TAS, muscle enzymes: creatine kinase (CK), lactate dehydrogenase (LDH), and S100B protein levels were measured with commercial kits, whereas alpha-T and catecholamine levels with HPLC methods. RESULTS TAS was found higher in the groups with alpha-T addition (groups C and D) than in the other ones. On the contrary, CK, LDH and S100B were remarkably lower (116.8+9.5 U/L, 427+22 U/L, 0.18+0.04 microg/L, respectively) in group D than those in group B (286+12 U/L, 688+26 U/L, 0.28+0.06 microg/L, p<0.001, respectively). S100B levels were negatively correlated with TAS (r=-0.64, p<0.001) and positively with CK levels (r=0.58, p<0.001). CONCLUSIONS alpha-T supplementation may reduce S100B increased release from muscle and nerves induced by training. S100B serum evaluation may be a useful biomarker for the effect of training on the participation of the neuromuscular system.
Collapse
Affiliation(s)
- Kleopatra H Schulpis
- Institute of Child Health, Research Center, Aghia Sophia Children's Hospital, GR-11527, Athens, Greece
| | | | | | | | | | | |
Collapse
|
27
|
Steiner J, Bernstein HG, Bielau H, Berndt A, Brisch R, Mawrin C, Keilhoff G, Bogerts B. Evidence for a wide extra-astrocytic distribution of S100B in human brain. BMC Neurosci 2007; 8:2. [PMID: 17199889 PMCID: PMC1769505 DOI: 10.1186/1471-2202-8-2] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Accepted: 01/02/2007] [Indexed: 11/28/2022] Open
Abstract
Background S100B is considered an astrocytic in-situ marker and protein levels in cerebrospinal fluid (CSF) or serum are often used as biomarker for astrocytic damage or dysfunction. However, studies on S100B in the human brain are rare. Thus, the distribution of S100B was studied by immunohistochemistry in adult human brains to evaluate its cell-type specificity. Results Contrary to glial fibrillary acidic protein (GFAP), which selectively labels astrocytes and shows only faint ependymal immunopositivity, a less uniform staining pattern was seen in the case of S100B. Cells with astrocytic morphology were primarily stained by S100B in the human cortex, while only 20% (14–30%) or 14% (7–35%) of all immunopositive cells showed oligodendrocytic morphology in the dorsolateral prefrontal and temporal cortices, respectively. In the white matter, however, most immunostained cells resembled oligodendrocytes [frontal: 75% (57–85%); temporal: 73% (59–87%); parietal: 79% (62–89%); corpus callosum: 93% (86–97%)]. S100B was also found in ependymal cells, the choroid plexus epithelium, vascular endothelial cells, lymphocytes, and several neurones. Anti-myelin basic protein (MBP) immunolabelling showed an association of S100B with myelinated fibres, whereas GFAP double staining revealed a distinct subpopulation of cells with astrocytic morphology, which solely expressed S100B but not GFAP. Some of these cells showed co-localization of S100B and A2B5 and may be characterized as O2A glial progenitor cells. However, S100B was not detected in microglial cells, as revealed by double-immunolabelling with HLA-DR. Conclusion S100B is localized in many neural cell-types and is less astrocyte-specific than GFAP. These are important results in order to avoid misinterpretation in the identification of normal and pathological cell types in situ and in clinical studies since S100B is continuously used as an astrocytic marker in animal models and various human diseases.
Collapse
Affiliation(s)
- Johann Steiner
- Department of Psychiatry, University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Hans-Gert Bernstein
- Department of Psychiatry, University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Hendrik Bielau
- Department of Psychiatry, University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Annika Berndt
- Department of Psychiatry, University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Ralf Brisch
- Department of Psychiatry, University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Christian Mawrin
- Institute of Neuropathology, University of Jena, Erlanger Allee 101, D-07743 Jena, Germany
| | - Gerburg Keilhoff
- Institute of Medical Neurobiology, University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Bernhard Bogerts
- Department of Psychiatry, University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| |
Collapse
|
28
|
Arcuri C, Bianchi R, Brozzi F, Donato R. S100B increases proliferation in PC12 neuronal cells and reduces their responsiveness to nerve growth factor via Akt activation. J Biol Chem 2004; 280:4402-14. [PMID: 15572370 DOI: 10.1074/jbc.m406440200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
S100B is a Ca2+-modulated protein of the EF-hand type expressed in high abundance in a restricted set of cell types including certain neuronal populations. S100B has been suggested to participate in cell cycle progression, and S100B levels are high in tumor cells, compared with normal parental cells. We expressed S100B in the neuronal cell line PC12, which normally does not express the protein, by the Tet-Off technique, and found the following: (i) proliferation was higher in S100B+ PC12 cells than in S100B- PC12 cells; (ii) nerve growth factor (NGF), which decreased the proliferation of S100B- PC12 cells, was less effective in the case of S100B+ PC12 cells; (iii) expression of S100B made PC12 cells resistant to the differentiating effect of NGF; and (iv) interruption of S100B expression did not result in an immediate restoration of PC12 cell sensitivity to the differentiating effect of NGF. Expression of S100B in PC12 cells resulted in activation of Akt; increased levels of p21WAF1, an inhibitor of cyclin-dependent kinase (cdk) 2 and a positive regulator of cdk4; increased p21WAF1-cyclin D1 complex formation; and increased phosphorylation of the retinoblastoma suppressor protein, Rb. These S100B-induced effects, as well as the reduced ability of S100B+ PC12 cells to respond to NGF, were dependent on Akt activation because they were remarkably reduced or abrogated in the presence of LY294002, an inhibitor of the Akt upstream kinase phosphatidylinositol 3-kinase. Thus, S100B might promote cell proliferation and interfere with NGF-induced PC12 cell differentiation by stimulating a p21WAF1/cyclin D1/cdk4/Rb/E2F pathway in an Akt-mediated manner.
Collapse
Affiliation(s)
- Cataldo Arcuri
- Section of Anatomy, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, 06122 Perugia, Italy
| | | | | | | |
Collapse
|
29
|
Irintchev A, Rollenhagen A, Troncoso E, Kiss JZ, Schachner M. Structural and functional aberrations in the cerebral cortex of tenascin-C deficient mice. ACTA ACUST UNITED AC 2004; 15:950-62. [PMID: 15537675 DOI: 10.1093/cercor/bhh195] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The extracellular matrix glycoprotein tenascin-C (TNC) has been implicated in neural development and plasticity but many of its functions in vivo remain obscure. Here we addressed the question as to whether the constitutive absence of TNC in mice affects cortical physiology and structure. Defined major cell populations (neurons and inhibitory neuronal subpopulations, astrocytes, oligodendrocytes and microglia) were quantified in the somatosensory and motor cortices of adult TNC deficient (TNC-/-) and wild-type (TNC+/+) mice by immunofluorescence labelling and stereology. In both areas studied we found abnormally high neuronal density, astrogliosis, low density of parvalbumin-positive interneurons and reduced ratios of oligodendrocytes to neurons and of inhibitory to excitatory neurons in the TNC deficient as opposed to the non-deficient animals. Analysis of Golgi-impregnated layer V pyramidal neurons in TNC-/- animals showed aberrant dendrite tortuosity and redistribution of stubby spines within first- to third-order dendritic arbors. Significantly enhanced responses upon whisker stimulation were recorded epicranially over the barrel and the motor cortices of TNC-/- as compared to TNC+/+ animals, and this effect might be associated with the diminished inhibitory circuitry. These results indicate that TNC is essential for normal cortical development and function.
Collapse
Affiliation(s)
- Andrey Irintchev
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, D-20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
30
|
Gazzolo D, Grutzfeld D, Michetti F, Toesca A, Lituania M, Bruschettini M, Dobrzanska A, Bruschettini P. Increased S100B in cerebrospinal fluid of infants with bacterial meningitis: relationship to brain damage and routine cerebrospinal fluid findings. Clin Chem 2004; 50:941-4. [PMID: 15105355 DOI: 10.1373/clinchem.2003.021048] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Diego Gazzolo
- Department of Pediatrics and Obstetrics and Gynecology, Giannina Gaslini Children's University Hospital, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Bao F, Chen Y, Dekaban GA, Weaver LC. Early anti-inflammatory treatment reduces lipid peroxidation and protein nitration after spinal cord injury in rats. J Neurochem 2004; 88:1335-44. [PMID: 15009633 DOI: 10.1046/j.1471-4159.2003.02240.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated mechanisms by which a monoclonal antibody (mAb) against the CD11d subunit of the leukocyte integrin CD11d/CD18 improves neurological recovery after spinal cord injury (SCI) in the rat. The effects of an anti-CD11d mAb treatment were assessed on ED-1 expression (estimating macrophage infiltration), myeloperoxidase activity (MPO, approximating neutrophil infiltration), lipid peroxidation, inducible nitric oxide synthase (iNOS) and nitrotyrosine (indicating protein nitration) expression in the spinal cord lesion after severe clip-compression injury. Protein expression was evaluated by western blotting and immunocytochemistry. Lipid peroxidation was assessed by thiobarbituric acid reactive substances (TBARS) production. After anti-CD11d mAb treatment, decreased ED-1 expression at 6-72 h after SCI indicated reduced macrophage infiltration. MPO activity (units/g tissue) was reduced significantly from 114 +/- 11 to 75 +/- 8 (- 34%) at 6 h and from 38 +/- 2 to 22 +/- 4 (- 42%) at 72 h. After SCI, anti-CD11d mAb treatment significantly reduced TBARS from 501 +/- 61 to 296 +/- 17 nm (- 41%) at 6 h and to approximately uninjured values (87 nm) at 72 h. The mAb treatment also attenuated the expression of iNOS and formation of nitrotyrosine at 6-72 h after SCI. These data indicate that anti-CD11d mAb treatment blocks intraspinal neutrophil and macrophage infiltration, reducing the intraspinal concentrations of reactive oxygen and nitrogen species. These effects likely underlie improved tissue preservation and neurological function resulting from the mAb treatment.
Collapse
Affiliation(s)
- Feng Bao
- Spinal Cord Injury Team, BioTherapeutics Research Group, Robarts Research Institute, London, Ontario, Canada
| | | | | | | |
Collapse
|
32
|
Abstract
Follow-up studies have shown that the vast majority of neurological abnormalities present during childhood can have a prenatal or perinatal origin. It is relevant, therefore, to investigate the timing of adverse insults in the search for measures of prevention. However, such knowledge is still incomplete and subject to debate. Until recently, clinical-laboratory assessment was based essentially on biochemical aspecific parameters, ultrasound and Doppler patterns, and the determination of blood pH and gases. However, the measurement of brain constituents may offer a direct indicator of cell damage in the nervous system. The S100B protein, a calcium-binding protein highly concentrated in the nervous system, appears to meet the criteria required of such a marker in prenatal and perinatal medicine for its reproducible, simple and sensible measurements. Results in high-risk pregnancies demonstrated that S100B concentration increased in amniotic fluid and in cord blood of fetuses with brain damage. In addition, S100B protein has been also usefully employed to monitor the effects of maternal-antenatal therapy, such as NO and glucocorticoid administration. It appears also to be relevant that a neurotrophic role has been hypothesized for the protein, which in fact exhibits in amniotic fluid, in cord blood and in placenta patterns of concentration related to the gestational age.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Catholic University, Largo Francesco Vito 1, I-00168, Rome, Italy.
| | | |
Collapse
|
33
|
Bao F, Liu D. Peroxynitrite generated in the rat spinal cord induces apoptotic cell death and activates caspase-3. Neuroscience 2003; 116:59-70. [PMID: 12535938 DOI: 10.1016/s0306-4522(02)00571-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We previously demonstrated that the peroxynitrite concentration increases after impact spinal cord injury. This study tests whether spinal cord injury-elevated peroxynitrite induces apoptotic cell death. Peroxynitrite was generated at the concentration and duration produced by spinal cord injury by administering S-morpholinosydnonimine through a microdialysis fiber into the gray matter of the rat spinal cord. Fragmented DNA was visualized by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling. Transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling-positive neurons were quantitated by counting the transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling and neuron-specific enolase double-stained neurons along the fiber track in the sections removed at 6, 12, 24 and 48 h post-peroxynitrite exposure. Peroxynitrite significantly increased transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling-positive neurons at all time points examined (P< or =0.001) compared with artificial cerebrospinal fluid controls (Two-way analysis of variance followed by Tukey test), peaking at 24 h post-exposure. Electron microscopic observation of characteristic features of apoptosis confirmed peroxynitrite-induced neuronal apoptosis. Total transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling-positive cells were counted in areas near and 0.2 mm away from the fiber track. The counts both peaked at 24 h with no significant difference between the two areas. However, at 6 and 12 h post-exposure the counts were significantly higher near than away from the fiber track (P=0.03 and P=0.007 respectively, paired t test). Immunohistochemical staining indicates caspase-3 was activated by peroxynitrite; this activation peaked at 6 h post-exposure, suggesting that activation of caspase-3 might be an early event in the apoptotic cell death cascade. We conclude that 1) peroxynitrite generated in the cord at the level produced by spinal cord injury induces neuronal apoptosis, indicating a role for peroxynitrite in secondary spinal cord injury; 2) caspase activation might be involved in peroxynitrite-induced neuronal apoptosis; 3) therefore removal of peroxynitrite should reduce secondary cell death after spinal cord injury.
Collapse
Affiliation(s)
- F Bao
- Department of Neurology, University of Texas Medical Branch, 301 University Boulevard RT 0653, Galveston, TX 77555-0653, USA
| | | |
Collapse
|
34
|
Gazzolo D, Michetti F, Bruschettini M, Marchese N, Lituania M, Mangraviti S, Pedrazzi E, Bruschettini P. Pediatric concentrations of S100B protein in blood: age- and sex-related changes. Clin Chem 2003; 49:967-70. [PMID: 12765999 DOI: 10.1373/49.6.967] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Diego Gazzolo
- Department of Pediatrics, Giannina Gaslini Children's University Hospital, I-16147 Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Bao F, Liu D. Peroxynitrite generated in the rat spinal cord induces neuron death and neurological deficits. Neuroscience 2003; 115:839-49. [PMID: 12435422 DOI: 10.1016/s0306-4522(02)00506-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously demonstrated that the concentration of peroxynitrite significantly increases following impact spinal cord injury (SCI). The aim of this study was to test whether the SCI-induced elevation of peroxynitrite induces neuronal death and consequent neurological deficits. Peroxynitrite was generated by administering 5 mM S-morpholinosydnonimine, a donor of peroxynitrite, through a microdialysis fiber into the gray matter of the rat spinal cord for 5 h. This mimics the concentration and duration of peroxynitrite elevation after SCI. Neuron death was assessed by counting the neurons along the fiber track in Cresyl Violet-stained sections removed at different times post-peroxynitrite exposure. Peroxynitrite induced significantly more neuron death than did the artificial cerebrospinal fluid (ACSF) control, with the percentage of neuronal loss being 17+/-2%, 28+/-2%, 39+/-3%, and 43+/-4% at 6, 12, 24 and 48 h post-peroxynitrite exposure (P=0.01-<0.001). The losses of total neurons or motoneurons immuno-stained with anti-neuron-specific enolase or anti-choline acetyltransferase antibodies was significantly higher in the peroxynitrate-exposed group than in ACSF controls at 24 h post-exposure, further confirming peroxynitrate damage to neurons. The susceptibility to oxidative damage in motoneurons was similar to that of other neurons characterized at 24 h post-peroxynitrite exposure. Peroxynitrite-induced neurological deficits were examined by the Basso-Beattie-Bresnahan test (BBB test), the inclined-plane test and footprint analysis. Peroxynitrite significantly (P<0.001) reduced the locomotor rating score (BBB test) and the maximum angle of inclined plane compared to sham and ACSF-exposed animals (repeated measures analysis of variance). The footprint analysis revealed that peroxynitrite significantly increased the distance between the feet and the angle of hindlimb rotation compared to sham (P=0.01 and P<0.001) or ACSF controls (P=0.01 and P=0.005) and significantly shortened the stride length compared to sham (P<0.001) and ACSF control (P=0.005) treatments. Therefore the SCI-produced level of peroxynitrite induced neuron loss and neurological dysfunction, strong evidence that peroxynitrite is a secondary damage agent in SCI.
Collapse
Affiliation(s)
- F Bao
- Department of Neurology, University of Texas Medical Branch, 301 University Boulevard RT 0653, Galveston, TX 77555-0653, USA
| | | |
Collapse
|
36
|
Vives V, Alonso G, Solal AC, Joubert D, Legraverend C. Visualization of S100B-positive neurons and glia in the central nervous system of EGFP transgenic mice. J Comp Neurol 2003; 457:404-19. [PMID: 12561079 DOI: 10.1002/cne.10552] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
S100B, the EF-hand Ca(++)-binding protein with gliotrophic and neurotrophic properties implicated in the pathogenesis of Alzheimer's disease, is coined as a glial marker, despite its documented presence in rodent brain neurons. We have generated a transgenic mouse whose EGFP reporter, controlled by the -1,669/+3,106 sequence of the murine S100B gene, allows the direct microscopic observation of most S100B-expressing cells in the central nervous system (CNS). From embryonic day 13 onward, EGFP expression was targeted to selected neuroepithelial, glial, and neuronal cells, indicating that cell-specific expression of S100B is regulated at the transcriptional level during development. In adult mice, the highest level of EGFP expression was found in ependymocytes; astrocytes; and spinal, medullar, pontine, and deep cerebellar S100B neurons. Our results, thus, agree with earlier reports suggesting that S100B is not a CNS glial-specific marker. In addition, we detected EGFP and S100B in forebrain neurons previously thought not to express S100B in the mouse, including neurons of primary motor and somatosensory neocortical areas, the ventral pallidum and prerubral field. Another interesting finding was the selected EGFP targeting to neonatal S100B oligodendrocytes and adult NG2 progenitors as opposed to mature S100B oligodendrocytes. This finding suggests that, except for oligodendrocytes at the last stage of myelin maturation, the -1,669/+3,106 sequence of the S100B gene is a useful reagent for driving expression of transgenes in most S100B-expressing cells of mouse brain.
Collapse
Affiliation(s)
- Virginie Vives
- Institut National de la Santé et de la Recherche Médicale U469, Centre CNRS-INSERM de Pharmacologie et d'Endocrinologie, F-34094 Montpellier Cedex 05, France
| | | | | | | | | |
Collapse
|
37
|
Castagna C, Viglietti-Panzica C, Carlo Panzica G. Protein S100 immunoreactivity in glial cells and neurons of the Japanese quail brain. J Chem Neuroanat 2003; 25:195-212. [PMID: 12706207 DOI: 10.1016/s0891-0618(03)00009-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In mammals, sparse data illustrated the neuronal expression of S100 protein in central and peripheral nervous system. Similar studies have not been performed in other vertebrate species, in particular in birds. We provide here a detailed description of the distribution of the calcium-binding protein S100 in neuronal and glial elements in the central nervous system of an avian species, the Japanese quail (Coturnix japonica) largely used for neuroanatomical and functional studies. The distribution of S100-like immunoreactivity was analyzed by three different antisera: a polyclonal, against S100 protein, and two monoclonals, against the beta-subunit (S100beta) and the alpha-subunit (S100alpha) of this protein. All sera showed glial positive elements, which were more abundant in the brainstem than in the prosencephalon. Moreover, the polyclonal and the monoclonal antibodies against the beta-subunit evidenced a neuronal population with a wide distribution, variable morphology and staining intensity. In the telencephalon and diencephalon a few S100-positive neurons were observed in basal ganglia, nucleus paraventricularis hypothalami, nucleus rotundus and nucleus geniculatus lateralis, pars ventralis. In the mesencephalon and pons a wide S100-immunoreactive neuronal population was detected in several regions, including motor and sensory nuclei of most cranial nerves (i.e. oculomotoris, abducens, trigeminus, cochlearis, trochlearis and vestibularis nuclei). This distribution appears very similar to that previously described in the rat hindbrain by both immunocytochemistry and in situ hybridization, as well as to sparse observations on different vertebrates. Therefore, our results suggest that the distribution pattern of this protein (both in glial and in neuronal elements) is highly conserved throughout the phylogeny.
Collapse
Affiliation(s)
- Claudia Castagna
- Department of Veterinary Morphophysiology, University of Torino, Grugliasco, I-10095, Torino, Italy
| | | | | |
Collapse
|
38
|
Corvino V, Businaro R, Geloso MC, Bigini P, Cavallo V, Pompili E, Mennini T, Fumagalli L, Michetti F. S100B protein and 4-hydroxynonenal in the spinal cord of wobbler mice. Neurochem Res 2003; 28:341-5. [PMID: 12608707 DOI: 10.1023/a:1022345720852] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
S100B is a calcium-binding protein that, in the nervous system, is mainly concentrated in glial cells. Although its biological role is still unclear, the protein is hypothesized, at high concentrations, to act in the pathogenesis of neurodegenerative processes, possibly through oxidative stress mechanisms. To investigate this hypothesis we studied the spinal cord of wobbler mice, an animal model of motor neuron degeneration. Using immunocytochemistry, we detected an overexpression of S100B in astrocytes of the cervical spinal cord of these animals. We also confirmed this finding by reverse transcriptase polymerase chain reaction. In the same spinal cord regions, scattered neurons appeared to be immunostained for 4-hydroxynonenal-modified proteins, an indicator of lipid peroxidation. This finding constitutes a sign of oxidative stress-induced neurodegeneration.
Collapse
|
39
|
Hamberger A, Huang YL, Zhu H, Bao F, Ding M, Blennow K, Olsson A, Hansson HA, Viano D, Haglid KG. Redistribution of neurofilaments and accumulation of beta-amyloid protein after brain injury by rotational acceleration of the head. J Neurotrauma 2003; 20:169-78. [PMID: 12675970 DOI: 10.1089/08977150360547080] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Rotational acceleration of the head, as occurs in falls, car crashes, and sport injuries, may result in diffuse brain damage, with acute and chronic neurological and psychiatric symptoms. The present study addresses the effects of rotational trauma on the neuronal cytoskeleton, which stabilizes perikaryal, dendritic and axonal shape and function. The study focuses upon the distribution of (1) the phosphorylated form of the heavy neurofilament subunit, (2) the light neurofilament subunit, and (3) beta-amyloid, a marker for brain injury. While normally restricted to axons, the phosphorylated heavy neurofilament subunits were drastically decreased in the axons after rotational trauma. Instead, they accumulated in the neuronal perikarya, normally devoid of the phosphorylated subunit. This alteration was seen, not only in the cerebral cortex, but also in the hippocampus, the cervical spinal cord, the cerebellum, the cranial nerves and the pyramidal tract. The distribution of the light subunit of neurofilaments was also altered post trauma. Only a weak beta-amyloid immunoreactivity was detected in the brains of control animals. Promptly after the trauma, a large number of beta-amyloid positive neurons appeared. Intensely co-localized immunoreactivity for the light subunit of neurofilaments and of beta-amyloid was seen 3 days after the rotational trauma axons of in the subcortical white matter and in the granule cell layer of the dentate gyrus as well as in neurons of the hypoglossal nucleus. The reported alterations in the central nervous system neurons are similar to those in the human brain after closed head injury and in chronic degenerative diseases. Regions of importance for social behavior, memory and body movement were affected.
Collapse
Affiliation(s)
- Anders Hamberger
- Institute of Anatomy and Cell Biology, University of Göteborg, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bao F, DeWitt DS, Prough DS, Liu D. Peroxynitrite generated in the rat spinal cord induces oxidation and nitration of proteins: reduction by Mn (III) tetrakis (4-benzoic acid) porphyrin. J Neurosci Res 2003; 71:220-7. [PMID: 12503084 DOI: 10.1002/jnr.10481] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To determine whether peroxynitrite at the concentration and duration present after spinal cord injury induces protein oxidation and nitration in vivo, the peroxynitrite donor 3-morpholinosydnonimine (SIN-1) was administered into the gray matter of the rat spinal cord for 5 hr. The cords were removed at 6, 12, 24, and 48 hr after SIN-1 exposure, immunohistochemically stained with antibodies to dinitrophenyl (DNP) and nitrotyrosine (Ntyr), markers of protein oxidation and nitration, respectively, and the immunostained neurons were counted. The percentages of DNP-positive (P = 0.023-0.002) and Ntyr-positive (P < 0.001 for all) neurons were significantly higher in the SIN-1-exposed groups than in the ACSF controls at each time, suggesting that peroxynitrite induced intracellular oxidation and nitration of proteins. The percentages of DNP- and Ntyr-positive neurons were not significantly different over time in either SIN-1- or ACSF-exposed groups (P = 0.20-1.00). The percentage of DNP-positive neurons was 7.6 +/- 3% to 12 +/- 4.2% at 6-24 hr, and it was 14 +/- 2% to 19 +/- 2% at 6-24 hr for Ntyr-positive neurons after SIN-1-exposure, whereas both ranged over 2-3% in ACSF controls. Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP, a broad-spectrum scavenger of reactive species) significantly reduced the percentages of DNP- and Ntyr-positive neurons (P = 0.04 and 0.002, respectively) compared to a SIN-1-exposed, untreated group at 24 hr after SIN-1 exposure. There were no significant differences between MnTBAP-treated and ACSF controls (P = 0.7 for DNP and 0.2 for Ntyr). These results further demonstrate peroxynitrite-induced protein oxidation and nitration and the efficiency of MnTBAP in scavenging peroxynitrite.
Collapse
Affiliation(s)
- Feng Bao
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555-0653, USA
| | | | | | | |
Collapse
|
41
|
Abstract
The diagnosis of perinatal insults currently relies on adequate documentation of general medical and obstetric factors and on radiologic and laboratory assessments. The measurement of brain constituents such as S100B protein may offer an alternative and direct indicator of cell damage in the nervous system when clinical and radiologic assessments are still silent and has the additional advantage of providing a quantitative indicator of the extent of brain lesions. S100B protein has been measured by several immunoassays in biological fluids (i.e., cerebrospinal fluid, blood, amniotic fluid, and urine) from fetuses and newborns at high risk of perinatal brain damage. S100B protein in biological fluids increased at an early stage when standard monitoring procedures were still silent in the study populations that later developed brain damage. S100B concentration was also significantly correlated with the extent of brain lesions. S100B protein appears to satisfy the criteria for a marker for brain injuries in perinatal medicine: (a) simple to perform measurements with good reproducibility; (b) detection in a variety of biological fluids, possibly reducing perinatal stress related to testing; (c) possible use in longitudinal monitoring because of its 1-h half-life; and (d) well-established use as an early and quantitative marker of brain lesions/damage. Finally, because of the neurotrophic role putatively played by S100B, its measurement in biological fluids at pre-/perinatal ages makes it a candidate for the laboratory evaluation of brain maturation.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Institute of Anatomy, Catholic University, Largo Francesco Vito 1, I-00168 Rome, Italy.
| | | |
Collapse
|
42
|
Abstract
We revealed the structural features of astrocytes by means of light microscopy, confocal laser scanning microscopy and high voltage electron microscopy, and estimated their numerical densities in the mouse hippocampus. The high voltage electron microscope examinations of Golgi-impregnated astrocytes clearly disclosed their fine leaflet-like processes in the masses occupied by individual astrocytes. The intracellular injection of two different fluorescent tracers into two neighboring astrocytes revealed that each astrocyte occupied a discrete area with a limited overlap only at its peripheral portion. In a quantitative analysis using an optical dissector, the numerical densities of astrocytes identified as S100-immunoreactive cells were only slightly different in their areal and laminar distributions. The numerical densities were higher in the stratum lacunosum-moleculare and dentate hilus, while they were slightly lower in the principal cell layers than the average (24.2 x 10(3) mm(-3)) in whole hippocampal regions. As for the dorsoventral difference, the numerical densities were significantly larger at the ventral level in the dentate gyrus, whereas such tendency was not apparent in the hippocampus proper. The projection area of the astrocytes estimated from Golgi-impregnated samples was roughly in inverse relation to the numerical densities; the areas in the stratum lacunosum-moleculare were somewhat smaller than the other layers, where the numerical densities were high. The present study indicates that astrocytes are distributed rather evenly without any prominent areal or laminar differences and that the individual astrocytes have their own domains; the periphery of the domain of a given astrocyte is interdigitated intricately with the processes of adjacent astrocytes whereas its inner core portion is not penetrated by them.
Collapse
Affiliation(s)
- K Ogata
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
43
|
Säljö A, Bao F, Jingshan S, Hamberger A, Hansson HA, Haglid KG. Exposure to short-lasting impulse noise causes neuronal c-Jun expression and induction of apoptosis in the adult rat brain. J Neurotrauma 2002; 19:985-91. [PMID: 12225658 DOI: 10.1089/089771502320317131] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Exposure to impulse noise, above a certain intensity, is harmful to auditory function. Effects of impulse noise on the central nervous system (CNS) are largely unexplored, and there is little information on critical threshold values and time factors. We have recently shown that neurofilament proteins are affected in the cerebral cortex and the hippocampus. Now we show that impulse noise induces expression of the immediate early gene c-Jun products, proposed to play a role in the initiation of neuronal death, and apoptosis as revealed by TUNEL staining. Rat brains were investigated immunohistochemically 2 h to 21 days after exposure to impulse noise of 198 dB or 202 dB. c-Jun was expressed in neuronal perikarya in layers II-VI of the temporal cortex, the cingulate and the piriform cortices at 2 h to 21 days after both exposure levels. Granule neurons of the dentate gyrus and the CA1-3 in the hippocampus pyramidal neurons were similarly affected. The elevated expression of c-Jun products remained high at all postexposure times. TUNEL staining was positive among the same nerve cell populations 6 h after exposure and persisted even at 7 days at both exposure levels.
Collapse
Affiliation(s)
- Annette Säljö
- Department of Anatomy and Cell Biology, Göteborg University, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
44
|
Säljö A, Bao F, Shi J, Hamberger A, Hansson HA, Haglid KG. Expression of c-Fos and c-Myc and deposition of beta-APP in neurons in the adult rat brain as a result of exposure to short-lasting impulse noise. J Neurotrauma 2002; 19:379-85. [PMID: 11939505 DOI: 10.1089/089771502753594945] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is increasing evidence that impulse noise causes brain damage, but little is known about the mechanisms and extent of the response. Here, rat brains were investigated immunohistochemically for the expression of c-Fos, c-Myc, and beta-APP during the first 3 weeks postexposure to impulse noise of 198 or 202 dB. The expression of c-Fos and c-Myc increased at 2 h after exposure in neurons of the cerebral cortex, thalamus, and hippocampus, and this c-Fos immunoreactivity remained elevated for the entire observation period. The c-Myc immunoreactivity peaked at 18 h in both neurons and astrocytes but returned to control levels at 7 days. Abnormal deposition of beta-APP was evident within 6 h in the same brain regions. The beta-APP immunoreactivity was most prominent at 18 h and remained increased over the 21-day period assessed. The observed effects were similar to those described in humans following traumatic brain injury and in Alzheimer's disease. We conclude that impulse noise influences the brain in a fashion similar to that in cases with progressive CNS degeneration.
Collapse
Affiliation(s)
- Annette Säljö
- Department of Anatomy and Cell Biology, University of Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
45
|
Bendotti C, Cole SE, Gobbi M, Hohmann C, Reeves RH. Overexpression of S100beta in transgenic mice does not protect from serotonergic denervation induced by 5,7-dihydroxytryptamine. J Neurosci Res 2002; 67:501-10. [PMID: 11835317 DOI: 10.1002/jnr.10132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transgenic mice overexpressing S100beta were used to examine whether the chronic elevation of this protein alters the response to selective partial serotonergic lesions produced by bilateral intracerebroventricular injections of 5,7-dihydroxytryptamine (5,7-DHT). Basal levels of S100beta mRNA examined by in situ hybridization were two- to threefold higher throughout the brain in transgenic than in control mice, whereas 5-HT levels in forebrain were similar in both. After the 5,7-DHT-induced lesions, no differences were found in the S100beta mRNA levels in either normal or transgenic mice. At 5 and 60 days after the lesion, forebrain 5-HT levels were reduced by 56% and 35%, respectively, in control mice and by 51% and 35%, respectively, in the transgenic mice. Analysis of the 5-HT immunostaining showed a marked decrease of the immunoreactivity in various brain regions, which was comparable at the two intervals postlesion. One exception was the medial hypothalamus, where an almost complete disappearance of 5-HT immunoreactivity was observed in the medial region at 5 days after lesion, followed by a marked reinnervation 60 days later. These hypothalamic changes were seen in both controls and S100beta-overexpressing transgenic mice. Quantitative analysis of the density of 5-HT transporter sites using [(3)H]citalopram binding, a marker of serotonergic terminals, showed a marked decrease in different brain regions at both 5 and 60 days after 5,7-DHT injections. No difference in basal and postlesion levels of [(3)H]citalopram binding was seen between transgenic and control mice. In conclusion, this study demonstrates that constitutive overexpression of S100beta in transgenic mice does not modify serotonin levels during development, nor does it protect the serotonergic neurons from selective neurotoxicity or modify the serotonergic sprouting induced by partial lesion.
Collapse
Affiliation(s)
- C Bendotti
- Laboratory of Molecular Neurobiology, Mario Negri Institute for Pharmacological Research, Via Eritrea 62, 20157 Milan, Italy.
| | | | | | | | | |
Collapse
|
46
|
Säljö A, Bao F, Hamberger A, Haglid KG, Hansson HA. Exposure to short-lasting impulse noise causes microglial and astroglial cell activation in the adult rat brain. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2001; 8:105-111. [PMID: 11720806 DOI: 10.1016/s0928-4680(01)00067-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exposure to impulse noise, i.e. pressure waves, is above a certain intensity, harmful to auditory function. Intense, short-lasting impulse noise of 198 or 202 dB affects the heavy subunit of neurofilament proteins in neuronal perikarya of the cerebral cortex and hippocampus. There was as well an increased expression of immediate early gene products and induction of neuronal apoptosis. Here, we show that this range of exposure also affects glial cells. We identified microglial cells with an antibody against the complement receptor type 3 (OX-42) and astrocytes with an antibody against the glial fibrillary acidic protein (GFAP). The pattern of damage included microglial activation as early as 2 h after exposure to 202 dB. The activation increased further at 18 h. There was a significant increase of the area occupied by microglial cells in the anterior and posterior hypothalamus and in the lateral septal nucleus. Astrogliosis was observed in the cerebral cortex, the dentate gyrus and in the pyramidal cell layers as well as in white matter of the hippocampus. Both the microglial and astrocytic reactivities remained at 21 days. Exposure to 198 dB, caused similar, but less prominent activation in both cell types.
Collapse
Affiliation(s)
- Annette Säljö
- Departments of Anatomy and Cell Biology, Göteborg University, Box 420, SE 405 30, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
47
|
Abstract
BACKGROUND The astrocyte is thought to be important in AIDS dementia complex (ADC) pathogenesis on the basis of ADC neuropathology and cell culture models putatively because HIV can infect astrocytes leading to a compromise of their physiological detoxifying and neuronal support functions. Confirmatory in vivo data are lacking. Currently, the only widely available marker of the astrocyte is the protein S-100beta. OBJECTIVE The aims of this study were to determine whether cerebrospinal fluid (CSF) levels of S-100beta correlate with the presence, severity and rapidity of ADC progression. STUDY DESIGN Fourty nine CSF samples from HIV-1 seropositive individuals with either no ADC (ADC stage 0) or varying degrees of ADC (ADC stages 1-3) were analysed in this study. An immunoradiometric assay was used to quantify levels of S-100beta in the CSF. All individuals in this study were receiving antiretroviral therapy. In addition, individuals with ADC were grouped as either rapid ADC progressors or slow ADC progressors depending on the period of time from ADC diagnosis to death. RESULTS CSF S-100beta levels in individuals with either ADC stage 2 or 3 were significantly elevated compared to those with stage 0 or 1. Moreover, CSF S-100beta levels were significantly higher in individuals with rapid ADC progression compared with slow progressors. CONCLUSIONS This study shows that CSF S-100beta levels predict those patients in whom ADC will progress rapidly.
Collapse
Affiliation(s)
- L A Pemberton
- Centre for Immunology, St. Vincent's Hospital, Darlinghurst, NSW 2010, Australia.
| | | |
Collapse
|
48
|
Hertz L, Hansson E, Rönnbäck L. Signaling and gene expression in the neuron-glia unit during brain function and dysfunction: Holger Hydén in memoriam. Neurochem Int 2001; 39:227-52. [PMID: 11434981 DOI: 10.1016/s0197-0186(01)00017-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Holger Hydén demonstrated almost 40 years ago that learning changes the base composition of nuclear RNA, i.e. induces an alteration in gene expression. An equally revolutionary observation at that time was that a base change occurred in both neurons and glia. From these findings, Holger Hydén concluded that establishment of memory is correlated with protein synthesis, and he demonstrated de novo synthesis of several high-molecular protein species after learning. Moreover, the protein, S-100, which is mainly found in glial cells, was increased during learning, and antibodies towards this protein inhibited memory consolidation. S-100 belongs to a family of Ca(2+)-binding proteins, and Holger Hydén at an early point realized the huge importance of Ca(2+) in brain function. He established that glial cells show more marked and earlier changes in RNA composition in Parkinson's disease than neurons. Holger Hydén also had the vision and courage to suggest that "mental diseases could as well be thought to depend upon a disturbance of processes in glia cells as in the nerve cells", and he showed that antidepressant drugs cause profound changes in glial RNA. The importance of Holger Hydén's findings and visions can only now be fully appreciated. His visionary concepts of the involvement of glia in neurological and mental illness, of learning being associated with changes in gene expression, and of the functional importance of Ca(2+)-binding proteins and Ca(2+) are presently being confirmed and expanded by others. This review briefly summarizes highlights of Holger Hydén's work in these areas, followed by a discussion of recent research, confirming his findings and expanding his visions. This includes strong evidence that glial dysfunction is involved in the development of Parkinson's disease, that drugs effective in mood disorders alter gene expression and exert profound effects on astrocytes, and that neuronal-astrocytic interactions in glutamate signaling, NO synthesis, Ca(2+) signaling, beta-adrenergic activity, second messenger production, protein kinase activities, and transcription factor phosphorylation control the highly programmed events that carry the memory trace through the initial, signal-mediated short-term and intermediate memory stages to protein synthesis-dependent long-term memory.
Collapse
Affiliation(s)
- L Hertz
- Hong Kong DNA Chips Ltd., Kowloon, Hong Kong, People's Republic of China
| | | | | |
Collapse
|
49
|
Leski ML, Bao F, Wu L, Qian H, Sun D, Liu D. Protein and DNA oxidation in spinal injury: neurofilaments--an oxidation target. Free Radic Biol Med 2001; 30:613-24. [PMID: 11295359 DOI: 10.1016/s0891-5849(00)00500-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study measured the time courses of protein and DNA oxidation following spinal cord injury (SCI) in rats and characterized oxidative degradation of proteins. Protein carbonyl content-a marker of protein oxidation-significantly increased at 3-9 h postinjury and the ratio 8-hydroxy-2-deoxyguanosine/deoxyguanosine-an indicator of DNA oxidation-was significantly higher at 3-6 h postinjury in the injured cords than in the sham controls. This suggests that oxidative modification of proteins and DNA contributes to secondary damage in SCI. Densities of selected bands on coomassie-stained gels indicated that most proteins were degraded. Neurofilament protein (NFP) was particularly evaluated immunohistochemically; its light chain (NFP-68) was gradually degraded in nerve fibers, neuron bodies, and large dendrites following SCI. A mixture of Mn (III) tetrakis (4-benzoic acid) porphyrin (10 mg/kg)-a novel SOD mimetic-and nitro-L-arginine (1 mg/kg)-an inhibitor of nitric oxide synthase-injected intraperitoneally, increased NFP-68 immunoreactivity and the numbers of NFP-positive nerve fibers post-SCI, correlating NFP degradation in SCI to free radical-triggered oxidative damage for the first time. Therefore, blockage of protein and DNA oxidation in the secondary injury stage may improve long-term recovery-important information for development of the SCI therapies.
Collapse
Affiliation(s)
- M L Leski
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555-0653, USA
| | | | | | | | | | | |
Collapse
|
50
|
Runnerstam M, Bao F, Huang Y, Shi J, Gutierrez E, Hamberger A, Hansson HA, Viano D, Haglid K. A new model for diffuse brain injury by rotational acceleration: II. Effects on extracellular glutamate, intracranial pressure, and neuronal apoptosis. J Neurotrauma 2001; 18:259-73. [PMID: 11284547 DOI: 10.1089/08977150151070892] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The aim of this study is to monitor excitatory amino acids (EAAs) in the extracellular fluids of the brain and to characterize regional neuronal damage in a new experimental model for brain injury, in which rabbits were exposed to 180-260 krad/s2 rotational head acceleration. This loading causes extensive subarachnoid hemorrhage, focal tissue bleeding, reactive astrocytosis, and axonal damage. Animals were monitored for intracranial pressure (ICP) and for amino acids in the extracellular fluids. Immunohistochemistry was used to study expression of the gene c-Jun and apoptosis with the terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) technique. Extracellular glutamate, glycine, and taurine increased significantly in the hippocampus within a few hours and remained high after 24 h. Neuronal nuclei in the granule layers of the hippocampus and cerebellum were positive for c-Jun after 24 h. Little immunoreactivity was detected in the cerebral cortex. c-Jun-positive neuronal perikarya and processes were found in granule and pyramidal CA4 layers of the hippocampus and among the Purkinje cells of the cerebellum. Also some microglial cells stained positively for c-Jun. TUNEL reactivity was most intense at 10 days after trauma and was extensive in neurons of the cerebral cortex, hippocampus, and cerebellum. The initial response of the brain after rotational head injury involves brain edema after 24 h and an excitotoxic neuronal microenvironment in the first hour, which leads to extensive delayed neuronal cell death by apoptosis necrosis in the cerebral cortex, hippocampus and cerebellum.
Collapse
Affiliation(s)
- M Runnerstam
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|