1
|
Khadka N, Bikson M. Neurocapillary-Modulation. Neuromodulation 2022; 25:1299-1311. [PMID: 33340187 PMCID: PMC8213863 DOI: 10.1111/ner.13338] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/05/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES We consider two consequences of brain capillary ultrastructure in neuromodulation. First, blood-brain barrier (BBB) polarization as a consequence of current crossing between interstitial space and the blood. Second, interstitial current flow distortion around capillaries impacting neuronal stimulation. MATERIALS AND METHODS We developed computational models of BBB ultrastructure morphologies to first assess electric field amplification at the BBB (principle 1) and neuron polarization amplification by the presence of capillaries (principle 2). We adapt neuron cable theory to develop an analytical solution for maximum BBB polarization sensitivity. RESULTS Electrical current crosses between the brain parenchyma (interstitial space) and capillaries, producing BBB electric fields (EBBB) that are >400x of the average parenchyma electric field (ĒBRAIN), which in turn modulates transport across the BBB. Specifically, for a BBB space constant (λBBB) and wall thickness (dth-BBB), the analytical solution for maximal BBB electric field (EABBB) is given as: (ĒBRAIN × λBBB)/dth-BBB. Electrical current in the brain parenchyma is distorted around brain capillaries, amplifying neuronal polarization. Specifically, capillary ultrastructure produces ∼50% modulation of the ĒBRAIN over the ∼40 μm inter-capillary distance. The divergence of EBRAIN (Activating function) is thus ∼100 kV/m2 per unit ĒBRAIN. CONCLUSIONS BBB stimulation by principle 1 suggests novel therapeutic strategies such as boosting metabolic capacity or interstitial fluid clearance. Whereas the spatial profile of EBRAIN is traditionally assumed to depend only on macroscopic anatomy, principle 2 suggests a central role for local capillary ultrastructure-which impact forms of neuromodulation including deep brain stimulation (DBS), spinal cord stimulation (SCS), transcranial magnetic stimulation (TMS), electroconvulsive therapy (ECT), and transcranial electrical stimulation (tES)/transcranial direct current stimulation (tDCS).
Collapse
Affiliation(s)
- Niranjan Khadka
- Department of Psychiatry, Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA.
| |
Collapse
|
2
|
Tran CHT. Toolbox for studying neurovascular coupling in vivo, with a focus on vascular activity and calcium dynamics in astrocytes. NEUROPHOTONICS 2022; 9:021909. [PMID: 35295714 PMCID: PMC8920490 DOI: 10.1117/1.nph.9.2.021909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/23/2022] [Indexed: 05/14/2023]
Abstract
Significance: Insights into the cellular activity of each member of the neurovascular unit (NVU) is critical for understanding their contributions to neurovascular coupling (NVC)-one of the key control mechanisms in cerebral blood flow regulation. Advances in imaging and genetic tools have enhanced our ability to observe, manipulate and understand the cellular activity of NVU components, namely neurons, astrocytes, microglia, endothelial cells, vascular smooth muscle cells, and pericytes. However, there are still many unresolved questions. Since astrocytes are considered electrically unexcitable,Ca 2 + signaling is the main parameter used to monitor their activity. It is therefore imperative to study astrocyticCa 2 + dynamics simultaneously with vascular activity using tools appropriate for the question of interest. Aim: To highlight currently available genetic and imaging tools for studying the NVU-and thus NVC-with a focus on astrocyteCa 2 + dynamics and vascular activity, and discuss the utility, technical advantages, and limitations of these tools for elucidating NVC mechanisms. Approach: We draw attention to some outstanding questions regarding the mechanistic basis of NVC and emphasize the role of astrocyticCa 2 + elevations in functional hyperemia. We further discuss commonly used genetic, and optical imaging tools, as well as some newly developed imaging modalities for studying NVC at the cellular level, highlighting their advantages and limitations. Results: We provide an overview of the current state of NVC research, focusing on the role of astrocyticCa 2 + elevations in functional hyperemia; summarize recent advances in genetically engineeredCa 2 + indicators, fluorescence microscopy techniques for studying NVC; and discuss the unmet challenges for future imaging development. Conclusions: Advances in imaging techniques together with improvements in genetic tools have significantly contributed to our understanding of NVC. Many pieces of the puzzle have been revealed, but many more remain to be discovered. Ultimately, optimizing NVC research will require a concerted effort to improve imaging techniques, available genetic tools, and analytical software.
Collapse
Affiliation(s)
- Cam Ha T. Tran
- University of Nevada, Reno School of Medicine, Department of Physiology and Cell Biology, Reno, Nevada, United States
| |
Collapse
|
3
|
Gagliano G, Monteverdi A, Casali S, Laforenza U, Gandini Wheeler-Kingshott CAM, D’Angelo E, Mapelli L. Non-Linear Frequency Dependence of Neurovascular Coupling in the Cerebellar Cortex Implies Vasodilation-Vasoconstriction Competition. Cells 2022; 11:1047. [PMID: 35326498 PMCID: PMC8947624 DOI: 10.3390/cells11061047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 01/28/2023] Open
Abstract
Neurovascular coupling (NVC) is the process associating local cerebral blood flow (CBF) to neuronal activity (NA). Although NVC provides the basis for the blood oxygen level dependent (BOLD) effect used in functional MRI (fMRI), the relationship between NVC and NA is still unclear. Since recent studies reported cerebellar non-linearities in BOLD signals during motor tasks execution, we investigated the NVC/NA relationship using a range of input frequencies in acute mouse cerebellar slices of vermis and hemisphere. The capillary diameter increased in response to mossy fiber activation in the 6-300 Hz range, with a marked inflection around 50 Hz (vermis) and 100 Hz (hemisphere). The corresponding NA was recorded using high-density multi-electrode arrays and correlated to capillary dynamics through a computational model dissecting the main components of granular layer activity. Here, NVC is known to involve a balance between the NMDAR-NO pathway driving vasodilation and the mGluRs-20HETE pathway driving vasoconstriction. Simulations showed that the NMDAR-mediated component of NA was sufficient to explain the time course of the capillary dilation but not its non-linear frequency dependence, suggesting that the mGluRs-20HETE pathway plays a role at intermediate frequencies. These parallel control pathways imply a vasodilation-vasoconstriction competition hypothesis that could adapt local hemodynamics at the microscale bearing implications for fMRI signals interpretation.
Collapse
Affiliation(s)
- Giuseppe Gagliano
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.G.); (A.M.); (S.C.); (C.A.M.G.W.-K.)
| | - Anita Monteverdi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.G.); (A.M.); (S.C.); (C.A.M.G.W.-K.)
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Stefano Casali
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.G.); (A.M.); (S.C.); (C.A.M.G.W.-K.)
| | - Umberto Laforenza
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Claudia A. M. Gandini Wheeler-Kingshott
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.G.); (A.M.); (S.C.); (C.A.M.G.W.-K.)
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London WC1N3 BG, UK
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.G.); (A.M.); (S.C.); (C.A.M.G.W.-K.)
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.G.); (A.M.); (S.C.); (C.A.M.G.W.-K.)
| |
Collapse
|
4
|
Gascoigne DA, Drobyshevsky A, Aksenov DP. The Contribution of Dysfunctional Chloride Channels to Neurovascular Deficiency and Neurodegeneration. Front Pharmacol 2021; 12:754743. [PMID: 34671264 PMCID: PMC8520995 DOI: 10.3389/fphar.2021.754743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/21/2021] [Indexed: 01/11/2023] Open
Affiliation(s)
- David A. Gascoigne
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, United States
| | - Daniil P. Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States,Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL, United States,*Correspondence: Daniil P. Aksenov,
| |
Collapse
|
5
|
Stackhouse TL, Mishra A. Neurovascular Coupling in Development and Disease: Focus on Astrocytes. Front Cell Dev Biol 2021; 9:702832. [PMID: 34327206 PMCID: PMC8313501 DOI: 10.3389/fcell.2021.702832] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Neurovascular coupling is a crucial mechanism that matches the high energy demand of the brain with a supply of energy substrates from the blood. Signaling within the neurovascular unit is responsible for activity-dependent changes in cerebral blood flow. The strength and reliability of neurovascular coupling form the basis of non-invasive human neuroimaging techniques, including blood oxygen level dependent (BOLD) functional magnetic resonance imaging. Interestingly, BOLD signals are negative in infants, indicating a mismatch between metabolism and blood flow upon neural activation; this response is the opposite of that observed in healthy adults where activity evokes a large oversupply of blood flow. Negative neurovascular coupling has also been observed in rodents at early postnatal stages, further implying that this is a process that matures during development. This rationale is consistent with the morphological maturation of the neurovascular unit, which occurs over a similar time frame. While neurons differentiate before birth, astrocytes differentiate postnatally in rodents and the maturation of their complex morphology during the first few weeks of life links them with synapses and the vasculature. The vascular network is also incomplete in neonates and matures in parallel with astrocytes. Here, we review the timeline of the structural maturation of the neurovascular unit with special emphasis on astrocytes and the vascular tree and what it implies for functional maturation of neurovascular coupling. We also discuss similarities between immature astrocytes during development and reactive astrocytes in disease, which are relevant to neurovascular coupling. Finally, we close by pointing out current gaps in knowledge that must be addressed to fully elucidate the mechanisms underlying neurovascular coupling maturation, with the expectation that this may also clarify astrocyte-dependent mechanisms of cerebrovascular impairment in neurodegenerative conditions in which reduced or negative neurovascular coupling is noted, such as stroke and Alzheimer’s disease.
Collapse
Affiliation(s)
- Teresa L Stackhouse
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, United States
| | - Anusha Mishra
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, United States.,Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, OR, United States
| |
Collapse
|
6
|
Noor MS, Yu L, Murari K, Kiss ZHT. Neurovascular coupling during deep brain stimulation. Brain Stimul 2020; 13:916-927. [DOI: 10.1016/j.brs.2020.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/30/2022] Open
|
7
|
Tremblay SA, Chapman CA, Courtemanche R. State-Dependent Entrainment of Prefrontal Cortex Local Field Potential Activity Following Patterned Stimulation of the Cerebellar Vermis. Front Syst Neurosci 2019; 13:60. [PMID: 31736718 PMCID: PMC6828963 DOI: 10.3389/fnsys.2019.00060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/08/2019] [Indexed: 11/24/2022] Open
Abstract
The cerebellum is involved in sensorimotor, cognitive, and emotional functions through cerebello-cerebral connectivity. Cerebellar neurostimulation thus likely affects cortical circuits, as has been shown in studies using cerebellar stimulation to treat neurological disorders through modulation of frontal EEG oscillations. Here we studied the effects of different frequencies of cerebellar stimulation on oscillations and coherence in the cerebellum and prefrontal cortex in the urethane-anesthetized rat. Local field potentials were recorded in the right lateral cerebellum (Crus I/II) and bilaterally in the prefrontal cortex (frontal association area, FrA) in adult male Sprague-Dawley rats. Stimulation was delivered to the cerebellar vermis (lobule VII) using single pulses (0.2 Hz for 60 s), or repeated pulses at 1 Hz (30 s), 5 Hz (10 s), 25 Hz (2 s), and 50 Hz (1 s). Effects of stimulation were influenced by the initial state of EEG activity which varies over time during urethane-anesthesia; 1 Hz stimulation was more effective when delivered during the slow-wave state (Stage 1), while stimulation with single-pulse, 25, and 50 Hz showed stronger effects during the activated state (Stage 2). Single-pulses resulted in increases in oscillatory power in the delta and theta bands for the cerebellum, and in frequencies up to 80 Hz in cortical sites. 1 Hz stimulation induced a decrease in 0–30 Hz activity and increased activity in the 30–200 Hz range, in the right FrA. 5 Hz stimulation reduced power in high frequencies in Stage 1 and induced mixed effects during Stage 2.25 Hz stimulation increased cortical power at low frequencies during Stage 2, and increased power in higher frequency bands during Stage 1. Stimulation at 50 Hz increased delta-band power in all recording sites, with the strongest and most rapid effects in the cerebellum. 25 and 50 Hz stimulation also induced state-dependent effects on cerebello-cortical and cortico-cortical coherence at high frequencies. Cerebellar stimulation can therefore entrain field potential activity in the FrA and drive synchronization of cerebello-cortical and cortico-cortical networks in a frequency-dependent manner. These effects highlight the role of the cerebellar vermis in modulating large-scale synchronization of neural networks in non-motor frontal cortex.
Collapse
Affiliation(s)
- Stéfanie A Tremblay
- Department of Health, Kinesiology, and Applied Physiology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - C Andrew Chapman
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Richard Courtemanche
- Department of Health, Kinesiology, and Applied Physiology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
8
|
Chen JJ. Functional MRI of brain physiology in aging and neurodegenerative diseases. Neuroimage 2018; 187:209-225. [PMID: 29793062 DOI: 10.1016/j.neuroimage.2018.05.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 05/16/2018] [Accepted: 05/20/2018] [Indexed: 12/14/2022] Open
Abstract
Brain aging and associated neurodegeneration constitute a major societal challenge as well as one for the neuroimaging community. A full understanding of the physiological mechanisms underlying neurodegeneration still eludes medical researchers, fuelling the development of in vivo neuroimaging markers. Hence it is increasingly recognized that our understanding of neurodegenerative processes likely will depend upon the available information provided by imaging techniques. At the same time, the imaging techniques are often developed in response to the desire to observe certain physiological processes. In this context, functional MRI (fMRI), which has for decades provided information on neuronal activity, has evolved into a large family of techniques well suited for in vivo observations of brain physiology. Given the rapid technical advances in fMRI in recent years, this review aims to summarize the physiological basis of fMRI observations in healthy aging as well as in age-related neurodegeneration. This review focuses on in-vivo human brain imaging studies in this review and on disease features that can be imaged using fMRI methods. In addition to providing detailed literature summaries, this review also discusses future directions in the study of brain physiology using fMRI in the clinical setting.
Collapse
Affiliation(s)
- J Jean Chen
- Rotman Research Institute at Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada.
| |
Collapse
|
9
|
Nippert AR, Biesecker KR, Newman EA. Mechanisms Mediating Functional Hyperemia in the Brain. Neuroscientist 2017; 24:73-83. [PMID: 28403673 DOI: 10.1177/1073858417703033] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuronal activity within the brain evokes local increases in blood flow, a response termed functional hyperemia. This response ensures that active neurons receive sufficient oxygen and nutrients to maintain tissue function and health. In this review, we discuss the functions of functional hyperemia, the types of vessels that generate the response, and the signaling mechanisms that mediate neurovascular coupling, the communication between neurons and blood vessels. Neurovascular coupling signaling is mediated primarily by the vasoactive metabolites of arachidonic acid (AA), by nitric oxide, and by K+. While much is known about these pathways, many contentious issues remain. We highlight two controversies, the role of glial cell Ca2+ signaling in mediating neurovascular coupling and the importance of capillaries in generating functional hyperemia. We propose signaling pathways that resolve these controversies. In this scheme, capillary dilations are generated by Ca2+ increases in astrocyte endfeet, leading to production of AA metabolites. In contrast, arteriole dilations are generated by Ca2+ increases in neurons, resulting in production of nitric oxide and AA metabolites. Arachidonic acid from neurons also diffuses into astrocyte endfeet where it is converted into additional vasoactive metabolites. While this scheme resolves several discrepancies in the field, many unresolved challenges remain and are discussed in the final section of the review.
Collapse
Affiliation(s)
- Amy R Nippert
- 1 Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Kyle R Biesecker
- 1 Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Eric A Newman
- 1 Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
10
|
Mishra A. Binaural blood flow control by astrocytes: listening to synapses and the vasculature. J Physiol 2016; 595:1885-1902. [PMID: 27619153 DOI: 10.1113/jp270979] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/15/2016] [Indexed: 12/28/2022] Open
Abstract
Astrocytes are the most common glial cells in the brain with fine processes and endfeet that intimately contact both neuronal synapses and the cerebral vasculature. They play an important role in mediating neurovascular coupling (NVC) via several astrocytic Ca2+ -dependent signalling pathways such as K+ release through BK channels, and the production and release of arachidonic acid metabolites. They are also involved in maintaining the resting tone of the cerebral vessels by releasing ATP and COX-1 derivatives. Evidence also supports a role for astrocytes in maintaining blood pressure-dependent change in cerebrovascular tone, and perhaps also in blood vessel-to-neuron signalling as posited by the 'hemo-neural hypothesis'. Thus, astrocytes are emerging as new stars in preserving the intricate balance between the high energy demand of active neurons and the supply of oxygen and nutrients from the blood by maintaining both resting blood flow and activity-evoked changes therein. Following neuropathology, astrocytes become reactive and many of their key signalling mechanisms are altered, including those involved in NVC. Furthermore, as they can respond to changes in vascular pressure, cardiovascular diseases might exert previously unknown effects on the central nervous system by altering astrocyte function. This review discusses the role of astrocytes in neurovascular signalling in both physiology and pathology, and the impact of these findings on understanding BOLD-fMRI signals.
Collapse
Affiliation(s)
- Anusha Mishra
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
11
|
Abstract
Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks.
Collapse
Affiliation(s)
- Bradley R Buchbinder
- Department of Radiology, Division of Neuroradiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Optogenetic stimulation of GABA neurons can decrease local neuronal activity while increasing cortical blood flow. J Cereb Blood Flow Metab 2015; 35:1579-86. [PMID: 26082013 PMCID: PMC4640302 DOI: 10.1038/jcbfm.2015.140] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 05/04/2015] [Accepted: 05/20/2015] [Indexed: 12/27/2022]
Abstract
We investigated the link between direct activation of inhibitory neurons, local neuronal activity, and hemodynamics. Direct optogenetic cortical stimulation in the sensorimotor cortex of transgenic mice expressing Channelrhodopsin-2 in GABAergic neurons (VGAT-ChR2) greatly attenuated spontaneous cortical spikes, but was sufficient to increase blood flow as measured with laser speckle contrast imaging. To determine whether the observed optogenetically evoked gamma aminobutyric acid (GABA)-neuron hemodynamic responses were dependent on ionotropic glutamatergic or GABAergic synaptic mechanisms, we paired optogenetic stimulation with application of antagonists to the cortex. Incubation of glutamatergic antagonists directly on the cortex (NBQX and MK-801) blocked cortical sensory evoked responses (as measured with electroencephalography and intrinsic optical signal imaging), but did not significantly attenuate optogenetically evoked hemodynamic responses. Significant light-evoked hemodynamic responses were still present after the addition of picrotoxin (GABA-A receptor antagonist) in the presence of the glutamatergic synaptic blockade. This activation of cortical inhibitory interneurons can mediate large changes in blood flow in a manner that is by and large not dependent on ionotropic glutamatergic or GABAergic synaptic transmission. This supports the hypothesis that activation of inhibitory neurons can increase local cerebral blood flow in a manner that is not entirely dependent on levels of net ongoing neuronal activity.
Collapse
|
13
|
Iwanami J, Mogi M, Tsukuda K, Jing F, Ohshima K, Wang XL, Nakaoka H, Kan-no H, Chisaka T, Bai HY, Min LJ, Horiuchi M. Possible synergistic effect of direct angiotensin II type 2 receptor stimulation by compound 21 with memantine on prevention of cognitive decline in type 2 diabetic mice. Eur J Pharmacol 2013; 724:9-15. [PMID: 24361310 DOI: 10.1016/j.ejphar.2013.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 12/04/2013] [Accepted: 12/11/2013] [Indexed: 01/01/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is known to be associated with increased risk of cognitive impairment including Alzheimer disease. Recent studies have suggested an interaction between angiotensin II and N-methyl-d-aspartic acid (NMDA) glutamate receptors. We previously reported that stimulation of the angiotensin II type 2 (AT2) receptor exerts brain protective effects. A newly developed AT2 receptor agonist, compound 21 (C21), has enabled examination of the direct effect of AT2 receptor stimulation in vivo. Accordingly, we examined the possible synergistic effect of C21 and memantine on cognitive impairment in T2DM mice, KKAy. KKAy were divided into four groups; (1) control, (2) treatment with C21 (10 μg/kg/day), (3) treatment with memantine (20mg/kg/day), and (4) treatment with both for 4 weeks, and subjected to Morris water maze tasks. Treatment with C21 or memantine alone at these doses tended to shorten escape latency compared to that in the control group. C21 treatment increased cerebral blood flow (CBF), but memantine did not influence CBF. Treatment with C21 or C21 plus memantine increased hippocampal field-excitatory postsynaptic potential (f-EPSP). Moreover, treatment with memantine or C21 increased acetylcholine level, which was lower in KKAy than in wild-type mice, and C21 plus memantine treatment enhanced memantine or C21-induced acetylcholine secretion. This study provides an insight into new approaches to understand the interaction of angiotensin II and neurotransmitters. We can anticipate a new therapeutic approach against cognitive decline using C21 and memantine.
Collapse
Affiliation(s)
- Jun Iwanami
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Kana Tsukuda
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Fei Jing
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Kousei Ohshima
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Xiao-Li Wang
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Hirotomo Nakaoka
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Harumi Kan-no
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Toshiyuki Chisaka
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Hui-Yu Bai
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Li-Juan Min
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan.
| |
Collapse
|
14
|
Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1α-mediated target gene activation. J Neurosci 2012; 32:9727-35. [PMID: 22787058 DOI: 10.1523/jneurosci.0879-12.2012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Astrocytes exhibit a prominent glycolytic activity, but whether such a metabolic profile is influenced by intercellular communication is unknown. Treatment of primary cultures of mouse cortical astrocytes with the nitric oxide (NO) donor DetaNONOate induced a time-dependent enhancement in the expression of genes encoding various glycolytic enzymes as well as transporters for glucose and lactate. Such an effect was shown to be dependent on the hypoxia-inducible factor HIF-1α, which is stabilized and translocated to the nucleus to exert its transcriptional regulation. NO action was dependent on both the PI3K/Akt/mTOR and MEK signaling pathways and required the activation of COX, but was independent of the soluble guanylate cyclase pathway. Furthermore, as a consequence of NO treatment, an enhanced lactate production and release by astrocytes was evidenced, which was prevented by downregulating HIF-1α. Several brain cell types represent possible sources of NO. It was found that endothelial cells, which express the endothelial NO synthase (eNOS) isoform, constitutively produced the largest amount of NO in culture. When astrocytes were cocultured with primary cultures of brain vascular endothelial cells, stabilization of HIF-1α and an enhancement in glucose transporter-1, hexokinase-2, and monocarboxylate transporter-4 expression as well as increased lactate production was found in astrocytes. This effect was inhibited by the NOS inhibitor l-NAME and was not seen when astrocytes were cocultured with primary cultures of cortical neurons. Our findings suggest that endothelial cell-derived NO participates to the maintenance of a high glycolytic activity in astrocytes mediated by astrocytic HIF-1α activation.
Collapse
|
15
|
Abstract
Anesthesia has broad actions that include changing neuronal excitability, vascular reactivity, and other baseline physiologies and eventually modifies the neurovascular coupling relationship. Here, we review the effects of anesthesia on the spatial propagation, temporal dynamics, and quantitative relationship between the neural and vascular responses to cortical stimulation. Previous studies have shown that the onset latency of evoked cerebral blood flow (CBF) changes is relatively consistent across anesthesia conditions compared with variations in the time-to-peak. This finding indicates that the mechanism of vasodilation onset is less dependent on anesthesia interference, while vasodilation dynamics are subject to this interference. The quantitative coupling relationship is largely influenced by the type and dosage of anesthesia, including the actions on neural processing, vasoactive signal transmission, and vascular reactivity. The effects of anesthesia on the spatial gap between the neural and vascular response regions are not fully understood and require further attention to elucidate the mechanism of vascular control of CBF supply to the underlying focal and surrounding neural activity. The in-depth understanding of the anesthesia actions on neurovascular elements allows for better decision-making regarding the anesthetics used in specific models for neurovascular experiments and may also help elucidate the signal source issues in hemodynamic-based neuroimaging techniques.
Collapse
Affiliation(s)
- Kazuto Masamoto
- Center for Frontier Science and Engineering, University of Electro-Communications, Tokyo, Japan.
| | | |
Collapse
|
16
|
Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses. Neuroimage 2012; 62:1040-50. [PMID: 22261372 DOI: 10.1016/j.neuroimage.2012.01.040] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/27/2011] [Accepted: 01/01/2012] [Indexed: 12/30/2022] Open
Abstract
Brain's electrical activity correlates strongly to changes in cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO(2)). Subthreshold synaptic processes correlate better than the spike rates of principal neurons to CBF, CMRO(2) and positive BOLD signals. Stimulation-induced rises in CMRO(2) are controlled by the ATP turnover, which depends on the energy used to fuel the Na,K-ATPase to reestablish ionic gradients, while stimulation-induced CBF responses to a large extent are controlled by mechanisms that depend on Ca(2+) rises in neurons and astrocytes. This dichotomy of metabolic and vascular control explains the gap between the stimulation-induced rises in CMRO(2) and CBF, and in turn the BOLD signal. Activity-dependent rises in CBF and CMRO(2) vary within and between brain regions due to differences in ATP turnover and Ca(2+)-dependent mechanisms. Nerve cells produce and release vasodilators that evoke positive BOLD signals, while the mechanisms that control negative BOLD signals by activity-dependent vasoconstriction are less well understood. Activation of both excitatory and inhibitory neurons produces rises in CBF and positive BOLD signals, while negative BOLD signals under most conditions correlate to excitation of inhibitory interneurons, but there are important exceptions to that rule as described in this paper. Thus, variations in the balance between synaptic excitation and inhibition contribute dynamically to the control of metabolic and hemodynamic responses, and in turn the amplitude and polarity of the BOLD signal. Therefore, it is not possible based on a negative or positive BOLD signal alone to decide whether the underlying activity goes on in principal or inhibitory neurons.
Collapse
|
17
|
Petzold GC, Murthy VN. Role of astrocytes in neurovascular coupling. Neuron 2011; 71:782-97. [PMID: 21903073 DOI: 10.1016/j.neuron.2011.08.009] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
Abstract
Neural activity is intimately tied to blood flow in the brain. This coupling is specific enough in space and time that modern imaging methods use local hemodynamics as a measure of brain activity. In this review, we discuss recent evidence indicating that neuronal activity is coupled to local blood flow changes through an intermediary, the astrocyte. We highlight unresolved issues regarding the role of astrocytes and propose ways to address them using novel techniques. Our focus is on cellular level analysis in vivo, but we also relate mechanistic insights gained from ex vivo experiments to native tissue. We also review some strategies to harness advances in optical and genetic methods to study neurovascular coupling in the intact brain.
Collapse
Affiliation(s)
- Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | | |
Collapse
|
18
|
The physiology of developmental changes in BOLD functional imaging signals. Dev Cogn Neurosci 2011; 1:199-216. [PMID: 22436508 DOI: 10.1016/j.dcn.2011.04.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 12/14/2022] Open
Abstract
BOLD fMRI (blood oxygenation level dependent functional magnetic resonance imaging) is increasingly used to detect developmental changes of human brain function that are hypothesized to underlie the maturation of cognitive processes. BOLD signals depend on neuronal activity increasing cerebral blood flow, and are reduced by neural oxygen consumption. Thus, developmental changes of BOLD signals may not reflect altered information processing if there are concomitant changes in neurovascular coupling (the mechanism by which neuronal activity increases blood flow) or neural energy use (and hence oxygen consumption). We review how BOLD signals are generated, and explain the signalling pathways which convert neuronal activity into increased blood flow. We then summarize in broad terms the developmental changes that the brain's neural circuitry undergoes during growth from childhood through adolescence to adulthood, and present the changes in neurovascular coupling mechanisms and energy use which occur over the same period. This information provides a framework for assessing whether the BOLD changes observed during human development reflect altered cognitive processing or changes in neurovascular coupling and energy use.
Collapse
|
19
|
Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature 2010; 468:232-43. [PMID: 21068832 PMCID: PMC3206737 DOI: 10.1038/nature09613] [Citation(s) in RCA: 1681] [Impact Index Per Article: 120.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now recognized that neurotransmitter-mediated signalling has a key role in regulating cerebral blood flow, that much of this control is mediated by astrocytes, that oxygen modulates blood flow regulation, and that blood flow may be controlled by capillaries as well as by arterioles. These conceptual shifts in our understanding of cerebral blood flow control have important implications for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Tehovnik EJ, Tolias AS, Sultan F, Slocum WM, Logothetis NK. Direct and indirect activation of cortical neurons by electrical microstimulation. J Neurophysiol 2006; 96:512-21. [PMID: 16835359 DOI: 10.1152/jn.00126.2006] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrical microstimulation has been used to elucidate cortical function. This review discusses neuronal excitability and effective current spread estimated by using three different methods: 1) single-cell recording, 2) behavioral methods, and 3) functional magnetic resonance imaging (fMRI). The excitability properties of the stimulated elements in neocortex obtained using these methods were found to be comparable. These properties suggested that microstimulation activates the most excitable elements in cortex, that is, by and large the fibers of the pyramidal cells. Effective current spread within neocortex was found to be greater when measured with fMRI compared with measures based on single-cell recording or behavioral methods. The spread of activity based on behavioral methods is in close agreement with the spread based on the direct activation of neurons (as opposed to those activated synaptically). We argue that the greater activation with imaging is attributed to transynaptic spread, which includes subthreshold activation of sites connected to the site of stimulation. The definition of effective current spread therefore depends on the neural event being measured.
Collapse
Affiliation(s)
- E J Tehovnik
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | |
Collapse
|
21
|
Nishijima T, Soya H. Evidence of functional hyperemia in the rat hippocampus during mild treadmill running. Neurosci Res 2006; 54:186-91. [PMID: 16364480 DOI: 10.1016/j.neures.2005.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 11/01/2005] [Accepted: 11/14/2005] [Indexed: 11/29/2022]
Abstract
Exercise appears to improve hippocampal plasticity and cognitive function, leading us to postulate that exercise may activate hippocampal neurons, which in turn increase hippocampal cerebral blood flow (Hip-CBF). Recent studies using laser-Doppler flowmetry (LDF) have shown that Hip-CBF increases with behavior and locomotion, but it has not been examined whether these changes are due to neuronal activation. We aimed to examine whether functional hyperemia, an increase in cerebral blood flow in response to neuronal activation, can occur in the exercising rat hippocampus. We applied a treadmill running model of rats and LDF combined with microdialysis. Prolonged mild treadmill running (10 m/min) resulted in an increase in Hip-CBF of 26+/-9% versus basal level. When tetrodotoxin was infused via microdialysis into the loci where Hip-CBF was monitored, the increased Hip-CBF with running was completely suppressed. These results provide evidence that functional hyperemia occurs in the rat hippocampus during mild treadmill running and suggest that our running animal model may be useful for examining the underlying mechanisms of exercise-induced hippocampal functional hyperemia.
Collapse
Affiliation(s)
- Takeshi Nishijima
- Laboratory of Exercise Biochemistry, University of Tsukuba Graduate School of Comprehensive Human Sciences, Tsukuba 305-8574, Ibaraki, Japan
| | | |
Collapse
|
22
|
Uribe-Querol E, Martínez-Martínez E, Tapia-Rodríguez M, Hernández LR, Toscano-Márquez B, Padilla P, Gutiérrez-Ospina G. Metabolic indices shift in the hypothalamic-neurohypophysial system during lactation: implications for interpreting their relationship with neuronal activity. Neuroscience 2005; 134:1217-22. [PMID: 16054766 DOI: 10.1016/j.neuroscience.2005.05.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 04/11/2005] [Accepted: 05/12/2005] [Indexed: 11/28/2022]
Abstract
Metabolic indices of neuronal activity are thought to predict changes in the frequency of action potentials. There are stimuli that do not shift action potential frequency but change the temporal organization of neuronal firing following modifications of excitatory inputs by inhibitory synaptic activation. To our knowledge it is unknown whether this kind of stimulus associates with adjustments of metabolic markers of neuronal activity. Here, we used the hypothalamic-neurohypophysial system of lactating rats to address whether shifts in the temporal organization of neuronal firing relate with modifications of metabolic markers of neuronal activity. Cytochrome oxidase activity, (3)H-2-deoxyglucose uptake, and the area occupied by blood vessels increased in the paraventricular nucleus and neurohypophysis of lactating rats, as compared with their virgin counterparts. Taken together, these results suggest that metabolic demands denote shifts in the temporal organization of action potentials related with the adjustment of excitatory synaptic activation, and support that changes in metabolic markers do not necessarily reflect shifts in the frequency of action potentials.
Collapse
Affiliation(s)
- E Uribe-Querol
- Laboratory of Evolutionary and Developmental Neurobiology, Department of Cell Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México
| | | | | | | | | | | | | |
Collapse
|
23
|
Offenhauser N, Thomsen K, Caesar K, Lauritzen M. Activity-induced tissue oxygenation changes in rat cerebellar cortex: interplay of postsynaptic activation and blood flow. J Physiol 2005; 565:279-94. [PMID: 15774524 PMCID: PMC1464487 DOI: 10.1113/jphysiol.2005.082776] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 03/14/2005] [Indexed: 12/22/2022] Open
Abstract
Functional neuroimaging relies on the robust coupling between neuronal activity, metabolism and cerebral blood flow (CBF), but the physiological basis of the neuroimaging signals is still poorly understood. We examined the mechanisms of activity-dependent changes in tissue oxygenation in relation to variations in CBF responses and postsynaptic activity in rat cerebellar cortex. To increase synaptic activity we stimulated the monosynaptic, glutamatergic climbing fibres that excite Purkinje cells via AMPA receptors. We used local field potentials to indicate synaptic activity, and recorded tissue oxygen partial pressure (P(tiss,O2)) by polarographic microelectrodes, and CBF using laser-Doppler flowmetry. The disappearance rate of oxygen in the tissue increased linearly with synaptic activity. This indicated that, without a threshold, oxygen consumption increased as a linear function of synaptic activity. The reduction in P(tiss,O2) preceded the rise in CBF. The time integral (area) of the negative P(tiss,O2) response increased non-linearly showing saturation at high levels of synaptic activity, concomitant with a steep rise in CBF. This was accompanied by a positive change in P(tiss,O2). Neuronal nitric oxide synthase inhibition enhanced the initial negative P(tiss,O2) response ('dip'), while attenuating the evoked CBF increase and positive P(tiss,O2) response equally. This indicates that increases in CBF counteract activity-induced reductions in P(tiss,O2), and suggests the presence of a tissue oxygen reserve. The changes in P(tiss,O2) and CBF were strongly attenuated by AMPA receptor blockade. Our findings suggest an inverse relationship between negative P(tiss,O2) and CBF responses, and provide direct in vivo evidence for a tight coupling between activity in postsynaptic AMPA receptors and cerebellar oxygen consumption.
Collapse
Affiliation(s)
- Nikolas Offenhauser
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | | | |
Collapse
|
24
|
Abstract
A key goal in functional neuroimaging is to use signals that are related to local changes in metabolism and blood flow to track the neuronal correlates of mental activity. Recent findings indicate that the dendritic processing of excitatory synaptic inputs correlates more closely than the generation of spikes with brain imaging signals. The correlation is often nonlinear and context-sensitive, and cannot be generalized for every condition or brain region. The vascular signals are mainly produced by increases in intracellular calcium in neurons and possibly astrocytes, which activate important enzymes that produce vasodilators to generate increments in flow and the positive blood oxygen level dependent signal. Our understanding of the cellular mechanisms of functional imaging signals places constraints on the interpretation of the data.
Collapse
Affiliation(s)
- Martin Lauritzen
- Department of Clinical Neurophysiology, Glostrup Hospital, DK-2600 Glostrup, Denmark.
| |
Collapse
|
25
|
Lovick TA, Brown LA, Key BJ. Neuronal activity-related coupling in cortical arterioles: involvement of astrocyte-derived factors. Exp Physiol 2004; 90:131-40. [PMID: 15466455 DOI: 10.1113/expphysiol.2004.028811] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuronal activity-evoked dilatation was investigated in cortical arterioles in brain slices from mature rats maintained in vitro at 31-33 degrees C. In the presence of the thromboxane A2 agonist U46619 (75 nM) to preconstrict vessels, internal diameter decreased by 14.2% and rhythmic contractile activity (vasomotion) developed. Addition of the epoxygenase inhibitor miconazole (20 microm) produced a further decrease in diameter and increase in the frequency of vasomotion, suggesting that tonic release of epoxygenase products maintains a level of cerebrovascular dilator tone. Addition of 1 mum AMPA for 5 min evoked a 15.4 +/- 3.7% increase in diameter and the frequency of vasomotion decreased by -6.7 +/- 1.4 contractions min(-1). The response persisted in the presence of 1 mum TTX, indicating that it was independent of neuronal activity and thus likely to have been evoked by activation of AMPA receptors on astrocytes rather than neurones. The response to the brief (5 min) application of AMPA remained unchanged in the presence of miconazole (20 microm). Prolonged (30 min) application of AMPA produced a +12.1 +/- 1.5% increase in internal diameter and reduction in vasomotion (-8.4 +/- 1.7 contractions min(-1)) that were sustained throughout the stimulation period. However, when AMPA was applied in the presence of miconazole (20 microm) it evoked only a transient increase in diameter (+9.8 +/- 3.1%) and decrease in vasomotion (-6.6 +/- 1.5 contractions min(-1)) that lasted for less than 10 min despite continued application of AMPA. The results suggest that products of epoxygenase activity, probably epoxyeicosatrienoic acids (EETs) are involved in activity-related dilatation in cortical arterioles. Whilst epoxygenase activity is not required to initiate dilatation, it appears to be involved in sustaining the response. Thus EETs released from membrane stores could contribute to the initial stages, but once these have been depleted de novo synthesis of EETs is required to maintain the effect.
Collapse
Affiliation(s)
- T A Lovick
- Department of Physiology, The Medical School, University of Birmingham, PO Box 363, Vincent Drive, Birmingham B15 2TT, UK.
| | | | | |
Collapse
|
26
|
Abstract
Neuronal activity in the brain is thought to be coupled to cerebral arterioles (functional hyperemia) through Ca
2+
signals in astrocytes. Although functional hyperemia occurs rapidly, within seconds, such rapid signaling has not been demonstrated in situ, and Ca
2+
measurements in parenchymal arterioles are still lacking. Using a laser scanning confocal microscope and fluorescence Ca
2+
indicators, we provide the first evidence that in a brain slice preparation, increased neuronal activity by electrical stimulation (ES) is rapidly signaled, within seconds, to cerebral arterioles and is associated with astrocytic Ca
2+
waves. Smooth muscle cells in parenchymal arterioles exhibited Ca
2+
and diameter oscillations (“vasomotion”) that were rapidly suppressed by ES. The neuronal-mediated Ca
2+
rise in cortical astrocytes was dependent on intracellular (inositol trisphosphate [IP
3
]) and extracellular voltage-dependent Ca
2+
channel sources. The Na
+
channel blocker tetrodotoxin prevented the rise in astrocytic [Ca
2+
]
i
and the suppression of Ca
2+
oscillations in parenchymal arterioles to ES, indicating that neuronal activity was necessary for both events. Activation of metabotropic glutamate receptors in astrocytes significantly decreased the frequency of Ca
2+
oscillations in parenchymal arterioles. This study supports the concept that astrocytic Ca
2+
changes signal the cerebral microvasculature and indicate the novel concept that this communication occurs through the suppression of arteriolar [Ca
2+
]
i
oscillations and corresponding vasomotion. The full text of this article is available online at http://circres.ahajournals.org.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Animals
- Arterioles/drug effects
- Arterioles/metabolism
- Astrocytes/drug effects
- Astrocytes/metabolism
- Boron Compounds/pharmacology
- Calcium Channels/physiology
- Calcium Signaling
- Cerebral Cortex/blood supply
- Cerebral Cortex/cytology
- Cerebrovascular Circulation
- Cycloleucine/analogs & derivatives
- Cycloleucine/pharmacology
- Electric Stimulation
- Hyperemia/physiopathology
- In Vitro Techniques
- Indans/pharmacology
- Inositol 1,4,5-Trisphosphate/physiology
- Inositol 1,4,5-Trisphosphate Receptors
- Microscopy, Video
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/ultrastructure
- Myocytes, Smooth Muscle/metabolism
- Neurons/physiology
- Nifedipine/pharmacology
- Pyridines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/agonists
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Sodium Channel Blockers/pharmacology
- Sodium Channels/drug effects
- Synaptic Transmission/drug effects
- Tetrodotoxin/pharmacology
Collapse
Affiliation(s)
- Jessica A Filosa
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington 05405-0068, USA
| | | | | |
Collapse
|
27
|
|
28
|
Austin VC, Blamire AM, Grieve SM, O'Neill MJ, Styles P, Matthews PM, Sibson NR. Differences in the BOLD fMRI response to direct and indirect cortical stimulation in the rat. Magn Reson Med 2003; 49:838-47. [PMID: 12704766 DOI: 10.1002/mrm.10428] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Functional MRI (fMRI) exploits a relationship between neuronal activity, metabolism, and cerebral blood flow to functionally map the brain. We have developed a model of direct cortical stimulation in the rat that can be combined with fMRI and used to compare the hemodynamic responses to direct and indirect cortical stimulation. Unilateral electrical stimulation of the rat hindpaw motor cortex, via stereotaxically positioned carbon-fiber electrodes, yielded blood oxygenation level-dependent (BOLD) fMRI signal changes in both the stimulated and homotypic contralateral motor cortices. The maximal signal intensity change in both cortices was similar (stimulated = 3.7 +/- 1.7%; contralateral = 3.2 +/- 1.0%), although the response duration in the directly stimulated cortex was significantly longer (48.1 +/- 5.7 sec vs. 19.0 +/- 5.3 sec). Activation of the contralateral cortex is likely to occur via stimulation of corticocortical pathways, as distinct from direct electrical stimulation, and the response profile is similar to that observed in remote (e.g., forepaw) stimulation fMRI studies. Differences in the neuronal pool activated, or neurovascular mediators released, may account for the more prolonged BOLD response observed in the directly stimulated cortex. This work demonstrates the combination of direct cortical stimulation in the rat with fMRI and thus extends the scope of rodent fMRI into brain regions inaccessible to peripheral stimulation techniques.
Collapse
Affiliation(s)
- V C Austin
- MRC Biochemical and Clinical Magnetic Resonance Unit, Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Brown LA, Key BJ, Lovick TA. Inhibition of vasomotion in hippocampal cerebral arterioles during increases in neuronal activity. Auton Neurosci 2002; 95:137-40. [PMID: 11871779 DOI: 10.1016/s1566-0702(01)00395-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The activity of small arterioles, internal diameter 9.9 +/- 0.8 microm (SEM), was investigated in the CA1 region of hippocampal slices maintained in vitro at 34 degrees C. Under resting conditions, the vessels were quiescent. However, in the presence of the thromboxane A2 agonist U46619 (75-100 nM), rhythmic contractile activity (vasomotion, 1.1-9.9 min(-1), mean 4.1 +/- 0.7 min(-1) SEM) developed in the smooth muscle cells of the vessel walls. Electrical stimulation of the Schaffer collateral fibre pathway was used to evoke increases in neuronal activity in CA1 in the vicinity of the vessels under investigation. A 3-min period of electrical stimulation of the Schaffer collateral fibre pathway produced a significant reduction in vasomotion in 8/8 vessels. During stimulation, vasomotion either ceased completely (n = 5) or the frequency decreased from 7.1, 3.3 and 3.2 min(-1) to 1.2, 0.4 and 0.6 min(-1), respectively (n = 3). In addition, the amplitude of the residual contractions was reduced by 66%, 12% and 52%. In the presence of 1 microM tetrodotoxin (TTX) (n = 4) to block the generation of action potentials, vasomotion was still present. However, the inhibition of vasomotion evoked by increased neuronal activity was blocked concomitant with the abolition of the field potentials recorded in CA1 in response to the stimulation of the Schaffer collaterals. These findings suggest that a reduction in vasomotion may contribute to the local hyperaemia, which accompanies increases in synaptic activity in the brain.
Collapse
Affiliation(s)
- L A Brown
- Department of Physiology, University of Birmingham, UK.
| | | | | |
Collapse
|
30
|
Fukuhara T, Luciano MG, Liu JZ, Yue GH. Functional magnetic resonance imaging before and after ventriculoperitoneal shunting for hydrocephalus--case report. Neurol Med Chir (Tokyo) 2001; 41:626-30. [PMID: 11803591 DOI: 10.2176/nmc.41.626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 70-year-old man with hydrocephalus was examined with functional magnetic resonance (fMR) imaging before and after ventriculoperitoneal shunting. Preoperatively, activation by right hand exercise revealed only a slight signal increase in the peri-rolandic area. However, 3 months after ventriculoperitoneal shunting, a significant signal increase was observed. fMR imaging may detect activity-related improvement of cerebral blood flow responses in patients with hydrocephalus after surgical treatment.
Collapse
Affiliation(s)
- T Fukuhara
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
31
|
Husbands P, Philippides A, Smith T, O’Shea M. Volume signalling in real and robot nervous systems. Theory Biosci 2001. [DOI: 10.1007/s12064-001-0022-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Abstract
The coupling of electrical activity in the brain to changes in cerebral blood flow (CBF) is of interest because hemodynamic changes are used to track brain function. Recent studies, especially those investigating the cerebellar cortex, have shown that the spike rate in the principal target cell of a brain region (i.e. the efferent cell) does not affect vascular response amplitude. Subthreshold integrative synaptic processes trigger changes in the local microcirculation and local glucose consumption. The spatial specificity of the vascular response on the brain surface is limited because of the functional anatomy of the pial vessels. Within the cortex there is a characteristic laminar flow distribution, the largest changes of which are observed at the depth of maximal synaptic activity (i.e. layer IV) for an afferent input system. Under most conditions, increases in CBF are explained by activity in postsynaptic neurons, but presynaptic elements can contribute. Neurotransmitters do not mediate increases in CBF that are triggered by the concerted action of several second messenger molecules. It is important to distinguish between effective synaptic inhibition and deactivation that increase and decrease CBF and glucose consumption, respectively. In summary, hemodynamic changes evoked by neuronal activity depend on the afferent input function (i.e. all aspects of presynaptic and postsynaptic processing), but are totally independent of the efferent function (i.e., the spike rate of the same region). Thus, it is not possible to conclude whether the output level of activity of a region is increased based on brain maps that use blood-flow changes as markers.
Collapse
Affiliation(s)
- M Lauritzen
- Department of Clinical Neurophysiology, Glostrup Hospital and University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
33
|
Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 2001; 81:1143-95. [PMID: 11427694 DOI: 10.1152/physrev.2001.81.3.1143] [Citation(s) in RCA: 584] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebellar Purkinje cells exhibit a unique type of synaptic plasticity, namely, long-term depression (LTD). When two inputs to a Purkinje cell, one from a climbing fiber and the other from a set of granule cell axons, are repeatedly associated, the input efficacy of the granule cell axons in exciting the Purkinje cell is persistently depressed. Section I of this review briefly describes the history of research around LTD, and section II specifies physiological characteristics of LTD. Sections III and IV then review the massive data accumulated during the past two decades, which have revealed complex networks of signal transduction underlying LTD. Section III deals with a variety of first messengers, receptors, ion channels, transporters, G proteins, and phospholipases. Section IV covers second messengers, protein kinases, phosphatases and other elements, eventually leading to inactivation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolone-propionate-selective glutamate receptors that mediate granule cell-to-Purkinje cell transmission. Section V defines roles of LTD in the light of the microcomplex concept of the cerebellum as functionally eliminating those synaptic connections associated with errors during repeated exercises, while preserving other connections leading to the successful execution of movements. Section VI examines the validity of this microcomplex concept based on the data collected from recent numerous studies of various forms of motor learning in ocular reflexes, eye-blink conditioning, posture, locomotion, and hand/arm movements. Section VII emphasizes the importance of integrating studies on LTD and learning and raises future possibilities of extending cerebellar research to reveal memory mechanisms of implicit learning in general.
Collapse
Affiliation(s)
- M Ito
- Brain Science Institute, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
34
|
Norup Nielsen A, Lauritzen M. Coupling and uncoupling of activity-dependent increases of neuronal activity and blood flow in rat somatosensory cortex. J Physiol 2001; 533:773-85. [PMID: 11410634 PMCID: PMC2278665 DOI: 10.1111/j.1469-7793.2001.00773.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
1. Electrical stimulation of the infraorbital nerve was used to examine the coupling between neuronal activity and cerebral blood flow (CBF) in rat somatosensory cortex by laser Doppler flowmetry and extracellular recordings of field potentials. 2. The relationship between field potential (FP) and CBF amplitudes was examined as a function of the stimulus intensity (0--2.0 mA) at fixed frequency (3 Hz). FP amplitudes up to 2.0-2.5 mV were unaccompanied by increases of CBF. Above this threshold, CBF and FP amplitudes increased proportionally. 3. At fixed stimulus intensity of 1.5 mA, CBF increases were highly correlated to FP amplitudes at low frequencies of stimulation (< 2 Hz), but uncoupling was observed at stimulation frequencies of 2--5 Hz. The evoked responses were independent of stimulus duration (8--32 s). 4. The first rise in CBF occurred within the first 0.2 s after onset of stimulation in the upper 0--250 microm of the cortex. Latencies were longer (1.0--1.2 s) in lower cortical layers in which CBF and FP amplitudes were larger. 5. Local AMPA receptor blockade attenuated CBF and FP amplitudes proportionally. 6. This study showed that activity-dependent increases in neuronal activity and CBF were linearly coupled under defined conditions, but neuronal activity was well developed before CBF started to increase. Consequently, the absence of a rise in CBF does not exclude the presence of significant neuronal activity. The CBF increase in upper cortical layers preceded the rise in lower layers suggesting that vessels close to or at the brain surface are the first to react to neuronal activity. The activity-dependent rise in CBF was explained by postsynaptic activity in glutamatergic neurons.
Collapse
Affiliation(s)
- A Norup Nielsen
- Department of Medical Physiology, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
35
|
Lindauer U, Royl G, Leithner C, Kühl M, Gold L, Gethmann J, Kohl-Bareis M, Villringer A, Dirnagl U. No Evidence for Early Decrease in Blood Oxygenation in Rat Whisker Cortex in Response to Functional Activation. Neuroimage 2001; 13:988-1001. [PMID: 11352605 DOI: 10.1006/nimg.2000.0709] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Using optical methods through a closed cranial window over the rat primary sensory cortex in chloralose/urethane-anesthetized rats we evaluated the time course of oxygen delivery and consumption in response to a physiological stimulus (whisker deflection). Independent methodological approaches (optical imaging spectroscopy, single fiber spectroscopy, oxygen-dependent phosphorescence quenching) were applied to different modes of whisker deflection (single whisker, full whisker pad). Spectroscopic data were evaluated using different algorithms (constant pathlength, differential pathlength correction). We found that whisker deflection is accompanied by a significant increase of oxygenated hemoglobin (oxy-Hb), followed by an undershoot. An early increase in deoxygenated hemoglobin (deoxy-Hb) proceeded hyperoxygenation when spectroscopic data were analyzed by constant pathlength analysis. However, correcting for the wavelength dependence of photon pathlength in brain tissue (differential pathlength correction) completely eliminated the increase in deoxy-Hb. Oxygen-dependent phosphorescence quenching did not reproducibly detect early deoxygenation. Together with recent fMRI data, our results argue against significant early deoxygenation as a universal phenomenon in functionally activated mammalian brain. Interpreted with a diffusion-limited model of oxygen delivery to brain tissue our results are compatible with coupling between neuronal activity and cerebral blood flow throughout stimulation, as postulated 110 years ago by C. Roy and C. Sherrington (1890, J. Physiol. 11:85--108).
Collapse
Affiliation(s)
- U Lindauer
- Department of Experimental Neurology, Charité Hospital, 10098 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mayhew J, Johnston D, Berwick J, Jones M, Coffey P, Zheng Y. Spectroscopic analysis of neural activity in brain: increased oxygen consumption following activation of barrel cortex. Neuroimage 2000; 12:664-75. [PMID: 11112398 DOI: 10.1006/nimg.2000.0656] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This research investigates the hemodynamic response to stimulation of the barrel cortex in anaesthetized rats using optical imaging and spectroscopy (Bonhoeffer and Grinvald, 1996; Malonek and Grinvald, 1996; Mayhew et al., 1999). A slit spectrograph was used to collect spectral image data sequences. These were analyzed using an algorithm that corrects for the wavelength dependency in the optical path lengths produced by the light scattering properties of tissue. The analysis produced the changes in the oxy- and deoxygenation of hemoglobin following stimulation. Two methods of stimulation were used. One method mechanically vibrated a single whisker, the other electrically stimulated the whisker pad. The electrical stimulation intensity varied from 0.4 to 1.6 mA. The hemodynamic responses to stimulation increased as a function of intensity. At 0.4 mA they were commensurate with those from the mechanical stimulation; however, the responses at the higher levels were greater by a factor of approximately 10. For both methods of data collection, the results of the spectroscopic analysis showed an early increase in deoxygenated hemoglobin (Hbr) with no evidence for a corresponding decrease in oxygenated hemoglobin (HbO(2)). Evidence for increased oxygen consumption (CMRO(2)) was obtained by converting the fractional changes in blood volume (Hbt) into estimates of changes in blood flow (Grubb et al., 1974) and using the resulting time course to scale the fractional changes in Hbr. The results show an early increase CMRO(2) peaking approximately 2 s after stimulation onset. Using these methods, we find evidence for increased oxygen consumption following increased neural activity even at low levels of stimulation intensity.
Collapse
Affiliation(s)
- J Mayhew
- Artificial Intelligence Vision Research Unit and Department of Psychology, University of Sheffield, Sheffield S10 2TP, United Kingdom
| | | | | | | | | | | |
Collapse
|
37
|
Mathiesen C, Caesar K, Lauritzen M. Temporal coupling between neuronal activity and blood flow in rat cerebellar cortex as indicated by field potential analysis. J Physiol 2000; 523 Pt 1:235-46. [PMID: 10673558 PMCID: PMC2269795 DOI: 10.1111/j.1469-7793.2000.t01-1-00235.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Laser-Doppler flowmetry and extracellular recordings of field potentials were used to examine the temporal coupling between neuronal activity and increases in cerebellar blood flow (CeBF). 2. Climbing fibre-evoked increases in CeBF were dependent on stimulus duration, indicating that increases in CeBF reflected a time integral in neuronal activity. The simplest way to represent neuronal activity over time was to obtain a running summation of evoked field potential amplitudes (runSigmaFP). RunSigmaFP was calculated for each stimulus protocol and compared with the time course of the CeBF responses to demonstrate coupling between nerve cell activity and CeBF. 3. In the climbing fibre system, the amplitude and time course of CeBF were in agreement with the calculated postsynaptic runSigmaFP (2-20 Hz for 60 s). This suggested coupling between CeBF and neuronal activity in this excitatory, monosynaptic, afferent-input system under these conditions. There was no correlation between runSigmaFP and CeBF during prolonged stimulation. 4. Parallel fibre-evoked increases in CeBF correlated with runSigmaFP of pre- and postsynaptic potentials (2-15 Hz for 60 s). At higher stimulation frequencies and during longer-lasting stimulation the time course and amplitudes of CeBF responses correlated with runSigmaFP of presynaptic, but not postsynaptic potentials. This suggested a more complex relationship in this mixed inhibitory-excitatory, disynaptic, afferent-input system. 5. This study has demonstrated temporal coupling between neuronal activity and CeBF in the monosynaptic, excitatory climbing-fibre system. In the mixed mono- and disynaptic parallel fibre system, temporal coupling was most clearly observed at low stimulation frequencies. We propose that appropriate modelling of electrophysiological data is needed to document functional coupling of neuronal activity and blood flow.
Collapse
Affiliation(s)
- C Mathiesen
- NeuroSearch A/S, Ballerup, Denmark, Institute of Medical Physiology, University of Copenhagen, Denmark and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark.
| | | | | |
Collapse
|
38
|
Alonso-Galicia M, Hudetz AG, Shen H, Harder DR, Roman RJ. Contribution of 20-HETE to vasodilator actions of nitric oxide in the cerebral microcirculation. Stroke 1999; 30:2727-34; discussion 2734. [PMID: 10583004 DOI: 10.1161/01.str.30.12.2727] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The present study examined the contributions of a rise in cGMP versus a fall in 20-HETE levels to the vasodilator response to nitric oxide (NO) in the cerebral circulation of the rat. METHODS Intact rat middle cerebral and basilar arteries were bathed in physiological saline solution containing indomethacin (5 micromol/L) and baicalein (0.5 micromol/L) and pressurized at 90 mm Hg. Relaxations to sodium nitroprusside (SNP) were studied before and after addition of [1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one] (ODQ, a guanylyl cyclase blocker), 8R,9S, 11S-(-)-9-methoxy-carbamyl-8-methyl-2,3,9,10-tetrahydro-8, 11-epoxy-1H,8H,11H-2,7b,11a-trizadibenzo-(a,g)-cycloocta-(c, d, e)-trinden-1-one (KT5823, a protein kinase G blocker), and 20-hydroxyeicosatetraenoic acid (20-HETE). Cerebral blood flow was measured by using a laser Doppler flow probe over a thin cranial window in anesthetized rats, and the effects of intracerebroventricular infusion of 1-hexamine, 6-(2-hydroxy-1-methyl-2-nitrosohydrazino)N-methyl (MAHMA nonoate) and dibromododecenyl methylsulfimide (DDMS) were determined. RESULTS SNP-induced dilation of serotonin-preconstricted (0.2 micromol/L) middle cerebral arteries (10(-7) to 10(-3) mol/L) was attenuated in arteries treated with ODQ (10 micromol/L) or KT5823 (1 micromol/L) by 52% and 27%, respectively. Preventing the NO-induced fall in intracellular 20-HETE, by adding 20-HETE (100 nmol/L) to the bath, reduced the dilation to SNP by 62%. Simultaneous administration of ODQ and 20-HETE markedly attenuated the SNP-induced dilation by 90%. In basilar arteries, ODQ (10 micromol/L) alone completely blocked the response to SNP. Infusion of MAHMA nonoate (10 nmol/min ICV) in anesthetized rats increased cerebral blood flow by 52% before and 8% after blockade of the endogenous production of 20-HETE with DDMS (50 pmol/min). CONCLUSIONS These results suggest that NO dilates cerebral arteries through both cGMP-dependent and cGMP-independent pathways and that inhibition of 20-HETE formation contributes to the cerebral vasodilator response to NO both in vitro and in vivo.
Collapse
Affiliation(s)
- M Alonso-Galicia
- Departments of Physiology, Medical College of Wisconsin, Milwaukee 53226-0509, USA
| | | | | | | | | |
Collapse
|
39
|
Caesar K, Akgören N, Mathiesen C, Lauritzen M. Modification of activity-dependent increases in cerebellar blood flow by extracellular potassium in anaesthetized rats. J Physiol 1999; 520 Pt 1:281-92. [PMID: 10517819 PMCID: PMC2269561 DOI: 10.1111/j.1469-7793.1999.00281.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. The hypothesis that potassium ions mediate activity-dependent increases of cerebral blood flow was examined in rat cerebellar cortex using ion-selective microelectrodes and laser-Doppler flowmetry. Increases of cerebellar blood flow (CeBF) and extracellular potassium concentration ([K+]o) were evoked by stimulation of parallel fibres and climbing fibres, and by microinjection of KCl into the cortex. 2. For parallel fibre stimulation, there was a maximal increase in [K+]o to 6.3 +/- 0.5 mM and in CeBF of 122 +/- 11 %. Climbing fibre stimulation gave a maximal increase in [K+]o to 4.4 +/- 0.2 mM and in CeBF of 157 +/- 20 %. This indicates different maxima for [K+]o and CeBF, dependent on the afferent system activated. 3. [K+]o and CeBF responses evoked by parallel or climbing fibre stimulation increased rapidly at the onset of stimulation, but exhibited different time courses during the remainder of the stimulation period and during return to baseline. 4. Microinjections of KCl into the cortex increased [K+]o to levels comparable to those evoked by parallel fibre stimulation. The corresponding CeBF increases were the same as, or smaller than, for parallel fibre stimulation, and much smaller than for climbing fibre stimulation. This suggests that mediators other than [K+]o are important for activity-dependent cerebral blood flow increases. 5. The present study showed that increased [K+]o is involved in CeBF regulation in the parallel fibre system, but is of limited importance for CeBF regulation in the climbing fibre system. The hypothesis that K+ is a major mediator of activity-dependent blood flow increases is probably not generally applicable to all brain regions and all types of neuronal stimulation.
Collapse
Affiliation(s)
- K Caesar
- Department of Medical Physiology, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | | | | | | |
Collapse
|
40
|
Matsuura T, Fujita H, Seki C, Kashikura K, Kanno I. Hemodynamics evoked by microelectrical direct stimulation in rat somatosensory cortex. Comp Biochem Physiol A Mol Integr Physiol 1999; 124:47-52. [PMID: 10605067 DOI: 10.1016/s1095-6433(99)00086-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of this study was to estimate the timing (latency) of the increase in red blood cell (RBC) velocity and RBC concentration, and the magnitude of response in local cerebral blood flow (LCBF) for neuronal activation. We measured LCBF change during activation of the somatosensory cortex by direct microelectrical stimulation. Electrical stimuli of 5, 10 and 50 Hz of 1 ms pulse with 10-15 microA, were given for 5 s. LCBF, RBC velocity and RBC concentration were monitored by laser-Doppler flowmetry (LDF) in alpha-chloralose anesthetized rats (n = 7). LCBF, RBC velocity and RBC concentration increased nearly proportionally to stimulus frequency, i.e. neuronal activity. LCBF rose approximately 0.5 s after the onset of stimulation, and there was no significant time lag of the latencies among LCBF, RBC velocity and RBC concentration at the same stimulus frequency. We interpret these results to mean that the onset of LCBF increase on cortical activation is reflected by a rapid change in arteriole (resistance vessel) dilation and capillary volume. The data also elucidate the linear relationship between LCBF increase and cortical activity.
Collapse
Affiliation(s)
- T Matsuura
- Akita Laboratory, Japan Science and Technology Corporation, Akita Research Institute of Brain and Blood Vessels, Japan.
| | | | | | | | | |
Collapse
|
41
|
Ngai AC, Jolley MA, D'Ambrosio R, Meno JR, Winn HR. Frequency-dependent changes in cerebral blood flow and evoked potentials during somatosensory stimulation in the rat. Brain Res 1999; 837:221-8. [PMID: 10434006 DOI: 10.1016/s0006-8993(99)01649-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Contrary to the concept of neuronal-vascular coupling, cortical evoked potentials do not always correlate with blood flow responses during somatosensory stimulation at changing stimulus rates. The goal of this study is to clarify the effects of stimulus frequency on the relationship between somatosensory evoked potentials (SEPs) and cerebral blood flow. In rats anesthetized with alpha-chloralose, we measured SEPs by signal-averaging field potentials recorded with an electrode placed on dura overlying the hindlimb somatosensory cortex. Regional blood flow was simultaneously assessed in the same region with a laser-Doppler flow (LDF) probe. The contralateral sciatic nerve was stimulated with 0.1 A pulses at the frequencies of 1, 2, 5, 10 and 20 Hz. SEPs (both P1 and N1 components) declined with increasing frequency regardless whether stimulus duration (20 s) or number (100) were kept constant, suggesting that frequency is an important determinant of neuronal activity. In contrast, LDF responses increased to a maximum at 5 Hz, and do not correlate with SEPs. Because CBF should reflect integrated neuronal activity, we computed the sum of SEPS (summation operatorSEP = SEP x stimulus frequency) as an index of total neuronal activity at each frequency. Summation operatorSEP indeed correlates positively (P<0.001) with LDF responses. Thus, during somatosensory stimulation at various frequencies, cerebral blood flow is coupled to integrated neuronal activity but not to averaged evoked potentials.
Collapse
Affiliation(s)
- A C Ngai
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98104, USA.
| | | | | | | | | |
Collapse
|
42
|
Lindauer U, Megow D, Matsuda H, Dirnagl U. Nitric oxide: a modulator, but not a mediator, of neurovascular coupling in rat somatosensory cortex. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H799-811. [PMID: 10444508 DOI: 10.1152/ajpheart.1999.277.2.h799] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the role of nitric oxide (NO)/cGMP in the coupling of neuronal activation to regional cerebral blood flow (rCBF) in alpha-chloralose-anesthetized rats. Whisker deflection (60 s) increased rCBF by 18 +/- 3%. NO synthase (NOS) inhibition by N(omega)-nitro-L-arginine (L-NNA; topically) reduced the rCBF response to 9 +/- 4% and resting rCBF to 80 +/- 8%. NO donors [S-nitroso-N-acetylpenicillamine (SNAP; 50 microM), 3-morpholinosydnonimine (10 microM)] or 8-bromoguanosine 3', 5'-cyclic-monophosphate (8-BrcGMP; 100 microM)] restored resting rCBF and L-NNA-induced attenuation of the whisker response in the presence of L-NNA, whereas the NO-independent vasodilator papaverine (1 mM) had no effect on the whisker response. Basal cGMP levels were decreased to 35% by L-NNA and restored to 65% of control by subsequent SNAP superfusion. Inhibition of neuronal NOS by 7-nitroindazole (7-NI; 40 mg/kg ip) or soluble guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 100 microM) significantly reduced resting rCBF to 86 +/- 8 and 92 +/- 10% and whisker rCBF response to 7 +/- 4 and 12 +/- 3%, respectively. ODQ reduced tissue cGMP to 54%. 8-BrcGMP restored the whisker response in the presence of 7-NI or ODQ. We conclude that NO, produced by neuronal NOS, is a modulator in the coupling of neuronal activation and rCBF in rat somatosensory cortex and that this effect is mainly mediated by cGMP. L-NNA-induced vasomotion was significantly reduced during increased neuronal activity and after restoration of basal NO levels, but not after restoration of cGMP.
Collapse
Affiliation(s)
- U Lindauer
- Department of Experimental Neurology, Humboldt University, Charité Hospital, 10098 Berlin, Germany.
| | | | | | | |
Collapse
|
43
|
Lovick TA, Brown LA, Key BJ. Neurovascular relationships in hippocampal slices: physiological and anatomical studies of mechanisms underlying flow-metabolism coupling in intraparenchymal microvessels. Neuroscience 1999; 92:47-60. [PMID: 10392829 DOI: 10.1016/s0306-4522(98)00737-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Experiments were carried out to investigate the functional and anatomical relationships between neuronal elements and cerebral microvessels in 300-350-microm thick coronal hippocampal slices maintained at 33-35 degrees C, obtained from 150-200 g male Wistar rats. Cerebral arterioles (9-22 microm in diameter) were visualized in situ and pre-constricted by 22.0+/-6.6% by the addition of the thromboxane A2 agonist U46619 (75 nM), to the bathing medium. The glutamate agonist N-methyl-D-aspartate (0.01-1 mM) produced a dose-related increase in luminal diameter of pre-constricted vessels. In the presence of 4 microM haemoglobin to scavenge nitric oxide from the extravascular environment of the slice, the increase in diameter evoked by 0.1 mM N-methyl-D-aspartate was significantly reduced from 17.5+/-4.6% to 4.8+/-1.7% indicating that N-methyl-D-aspartate-induced vasodilatation of cerebral microvessels is mediated via a mechanism which involves neuronally-derived nitric oxide. In a parallel anatomical study, beta-nicotinamide adenine dinucleotide phosphate-dependent diaphorase staining was used to reveal the enzyme nitric oxide synthase in vascular endothelium and neurons in slices. A small subpopulation (< 11 cells per slice) of darkly-stained multipolar neurons, 21-32 microm in diameter was observed to give rise to a dense network of fine diaphorase-reactive nerve fibres that ramified throughout the whole of the hippocampus and appeared to come into close apposition with arterioles. Morphometric analysis of the relationship between cerebral microvessels, beta-nicotinamide adenine dinucleotide phosphate, reduced form-dependent diaphorase-reactive neuronal elements and individual pyramidal layer neurons, identified by filling with biocytin, revealed that for a given point on a pyramidal layer neuron, the proximity of the nearest diaphorase-reactive nerve fibre was less than 10 microm, whilst the distance to the nearest arteriole (the smallest functional unit for controlling blood flow) was in excess of 70 microm. Such a distance would probably preclude diffusion of vasoactive metabolites in effective concentrations from the area of increased neuronal activity. We therefore propose that the diaphorase-reactive nerve network constitutes the functional link. It is possible that during periods of increased neuronal activity, spillover of glutamate from synapses may activate the diaphorase-reactive network. Release of nitric oxide from the network in the vicinity of local cerebral arterioles may then produce relaxation of the vascular smooth muscle, enabling increased blood flow into the capillary network supplying the region of increased metabolic activity. This study has shown that the process whereby increases in neuronal activity elicit a local change in cerebral blood flow remains functionally intact in hippocampal slice preparations. Nitric oxide of neuronal origin appears to be involved in mediating the coupling between neurons and cerebral arterioles. Stereological analysis of the relationship between neuronal and vascular elements within hippocampal slices suggested that a small subpopulation of nitric oxide synthase-containing neurons which give rise to a diffuse network of fine nitric oxide synthase-containing nerve fibres that lie in close apposition to cerebral arterioles may provide the anatomical substrate for coupling of blood flow to metabolism.
Collapse
Affiliation(s)
- T A Lovick
- Division of Medical Science, University of Birmingham, UK
| | | | | |
Collapse
|
44
|
Mathiesen C, Caesar K, Akgören N, Lauritzen M. Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J Physiol 1998; 512 ( Pt 2):555-66. [PMID: 9763643 PMCID: PMC2231204 DOI: 10.1111/j.1469-7793.1998.555be.x] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Mechanisms of activity-dependent increases in cerebral blood flow (CBF) were examined in rat cerebellar cortex using the laser Doppler flow technique and extracellular recordings of single unit activity and field potentials. 2. Stimulation of the monosynaptic climbing fibre system evoked long-lasting complex spikes in Purkinje cells, and extracellular field potentials with a characteristic profile that indicated contributions from both passive and active membrane mechanisms. The concomitant CBF increases were reproducible at fairly short intervals, and suggest that both synaptic activity and spikes may contribute to increased CBF. 3. Stimulation of the disynaptic parallel fibre system inhibited the spiking activity in Purkinje cells, while the postsynaptic activity increased as indicated by the simultaneously recorded field potential. Nevertheless, CBF always increased. The inhibition of spike firing activity was partly dependent on GABAergic transmission, but may also relate to the intrinsic membrane properties of Purkinje cells. 4. The CBF increases evoked by parallel or climbing fibre stimulation were highly correlated to the sum of neural activities, i.e. the negativity of field potentials multiplied by the stimulus frequency. This suggests a robust link between extracellular current flow and activity-dependent increases in CBF. 5. AMPA receptor blockade attenuated CBF increases and field potential amplitudes, while NMDA receptor antagonism did not. This is consistent with the idea that the CBF responses are of neuronal origin. 6. This study has shown that activity-dependent CBF increases evoked by stimulation of cerebellar parallel fibres are dependent on synaptic excitation, including excitation of inhibitory interneurones, whereas the net activity of Purkinje cells, the principal neurones of the cerebellar cortex, is unimportant for the vascular response. For the climbing fibre system, not only synaptic activity but also the generation of complex spikes from Purkinje cells contribute to the increases in CBF. The strong correlation between CBF and field potential amplitudes suggests that extracellular ion fluxes contribute to the coupling of brain activity to blood flow.
Collapse
Affiliation(s)
- C Mathiesen
- Department of Medical Physiology, The Panum Institute, University of Copenhagen and NeuroSearch A/S, Glostrup, Glostrup Hospital, Denmark.
| | | | | | | |
Collapse
|
45
|
Forman SD, Silva AC, Dedousis N, Barbier EL, Fernstrom JD, Koretsky AP. Simultaneous glutamate and perfusion fMRI responses to regional brain stimulation. J Cereb Blood Flow Metab 1998; 18:1064-70. [PMID: 9778182 DOI: 10.1097/00004647-199810000-00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Functional magnetic resonance imaging (fMRI) rests on the assumption that regional brain activity is closely coupled to regional cerebral blood flow (rCBF) in vivo. To test the degree of coupling, cortical brain activity was locally stimulated in rats by reversed microdialysis infusion of picrotoxinin, alphagamma-aminobutyric acid-A antagonist. Before and during the first 30 minutes of infusion, simultaneous fMRI (rCBF) and neurochemical (interstitial glutamate concentration) measures of brain activity were highly correlated (r = 0.83). After 30 minutes of picrotoxinin-induced stimulation, glutamate levels decreased but rCBF remained elevated, suggesting that additional factors modulate the relationship between neuronal neurotransmitters and hemodynamics at these later stages.
Collapse
Affiliation(s)
- S D Forman
- Pittsburgh Veterans Affairs Healthcare System, Department of Psychiatry, University of Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
46
|
Fabricius M, Akgören N, Dirnagl U, Lauritzen M. Laminar analysis of cerebral blood flow in cortex of rats by laser-Doppler flowmetry: a pilot study. J Cereb Blood Flow Metab 1997; 17:1326-36. [PMID: 9397032 DOI: 10.1097/00004647-199712000-00008] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Laser-Doppler flowmetry (LDF) is a reliable method for estimation of relative changes of CBF. The measurement depth depends on wavelength of the laser light and the separation distance of transmitting and recording optical fibers. We designed an LDF probe using two wavelengths of laser light (543 nm and 780 nm), and three separation distances of optical fibers to measure CBF in four layers of the cerebral cortex at the same time. In vitro comparison with electromagnetic flow measurements showed linear relationship between LDF and blood flow velocity at four depths within the range relevant to physiologic measurements. Using artificial brain tissue slices we showed that the signal for each channel decreased in a theoretically predictable fashion as a function of slice thickness. Application of adenosine at various depths in neocortex of halothane-anesthetized rats showed a predominant CBF increase at the level of application. Electrical stimulation at the surface of the cerebellar cortex demonstrated superficial predominance of increased CBF as predicted from the distribution of neuronal activity. In the cerebellum, hypercapnia increased CBF in a heterogeneous fashion, the major increase being at apparent depths of approximately 300 and 600 microns, whereas in the cerebral cortex, hypercapnia induced a uniform increase. In contrast, the CBF response to cortical spreading depression in the cerebral cortex was markedly heterogeneous. Thus, real-time laminar analysis of CBF with spatial resolution of 200 to 300 microns may be achieved by LDF. The real-time in depth resolution may give insight into the functional organization of the cortical microcirculation and adaptive features of CBF regulation in response to physiologic and pathophysiologic stimuli.
Collapse
Affiliation(s)
- M Fabricius
- Department of Medical Physiology, Rigshospitalet, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
47
|
Abstract
The role of GABA in regulating cerebral microvessels was examined in the parenchyma of the hippocampus and the surface of the neocortex. Microvessels were monitored in in vitro slices using computer-assisted videomicroscopy, and synaptically evoked field responses were simultaneously recorded. gamma-Aminobutyric acid (GABA) and the GABAA receptor agonist, muscimol, elicited vasodilation in hippocampal microvessels, whereas the GABAB receptor agonist, baclofen, elicited constriction. The muscimol-induced dilation persisted in the presence of the nitric oxide synthase inhibitor, N-nitro-L-arginine, indicating that this response is not mediated by nitric oxide. Inhibition of neuronal discharge activity with tetrodotoxin did not alter this dilation, but it fully blocked the constrictor response to baclofen. These data suggest that GABAB-mediated, but not GABAA-mediated, responses are dependent on action potential generation. The GABAA receptor antagonists, bicuculline and picrotoxin, elicited constriction, suggesting a tonic dilatory influence by endogenous GABA. Bicuculline-induced constriction was not attenuated by tetrodotoxin. In contrast, these vessels were unresponsive to the GABAB receptor antagonist, 2-hydroxysaclofen. Hippocampal microvessels dilated in response to moderate hypoxia, and this response persisted in the presence of bicuculline, indicating that the hypoxia-induced dilation is not mediated by an action at GABAA receptors. In arterioles located on the surface of the neocortex (i.e., not embedded in the parenchyma of the brain), muscimol elicited vasodilation, whereas bicuculline was ineffective. These results suggest that although these vessels are responsive to GABA, the local concentration of endogenous GABA is insufficient to elicit a tonic effect at rest. These findings raise the possibility that GABA plays a role in local neurovascular signaling in the parenchyma of the brain.
Collapse
Affiliation(s)
- A Fergus
- Department of Neurological Surgery, University of Virginia, Charlottesville 22908, USA
| | | |
Collapse
|
48
|
Yan XX, Ribak CE. Prenatal development of nicotinamide adenine dinucleotide phosphate-diaphorase activity in the human hippocampal formation. Hippocampus 1997; 7:215-31. [PMID: 9136051 DOI: 10.1002/(sici)1098-1063(1997)7:2<215::aid-hipo8>3.0.co;2-l] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry was used to study the development of the neurons metabolizing nitric oxide in the prenatal human hippocampal formation. Strongly reactive non-pyramidal neurons appeared in small numbers in the subplate at 15 weeks, and rapidly increased in this layer, as well as the cortical plate-derived layers between 17 and 24 weeks. The marginal zone also had a few NADPH-d cells at 15 weeks. The pattern of these darkly reactive cells stabilized by 28 weeks, with the somata distributed mostly at the border of the cortex and white matter in the entorhinal cortex and subiculum, or the alveus in Ammon's horn. Moderately stained non-pyramidal neurons appeared in the dentate gyrus by 17 weeks, and increased in this region and Ammon's horn up to 28 weeks. Small, lightly reactive non-pyramidal neurons were first seen by 32 weeks and increased in number by term. They were mainly distributed in layers II/III of the entorhinal cortex and stratum pyramidale of the subiculum and Ammon's horn. NADPH-d positive fibers in the marginal zone were mostly thin and developed between 20 and 28 weeks. In other cortical layers, thick processes from the darkly stained NADPH-d neurons appeared first, then fine fibers appeared more numerous, especially after 28 weeks. NADPH-d processes that arose from non-pyramidal cells were frequently apposed to blood vessels, including those in the hippocampal fissure. In addition, NADPH-d reactivity was also present in pyramidal and granule cells, but this staining was most pronounced between 15 and 24 weeks. The results show three types of distinctly stained NADPH-d interneurons in the fetal human hippocampal formation with different developmental courses and morphology. Also, hippocampal principal neurons transiently express NADPH-d at early fetal ages. Our data correlated with other findings suggest that nitric oxide may play a role in neuronal development in the hippocampal formation by modulating neuronal differentiation and maturation, and regulating blood supply.
Collapse
Affiliation(s)
- X X Yan
- Department of Anatomy and Neurobiology, Hunan Medical University, Changsha, Hunan, People's Republic of China.
| | | |
Collapse
|
49
|
Lindauer U, Megow D, Schultze J, Weber JR, Dirnagl U. Nitric oxide synthase inhibition does not affect somatosensory evoked potentials in the rat. Neurosci Lett 1996; 216:207-10. [PMID: 8897494 DOI: 10.1016/0304-3940(96)13044-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nitric oxide synthase (NOS) inhibition reduces the regional cerebral blood flow (rCBF) responses to somatosensory stimulation. It is controversial whether this is caused by a signalling role of nitric oxide (NO) between neurons and vascular smooth muscle, or by effects of NOS inhibition on neuronal activity. We here report that more than 85% inhibition of NOS activity by topical application of the NOS inhibitor N omega-nitro-L-arginine (L-NNA) for 2 h does not affect somatosensory evoked potentials (SEPs) elicited by vibrissal deflection or electrical forepaw stimulation in choloralose anaesthetised rats equipped with a closed cranial window, whereas cerebral blood flow (CBF) responses due to these stimulation paradigms are reduced by approximately 60%. We conclude that the decrease of the regional vascular response to increased neuronal activity during NOS inhibition is not caused by a suppression of neuronal activity.
Collapse
Affiliation(s)
- U Lindauer
- Department of Neurology, Humboldt University, Berlin, Germany.
| | | | | | | | | |
Collapse
|