1
|
Spatio-temporal heterogeneity in hippocampal metabolism in control and epilepsy conditions. Proc Natl Acad Sci U S A 2021; 118:2013972118. [PMID: 33692123 DOI: 10.1073/pnas.2013972118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The hippocampus's dorsal and ventral parts are involved in different operative circuits, the functions of which vary in time during the night and day cycle. These functions are altered in epilepsy. Since energy production is tailored to function, we hypothesized that energy production would be space- and time-dependent in the hippocampus and that such an organizing principle would be modified in epilepsy. Using metabolic imaging and metabolite sensing ex vivo, we show that the ventral hippocampus favors aerobic glycolysis over oxidative phosphorylation as compared to the dorsal part in the morning in control mice. In the afternoon, aerobic glycolysis is decreased and oxidative phosphorylation increased. In the dorsal hippocampus, the metabolic activity varies less between these two times but is weaker than in the ventral. Thus, the energy metabolism is different along the dorsoventral axis and changes as a function of time in control mice. In an experimental model of epilepsy, we find a large alteration of such spatiotemporal organization. In addition to a general hypometabolic state, the dorsoventral difference disappears in the morning, when seizure probability is low. In the afternoon, when seizure probability is high, the aerobic glycolysis is enhanced in both parts, the increase being stronger in the ventral area. We suggest that energy metabolism is tailored to the functions performed by brain networks, which vary over time. In pathological conditions, the alterations of these general rules may contribute to network dysfunctions.
Collapse
|
2
|
Hohnholt MC, Andersen VH, Bak LK, Waagepetersen HS. Glucose, Lactate and Glutamine but not Glutamate Support Depolarization-Induced Increased Respiration in Isolated Nerve Terminals. Neurochem Res 2016; 42:191-201. [DOI: 10.1007/s11064-016-2036-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 12/28/2022]
|
3
|
MiR-186 inhibited aerobic glycolysis in gastric cancer via HIF-1α regulation. Oncogenesis 2016; 5:e224. [PMID: 27159677 PMCID: PMC4945752 DOI: 10.1038/oncsis.2016.35] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/17/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023] Open
Abstract
Deregulation of microRNAs in human malignancies has been well documented, among which microRNA-186 (miR-186) has an antiproliferative role in some carcinomas. Here we demonstrate that low expression of miR-186 facilitates aerobic glycolysis in gastric cancer. MiR-186 suppresses cell proliferation induced by hypoxia inducible factor 1 alpha (HIF-1α) in gastric cancer cell lines MKN45 and SGC7901. Cellular glycolysis, including cellular glucose uptake, lactate, ATP/ADP and NAD+/NADH ratios, are also inhibited by miR-186. The negative regulation of miR-186 on HIF-1α effects its downstream targets, including programmed death ligand 1 and two glycolytic key enzymes, hexokinase 2 and platelet-type phosphofructokinase. The antioncogenic effects of miR-186 are proved by in vivo xenograft tumor experiment. The results demonstrate that the miR-186/HIF-1α axis has an antioncogenic role in gastric cancer.
Collapse
|
4
|
Hinder LM, Vivekanandan-Giri A, McLean LL, Pennathur S, Feldman EL. Decreased glycolytic and tricarboxylic acid cycle intermediates coincide with peripheral nervous system oxidative stress in a murine model of type 2 diabetes. J Endocrinol 2013; 216:1-11. [PMID: 23086140 PMCID: PMC3665007 DOI: 10.1530/joe-12-0356] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Diabetic neuropathy (DN) is the most common complication of diabetes and is characterized by distal-to-proximal loss of peripheral nerve axons. The idea of tissue-specific pathological alterations in energy metabolism in diabetic complications-prone tissues is emerging. Altered nerve metabolism in type 1 diabetes models is observed; however, therapeutic strategies based on these models offer limited efficacy to type 2 diabetic patients with DN. Therefore, understanding how peripheral nerves metabolically adapt to the unique type 2 diabetic environment is critical to develop disease-modifying treatments. In the current study, we utilized targeted liquid chromatography-tandem mass spectrometry (LC/MS/MS) to characterize the glycolytic and tricarboxylic acid (TCA) cycle metabolomes in sural nerve, sciatic nerve, and dorsal root ganglia (DRG) from male type 2 diabetic mice (BKS.Cg-m+/+Lepr(db); db/db) and controls (db/+). We report depletion of glycolytic intermediates in diabetic sural nerve and sciatic nerve (glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate (sural nerve only), 3-phosphoglycerate, 2-phosphoglycerate, phosphoenolpyruvate, and lactate), with no significant changes in DRG. Citrate and isocitrate TCA cycle intermediates were decreased in sural nerve, sciatic nerve, and DRG from diabetic mice. Utilizing LC/electrospray ionization/MS/MS and HPLC methods, we also observed increased protein and lipid oxidation (nitrotyrosine; hydroxyoctadecadienoic acids) in db/db tissue, with a proximal-to-distal increase in oxidative stress, with associated decreased aconitase enzyme activity. We propose a preliminary model, whereby the greater change in metabolomic profile, increase in oxidative stress, and decrease in TCA cycle enzyme activity may cause distal peripheral nerves to rely on truncated TCA cycle metabolism in the type 2 diabetes environment.
Collapse
Affiliation(s)
- Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Lisa L. McLean
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
5
|
Hinder LM, Vincent AM, Burant CF, Pennathur S, Feldman EL. Bioenergetics in diabetic neuropathy: what we need to know. J Peripher Nerv Syst 2012; 17 Suppl 2:10-4. [PMID: 22548617 DOI: 10.1111/j.1529-8027.2012.00389.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Progress in developing treatments for diabetic neuropathy is slowed by our limited understanding of how disturbances in metabolic substrates - glucose and fatty acids - produce nerve injury. In this review, we present the current oxidative stress hypothesis and experimental data that support it. We identify weaknesses in our understanding of diabetes-disordered metabolism in the neurovascular unit, that is, in critical cell types of the microvascular endothelium, peripheral sensory neurons, and supporting Schwann cells. Greater understanding of peripheral nervous system bioenergetics may provide insight into new drug therapies or improvements in dietary interventions in diabetes or even pre-diabetes.
Collapse
Affiliation(s)
- Lucy M Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
6
|
Gehlsen U, Oetke A, Szaszák M, Koop N, Paulsen F, Gebert A, Huettmann G, Steven P. Two-photon fluorescence lifetime imaging monitors metabolic changes during wound healing of corneal epithelial cells in vitro. Graefes Arch Clin Exp Ophthalmol 2012; 250:1293-302. [PMID: 22562480 DOI: 10.1007/s00417-012-2051-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/16/2012] [Accepted: 04/23/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Early and correct diagnosis of delayed or absent corneal epithelial wound healing is a key factor in the prevention of infection and consecutive destruction of the corneal stroma with impending irreversible visual loss. Two-photon microscopy (TPM) is a novel technology that has potential to depict epithelial cells and to evaluate cellular function by measuring autofluorescence properties such as fluorescence intensity and fluorescence lifetimes of metabolic co-factors such as NAD(P)H. METHODS Using non-invasive TPM in a tissue-culture scratch model and an organ-culture erosion model, fluorescence intensity and fluorescence lifetimes of NAD(P)H were measured before and during closure of the epithelial wounds. Influence of temperature and selective inhibition of metabolism on intensity and lifetimes were tested additionally. RESULTS Decrease of temperature resulted in significant increase of fluorescence lifetimes and decrease of the relative amount of free NAD(P)H due to decreased global metabolism. Increase in temperature and upregulation of glycolysis through blocking the mitochondrial electron transport chain by rotenone resulted in increased intensity, decreased lifetimes and increase in the relative amount of free NAD(P)H. Changes of lifetimes and free:protein-bound NAD(P)H ratios were similar to changes measured during wound healing in both scratch and erosion models. CONCLUSIONS Fluorescence lifetime measurements (FLIM) detected enhancement of cellular metabolism following epithelial damage in both models. The prospective detection of cellular autofluorescence in vivo, in particular FLIM of metabolic cofactor NAD(P)H, has the potential to become an indispensible tool in clinical use to differentiate healing from non-healing epithelial cells and to evaluate effects of newly developed substances on cellular metabolism in preclinical and clinical trials.
Collapse
Affiliation(s)
- Uta Gehlsen
- Department of Ophthalmology, University Hospital of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Chinopoulos C, Adam-Vizi V. Mitochondria as ATP consumers in cellular pathology. Biochim Biophys Acta Mol Basis Dis 2009; 1802:221-7. [PMID: 19715757 DOI: 10.1016/j.bbadis.2009.08.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 07/17/2009] [Accepted: 08/17/2009] [Indexed: 12/21/2022]
Abstract
ATP provided by oxidative phosphorylation supports highly complex and energetically expensive cellular processes. Yet, in several pathological settings, mitochondria could revert to ATP consumption, aggravating an existing cellular pathology. Here we review (i) the pathological conditions leading to ATP hydrolysis by the reverse operation of the mitochondrial F(o)F(1)-ATPase, (ii) molecular and thermodynamic factors influencing the directionality of the F(o)F(1)-ATPase, (iii) the role of the adenine nucleotide translocase as the intermediary adenine nucleotide flux pathway between the cytosol and the mitochondrial matrix when mitochondria become ATP consumers, (iv) the role of the permeability transition pore in bypassing the ANT, thereby allowing the flux of ATP directly to the hydrolyzing F(o)F(1)-ATPase, (v) the impact of the permeability transition pore on glycolytic ATP production, and (vi) endogenous and exogenous interventions for limiting ATP hydrolysis by the mitochondrial F(o)F(1)-ATPase.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Neurobiochemical Group, Hungarian Academy of Sciences, Budapest, Hungary
| | | |
Collapse
|
8
|
Choi SW, Gerencser AA, Nicholls DG. Bioenergetic analysis of isolated cerebrocortical nerve terminals on a microgram scale: spare respiratory capacity and stochastic mitochondrial failure. J Neurochem 2009; 109:1179-91. [PMID: 19519782 DOI: 10.1111/j.1471-4159.2009.06055.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pre-synaptic nerve terminals (synaptosomes) require ATP for neurotransmitter exocytosis and recovery and for ionic homeostasis, and are consequently abundantly furnished with mitochondria. Pre-synaptic mitochondrial dysfunction is implicated in a variety of neurodegenerative disorders, although there is no precise definition of the term 'dysfunction'. In this study, we test the hypothesis that partial restriction of electron transport through Complexes I and II in synaptosomes to mimic possible defects associated with Parkinson's and Huntington's diseases respectively, sensitizes individual terminals to mitochondrial depolarization under conditions of enhanced proton current utilization, even though these stresses are within the respiratory capacity of the synaptosomes when averaged over the entire population. We combine two novel techniques, firstly using a modification of a plate-based respiration and glycolysis assay that requires only microgram quantities of synaptosomal protein, and secondly developing an improved method for fluorescent imaging and statistical analysis of single synaptosomes. Conditions are defined for optimal substrate supply to the in situ mitochondria within mouse cerebrocortical synaptosomes, and the energetic demands of ion cycling and action-potential firing at the plasma membrane are additionally determined.
Collapse
Affiliation(s)
- Sung W Choi
- Buck Institute for Age Research, Novato, California 94945, USA
| | | | | |
Collapse
|
9
|
Tretter L, Adam-Vizi V. Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philos Trans R Soc Lond B Biol Sci 2006; 360:2335-45. [PMID: 16321804 PMCID: PMC1569585 DOI: 10.1098/rstb.2005.1764] [Citation(s) in RCA: 308] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alpha-ketoglutarate dehydrogenase (alpha-KGDH) is a highly regulated enzyme, which could determine the metabolic flux through the Krebs cycle. It catalyses the conversion of alpha-ketoglutarate to succinyl-CoA and produces NADH directly providing electrons for the respiratory chain. alpha-KGDH is sensitive to reactive oxygen species (ROS) and inhibition of this enzyme could be critical in the metabolic deficiency induced by oxidative stress. Aconitase in the Krebs cycle is more vulnerable than alpha-KGDH to ROS but as long as alpha-KGDH is functional NADH generation in the Krebs cycle is maintained. NADH supply to the respiratory chain is limited only when alpha-KGDH is also inhibited by ROS. In addition being a key target, alpha-KGDH is able to generate ROS during its catalytic function, which is regulated by the NADH/NAD+ ratio. The pathological relevance of these two features of alpha-KGDH is discussed in this review, particularly in relation to neurodegeneration, as an impaired function of this enzyme has been found to be characteristic for several neurodegenerative diseases.
Collapse
|
10
|
Abstract
Astrocytes are multifunctional cells that interact with neurons and other astrocytes in signaling and metabolic functions, and their resistance to pathophysiological conditions can help restrict loss of tissue after an ischemic event provided adequate nutrients are supplied to support their requirements. Astrocytes have substantial oxidative capacity and mechanisms to upregulate glycolytic capability when respiration is impaired. An astrocytic enzyme that synthesizes a powerful activator of glycolysis is not present in neurons, endowing astrocytes with the ability to sustain ATP production under restrictive conditions. The monocarboxylic acid transporter (MCT) isoforms predominating in astrocytes are optimized to facilitate very large increases in lactate flux as lactate concentration increases within (1-3 mM) and above (>3 mM) the normal range. In sharp contrast, the major neuronal MCT serves as a barrier to increased transmembrane transport as lactate rises above 1 mM, restricting both entry and efflux. Lactate can serve as fuel during recovery from ischemia but direct evidence that lactate is oxidized by neurons (vs. astrocytes) to maintain synaptic function is lacking. Astrocytes have critical roles in regulation of ionic homeostasis and control of extracellular glutamate levels, and spreading depression associated with ischemia places high demands on energy supplies in astrocytes and contributes to metabolic exhaustion and demise. Disruption of Ca2+ homeostasis, generation of oxygen free radicals and nitric oxide, and mitochondrial depolarization contribute to astrocyte death during and after a metabolic insult. Novel pharmaceutical agents targeted to astrocytes and hyperoxic therapy that restores penumbral oxygen level during energy failure might improve postischemic outcome.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Leif Hertz
- College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
11
|
Rajendran JG, Mankoff DA, O'Sullivan F, Peterson LM, Schwartz DL, Conrad EU, Spence AM, Muzi M, Farwell DG, Krohn KA. Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 2004; 10:2245-52. [PMID: 15073099 DOI: 10.1158/1078-0432.ccr-0688-3] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The aim of this study is to compare glucose metabolism and hypoxia in four different tumor types using positron emission tomography (PET). (18)F-labeled fluorodeoxyglucose (FDG) evaluates energy metabolism, whereas the uptake of (18)F-labeled fluoromisonidazole (FMISO) is proportional to tissue hypoxia. Although acute hypoxia results in accelerated glycolysis, cellular metabolism is slowed in chronic hypoxia, prompting us to look for discordance between FMISO and FDG uptake. EXPERIMENTAL DESIGN Forty-nine patients (26 with head and neck cancer, 11 with soft tissue sarcoma, 7 with breast cancer, and 5 with glioblastoma multiforme) who had both FMISO and FDG PET scans as part of research protocols through February 2003 were included in this study. The maximum standardized uptake value was used to depict FDG uptake, and hypoxic volume and maximum tissue:blood ratio were used to quantify hypoxia. Pixel-by-pixel correlation of radiotracer uptake was performed on coregistered images for each corresponding tumor plane. RESULTS Hypoxia was detected in all four patient groups. The mean correlation coefficients between FMISO and FDG uptake were 0.62 for head and neck cancer, 0.47 for breast cancer, 0.38 for glioblastoma multiforme, and 0.32 for soft tissue sarcoma. The correlation between the overall tumor maximum standardized uptake value for FDG and hypoxic volume was small (Spearman r = 0.24), with highly significant differences among the different tumor types (P < 0.005). CONCLUSIONS Hypoxia is a general factor affecting glucose metabolism; however, some hypoxic tumors can have modest glucose metabolism, whereas some highly metabolic tumors are not hypoxic, showing discordance in tracer uptake that can be tumor type specific.
Collapse
|
12
|
Xiong J, Camello PJ, Verkhratsky A, Toescu EC. Mitochondrial polarisation status and [Ca2+]i signalling in rat cerebellar granule neurones aged in vitro. Neurobiol Aging 2004; 25:349-59. [PMID: 15123341 DOI: 10.1016/s0197-4580(03)00123-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Revised: 02/13/2003] [Accepted: 05/08/2003] [Indexed: 10/27/2022]
Abstract
Mitochondrial membrane potential is a major factor that controls, ultimately, the cellular energy supply. By use of a mitochondrial membrane potential dye (rhodamine 123, R123) and image analysis we show that during long-term (>3 weeks) culture of primary neurones (cerebellar granule neurones) there is a gradual and time-dependent depolarisation of neuronal mitochondria. This process was demonstrated by analysing the changes in the heterogeneity of the cytosolic rhodamine 123 fluorescent signal as a function of the age in culture and by measuring the amplitude of the rhodamine 123 fluorescence evoked by the addition of a mitochondrial protonophore (FCCP). The relationship between cytosolic [Ca(2+)](i) and mitochondrial membrane potential was assessed by recording both parameters simultaneously, in neurones loaded with fura-2 and rhodamine 123. Neuronal stimulation (KCl-evoked depolarisation) induced a mitochondrial depolarisation response resulting from the entry of cytosolic Ca(2+) into mitochondria. In young cultures (10 DIV), the mitochondrial membrane potential recovered fully within 30s from the start of the stimulation, despite the continuous presence of the depolarisation stimulus and the maintained cytosolic [Ca(2+)](i) signal. In contrast, in older neurones (DIV 22), the mitochondrial response was of smaller amplitude and displayed a much longer repolarization period. Also, in these older neurones, the threshold [Ca(2+)](i) level required for the initiation of the mitochondrial depolarisation response was increased by 50%. Thus, the present results indicate that neuronal maturation and ageing in conditions of long-term in vitro culture determine significant changes in the mitochondrial polarisation status that are manifest both in resting conditions and during stimulation and could explain some of the reported changes in neuronal homeostasis in long-term neuronal cultures.
Collapse
Affiliation(s)
- Jie Xiong
- Department Physiology, Faculty of Veterinary Sciences, University Extremadura, 10071 Caceres, Spain
| | | | | | | |
Collapse
|
13
|
Abstract
Hypoglycemia is a life-threatening side effect of intensive insulin therapy in Type 1 diabetic patients. The ability to detect hypoglycemia and restore blood glucose levels to normal is of critical concern to the brain since glucose is its preferred fuel. When plasma glucose levels fall, powerful hormonal and sympathoadrenal mechanisms respond to restore blood glucose levels to normal. These mechanisms are believed to be initiated by diverse populations of glucose sensors, which are located centrally as well as peripherally. The exact contribution of each of these individual glucose sensors to the regulation of glucose homeostasis is not known at this time. This review focuses on the diversity of central and peripheral glucose sensors and the mechanisms by which they sense glucose.
Collapse
Affiliation(s)
- Vanessa H Routh
- Department of Pharmacology, New Jersey Medical School, Newark, New Jersey 07101-1709, USA.
| | | | | |
Collapse
|
14
|
Routh VH. Glucosensing neurons in the ventromedial hypothalamic nucleus (VMN) and hypoglycemia-associated autonomic failure (HAAF). Diabetes Metab Res Rev 2003; 19:348-56. [PMID: 12951642 DOI: 10.1002/dmrr.404] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hypoglycemia is a profound threat to the brain since glucose is its preferred fuel. Thus, decreases in plasma glucose must be sensed and appropriate hormonal and neuroendocrine responses generated to restore glucose to safe levels (i.e. counterregulatory responses (CRR) to hypoglycemia). Recurrent hypoglycemia impairs these protective mechanisms, resulting in a potentially life-threatening condition known as hypoglycemia-associated autonomic failure (HAAF). During HAAF, the glycemic threshold is reset so that glucose levels must fall further before the CRR is initiated. The brain plays a critical role in sensing hypoglycemia and initiating the CRR. Additionally, many neurons may sense changes in plasma and extracellular glucose. However, the way in which central glucose sensing is integrated to lead to effective initiation of the CRR is unknown. Furthermore, the mechanisms by which this system becomes impaired during HAAF are also unknown. Glucosensing neurons in the ventromedial hypothalamic nucleus (VMN) are poised to serve an integrative function in glucose homeostasis. First, they sense glucose. Second, the VMN receives input from other glucose-sensing areas. Finally, the VMN projects to areas linked to the regulation of the sympathoadrenal system that mediates the CRR. This review discusses VMN glucosensing neurons relative to their capacity to play a role in the regulation of the CRR and the generation of HAAF. Glucosensing neurons in the hindbrain as well as peripheral glucosensors are also considered.
Collapse
Affiliation(s)
- Vanessa H Routh
- Departments of Pharmacology & Physiology and Neurosciences, New Jersey Medical School (UMDNJ), Newark, NJ 07103, USA.
| |
Collapse
|
15
|
Freitas EMS, Dal Pai Silva M, da Cruz-Höfling MA. Histochemical differences in the responses of predominantly fast-twitch glycolytic muscle and slow-twitch oxidative muscle to veratrine. Toxicon 2002; 40:1471-81. [PMID: 12368117 DOI: 10.1016/s0041-0101(02)00165-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to investigate if the Na(+)-channel activating alkaloid veratrine is able to change the oxidative and m-ATPase activities of a fast-twitch glycolytic muscle (EDL, extensor digitorum longus) and slow-twitch oxidative muscle (SOL, soleus) in mice. Oxidative fibers and glycolytic fibers were more sensitive to veratrine than oxidative-glycolytic fibers 15, 30 and 60 min after the i.m. injection of veratrine (10 ng/kg) with both showing an increase in their metabolic activity in both muscles. In EDL, the m-ATPase reaction revealed a significant (p < 0.001) decrease (50%) in the number of type IIB fibers after 30 min while the number of type I fibers increased by 550%. Type I fibers decreased from 34% in control SOL to 17% (50% decrease) in veratrinized muscles, with a 10% decrease in type IIA fibers within 15 min. A third type of fiber appeared in SOL veratrinized muscle, which accounted for 28% of the fibers. Our work gives evidence that the changes in the percentage of the fiber types induced by veratrine may be the result, at least partially, from a direct effect of veratrine on muscle fibers and else from an interaction with the muscle type influencing distinctively the response of a same fiber type. Based on the results obtained in the present study the alterations in EDL may be related to the higher number of Na(+) channels present in this muscle whereas those in SOL may involve an action of veratrine on mitochondria. Although it is unlikely that the shift of enzymes activities induced by veratrine involves genotypic expression changes an alternative explanation for the findings cannot be substantiated by the present experimental approach.
Collapse
MESH Headings
- Adenosine Triphosphatases/analysis
- Adenosine Triphosphatases/metabolism
- Animals
- Histocytochemistry
- Injections, Intramuscular
- Male
- Mice
- Mice, Inbred BALB C
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/enzymology
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/enzymology
- Muscle Fibers, Slow-Twitch/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Myosins/analysis
- Myosins/metabolism
- Protein Isoforms
- Sodium Channels/metabolism
- Veratrine/administration & dosage
- Veratrine/pharmacology
Collapse
Affiliation(s)
- Erika Maria Silva Freitas
- Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, 13083-970, Campinas, SP, Brazil
| | | | | |
Collapse
|
16
|
Epstein CB, Hale W, Butow RA. Numerical methods for handling uncertainty in microarray data: an example analyzing perturbed mitochondrial function in yeast. Methods Cell Biol 2002; 65:439-52. [PMID: 11381609 DOI: 10.1016/s0091-679x(01)65026-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- C B Epstein
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
17
|
Abstract
Large amounts of energy are required to maintain the signaling activities of CNS cells. Because of the fine-grained heterogeneity of brain and the rapid changes in energy demand, it has been difficult to monitor rates of energy generation and consumption at the cellular level and even more difficult at the subcellular level. Mechanisms to facilitate energy transfer within cells include the juxtaposition of sites of generation with sites of consumption and the transfer of approximately P by the creatine kinase/creatine phosphate and the adenylate kinase systems. There is evidence that glycolysis is separated from oxidative metabolism at some sites with lactate becoming an important substrate. Carbonic anhydrase may play a role in buffering activity-induced increases in lactic acid. Relatively little energy is used for 'vegetative' processes. The great majority is used for signaling processes, particularly Na(+) transport. The brain has very small energy reserves, and the margin of safety between the energy that can be generated and the energy required for maximum activity is also small. It seems probable that the supply of energy may impose a limit on the activity of a neuron under normal conditions. A number of mechanisms have evolved to reduce activity when energy levels are diminished.
Collapse
Affiliation(s)
- A Ames
- Neurosurgical Service, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
18
|
Tretter L, Adam-Vizi V. Inhibition of alpha-ketoglutarate dehydrogenase due to H2O2-induced oxidative stress in nerve terminals. Ann N Y Acad Sci 2000; 893:412-6. [PMID: 10672279 DOI: 10.1111/j.1749-6632.1999.tb07867.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- L Tretter
- Department of Medical Biochemistry, Semmelweis University of Medicine, Budapest, Hungary
| | | |
Collapse
|
19
|
Abstract
Mitochondria play a central role in the survival and death of neurons. The detailed bioenergetic mechanisms by which isolated mitochondria generate ATP, sequester Ca(2+), generate reactive oxygen species, and undergo Ca(2+)-dependent permeabilization of their inner membrane are currently being applied to the function of mitochondria in situ within neurons under physiological and pathophysiological conditions. Here we review the functional bioenergetics of isolated mitochondria, with emphasis on the chemiosmotic proton circuit and the application (and occasional misapplication) of these principles to intact neurons. Mitochondria play an integral role in both necrotic and apoptotic neuronal cell death, and the bioenergetic principles underlying current studies are reviewed.
Collapse
Affiliation(s)
- D G Nicholls
- Department of Pharmacology, University of Dundee, Dundee, Scotland.
| | | |
Collapse
|
20
|
Litsky ML, Hohl CM, Lucas JH, Jurkowitz MS. Inosine and guanosine preserve neuronal and glial cell viability in mouse spinal cord cultures during chemical hypoxia. Brain Res 1999; 821:426-32. [PMID: 10064830 DOI: 10.1016/s0006-8993(99)01086-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Murine spinal cord primary mixed cultures were treated with the respiratory inhibitor, rotenone, to mimic hypoxic conditions. Under these conditions neurons rapidly underwent oncosis (necrosis) with a complete loss in viability occurring within 260 min; however, astrocytes, which accounted for most of the cell population, died more slowly with 50% viability occurring at 565 min. Inosine preserved both total cell and neuronal viability in a concentration-dependent manner. The time of inosine addition relative to hypoxic insult was critical with the most effective protection occurring when inosine was added just prior to or within 5 min after insult. Inosine was ineffective when added 30 min after hypoxic insult. The effect of guanosine was similar to that of inosine. Treatment of cultures with BCX-34, a purine nucleoside phosphorylase inhibitor, prevented protection by inosine or guanosine, suggesting involvement of a purine nucleoside phosphorylase in the nucleoside protective effect.
Collapse
Affiliation(s)
- M L Litsky
- Department of Medical Biochemistry, Ohio State University, Rm 471 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Mitochondria within cultured rat cerebellar granule cells have a complex influence on cytoplasmic free Ca2+ ([Ca2+]c) responses to glutamate. A decreased initial [Ca2+]c elevation in cells whose mitochondria are depolarized by inhibition of the ATP synthase and respiratory chain (conditions which avoid ATP depletion) was attributed to enhanced Ca2+ extrusion from the cell rather than inhibited Ca2+ entry via the NMDA receptor. Even in the presence of elevated extracellular Ca2+, when [Ca2+]c responses were restored to control values, such cells showed resistance to acute excitotoxicity, defined as a delayed cytoplasmic Ca2+ deregulation (DCD) during glutamate exposure. DCD was a function of the duration of mitochondrial polarization in the presence of glutamate rather than the total period of glutamate exposure. Once initiated, DCD could not be reversed by NMDA receptor inhibition. In the absence of ATP synthase inhibition, respiratory chain inhibitors produced an immediate Ca2+ deregulation (ICD), ascribed to an ATP deficit. In contrast to DCD, ICD could be reversed by subsequent ATP synthase inhibition with or without additional NMDA receptor blockade. DCD could not be ascribed to the failure of an ATP yielding metabolic pathway. It is concluded that mitochondria can control Ca2+ extrusion from glutamate-exposed granule cells by the plasma membrane in three ways: by competing with efflux pathways for Ca2+, by restricting ATP supply, and by inducing a delayed failure of Ca2+ extrusion. Inhibitors of the mitochondrial permeability transition only marginally delayed the onset of DCD.
Collapse
|
22
|
Silver I, Erecińska M. Oxygen and ion concentrations in normoxic and hypoxic brain cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 454:7-16. [PMID: 9889871 DOI: 10.1007/978-1-4615-4863-8_2] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The goal of the present contribution is to discuss the relationships among brain oxygen tension, energy (ATP) level, and ion gradients and movements. The function of the CNS, the generation and transmission of impulses, is determined to a large extent by the movements of ions. Hence elucidation of these relationships is necessary to the understanding of how brain works. Moreover, such knowledge is indispensable for the design of rational therapies for treatment of a large group of pathological states caused by lack of oxygen. This paper is partly a review and partly an original contribution although the former involves to a considerable extent, results obtained in our laboratories. It is divided into 3 parts: a) a very brief general introduction which reminds the reader some well-known facts; b) presentation and discussion of data; and c) conclusions and/or predictions.
Collapse
Affiliation(s)
- I Silver
- Department of Anatomy, School of Veterinary Science, University of Bristol, United Kingdom
| | | |
Collapse
|
23
|
Nicholls DG, Budd SL. Mitochondria and neuronal glutamate excitotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1366:97-112. [PMID: 9714760 DOI: 10.1016/s0005-2728(98)00123-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The role of mitochondria in the control of glutamate excitotoxicity is investigated. The response of cultured cerebellar granule cells to continuous glutamate exposure is characterised by a transient elevation in cytoplasmic free calcium concentration followed by decay to a plateau as NMDA receptors partially inactivate. After a variable latent period, a secondary, irreversible increase in calcium occurs (delayed calcium deregulation, DCD) which precedes and predicts subsequent cell death. DCD is not controlled by mitochondrial ATP synthesis since it is unchanged in the presence of the ATP synthase inhibitor oligomycin in cells with active glycolysis. However, mitochondrial depolarisation (and hence inhibition of mitochondrial calcium accumulation) without parallel ATP depletion (oligomycin plus either rotenone or antimycin A) strongly protects the cells against DCD. Glutamate exposure is associated with an increase in the generation of superoxide anion by the cells, but superoxide generation in the absence of mitochondrial calcium accumulation is not neurotoxic. While it is concluded that mitochondrial calcium accumulation plays a critical role in the induction of DCD we can find no evidence for the involvement of the mitochondrial permeability transition.
Collapse
Affiliation(s)
- D G Nicholls
- Neurosciences Institute, Department of Pharmacology and Neuroscience, University of Dundee, Dundee DD1 9SY, UK.
| | | |
Collapse
|
24
|
Di Lisa F, Menabò R, Canton M, Petronilli V. The role of mitochondria in the salvage and the injury of the ischemic myocardium. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1366:69-78. [PMID: 9714744 DOI: 10.1016/s0005-2728(98)00121-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The relationships between mitochondrial derangements and cell necrosis are exemplified by the changes in the function and metabolism of mitochondria that occur in the ischemic heart. From a mitochondrial point of view, the evolution of ischemic damage can be divided into three phases. The first is associated with the onset of ischemia, and changes mitochondria from ATP producers into powerful ATP utilizers. During this phase, the inverse operation of F0F1 ATPase maintains the mitochondrial membrane potential by using the ATP made available by glycolysis. The second phase can be identified from the functional and structural alterations of mitochondria caused by prolongation of ischemia, such as decreased utilization of NAD-linked substrates, release of cytochrome c and involvement of mitochondrial channels. These events indicate that the relationship between ischemic damage and mitochondria is not limited to the failure in ATP production. Finally, the third phase links mitochondria to the destiny of the myocytes upon post-ischemic reperfusion. Indeed, depending on the duration and the severity of ischemia, not only is mitochondrial function necessary for cell recovery, but it can also exacerbate cell injury.
Collapse
Affiliation(s)
- F Di Lisa
- Dipartimento di Chimica Biologica, Università di Padova, Via G. Colombo 3, 35121 Padua, Italy.
| | | | | | | |
Collapse
|
25
|
Abstract
Chronic activation of NMDA receptors by glutamate is toxic to cultured neurons. The extensive Ca2+ entry accompanying receptor activation is largely accumulated by the intracellular mitochondria, with resultant effects on mitochondrial membrane potential, ATP synthesis, glycolysis, reactive oxygen species generation and ultimately failure of cytoplasmic Ca2+ homeostasis and cell death. Each of these parameters is inter-related and in this review we describe attempts to separate out each factor to establish the sequence of events following NMDA-receptor activation. The conclusion is that mitochondrial Ca2+ accumulation is a key event in glutamate excitotoxicity, and that cells maintained by glycolysis in the absence of a mitochondrial membrane potential are highly resistant to glutamate excitotoxicity.
Collapse
Affiliation(s)
- D G Nicholls
- Department of Pharmacology and Neuroscience, University of Dundee, Scotland, UK.
| | | |
Collapse
|
26
|
Erecińska M, Nelson D, Silver IA. Metabolic and energetic properties of isolated nerve ending particles (synaptosomes). BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1277:13-34. [PMID: 8950370 DOI: 10.1016/s0005-2728(96)00103-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M Erecińska
- Department of Pharmacology, University of Pennsylvania, School of Medicine, Philadelphia 19104, USA
| | | | | |
Collapse
|