1
|
Barskiy DA, Coffey AM, Nikolaou P, Mikhaylov DM, Goodson BM, Branca RT, Lu GJ, Shapiro MG, Telkki VV, Zhivonitko VV, Koptyug IV, Salnikov OG, Kovtunov KV, Bukhtiyarov VI, Rosen MS, Barlow MJ, Safavi S, Hall IP, Schröder L, Chekmenev EY. NMR Hyperpolarization Techniques of Gases. Chemistry 2017; 23:725-751. [PMID: 27711999 PMCID: PMC5462469 DOI: 10.1002/chem.201603884] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Indexed: 01/09/2023]
Abstract
Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron M Coffey
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Panayiotis Nikolaou
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Boyd M Goodson
- Southern Illinois University, Department of Chemistry and Biochemistry, Materials Technology Center, Carbondale, IL, 62901, USA
| | - Rosa T Branca
- Department of Physics and Astronomy, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Vladimir V Zhivonitko
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
| | - Matthew S Rosen
- MGH/A.A. Martinos Center for Biomedical Imaging, Boston, MA, 02129, USA
| | - Michael J Barlow
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Shahideh Safavi
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Ian P Hall
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Eduard Y Chekmenev
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
- Russian Academy of Sciences, 119991, Moscow, Russia
| |
Collapse
|
2
|
Ruan W, Zhong J, Guan Y, Xia Y, Zhao X, Han Y, Sun X, Liu S, Ye C, Zhou X. Detection of smoke-induced pulmonary lesions by hyperpolarized129Xe diffusion kurtosis imaging in rat models. Magn Reson Med 2016; 78:1891-1899. [DOI: 10.1002/mrm.26566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Weiwei Ruan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences; Wuhan P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| | - Jianping Zhong
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences; Wuhan P. R. China
| | - Yu Guan
- Department of Radiology; Changzheng Hospital of the Second Military Medical University; Shanghai China
| | - Yi Xia
- Department of Radiology; Changzheng Hospital of the Second Military Medical University; Shanghai China
| | - Xiuchao Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences; Wuhan P. R. China
| | - Yeqing Han
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences; Wuhan P. R. China
| | - Xianping Sun
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences; Wuhan P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| | - Shiyuan Liu
- Department of Radiology; Changzheng Hospital of the Second Military Medical University; Shanghai China
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences; Wuhan P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences; Wuhan P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| |
Collapse
|
3
|
Guo Q, Zeng Q, Jiang W, Zhang X, Luo Q, Zhang X, Bouchard LS, Liu M, Zhou X. A Molecular Imaging Approach to Mercury Sensing Based on Hyperpolarized 129
Xe Molecular Clamp Probe. Chemistry 2016; 22:3967-70. [DOI: 10.1002/chem.201600193] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; Wuhan Center for Magnetic Resonance; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan P.R. China
| | - Qingbin Zeng
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; Wuhan Center for Magnetic Resonance; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan P.R. China
| | - Weiping Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; Wuhan Center for Magnetic Resonance; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan P.R. China
| | - Xiaoxiao Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; Wuhan Center for Magnetic Resonance; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan P.R. China
| | - Qing Luo
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; Wuhan Center for Magnetic Resonance; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan P.R. China
| | - Xu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; Wuhan Center for Magnetic Resonance; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan P.R. China
| | - Louis-S. Bouchard
- Department of Chemistry and Biochemistry; Califonia NanoSystem Institute; The Molecular Biology Institute; University of California; Los Angeles CA 90095 USA
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; Wuhan Center for Magnetic Resonance; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan P.R. China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; Wuhan Center for Magnetic Resonance; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan P.R. China
| |
Collapse
|
4
|
Ishikawa K. Hyperpolarized cesium ions doped in a glass material. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 249:94-99. [PMID: 25462952 DOI: 10.1016/j.jmr.2014.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/03/2014] [Accepted: 10/05/2014] [Indexed: 06/04/2023]
Abstract
Hyperpolarized (HP) 133Cs nuclear magnetic resonance signals were measured from borosilicate glass cell walls during optical pumping of cesium vapor at high magnetic field (9.4T). Significant signal enhancements were observed when additional heating of the cell wall was provided by intense but non-resonant laser irradiation, with integrated HP 133Cs NMR signals and line widths varying as a function of heating laser power (and hence glass temperature). Given that virtually no Cs ions would originally be present in the glass, absorbed HP Cs atoms rarely met thermally-polarized Cs ions already at the surface; thus, spin-exchange via nuclear dipole interaction cannot be the primary mechanism for injecting spin polarization into the glass. Instead, it is concluded that the absorption and transport of HP atoms into the glass material itself is the dominant mechanism of nuclear spin injection at high temperatures-the first reported experimental demonstration of such a mechanism.
Collapse
Affiliation(s)
- Kiyoshi Ishikawa
- Graduate School of Material Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan.
| |
Collapse
|
6
|
Chiavazza E, Kubala E, Gringeri CV, Düwel S, Durst M, Schulte RF, Menzel MI. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 227:35-8. [PMID: 23262330 DOI: 10.1016/j.jmr.2012.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 05/15/2023]
Abstract
Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., (79)Br-(13)C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-(13)C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T(1) shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar (14)N adjacent to the (13)C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the (13)C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a (15)N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner.
Collapse
|
11
|
Goodson BM. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 155:157-216. [PMID: 12036331 DOI: 10.1006/jmre.2001.2341] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The sensitivity of conventional nuclear magnetic resonance (NMR) techniques is fundamentally limited by the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This review describes the principles and magnetic resonance applications of laser-polarized noble gases. The enormous sensitivity enhancement afforded by optical pumping can be exploited to permit a variety of novel NMR experiments across numerous disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, NMR sensitivity enhancement via polarization transfer, and low-field NMR and MRI.
Collapse
Affiliation(s)
- Boyd M Goodson
- Materials Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley 94720-1460, USA
| |
Collapse
|