1
|
Hellmer CB, Bohl JM, Hall LM, Koehler CC, Ichinose T. Dopaminergic Modulation of Signal Processing in a Subset of Retinal Bipolar Cells. Front Cell Neurosci 2020; 14:253. [PMID: 32922266 PMCID: PMC7456991 DOI: 10.3389/fncel.2020.00253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/23/2020] [Indexed: 11/13/2022] Open
Abstract
The retina and the olfactory bulb are the gateways to the visual and olfactory systems, respectively, similarly using neural networks to initiate sensory signal processing. Sensory receptors receive signals that are transmitted to neural networks before projecting to primary cortices. These networks filter sensory signals based on their unique features and adjust their sensitivities by gain control systems. Interestingly, dopamine modulates sensory signal transduction in both systems. In the retina, dopamine adjusts the retinal network for daylight conditions (“light adaptation”). In the olfactory system, dopamine mediates lateral inhibition between the glomeruli, resulting in odorant signal decorrelation and discrimination. While dopamine is essential for signal discrimination in the olfactory system, it is not understood whether dopamine has similar roles in visual signal processing in the retina. To elucidate dopaminergic effects on visual processing, we conducted patch-clamp recording from second-order retinal bipolar cells, which exhibit multiple types that can convey different temporal features of light. We recorded excitatory postsynaptic potentials (EPSPs) evoked by various frequencies of sinusoidal light in the absence and presence of a dopamine receptor 1 (D1R) agonist or antagonist. Application of a D1R agonist, SKF-38393, shifted the peak temporal responses toward higher frequencies in a subset of bipolar cells. In contrast, a D1R antagonist, SCH-23390, reversed the effects of SKF on these types of bipolar cells. To examine the mechanism of dopaminergic modulation, we recorded voltage-gated currents, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and low-voltage activated (LVA) Ca2+ channels. SKF modulated HCN and LVA currents, suggesting that these channels are the target of D1R signaling to modulate visual signaling in these bipolar cells. Taken together, we found that dopamine modulates the temporal tuning of a subset of retinal bipolar cells. Consequently, we determined that dopamine plays a role in visual signal processing, which is similar to its role in signal decorrelation in the olfactory bulb.
Collapse
Affiliation(s)
- Chase B Hellmer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jeremy M Bohl
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Leo M Hall
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christina C Koehler
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
2
|
Country MW, Campbell BFN, Jonz MG. Spontaneous action potentials in retinal horizontal cells of goldfish ( Carassius auratus) are dependent upon L-type Ca 2+ channels and ryanodine receptors. J Neurophysiol 2019; 122:2284-2293. [PMID: 31596629 DOI: 10.1152/jn.00240.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Horizontal cells (HCs) are interneurons of the outer retina that undergo graded changes in membrane potential during the light response and provide feedback to photoreceptors. We characterized spontaneous Ca2+-based action potentials (APs) in isolated goldfish (Carassius auratus) HCs with electrophysiological and intracellular imaging techniques. Transient changes in intracellular Ca2+ concentration ([Ca2+]i) were observed with fura-2 and were abolished by removal of extracellular Ca2+ or by inhibition of Ca2+ channels by 50 µM Cd2+ or 100 µM nifedipine. Inhibition of Ca2+ release from stores with 20 µM ryanodine or 50 µM dantrolene abolished Ca2+ transients and increased baseline [Ca2+]i. This increased baseline was prevented by blocking L-type Ca2+ channels with nifedipine, suggesting that Ca2+-induced Ca2+ release from stores may be needed to inactivate membrane Ca2+ channels. Caffeine (3 mM) increased the frequency of Ca2+ transients, and the store-operated channel antagonist 2-aminoethyldiphenylborinate (100 μM) counteracted this effect. APs were detected with voltage-sensitive dye imaging (FluoVolt) and current-clamp electrophysiology. In current-clamp recordings, regenerative APs were abolished by removal of extracellular Ca2+ or in the presence of 5 mM Co2+ or 100 µM nifedipine, and APs were amplified with 15 mM Ba2+. Collectively, our data suggest that during APs Ca2+ enters through L-type Ca2+ channels and that Ca2+ stores (gated by ryanodine receptors) contribute to the rise in [Ca2+]i. This work may lead to further understanding of the possible role APs have in vision, such as transitioning from light to darkness or modulating feedback from HCs to photoreceptors.NEW & NOTEWORTHY Horizontal cells (HCs) are interneurons of the outer retina that provide inhibitory feedback onto photoreceptors. HCs respond to light via graded changes in membrane potential. We characterized spontaneous action potentials in HCs from goldfish and linked action potential generation to a rise in intracellular Ca2+ via plasma membrane channels and ryanodine receptors. Action potentials may play a role in vision, such as transitioning from light to darkness, or in modulating feedback from HCs to photoreceptors.
Collapse
Affiliation(s)
- Michael W Country
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Shifatu O, Glasshagel-Chilson S, Nelson HM, Patel P, Tomamichel W, Higginbotham C, Evans PK, Lafontant GS, Burns AR, Lafontant PJ. Heart Development, Coronary Vascularization and Ventricular Maturation in a Giant Danio ( Devario malabaricus). J Dev Biol 2018; 6:jdb6030019. [PMID: 30037066 PMCID: PMC6162710 DOI: 10.3390/jdb6030019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022] Open
Abstract
Giant danios (genus Devario), like zebrafish, are teleosts belonging to the danioninae subfamily of cyprinids. Adult giant danios are used in a variety of investigations aimed at understanding cellular and physiological processes, including heart regeneration. Despite their importance, little is known about development and growth in giant danios, or their cardiac and coronary vessels development. To address this scarcity of knowledge, we performed a systematic study of a giant danio (Devario malabaricus), focusing on its cardiac development, from the segmentation period to ten months post-fertilization. Using light and scanning electron microscopy, we documented that its cardiovascular development and maturation proceed along well defined dynamic and conserved morphogenic patterns. The overall size and cardiovascular expansion of this species was significantly impacted by environmental parameters such as rearing densities. The coronary vasculature began to emerge in the late larval stage. More importantly, we documented two possible loci of initiation of the coronary vasculature in this species, and compared the emergence of the coronaries to that of zebrafish and gourami. This is the first comprehensive study of the cardiac growth in a Devario species, and our findings serve as an important reference for further investigations of cardiac biology using this species.
Collapse
Affiliation(s)
- Olubusola Shifatu
- Department of Biology, DePauw University, Greencastle, IN 46135, USA.
| | | | - Hannah M Nelson
- Department of Biology, DePauw University, Greencastle, IN 46135, USA.
| | - Purva Patel
- Department of Biology, DePauw University, Greencastle, IN 46135, USA.
| | - Wendy Tomamichel
- Department of Biology, DePauw University, Greencastle, IN 46135, USA.
| | - Clay Higginbotham
- Department of Biology, DePauw University, Greencastle, IN 46135, USA.
| | - Paula K Evans
- Department of Biology, DePauw University, Greencastle, IN 46135, USA.
| | | | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX 77204, USA.
| | | |
Collapse
|
4
|
Country MW, Jonz MG. Calcium dynamics and regulation in horizontal cells of the vertebrate retina: lessons from teleosts. J Neurophysiol 2017; 117:523-536. [PMID: 27832601 PMCID: PMC5288477 DOI: 10.1152/jn.00585.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/02/2016] [Indexed: 01/20/2023] Open
Abstract
Horizontal cells (HCs) are inhibitory interneurons of the vertebrate retina. Unlike typical neurons, HCs are chronically depolarized in the dark, leading to a constant influx of Ca2+ Therefore, mechanisms of Ca2+ homeostasis in HCs must differ from neurons elsewhere in the central nervous system, which undergo excitotoxicity when they are chronically depolarized or stressed with Ca2+ HCs are especially well characterized in teleost fish and have been used to unlock mysteries of the vertebrate retina for over one century. More recently, mammalian models of the retina have been increasingly informative for HC physiology. We draw from both teleost and mammalian models in this review, using a comparative approach to examine what is known about Ca2+ pathways in vertebrate HCs. We begin with a survey of Ca2+-permeable ion channels, exchangers, and pumps and summarize Ca2+ influx and efflux pathways, buffering, and intracellular stores. This includes evidence for Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and N-methyl-d-aspartate receptors and for voltage-gated Ca2+ channels. Special attention is given to interactions between ion channels, to differences among species, and in which subtypes of HCs these channels have been found. We then discuss a number of unresolved issues pertaining to Ca2+ dynamics in HCs, including a potential role for Ca2+ in feedback to photoreceptors, the role for Ca2+-induced Ca2+ release, and the properties and functions of Ca2+-based action potentials. This review aims to highlight the unique Ca2+ dynamics in HCs, as these are inextricably tied to retinal function.
Collapse
Affiliation(s)
- Michael W Country
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Lv T, Gong HQ, Liang PJ. Caffeine-induced Ca2+ oscillations in type I horizontal cells of the carp retina and the contribution of the store-operated Ca2+ entry pathway. PLoS One 2014; 9:e100095. [PMID: 24918937 PMCID: PMC4053414 DOI: 10.1371/journal.pone.0100095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 05/22/2014] [Indexed: 11/18/2022] Open
Abstract
The mechanisms of release, depletion, and refilling of endoplasmic reticulum (ER) Ca2+ were investigated in type I horizontal cells of the carp retina using a fluo-3-based Ca2+ imaging technique. Exogenous application of caffeine, a ryanodine receptor agonist, induced oscillatory intracellular free Ca2+ concentration ([Ca2+]i) responses in a duration- and concentration-dependent manner. In Ca2+-free Ringer’s solution, [Ca2+]i transients could also be induced by a brief caffeine application, whereas subsequent caffeine application induced no [Ca2+]i increase, which implied that extracellular Ca2+ was required for ER refilling, confirming the necessity of a Ca2+ influx pathway for ER refilling. Depletion of ER Ca2+ by thapsigargin triggered a Ca2+ influx which could be blocked by the store-operated channel inhibitor 2-APB, which proved the existence of the store-operated Ca2+ entry pathway. Taken together, these results suggested that after being depleted by caffeine, the ER was replenished by Ca2+ influx via store-operated channels. These results reveal the fine modulation of ER Ca2+ signaling, and the activation of the store-operated Ca2+ entry pathway guarantees the replenishment of the ER so that the cell can be ready for response to the subsequent stimulus.
Collapse
Affiliation(s)
- Ting Lv
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Qing Gong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pei-Ji Liang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|
6
|
Popova E. Role of dopamine in distal retina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:333-58. [PMID: 24728309 DOI: 10.1007/s00359-014-0906-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/11/2023]
Abstract
Dopamine is the most abundant catecholamine in the vertebrate retina. Despite the description of retinal dopaminergic cells three decades ago, many aspects of their function in the retina remain unclear. There is no consensus among the authors about the stimulus conditions for dopamine release (darkness, steady or flickering light) as well as about its action upon the various types of retinal cells. Many contradictory results exist concerning the dopamine effect on the gross electrical activity of the retina [reflected in electroretinogram (ERG)] and the receptors involved in its action. This review summarized current knowledge about the types of the dopaminergic neurons and receptors in the retina as well as the effects of dopamine receptor agonists and antagonists on the light responses of photoreceptors, horizontal and bipolar cells in both nonmammalian and mammalian retina. Special focus of interest concerns their effects upon the diffuse ERG as a useful tool for assessment of the overall function of the distal retina. An attempt is made to reveal some differences between the dopamine actions upon the activity of the ON versus OFF channel in the distal retina. The author has included her own results demonstrating such differences.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
7
|
Haas JS, Landisman CE. Bursts modify electrical synaptic strength. Brain Res 2012; 1487:140-9. [PMID: 22771703 PMCID: PMC3501583 DOI: 10.1016/j.brainres.2012.05.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/09/2012] [Indexed: 11/16/2022]
Abstract
Changes in synaptic strength resulting from neuronal activity have been described in great detail for chemical synapses, but the relationship between natural forms of activity and the strength of electrical synapses had previously not been investigated. The thalamic reticular nucleus (TRN), a brain area rich in gap junctional (electrical) synapses, regulates cortical attention, initiates sleep spindles, and participates in shifts between states of arousal. Plasticity of electrical synapses in the TRN may be a key mechanism underlying these processes. Recently, we demonstrated a novel activity-dependent form of long-term depression of electrical synapses in the TRN (Haas et al., 2011). Here we provide an overview of those findings and discuss them in broader context. Because gap junctional proteins are widely expressed in the mammalian brain, modification of synaptic strength is likely to be a widespread and powerful mechanism at electrical synapses throughout the brain.
Collapse
Affiliation(s)
- Julie S Haas
- Center for Brain Science, Harvard University, 52 Oxford St. NWL 202, Cambridge, MA 02138, USA.
| | | |
Collapse
|
8
|
Lafontant PJ, Burns AR, Grivas JA, Lesch MA, Lala TD, Reuter SP, Field LJ, Frounfelter TD. The giant danio (D. aequipinnatus) as a model of cardiac remodeling and regeneration. Anat Rec (Hoboken) 2011; 295:234-48. [PMID: 22095914 DOI: 10.1002/ar.21492] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 08/24/2011] [Indexed: 12/22/2022]
Abstract
The paucity of mammalian adult cardiac myocytes (CM) proliferation following myocardial infarction (MI) and the remodeling of the necrotic tissue that ensues, result in non-regenerative repair. In contrast, zebrafish (ZF) can regenerate after an apical resection or cryoinjury of the heart. There is considerable interest in models where regeneration proceeds in the presence of necrotic tissue. We have developed and characterized a cautery injury model in the giant danio (GD), a species closely related to ZF, where necrotic tissue remains part of the ventricle, yet regeneration occurs. By light and transmission electron microscopy (TEM), we have documented four temporally overlapping processes: (1) a robust inflammatory response analogous to that observed in MI, (2) concomitant proliferation of epicardial cells leading to wound closure, (3) resorption of necrotic tissue and its replacement by granulation tissue, and (4) regeneration of the myocardial tissue driven by 5-EDU and [(3) H]thymidine incorporating CMs. In conclusion, our data suggest that the GD possesses robust repair mechanisms in the ventricle and can serve as an important model of cardiac inflammation, remodeling and regeneration.
Collapse
|
9
|
Abstract
Gap junctions are frequently observed in the adult vertebrate retina. It has been shown that gap junctions function as passive electrotonic pathways and play various roles, such as noise reduction, synchronization of electrical activities, regulation of the receptive field size, and transmission of rod signals to cone pathways. The presence of gap junctions between bipolar cells has been reported in various species but their functions are not known. In the present study, we applied dual whole-cell clamp techniques to the adult goldfish retina to elucidate the functions of gap junctions between ON-type bipolar cells with a giant axon terminal (Mb1-BCs). Electrophysiological and immunohistochemical experiments revealed that Mb1-BCs were coupled with each other through gap junctions that were located at the distal dendrites. The coupling conductance between Mb1-BCs under light-adapted conditions was larger than that under dark-adapted conditions. The gap junctions showed neither rectification nor voltage dependence, and behaved as a low-pass filter. Mb1-BCs could generate Ca(2+) spikes in response to depolarization, especially under dark-adapted conditions. The Ca(2+) spike evoked electrotonic depolarization through gap junctions in neighboring Mb1-BCs, and the depolarization in turn could trigger Ca(2+) spikes with a time lag. A brief depolarizing pulse applied to an Mb1-BC evoked a long-lasting EPSC in the postsynaptic ganglion cell. The EPSC was shortened in duration when gap junctions were pharmacologically or mechanically impaired. These results suggest that the spread of Ca(2+) spikes through gap junctions between bipolar cells may play a key role in lateral interactions in the adult retina.
Collapse
|
10
|
Pandarinath C, Bomash I, Victor JD, Prusky GT, Tschetter WW, Nirenberg S. A novel mechanism for switching a neural system from one state to another. Front Comput Neurosci 2010; 4:2. [PMID: 20407612 PMCID: PMC2856633 DOI: 10.3389/fncom.2010.00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 02/27/2010] [Indexed: 11/30/2022] Open
Abstract
An animal's ability to rapidly adjust to new conditions is essential to its survival. The nervous system, then, must be built with the flexibility to adjust, or shift, its processing capabilities on the fly. To understand how this flexibility comes about, we tracked a well-known behavioral shift, a visual integration shift, down to its underlying circuitry, and found that it is produced by a novel mechanism – a change in gap junction coupling that can turn a cell class on and off. The results showed that the turning on and off of a cell class shifted the circuit's behavior from one state to another, and, likewise, the animal's behavior. The widespread presence of similar gap junction-coupled networks in the brain suggests that this mechanism may underlie other behavioral shifts as well.
Collapse
Affiliation(s)
- Chethan Pandarinath
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University New York, NY, USA
| | | | | | | | | | | |
Collapse
|
11
|
Intrinsic light response of retinal horizontal cells of teleosts. Nature 2009; 460:899-903. [PMID: 19633653 PMCID: PMC2737592 DOI: 10.1038/nature08175] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 05/20/2009] [Indexed: 11/08/2022]
Abstract
The discovery of intrinsically photosensitive retinal ganglion cells has overthrown the long-held belief that rods and cones are the exclusive retinal photoreceptors. Intrinsically photosensitive retinal ganglion cells use melanopsin as the photopigment, and mediate non-image-forming visual functions such as circadian photoentrainment. In fish, in situ hybridization studies indicated that melanopsin is present in retinal horizontal cells-lateral association neurons critical for creating the centre-surround receptive fields of visual neurons. This raises the question of whether fish horizontal cells are intrinsically photosensitive. This notion was examined previously in flat-mount roach retina, but all horizontal-cell light response disappeared after synaptic transmission was blocked, making any conclusion difficult to reach. To examine this question directly, we have now recorded from single, acutely dissociated horizontal cells from catfish and goldfish. We found that light induced a response in catfish cone horizontal cells, but not rod horizontal cells, consisting of a modulation of the nifedipine-sensitive, voltage-gated calcium current. The light response was extremely slow, lasting for many minutes. Similar light responses were observed in a high percentage of goldfish horizontal cells. We have cloned two melanopsin genes and one vertebrate ancient (VA) opsin gene from catfish. In situ hybridization indicated that melanopsin, but less likely VA opsin, was expressed in the horizontal-cell layer of catfish retina. This intrinsic light response may serve to modulate, over a long timescale, lateral inhibition mediated by these cells. Thus, at least in some vertebrates, there are retinal non-rod/non-cone photoreceptors involved primarily in image-forming vision.
Collapse
|
12
|
Williamson R, Chrachri A. A model biological neural network: the cephalopod vestibular system. Philos Trans R Soc Lond B Biol Sci 2007; 362:473-81. [PMID: 17255012 PMCID: PMC2323566 DOI: 10.1098/rstb.2006.1975] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Artificial neural networks (ANNs) have become increasingly sophisticated and are widely used for the extraction of patterns or meaning from complicated or imprecise datasets. At the same time, our knowledge of the biological systems that inspired these ANNs has also progressed and a range of model systems are emerging where there is detailed information not only on the architecture and components of the system but also on their ontogeny, plasticity and the adaptive characteristics of their interconnections. We describe here a biological neural network contained in the cephalopod statocysts; the statocysts are analogous to the vertebrae vestibular system and provide the animal with sensory information on its orientation and movements in space. The statocyst network comprises only a small number of cells, made up of just three classes of neurons but, in combination with the large efferent innervation from the brain, forms an 'active' sense organs that uses feedback and feed-forward mechanisms to alter and dynamically modulate the activity within cells and how the various components are interconnected. The neurons are fully accessible to physiological investigation and the system provides an excellent model for describing the mechanisms underlying the operation of a sophisticated neural network.
Collapse
Affiliation(s)
- Roddy Williamson
- Faculty of Science, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| | | |
Collapse
|
13
|
Evidence for long-lasting cholinergic control of gap junctional communication between adrenal chromaffin cells. J Neurosci 2003. [PMID: 12736338 DOI: 10.1523/jneurosci.23-09-03669.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated long-lasting interactions that may occur between two forms of intercellular signaling: cholinergic synaptic transmission and gap junction-mediated coupling in the rat adrenal medulla. The junctional coupling between chromaffin cells was studied during reduced or blocked synaptic transmission in adrenal slices. First, cholinergic synaptic activity was reduced by pharmacological treatment. Bath-application of the nicotinic receptor antagonists hexamethonium, the oxystilbene derivative F3, or alpha-bungarotoxin, acting at distinct neuronal-like postsynaptic nicotinic acetylcholine receptors (nAChRs), significantly increased the incidence of Lucifer yellow passage (dye coupling) between chromaffin cells (p > 0.7 in treated slices vs p = 0.4 in controls). Dye coupling was associated with an elevated macroscopic conductance of the junctional current measured by dual patch-clamp. Pharmacological inhibition of protein trafficking from the trans-Golgi network to the plasma membrane by either brefeldin A or nocodazole pretreatment prevented the effects of nAChR antagonists on dye coupling. Interestingly, this upregulation of gap junction-mediated coupling in response to reduced synaptic activity is of physiological relevance, because it is found in the newborn rat, in which cholinergic synaptic transmission has not yet matured. This mechanism may also be of importance in pathological conditions, because chronic blockade of synaptic transmission after surgical denervation of the adrenal gland also resulted in increased dye coupling between chromaffin cells. In conclusion, our pharmacological, physiological, and pathological data concur to demonstrate that gap junction-mediated intercellular communication between chromaffin cells undergoes persistent adaptation in response to impairment of synaptic activity. These results strongly suggest that gap junctional communication between chromaffin cells is under tonic inhibitory control exerted by cholinergic synaptic inputs.
Collapse
|
14
|
Janssen-Bienhold U, Schultz K, Hoppenstedt W, Weiler R. Molecular diversity of gap junctions between horizontal cells. PROGRESS IN BRAIN RESEARCH 2001; 131:93-107. [PMID: 11420985 DOI: 10.1016/s0079-6123(01)31010-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
15
|
Aston-Jones G, Rajkowski J, Cohen J. Locus coeruleus and regulation of behavioral flexibility and attention. PROGRESS IN BRAIN RESEARCH 2001; 126:165-82. [PMID: 11105646 DOI: 10.1016/s0079-6123(00)26013-5] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- G Aston-Jones
- Department of Psychiatry, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | |
Collapse
|
16
|
Usher M, Cohen JD, Servan-Schreiber D, Rajkowski J, Aston-Jones G. The role of locus coeruleus in the regulation of cognitive performance. Science 1999; 283:549-54. [PMID: 9915705 DOI: 10.1126/science.283.5401.549] [Citation(s) in RCA: 487] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Noradrenergic locus coeruleus (LC) neurons were recorded in monkeys performing a visual discrimination task, and a computational model was developed addressing the role of the LC brain system in cognitive performance. Changes in spontaneous and stimulus-induced patterns of LC activity correlated closely with fluctuations in behavioral performance. The model explains these fluctuations in terms of changes in electrotonic coupling among LC neurons and predicts improved performance during epochs of high coupling and synchronized LC firing. Cross correlations of simultaneously recorded LC neurons confirmed this prediction, indicating that electrotonic coupling in LC may play an important role in attentional modulation and the regulation of goal-directed versus exploratory behaviors.
Collapse
Affiliation(s)
- M Usher
- Department of Psychology, University of Kent, Canterbury, UK
| | | | | | | | | |
Collapse
|
17
|
Lu C, McMahon DG. Modulation of hybrid bass retinal gap junctional channel gating by nitric oxide. J Physiol 1997; 499 ( Pt 3):689-99. [PMID: 9130165 PMCID: PMC1159287 DOI: 10.1113/jphysiol.1997.sp021961] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. To elucidate the role of the nitric oxide (NO) transmitter system in the regulation of gap junctional channel gating, we have examined the effects of the NO donor sodium nitroprusside (SNP) on the electrical synapses of hybrid bass H2-type horizontal cells. 2. SNP reversibly reduced the macroscopic junctional conductance without significantly changing voltage sensitivity. 3. Kinetic analyses showed that SNP made the voltage-dependent decay of junctional currents more rapid. 4. Single-channel data showed that SNP reduced channel open probability by reducing channel open frequency. 5. The action of SNP can be prevented or largely reduced by the NO scavenger, haemoglobin. NO release by SNP solutions was detected directly by a NO sensor. 6. NO appears to modulate the gap junctional conductance by activating the cGMP-cGMP-dependent protein kinase G (PKG) pathway. A membrane-permeable cGMP analogue, 8-Br-cGMP, mimics the action of SNP. A soluble guanylate cyclase inhibitor (LY-83583) and a highly specific cGMP-dependent protein kinase inhibitor (RKRARKE) blocked the action of NO. 3-Isobutyl-1-methylxanthine (IBMX), a non-specific phosphodiesterase inhibitor, potentiated the effect of SNP. 7. [Ca2+]i image studies showed that NO donors did not change [Ca2+]i in horizontal cells, suggesting that the regulation of junctional channels by NO is [Ca2+]i independent.
Collapse
Affiliation(s)
- C Lu
- Department of Physiology, University of Kentucky, Lexington 40536-0084, USA
| | | |
Collapse
|