1
|
Barnoy A, Kozlov MM. Interaction of lipid domains originating from differential domain-monolayer contact energy. Faraday Discuss 2025. [PMID: 40337834 DOI: 10.1039/d4fd00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
We consider a flat membrane containing pure lipid domains located in the membrane monolayers and separated in the membrane plane. We assume the energy of contact along the membrane mid-surface between a domain and the underlying monolayer to be different from that between the two monolayers. We theoretically analyse the effect of the differential contact energy on the elastic deformations of tilt and splay in the membrane monolayers and the resulting interaction between two domains situated in the apposed monolayers. We demonstrate that the character of this interaction depends on the ratio, η, between the domain rigidity and that of a regular membrane monolayer. For the rigidity ratio smaller than a critical value, η < η* ≈ 3, the domain interaction is predicted to be attractive for all inter-monolayer distances. For the super-critical values of the rigidity ratio, η > η*, the interaction is repulsive for small distances and attractive for large distances with a certain equilibrium inter-domain separation corresponding to a vanishing interaction force. The predicted attractive interaction is proposed to favor the registration in the membrane plane of apposed domains as observed in most domain-containing membranes.
Collapse
Affiliation(s)
- Avishai Barnoy
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel.
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Israel
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
2
|
Guinart A, Doellerer D, Qutbuddin Y, Zivkovic H, Branca C, Hrebik D, Schwille P, Feringa BL. Photoswitchable Molecular Motor Phospholipid: Synthesis, Characterization, and Integration into Lipid Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3961-3970. [PMID: 39900533 PMCID: PMC11841041 DOI: 10.1021/acs.langmuir.4c04173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Lipid membranes are essential for cellular function, acting as barriers and platforms for major cellular and biochemical activities. The integration of photoisomerizable units into lipid structures allows for tunable membrane properties, offering insights into major membrane-related processes. In this study, we present the first molecular-motor-conjugated phospholipid system. The synthesis of two phosphatidylcholine derivatives is reported, where one acyl chain is replaced with a light-responsive molecular rotary motor moiety. We explore the photochemical and thermodynamic behaviors of these compounds in solution and as self-assembled systems, demonstrating their rotation cycles under illumination and their dynamic properties in combination with lipid molecules. Additionally, giant unilamellar vesicles with these compounds are formed to investigate the mechanisms of the photoinduced responses in synthetic lipid membranes. Our findings show that molecular motor-based lipids can operate in aqueous solution and with natural phospholipids, maintaining photoisomerization properties and enabling oxidation-driven release within giant lipid vesicles.
Collapse
Affiliation(s)
- Ainoa Guinart
- Stratingh
Institute for Chemistry, University of Groningen, 9747AG Groningen, The Netherlands
| | - Daniel Doellerer
- Stratingh
Institute for Chemistry, University of Groningen, 9747AG Groningen, The Netherlands
| | - Yusuf Qutbuddin
- Cellular
and Molecular Biophysics, Max Planck Institute
of Biochemistry, 82152 Martinsried, Germany
| | - Henry Zivkovic
- Cellular
and Molecular Biophysics, Max Planck Institute
of Biochemistry, 82152 Martinsried, Germany
| | - Cristina Branca
- Stratingh
Institute for Chemistry, University of Groningen, 9747AG Groningen, The Netherlands
| | - Dominik Hrebik
- Cell
and Virus Structure, Max Planck Institute
of Biochemistry, 82152 Martinsried, Germany
| | - Petra Schwille
- Cellular
and Molecular Biophysics, Max Planck Institute
of Biochemistry, 82152 Martinsried, Germany
| | - Ben L. Feringa
- Stratingh
Institute for Chemistry, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
3
|
Magalhães FSS, Vieira ED, Batista MRB, Costa-Filho AJ, Basso LGM. Effects of Nicotine on the Thermodynamics and Phase Coexistence of Pulmonary Surfactant Model Membranes. MEMBRANES 2024; 14:267. [PMID: 39728717 DOI: 10.3390/membranes14120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Phase separation is essential for membrane function, and alterations in phase coexistence by membrane-interacting molecules, such as nicotine, can impair membrane stability. With the increasing use of e-cigarettes, concerns have arisen about the impact of nicotine on pulmonary surfactants. Here, we used differential scanning calorimetry (DSC), molecular dynamics (MD) simulations, and electron spin resonance (ESR) to examine nicotine's effect on the phase coexistence of two surfactant models: pure DPPC and a DPPC/POPC/POPG mixture. Our DSC analysis revealed that nicotine interacts with both membranes, increasing enthalpy and entropy change during the phase transition. ESR revealed that nicotine affects membrane fluidity and packing of DPPC more effectively than the ternary mixture, especially near the surface. MD simulations showed that neutral nicotine resides in the mid-plane, while protonated nicotine remains near the surface. Nicotine binding to the membranes is dynamic, switching between bound and unbound states. Analysis via ESR/van't Hoff method revealed changes in the thermodynamics of phase coexistence, yielding distinct non-linear behavior. Nicotine altered the temperature dependence of the free energy, modifying the thermodynamic driving forces and the balance of non-covalent lipid interactions. These findings provide new insights into how nicotine influences pulmonary surfactant model membranes, with potential implications for surfactant function.
Collapse
Affiliation(s)
- Fadi S S Magalhães
- Laboratório de Ciências Físicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Ernanni D Vieira
- Laboratório de Física Biológica, Instituto de Física, Universidade Federal de Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia 74690-900, GO, Brazil
| | - Mariana R B Batista
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7Al, UK
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Luis G M Basso
- Laboratório de Ciências Físicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| |
Collapse
|
4
|
Han J, Meade J, Devine D, Sadeghpour A, Rappolt M, Goycoolea FM. Chitosan-coated liposomal systems for delivery of antibacterial peptide LL17-32 to Porphyromonas gingivalis. Heliyon 2024; 10:e34554. [PMID: 39149035 PMCID: PMC11325287 DOI: 10.1016/j.heliyon.2024.e34554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/29/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Periodontal disease is triggered by surface bacterial biofilms where bacteria are less susceptible to antibiotic treatment. The development of liposome-based delivery mechanisms for the therapeutic use of antimicrobial peptides is an attractive alternative in this regard. The cationic antimicrobial peptide LL-37 (human cathelicidin) is well-known to exert antibacterial activity against P orphyromonas gingivalis, a keystone oral pathogen. However, the antibacterial activity of the 16-amino acid fragment (LL17-32) of LL-37, is unknown. In addition, there are still gaps in studies using liposomal formulations as delivery vehicles of antibacterial peptides against this pathogen. This study was designed to examine the influence of the different types of liposomal formulations to associate and deliver LL17-32 to act against P. gingivalis. Chitosans of varying Mw and degree of acetylation (DA) were adsorbed at the surface of soya lecithin (SL) liposomes. Their bulk (average hydrodynamic size, ζ-potential and membrane fluidity) and ultrastructural (d-spacing, half-bilayer thickness and the water layer thickness) biophysical properties were investigated by a panel of techniques (DLS, SAXS, M3-PALS, fluorescence spectroscopy and TEM imaging). Their association efficiency, in vitro release, stability, and efficacy in killing the periodontal pathogen P. gingivalis were also investigated. All liposomal systems possessed spherical morphologies and good shelf-life stabilities. Under physiological conditions, chitosan formulations with a high DA demonstrated enhanced stability in comparison to low DA-chitosan formulations. Chitosans and LL17-32 both decreased SL-liposomal membrane fluidity. LL17-32 exhibited a high degree of association with SL-liposomes without in vitro release. In biological studies, free LL17-32 or chitosans alone, demonstrated microbicidal activity against P. gingivalis, however this was attenuated when LL17-32 was loaded onto the SL-liposome delivery system, presumably due to the restrained release of the peptide. A property that could be harnessed in future studies (e.g., oral mucoadhesive slow-release formulations).
Collapse
Affiliation(s)
- Jinyang Han
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Josephine Meade
- School of Dentistry, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Deirdre Devine
- School of Dentistry, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Michael Rappolt
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
- Department of Cell Biology and Histology, University of Murcia, Campus de Espinardo, Murcia, 30100, Spain
| |
Collapse
|
5
|
Palazzese L, Turri F, Anzalone DA, Saragusty J, Bonnet J, Colotte M, Tuffet S, Pizzi F, Luciani A, Matsukawa K, Czernik M, Loi P. Reviving vacuum-dried encapsulated ram spermatozoa via ICSI after 2 years of storage. Front Vet Sci 2023; 10:1270266. [PMID: 38098985 PMCID: PMC10720722 DOI: 10.3389/fvets.2023.1270266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Freeze-drying techniques give alternative preservation mammalian spermatozoa without liquid nitrogen. However, most of the work has been conducted in the laboratory mouse, while little information has been gathered on large animals that could also benefit from this kind of storage. Methods This work adapted a technique known as vacuum-drying encapsulation (VDE), originally developed for nucleic acid conservation in anhydrous state, to ram spermatozoa, and compared it to canonical lyophilization (FD), testing long-term storage at room temperature (RT) and 4°C. Results and discussion The results demonstrated better structural stability, namely lipid composition and DNA integrity, in VDE spermatozoa than FD ones, with outcomes at RT storage comparable to 4°C. Likewise, in VDE the embryonic development was higher than in FD samples (12.8% vs. 8.7%, p < 0.001, respectively). Our findings indicated that in large mammals, it is important to consider dehydration-related changes in sperm polyunsaturated fatty acids coupled with DNA alterations, given their crucial role in embryonic development.
Collapse
Affiliation(s)
- Luca Palazzese
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Warsaw, Poland
| | - Federica Turri
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Lodi, Italy
| | | | - Joseph Saragusty
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Jacques Bonnet
- Laboratoire de Recherche et Développement, Imagene Company, Pessac, France
- Institut Bergonié, INSERM, Université de Bordeaux, Bordeaux, France
| | - Marthe Colotte
- Plateforme de Production, Imagene, Genopole, Evry, France
| | - Sophie Tuffet
- Plateforme de Production, Imagene, Genopole, Evry, France
| | - Flavia Pizzi
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Lodi, Italy
| | - Alessia Luciani
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | | | - Marta Czernik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Warsaw, Poland
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Pasqualino Loi
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| |
Collapse
|
6
|
Rodrigues M, Matsarskaia O, Rego P, Geraldes V, Connor LE, Oswald IDH, Sztucki M, Shalaev E. Freeze-Induced Phase Transition and Local Pressure in a Phospholipid/Water System: Novel Insights Were Obtained from a Time/Temperature Resolved Synchrotron X-ray Diffraction Study. Mol Pharm 2023; 20:5790-5799. [PMID: 37889088 PMCID: PMC10630958 DOI: 10.1021/acs.molpharmaceut.3c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
Water-to-ice transformation results in a 10% increase in volume, which can have a significant impact on biopharmaceuticals during freeze-thaw cycles due to the mechanical stresses imparted by the growing ice crystals. Whether these stresses would contribute to the destabilization of biopharmaceuticals depends on both the magnitude of the stress and sensitivity of a particular system to pressure and sheer stresses. To address the gap of the "magnitude" question, a phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), is evaluated as a probe to detect and quantify the freeze-induced pressure. DPPC can form several phases under elevated pressure, and therefore, the detection of a high-pressure DPPC phase during freezing would be indicative of a freeze-induced pressure increase. In this study, the phase behavior of DPPC/water suspensions, which also contain the ice nucleation agent silver iodide, is monitored by synchrotron small/wide-angle X-ray scattering during the freeze-thaw transition. Cooling the suspensions leads to heterogeneous ice nucleation at approximately -7 °C, followed by a phase transition of DPPC between -11 and -40 °C. In this temperature range, the initial gel phase of DPPC, Lβ', gradually converts to a second phase, tentatively identified as a high-pressure Gel III phase. The Lβ'-to-Gel III phase transition continues during an isothermal hold at -40 °C; a second (homogeneous) ice nucleation event of water confined in the interlamellar space is detected by differential scanning calorimetry (DSC) at the same temperature. The extent of the phase transition depends on the DPPC concentration, with a lower DPPC concentration (and therefore a higher ice fraction), resulting in a higher degree of Lβ'-to-Gel III conversion. By comparing the data from this study with the literature data on the pressure/temperature Lβ'/Gel III phase boundary and the lamellar lattice constant of the Lβ' phase, the freeze-induced pressure is estimated to be approximately 0.2-2.6 kbar. The study introduces DPPC as a probe to detect a pressure increase during freezing, therefore addressing the gap between a theoretical possibility of protein destabilization by freeze-induced pressure and the current lack of methods to detect freeze-induced pressure. In addition, the observation of a freeze-induced phase transition in a phospholipid can improve the mechanistic understanding of factors that could disrupt the structure of lipid-based biopharmaceuticals, such as liposomes and mRNA vaccines, during freezing and thawing.
Collapse
Affiliation(s)
- Miguel
A. Rodrigues
- Centro
de Química Estrutural, Instituto Superior Tecnico, University of Lisbon, Lisbon 1049-001, Portugal
| | - Olga Matsarskaia
- Institut
Laue−Langevin, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Pedro Rego
- Centro
de Química Estrutural, Instituto Superior Tecnico, University of Lisbon, Lisbon 1049-001, Portugal
| | - Vitor Geraldes
- Centro
de Química Estrutural, Instituto Superior Tecnico, University of Lisbon, Lisbon 1049-001, Portugal
| | - Lauren E. Connor
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K.
- Collaborative
International Research Programme, University
of Strathclyde and Nanyang Technological University, Singapore, Technology
Innovation Centre, Glasgow G1 1RD, U.K.
| | - Iain D. H. Oswald
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K.
| | - Michael Sztucki
- European
Synchrotron Radiation Facility, Grenoble Cedex 9 38043, France
| | - Evgenyi Shalaev
- Abbvie Inc., 2525 Dupont Drive, Irvine, California 92612, United States
| |
Collapse
|
7
|
Jebastin K, Narayanasamy D. Rationale utilization of phospholipid excipients: a distinctive tool for progressing state of the art in research of emerging drug carriers. J Liposome Res 2022; 33:1-33. [PMID: 35543241 DOI: 10.1080/08982104.2022.2069809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phospholipids have a high degree of biocompatibility and are deemed ideal pharmaceutical excipients in the development of lipid-based drug delivery systems, because of their unique features (permeation, solubility enhancer, emulsion stabilizer, micelle forming agent, and the key excipients in solid dispersions) they can be used in a variety of pharmaceutical drug delivery systems, such as liposomes, phytosomes, solid lipid nanoparticles, etc. The primary usage of phospholipids in a colloidal pharmaceutical formulation is to enhance the drug's bioavailability with low aqueous solubility [i.e. Biopharmaceutical Classification System (BCS) Class II drugs], Membrane penetration (i.e. BCS Class III drugs), drug uptake and release enhancement or modification, protection of sensitive active pharmaceutical ingredients (APIs) from gastrointestinal degradation, a decrease of gastrointestinal adverse effects, and even masking of the bitter taste of orally delivered drugs are other uses. Phospholipid-based colloidal drug products can be tailored to address a wide variety of product requirements, including administration methods, cost, product stability, toxicity, and efficacy. Such formulations that are also a cost-effective method for developing medications for topical, oral, pulmonary, or parenteral administration. The originality of this review work is that we comprehensively evaluated the unique properties and special aspects of phospholipids and summarized how the individual phospholipids can be utilized in various types of lipid-based drug delivery systems, as well as listing newly marketed lipid-based products, patents, and continuing clinical trials of phospholipid-based therapeutic products. This review would be helpful for researchers responsible for formulation development and research into novel colloidal phospholipid-based drug delivery systems.
Collapse
Affiliation(s)
- Koilpillai Jebastin
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
8
|
Goh CF, Hadgraft J, Lane ME. Thermal analysis of mammalian stratum corneum using differential scanning calorimetry for advancing skin research and drug delivery. Int J Pharm 2022; 614:121447. [PMID: 34998922 DOI: 10.1016/j.ijpharm.2021.121447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 11/15/2022]
Abstract
For effective topical and transdermal drug delivery, it is necessary for most actives to penetrate and permeate through the stratum corneum (SC). Extensive investigation of the thermal behaviour of mammalian SC has been performed to understand the barrier function of the skin. However, little attention has been paid to the related experimental variables in thermal analysis of the SC using differential scanning calorimetry that may influence the results obtained from such studies. In this review, we provide a comprehensive overview of the thermal transitions of the SC of both porcine and human skin. More importantly, the selection and impact of the experimental and instrumental parameters used in thermal analysis of the SC are critically evaluated. New opportunities for the use of thermal analysis of mammalian SC in advancing skin research, particularly for elucidation of the actions of excipients employed in topical and transdermal formulations on the skin are also highlighted.
Collapse
Affiliation(s)
- Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Jonathan Hadgraft
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Majella E Lane
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
9
|
Abstract
Lateral organization in the plane of the plasma membrane is an important driver of biological processes. The past dozen years have seen increasing experimental support for the notion that lipid organization plays an important role in modulating this heterogeneity. Various biophysical mechanisms rooted in the concept of liquid-liquid phase separation have been proposed to explain diverse experimental observations of heterogeneity in model and cell membranes with distinct but overlapping applicability. In this review, we focus on the evidence for and the consequences of the hypothesis that the plasma membrane is poised near an equilibrium miscibility critical point. Critical phenomena explain certain features of the heterogeneity observed in cells and model systems but also go beyond heterogeneity to predict other interesting phenomena, including responses to perturbations in membrane composition.
Collapse
Affiliation(s)
- Thomas R Shaw
- Program in Applied Physics, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Subhadip Ghosh
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sarah L Veatch
- Program in Applied Physics, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
10
|
The role of fusion peptides in depth-dependent membrane organization and dynamics in promoting membrane fusion. Chem Phys Lipids 2020; 234:105025. [PMID: 33301753 DOI: 10.1016/j.chemphyslip.2020.105025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022]
Abstract
Membrane fusion is an important event in the life of eukaryotes; occurs in several processes such as endocytosis, exocytosis, cellular trafficking, compartmentalization, import of nutrients and export of waste, vesiculation, inter cellular communication, and fertilization. The enveloped viruses as well utilize fusion between the viral envelope and host cell membrane for infection. The stretch of 20-25 amino acids located at the N-terminus of the fusion protein, known as fusion peptide, plays a decisive role in the fusion process. The stalk model of membrane fusion postulated a common route of bilayer transformation for stalk, transmembrane contact, and pore formation; and fusion peptide is believed to facilitate bilayer transformation to promote membrane fusion. The peptide-induced change in depth-dependent organization and dynamics could provide important information in understanding the role of fusion peptide in membrane fusion. In this review, we have discussed about three depth-dependent properties of the membrane such as rigidity, polarity and heterogeneity, and the impact of fusion peptide on these three membrane properties.
Collapse
|
11
|
Okuno K, Saeki D, Matsuyama H. Phase separation behavior of binary mixture of photopolymerizable diacetylene and unsaturated phospholipids in liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183377. [DOI: 10.1016/j.bbamem.2020.183377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/08/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
|
12
|
Makarov VI, Khmelinskii I, Khuchua Z, Javadov S. In silico simulation of reversible and irreversible swelling of mitochondria: The role of membrane rigidity. Mitochondrion 2019; 50:71-81. [PMID: 31669621 DOI: 10.1016/j.mito.2019.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/07/2019] [Accepted: 09/23/2019] [Indexed: 01/24/2023]
Abstract
Mitochondria have been widely accepted as the main source of ATP in the cell. The inner mitochondrial membrane (IMM) is important for the maintenance of ATP production and other functions of mitochondria. The electron transport chain (ETC) generates an electrochemical gradient of protons known as the proton-motive force across the IMM and thus produces the mitochondrial membrane potential that is critical to ATP synthesis. One of the main factors regulating the structural and functional integrity of the IMM is the changes in the matrix volume. Mild (reversible) swelling regulates mitochondrial metabolism and function; however, excessive (irreversible) swelling causes mitochondrial dysfunction and cell death. The central mechanism of mitochondrial swelling includes the opening of non-selective channels known as permeability transition pores (PTPs) in the IMM by high mitochondrial Ca2+ and reactive oxygen species (ROS). The mechanisms of reversible and irreversible mitochondrial swelling and transition between these two states are still unknown. The present study elucidates an upgraded biophysical model of reversible and irreversible mitochondrial swelling dynamics. The model provides a description of the PTP regulation dynamics using an additional differential equation. The rigidity tensor was used in numerical simulations of the mitochondrial parameter dynamics with different initial conditions defined by Ca2+ concentration in the sarco/endoplasmic reticulum. We were able to estimate the values of the IMM rigidity tensor components by fitting the model to the previously reported experimental data. Overall, the model provides a better description of the reversible and irreversible mitochondrial swelling dynamics.
Collapse
Affiliation(s)
- Vladimir I Makarov
- Department of Physics, University of Puerto Rico Rio Piedras Campus, San Juan, USA
| | - Igor Khmelinskii
- Faculty of Science and Technology, Department of Chemistry and Pharmacy, and Center of Electronics, Optoelectronics and Telecommunications, University of Algarve, Portugal
| | - Zaza Khuchua
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Biochemistry, Sechenov Moscow State Medical University, Moscow, Russia
| | - Sabzali Javadov
- Department of Physiology and Biophysics, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA.
| |
Collapse
|
13
|
Kirsch SA, Böckmann RA. Coupling of Membrane Nanodomain Formation and Enhanced Electroporation near Phase Transition. Biophys J 2019; 116:2131-2148. [PMID: 31103234 PMCID: PMC6554532 DOI: 10.1016/j.bpj.2019.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/29/2022] Open
Abstract
Biological cells are enveloped by a heterogeneous lipid bilayer that prevents the uncontrolled exchange of substances between the cell interior and its environment. In particular, membranes act as a continuous barrier for salt and macromolecules to ensure proper physiological functions within the cell. However, it has been shown that membrane permeability strongly depends on temperature and, for phospholipid bilayers, displays a maximum at the transition between the gel and fluid phase. Here, extensive molecular dynamics simulations of dipalmitoylphosphatidylcholine bilayers were employed to characterize the membrane structure and dynamics close to phase transition, as well as its stability with respect to an external electric field. Atomistic simulations revealed the dynamic appearance and disappearance of spatially related nanometer-sized thick ordered and thin interdigitating domains in a fluid-like bilayer close to the phase transition temperature (Tm). These structures likely represent metastable precursors of the ripple phase that vanished at increased temperatures. Similarly, a two-phase bilayer with coexisting gel and fluid domains featured a thickness minimum at the interface because of splaying and interdigitating lipids. For all systems, application of an external electric field revealed a reduced bilayer stability with respect to pore formation for temperatures close to Tm. Pore formation occurred exclusively in thin interdigitating membrane nanodomains. These findings provide a link between the increased membrane permeability and the structural heterogeneity close to phase transition.
Collapse
Affiliation(s)
- Sonja A Kirsch
- Computational Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
14
|
Kolbina M, Schulte A, van Hoogevest P, Körber M, Bodmeier R. Evaluation of Hydrogenated Soybean Phosphatidylcholine Matrices Prepared by Hot Melt Extrusion for Oral Controlled Delivery of Water-Soluble Drugs. AAPS PharmSciTech 2019; 20:159. [PMID: 30968304 DOI: 10.1208/s12249-019-1366-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/12/2019] [Indexed: 11/30/2022] Open
Abstract
The aims of this study were to prepare hydrogenated soybean phosphatidylcholine (HSPC) matrices by hot melt extrusion and to evaluate resulting matrix potential to extend drug release in regard to drug loading and solubility for oral drug delivery of water-soluble drugs. The liquid crystalline nature of HSPC powder allowed its extrusion at 120°C, which was below its capillary melting point. Model drugs with a wide range of water solubilities (8, 20 and 240 mg/mL) and melting temperatures (160-270°C) were used. Extrudates with up to 70% drug loading were prepared at temperatures below the drugs' melting points. The original crystalline state of the drugs remained unchanged through the process as confirmed by XRPD and hot-stage microscopy. The time to achieve 80% release (t80) from extrudates with 50% drug loading was 3, 8 and 18 h for diprophylline, caffeine and theophylline, respectively. The effect of matrix preparation method (extrusion vs. compression) on drug release was evaluated. For non-eroding formulations, the drug release retarding properties of the HSPC matrix were mostly not influenced by the preparation method. However, with increasing drug loadings, compressed tablets eroded significantly more than extruded matrices, resulting in 2 to 11 times faster drug release. There were no signs of erosion observed in extrudates with different drugs up to 70% loadings. The mechanical robustness of HSPC extrudates was attributed to the formation of a skin-core structure and was identified as the main reason for the drug release controlling potential of the HSPC matrices produced by hot melt extrusion.
Collapse
Affiliation(s)
- Marina Kolbina
- College of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Adrian Schulte
- Lipoid GmbH, Frigenstr. 4, D-67065, Ludwigshafen, Germany
| | | | - Martin Körber
- Pensatech Pharma GmbH, Kelchstr. 31, 12169, Berlin, Germany.
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
15
|
Crusca E, Basso LGM, Altei WF, Marchetto R. Biophysical characterization and antitumor activity of synthetic Pantinin peptides from scorpion's venom. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2155-2165. [DOI: 10.1016/j.bbamem.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/24/2018] [Accepted: 08/19/2018] [Indexed: 01/30/2023]
|
16
|
Maddumaarachchi M, Arachchige YLNM, Zhang T, Blum FD. Dynamics of Cetyltrimethylammonium Bromide Head Groups in Bulk by Solid-State Deuterium NMR Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11058-11065. [PMID: 30133300 DOI: 10.1021/acs.langmuir.8b02193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Variable temperature, solid-state deuterium (2H) NMR spectroscopy has been used to probe the rather complex head group dynamics of the surfactant cetyltrimethylammonium bromide- d9 (CTAB- d9) in bulk. Heating and cooling runs were made as the surfactant underwent supercooling. 2H NMR line shape simulations were used to identify the hierarchy of the molecular motions of CTAB as a function of temperature. Fast continuous methyl rotations about the N-Cmethyl axes and 3-fold jumps about the main chain C-N axis were present at all of the temperatures from -40 to 120 °C. With heating, the spectra were consistent with CTAB molecules starting 180° flips about the hydrocarbon chain molecular axis around 0 °C, which continued to flip with increasing flip rates up to 80 °C. At 90 °C, the flips changed to rotation of the CTAB molecules about the hydrocarbon chain axis and that rotation continued to 120 °C. Comparison of spectra of bulk CTAB at different temperatures from heating and cooling runs revealed that the rotation about the long axis of the hydrocarbon chains started at around 90 °C on heating, however, it does not freeze out until between 70 and 80 °C because of supercooling.
Collapse
Affiliation(s)
| | | | - Tan Zhang
- Department of Chemistry , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Frank D Blum
- Department of Chemistry , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| |
Collapse
|
17
|
Mixed Micelles Loaded with Bile Salt: An Approach to Enhance Intestinal Transport of the BCS Class III Drug Cefotaxime in Rats. Eur J Drug Metab Pharmacokinet 2018; 42:635-645. [PMID: 27686853 DOI: 10.1007/s13318-016-0375-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND OBJECTIVES Cefotaxime is a class III drug according to the Biopharmaceutical Classification System due to low intestinal permeability based on poor oral bioavailability. Bile salt compounds have been shown to be effective additive for drug permeation through several biological membranes. The main purpose of this study was to investigate the ability of a mixed micelles made of phosphatidylcholine, sodium deoxycholate, and loaded with a cefotaxime-3α,7α-dihydroxy-12-keto-5β-cholanate complex to enhance the oral bioavailability of cefotaxime in rats. METHODS Thin-film hydration method was used to prepare cefotaxime-loaded mixed micelles using different bile salt concentrations (0.87-25 mM of sodium deoxycholate). Overall, micelle sizes ranging from 86.9 to 155.6 nm were produced with negative zeta potential values from -15.9 to -19.5 mV and drug loading from 10.5 to 18.9 %. The oral bioavailability of cefotaxime in mixed micellar formulation was assessed and the pharmacokinetic parameters were compared with cefotaxime-3α,7α-dihydroxy-12-keto-5β-cholanate complex and cefotaxime aqueous solution. 24 Male Wistar rats were randomly allocated into four groups (n = 6, per group) to receive the following: (1) a single intravenous dose of cefotaxime (25 mg/kg) in sterilized normal saline solution for injection; (2) a single oral dose of mixed micelles (100 mg/kg of cefotaxime) in phosphate buffered saline administered by oral gavage; (3) a single oral dose of cefotaxime-3α,7α-dihydroxy-12-keto-5β-cholanate complex (100 mg/kg of cefotaxime) in phosphate buffered saline administered by oral gavage; (4) a single oral dose of free cefotaxime (100 mg/kg) in aqueous solution administered by oral gavage. Blood samples were collected for up to 24 h and cefotaxime analyzed using a validated HPLC assay. RESULTS Pharmacokinetic data showed that the oral bioavailability of cefotaxime in mixed micelles was found to be 4.91 % higher compared to the cefotaxime in aqueous solution (1.30 %). Maximum concentration (C max) of cefotaxime in mixed micellar formulation was higher (1.08 ± 0.1 µg/ml) compared to the cefotaxime-3α,7α-dihydroxy-12-keto-5β-cholanate complex (0.69 ± 0.1 µg/ml) and cefotaxime in aqueous solution (0.52 ± 0.1 µg/ml). Similarly, the mean values for area under the plasma concentration-time curve extrapolated to infinity (AUC0-∞) of cefotaxime in the mixed micellar formulation was higher (3.89 ± 0.9 μg·h/mL) compared to the cefotaxime-3α,7α-dihydroxy-12-keto-5β-cholanate complex (1.52 ± 0.2 μg·h/mL) and cefotaxime in aqueous solution (1.03 ± 0.4 μg·h/mL), respectively. CONCLUSION The mixed micellar formulation was able to increase the oral bioavailability of the BCS Class III drug cefotaxime up to fourfold by enhancing drug permeation through the mucosal membrane of the small intestine.
Collapse
|
18
|
Zhu X, Phinney DM, Paluri S, Heldman DR. Prediction of Liquid Specific Heat Capacity of Food Lipids. J Food Sci 2018; 83:992-997. [PMID: 29578239 DOI: 10.1111/1750-3841.14089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/03/2018] [Accepted: 01/28/2018] [Indexed: 12/01/2022]
Abstract
Specific heat capacity (cp ) is a temperature dependent physical property of foods. Lipid-being a macromolecular component of food-provides some fraction of the food's overall heat capacity. Fats/oils are complex chemicals that are generally defined by carbon length and degree of unsaturation. The objective of this investigation was to use advanced specific heat capacity measurement to determine the effect of fatty acid chemical structure on specific heat capacity of food lipids. In this investigation, the specific heat capacity of a series of triacylglycerols were measured to quantify the influence of fatty acid composition on specific heat capacity based on two parameters; the -average carbon number (C) and the average number of double bonds (U). A prediction model for specific heat capacity of food lipids as a function of C, U and temperature (T) has been developed. A multiple linear regression to the three-parameter model (R2 = 0.87) provided a good fit to the experimental data. The prediction model was evaluated by comparison with previously published specific heat capacity values of vegetable oils. It was found that the model provided a 0.53% error, while three other models from the literature predicted cp values with 0.85% to 1.83% average relative deviation from experimental data. The outcomes from this research confirm that the thermophysical properties of fat present in foods are directly related to the physical chemical properties. PRACTICAL APPLICATION The specific heat capacity of food products is widely used in process design. Improvements of current models to predict specific heat capacity of food products will assist in the development of efficient processes and in the control of food quality and safety. Furthermore, the understanding of how changes in chemical structure of macromolecular components of foods effect thermophysical properties may begin to allude to models that are not just empirical, but represent portions of the differences in chemistry.
Collapse
Affiliation(s)
- Xiaoyi Zhu
- Food Science and Technology Dept., The Ohio State Univ., 2015 Fyffe Rd, Columbus, Ohio, 43210, U.S.A
| | - David M Phinney
- Food Science and Technology Dept., The Ohio State Univ., 2015 Fyffe Rd, Columbus, Ohio, 43210, U.S.A
| | - Sravanti Paluri
- Food Science and Technology Dept., The Ohio State Univ., 2015 Fyffe Rd, Columbus, Ohio, 43210, U.S.A.,Dept. of Food, Agricultural, and Biological Engineering, 590 Woody Hayes Drive, Columbus, Ohio, 43210, U.S.A
| | - Dennis R Heldman
- Food Science and Technology Dept., The Ohio State Univ., 2015 Fyffe Rd, Columbus, Ohio, 43210, U.S.A.,Dept. of Food, Agricultural, and Biological Engineering, 590 Woody Hayes Drive, Columbus, Ohio, 43210, U.S.A
| |
Collapse
|
19
|
Monpara J, Kanthou C, Tozer GM, Vavia PR. Rational Design of Cholesterol Derivative for Improved Stability of Paclitaxel Cationic Liposomes. Pharm Res 2018. [PMID: 29520495 DOI: 10.1007/s11095-018-2367-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE This work explores synthesis of novel cholesterol derivative for the preparation of cationic liposomes and its interaction with Paclitaxel (PTX) within liposome membrane using molecular dynamic (MD) simulation and in-vitro studies. METHODS Cholesteryl Arginine Ethylester (CAE) was synthesized and characterized. Cationic liposomes were prepared using Soy PC (SPC) at a molar ratio of 77.5:15:7.5 of SPC/CAE/PTX. Conventional liposomes were composed of SPC/cholesterol/PTX (92:5:3 M ratio). The interaction between paclitaxel, ligand and the membrane was studied using 10 ns MD simulation. The interactions were studied using Differential Scanning Calorimetry (DSC) and Small Angle Neutron Scattering analysis. The efficacy of liposomes was evaluated by MTT assay and endothelial cell migration assay on different cell lines. The safety of the ligand was determined using the Comet Assay. RESULTS The cationic liposomes improved loading efficiency and stability compared to conventional liposomes. The increased PTX loading could be attributed to the hydrogen bond between CAE and PTX and deeper penetration of PTX in the bilayer. The DSC study suggested that inclusion of CAE in the DPPC bilayer eliminates Tg. SANS data showed that CAE has more pronounced membrane thickening effect as compared to cholesterol. The cationic liposomes showed slightly improved cytotoxicity in three different cell lines and improved endothelial cell migration inhibition compared to conventional liposomes. Furthermore, the COMET assay showed that CAE alone does not show any genotoxicity. CONCLUSIONS The novel cationic ligand (CAE) retains paclitaxel within the phospholipid bilayer and helps in improved drug loading and physical stability. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jasmin Monpara
- Department of Pharmaceutical Sciences and Technology, University under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence - Govt. of Maharashtra, TEQIP Phase II Funded, Institute of Chemical Technology, Mumbai, 400019, India
| | - Chryso Kanthou
- Tumor Microcirculation Group, Department of Oncology & Metabolism School of Medicine, The University of Sheffield, Sheffield, UK
| | - Gillian M Tozer
- Tumor Microcirculation Group, Department of Oncology & Metabolism School of Medicine, The University of Sheffield, Sheffield, UK
| | - Pradeep R Vavia
- Department of Pharmaceutical Sciences and Technology, University under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence - Govt. of Maharashtra, TEQIP Phase II Funded, Institute of Chemical Technology, Mumbai, 400019, India.
| |
Collapse
|
20
|
Schermeyer MT, Wöll AK, Kokke B, Eppink M, Hubbuch J. Characterization of highly concentrated antibody solution - A toolbox for the description of protein long-term solution stability. MAbs 2017; 9:1169-1185. [PMID: 28617076 PMCID: PMC5627599 DOI: 10.1080/19420862.2017.1338222] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/21/2022] Open
Abstract
High protein titers are gaining importance in biopharmaceutical industry. A major challenge in the development of highly concentrated mAb solutions is their long-term stability and often incalculable viscosity. The complexity of the molecule itself, as well as the various molecular interactions, make it difficult to describe their solution behavior. To study the formulation stability, long- and short-range interactions and the formation of complex network structures have to be taken into account. For a better understanding of highly concentrated solutions, we combined established and novel analytical tools to characterize the effect of solution properties on the stability of highly concentrated mAb formulations. In this study, monoclonal antibody solutions in a concentration range of 50-200 mg/ml at pH 5-9 with and without glycine, PEG4000, and Na2SO4 were analyzed. To determine the monomer content, analytical size-exclusion chromatography runs were performed. ζ-potential measurements were conducted to analyze the electrophoretic properties in different solutions. The melting and aggregation temperatures were determined with the help of fluorescence and static light scattering measurements. Additionally, rheological measurements were conducted to study the solution viscosity and viscoelastic behavior of the mAb solutions. The so-determined analytical parameters were scored and merged in an analytical toolbox. The resulting scoring was then successfully correlated with long-term storage (40 d of incubation) experiments. Our results indicate that the sensitivity of complex rheological measurements, in combination with the applied techniques, allows reliable statements to be made with respect to the effect of solution properties, such as protein concentration, ionic strength, and pH shift, on the strength of protein-protein interaction and solution colloidal stability.
Collapse
Affiliation(s)
- Marie-Therese Schermeyer
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Anna K. Wöll
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Bas Kokke
- Synthon Biopharmaceuticals B.V., Nijmegen, The Netherlands
| | - Michel Eppink
- Synthon Biopharmaceuticals B.V., Nijmegen, The Netherlands
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
21
|
Exploring the raft-hypothesis by probing planar bilayer patches of free-standing giant vesicles at nanoscale resolution, with and without Na,K-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3041-3049. [DOI: 10.1016/j.bbamem.2016.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/06/2016] [Accepted: 09/01/2016] [Indexed: 12/26/2022]
|
22
|
Basso LGM, Vicente EF, Crusca E, Cilli EM, Costa-Filho AJ. SARS-CoV fusion peptides induce membrane surface ordering and curvature. Sci Rep 2016; 6:37131. [PMID: 27892522 PMCID: PMC5125003 DOI: 10.1038/srep37131] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions. Here we employed differential scanning calorimetry (DSC) and electron spin resonance (ESR) to gather information on the membrane fusion mechanism promoted by two putative SARS FPs. DSC data showed the peptides strongly perturb the structural integrity of anionic vesicles and support the hypothesis that the peptides generate opposing curvature stresses on phosphatidylethanolamine membranes. ESR showed that both FPs increase lipid packing and head group ordering as well as reduce the intramembrane water content for anionic membranes. Therefore, bending moment in the bilayer could be generated, promoting negative curvature. The significance of the ordering effect, membrane dehydration, changes in the curvature properties and the possible role of negatively charged phospholipids in helping to overcome the high kinetic barrier involved in the different stages of the SARS-CoV-mediated membrane fusion are discussed.
Collapse
Affiliation(s)
- Luis G M Basso
- Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Centro, São Carlos, SP, Brazil.,Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Eduardo F Vicente
- Faculdade de Ciências e Engenharia, UNESP - Univ Estadual Paulista, Campus de Tupã. Rua Domingos da Costa Lopes, 780, 17602-496, Tupã, SP, Brazil
| | - Edson Crusca
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP - Univ Estadual Paulista. Rua Prof. Franscisco Degni, 55, 14800-900, Araraquara, SP, Brazil
| | - Eduardo M Cilli
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP - Univ Estadual Paulista. Rua Prof. Franscisco Degni, 55, 14800-900, Araraquara, SP, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| |
Collapse
|
23
|
Ruokonen SK, Duša F, Lokajová J, Kilpeläinen I, King AW, Wiedmer SK. Effect of ionic liquids on the interaction between liposomes and common wastewater pollutants investigated by capillary electrophoresis. J Chromatogr A 2015; 1405:178-87. [DOI: 10.1016/j.chroma.2015.05.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/17/2022]
|
24
|
Tejera-Garcia R, Parkkila P, Zamotin V, Kinnunen PKJ. Principles of rational design of thermally targeted liposomes for local drug delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1243-52. [PMID: 24685945 DOI: 10.1016/j.nano.2014.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/10/2014] [Accepted: 03/20/2014] [Indexed: 02/01/2023]
Abstract
UNLABELLED Drug release from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes occurs close to the main transition temperature Tm=41°C. The exact release temperature can be adjusted by additional lipids, which shift Tm. A major issue is drug leakage at 37°C. We here describe a novel approach with improved drug retention yet rapid release. To obtain spherical, smooth liposomes we included: i) 2mol% cholesterol, to soften bilayers (Lemmich et al 1997), ii) lipids, which due to their spontaneous curvature stabilize the negative and positive curvatures of the inner and outer leaflets of unilamellar liposomes. In addition to differential scanning calorimetry (DSC) and fluorescence spectroscopy, the lipid mixtures were analyzed by a Langmuir balance for their elastic properties and lipid packing, aiming at high elasticity modulus CS(-1). Maxima in CS(-1) coincided with minima in the free energy of lateral mixing. These liposomes have reduced drug leakage, yet retain rapid release. FROM THE CLINICAL EDITOR This paper reports the development of optimized DPPC liposomes for drug delivery, with reduced drug leakage but maintained rapid release.
Collapse
Affiliation(s)
- Roberto Tejera-Garcia
- Helsinki Biophysics and Biomembrane Group, Department of Biomedical Engineering and Computational Science, School of Sciences, Aalto University, Espoo, Finland
| | - Petteri Parkkila
- Helsinki Biophysics and Biomembrane Group, Department of Biomedical Engineering and Computational Science, School of Sciences, Aalto University, Espoo, Finland
| | - Vladimir Zamotin
- Helsinki Biophysics and Biomembrane Group, Department of Biomedical Engineering and Computational Science, School of Sciences, Aalto University, Espoo, Finland
| | - Paavo K J Kinnunen
- Helsinki Biophysics and Biomembrane Group, Department of Biomedical Engineering and Computational Science, School of Sciences, Aalto University, Espoo, Finland.
| |
Collapse
|
25
|
Antunes D, Padrão AI, Maciel E, Santinha D, Oliveira P, Vitorino R, Moreira-Gonçalves D, Colaço B, Pires MJ, Nunes C, Santos LL, Amado F, Duarte JA, Domingues MR, Ferreira R. Molecular insights into mitochondrial dysfunction in cancer-related muscle wasting. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:896-905. [PMID: 24657703 DOI: 10.1016/j.bbalip.2014.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/26/2014] [Accepted: 03/13/2014] [Indexed: 12/22/2022]
Abstract
Alterations in muscle mitochondrial bioenergetics during cancer cachexia were previously suggested; however, the underlying mechanisms are not known. So, the goal of this study was to evaluate mitochondrial phospholipid remodeling in cancer-related muscle wasting and its repercussions to respiratory chain activity and fiber susceptibility to apoptosis. An animal model of urothelial carcinoma induced by exposition to N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) and characterized by significant body weight loss due to skeletal muscle mass decrease was used. Morphological evidences of muscle atrophy were associated to decreased respiratory chain activity and increased expression of mitochondrial UCP3, which altogether highlight the lower ability of wasted muscle to produce ATP. Lipidomic analysis of isolated mitochondria revealed a significant decrease of phosphatidic acid, phosphatidylglycerol and cardiolipin in BBN mitochondria, counteracted by increased phosphatidylcholine levels. Besides the impact on membrane fluidity, this phospholipid remodeling seems to justify, at least in part, the lower oxidative phosphorylation activity observed in mitochondria from wasted muscle and their increased susceptibility to apoptosis. Curiously, no evidences of lipid peroxidation were observed but proteins from BBN mitochondria, particularly the metabolic ones, seem more prone to carbonylation with the consequent implications in mitochondria functionality. Overall, data suggest that bladder cancer negatively impacts skeletal muscle activity specifically by affecting mitochondrial phospholipid dynamics and its interaction with proteins, ultimately leading to the dysfunction of this organelle. The regulation of phospholipid biosynthetic pathways might be seen as potential therapeutic targets for the management of cancer-related muscle wasting.
Collapse
Affiliation(s)
- Diana Antunes
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | | | | | - Paula Oliveira
- School of Agrarian Sciences, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Rui Vitorino
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | - Bruno Colaço
- School of Agrarian Sciences, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Maria João Pires
- School of Agrarian Sciences, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Cláudia Nunes
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Lúcio L Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Francisco Amado
- Health School of Sciences, University of Aveiro, Aveiro, Portugal
| | | | | | - Rita Ferreira
- Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
26
|
Fajardo VA, McMeekin L, Basic A, Lamb GD, Murphy RM, LeBlanc PJ. Isolation of sarcolemmal plasma membranes by mechanically skinning rat skeletal muscle fibers for phospholipid analysis. Lipids 2013; 48:421-30. [PMID: 23430510 DOI: 10.1007/s11745-013-3770-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/28/2013] [Indexed: 12/21/2022]
Abstract
Membrane phospholipid (PL) composition has been shown to affect cellular function by altering membrane physical structure. The sarcolemma plasma membrane (SLpm) is integral to skeletal muscle function and health. Previous studies assessing SLpm PL composition have demonstrated contamination from transverse (t)-tubule, sarcoplasmic reticulum, and nuclear membranes. This study assessed the possibility of isolating SL by mechanically skinning skeletal muscle fiber segments for the analysis of SLpm PL composition. Mechanically skinned SLpm from rat extensor digitorum longus (EDL) muscle fibers underwent Western blot analysis to assess contamination from t-tubule, sarcoplasmic reticulum, nuclear and mitochondrial membranes. The results indicate that isolated SLpm had minimal nuclear and mitochondrial membrane contamination and was void of contamination from sarcoplasmic reticulum and t-tubule membranes. After performing both high-performance thin layer chromatography and gas chromatography, we found that the SLpm obtained by mechanical skinning had higher sphingomyelin and total fatty acid saturation and lower phosphatidylcholine when compared to previous literature. Thus, by avoiding the use of various chemical treatments and membrane fractionation, we present data that may truly represent the SLpm and future studies can use this technique to assess potential changes under various perturbations and disease conditions such as insulin resistance and muscular dystrophy.
Collapse
Affiliation(s)
- Val Andrew Fajardo
- Faculty of Applied Health Sciences, Centre for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St. Catharines, ON L2S 3A1, Canada
| | | | | | | | | | | |
Collapse
|
27
|
NAKATA A, NOMOTO T, TOYOTA T, FUJINAMI M. Tip-enhanced Raman Spectroscopy of Lipid Bilayers in Water with an Alumina- and Silver-coated Tungsten Tip. ANAL SCI 2013; 29:865-9. [DOI: 10.2116/analsci.29.865] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Atsushi NAKATA
- Department of Applied Chemistry and Biotechnology, Chiba University
| | - Tomonori NOMOTO
- Department of Applied Chemistry and Biotechnology, Chiba University
| | - Taro TOYOTA
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo
| | | |
Collapse
|
28
|
Aoun M, Fouret G, Michel F, Bonafos B, Ramos J, Cristol JP, Carbonneau MA, Coudray C, Feillet-Coudray C. Dietary fatty acids modulate liver mitochondrial cardiolipin content and its fatty acid composition in rats with non alcoholic fatty liver disease. J Bioenerg Biomembr 2012; 44:439-52. [PMID: 22689144 DOI: 10.1007/s10863-012-9448-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/29/2012] [Indexed: 12/23/2022]
Abstract
No data are reported on changes in mitochondrial membrane phospholipids in non-alcoholic fatty liver disease. We determined the content of mitochondrial membrane phospholipids from rats with non alcoholic liver steatosis, with a particular attention for cardiolipin (CL) content and its fatty acid composition, and their relation with the activity of the mitochondrial respiratory chain complexes. Different dietary fatty acid patterns leading to steatosis were explored. With high-fat diet, moderate macrosteatosis was observed and the liver mitochondrial phospholipid class distribution and CL fatty acids composition were modified. Indeed, both CL content and its C18:2n-6 content were increased with liver steatosis. Moreover, mitochondrial ATP synthase activity was positively correlated to the total CL content in liver phospholipid and to CL C18:2n-6 content while other complexes activity were negatively correlated to total CL content and/or CL C18:2n-6 content of liver mitochondria. The lard-rich diet increased liver CL synthase gene expression while the fish oil-rich diet increased the (n-3) polyunsaturated fatty acids content in CL. Thus, the diet may be a significant determinant of both the phospholipid class content and the fatty acid composition of liver mitochondrial membrane, and the activities of some of the respiratory chain complex enzymes may be influenced by dietary lipid amount in particular via modification of the CL content and fatty acid composition in phospholipid.
Collapse
Affiliation(s)
- Manar Aoun
- INRA UMR 866, Dynamique Musculaire et Métabolisme, 34060, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yi Z, Nagao M, Bossev DP. Effect of charged lidocaine on static and dynamic properties of model bio-membranes. Biophys Chem 2012; 160:20-7. [DOI: 10.1016/j.bpc.2011.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/28/2011] [Accepted: 08/30/2011] [Indexed: 11/28/2022]
|
30
|
Szekely O, Schilt Y, Steiner A, Raviv U. Regulating the size and stabilization of lipid raft-like domains and using calcium ions as their probe. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:14767-14775. [PMID: 22066979 DOI: 10.1021/la203074q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We apply a means to probe, stabilize, and control the size of lipid raft-like domains in vitro. In biomembranes the size of lipid rafts is ca. 10-30 nm. In vitro, mixing saturated and unsaturated lipids results in microdomains, which are unstable and coalesce. This inconsistency is puzzling. It has been hypothesized that biological line-active surfactants reduce the line tension between saturated and unsaturated lipids and stabilize small domains in vivo. Using solution X-ray scattering, we studied the structure of binary and ternary lipid mixtures in the presence of calcium ions. Three lipids were used: saturated, unsaturated, and a hybrid (1-saturated-2-unsaturated) lipid that is predominant in the phospholipids of cellular membranes. Only membranes composed of the saturated lipid can adsorb calcium ions, become charged, and therefore considerably swell. The selective calcium affinity was used to show that binary mixtures, containing the saturated lipid, phase separated into large-scale domains. Our data suggests that by introducing the hybrid lipid to a mixture of the saturated and unsaturated lipids, the size of the domains decreased with the concentration of the hybrid lipid, until the three lipids could completely mix. We attribute this behavior to the tendency of the hybrid lipid to act as a line-active cosurfactant that can easily reside at the interface between the saturated and the unsaturated lipids and reduce the line tension between them. These findings are consistent with a recent theory and provide insight into the self-organization of lipid rafts, their stabilization, and size regulation in biomembranes.
Collapse
Affiliation(s)
- Or Szekely
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel
| | | | | | | |
Collapse
|
31
|
Influence of Phospholipid Species on Membrane Fluidity: A Meta-analysis for a Novel Phospholipid Fluidity Index. J Membr Biol 2011; 244:97-103. [DOI: 10.1007/s00232-011-9401-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/15/2011] [Indexed: 01/06/2023]
|
32
|
Abstract
Abstract
The interaction of the antibiotics, penicillin G and ampicillin, with sonicated sols of phosphatidylcholine, lysophosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylserine has been examined by Sephadex gel nitration and dynamic dialysis. Nuclear magnetic resonance spectroscopy provided evidence of a predominantly hydrophobic interaction between the antibiotics and the phospholipids, phosphatidylserine and phosphatidylcholine. Confirmation of hydrophobic interaction was provided by a rheological investigation of the effects of urea and guanidine hydrochloride on the antibiotic-phospholipid complex. Penicillin G was found to interact to a greater degree than ampicillin, a result which is of interest in the light of present knowledge of in vivo activity of these antibiotics.
Collapse
Affiliation(s)
- John M Padfield
- Pharmaceutics Research Unit, University of Nottingham, Nottingham, NG7 2RD, UK
| | - I W Kellaway
- Pharmaceutics Research Unit, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
33
|
Mounajed R, Olliff CJ, Padfield JM. The Influence of Preparation Temperature on the Properties and Stability of Egg Lecithin Lipsomes. J Pharm Pharmacol 2011. [DOI: 10.1111/j.2042-7158.1981.tb11726.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R Mounajed
- Department of Pharmacy, Brighton Polytechnic, Brighton
| | - C J Olliff
- Department of Pharmacy, Brighton Polytechnic, Brighton
| | | |
Collapse
|
34
|
Castile JD, Taylor KMG, Buckton G. The influence of polaxamer surfactants on the thermal pre-transition of DMPC and DPPC liposomes. J Pharm Pharmacol 2011. [DOI: 10.1111/j.2042-7158.1998.tb02347.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- J D Castile
- School of Pharmacy, University of London, Brunswick Square, London
| | - K M G Taylor
- School of Pharmacy, University of London, Brunswick Square, London
| | - G Buckton
- School of Pharmacy, University of London, Brunswick Square, London
| |
Collapse
|
35
|
Negishi L, Mitaku S. Electrostatic effects influence the formation of two-dimensional crystals of bacteriorhodopsin reconstituted into dimyristoylphosphatidylcholine membranes. J Biochem 2011; 150:113-9. [DOI: 10.1093/jb/mvr043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Liposomes and Other Vesicular Systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:1-52. [DOI: 10.1016/b978-0-12-416020-0.00001-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Janosi L, Prakash A, Doxastakis M. Lipid-modulated sequence-specific association of glycophorin A in membranes. Biophys J 2010; 99:284-92. [PMID: 20655857 DOI: 10.1016/j.bpj.2010.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/01/2010] [Accepted: 04/05/2010] [Indexed: 11/26/2022] Open
Abstract
Protein association in lipid membranes is a complex process with thermodynamics directed by a multitude of different factors. Amino-acid sequence is a molecular parameter that affects dimerization as shown by limited directed mutations along the transmembrane domains. Membrane-mediated interactions are also important although details of such contributions remain largely unclear. In this study, we probe directly the free energy of association of Glycophorin A by means of extensive parallel Monte Carlo simulations with recently developed methods and a model that accounts for sequence-specificity while representing lipid membranes faithfully. We find that lipid-induced interactions are significant both at short and intermediate separations. The ability of molecules to tilt in a specific hydrophobic environment extends their accessible interfaces, leading to intermittent contacts during protein recognition. The dimer with the lowest free energy is largely determined by the favorable lipid-induced attractive interactions at the closest distance. Finally, the coarse-grained model employed herein, together with the extensive sampling performed, provides estimates of the free energy of association that are in excellent agreement with existing data.
Collapse
Affiliation(s)
- Lorant Janosi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | | | | |
Collapse
|
38
|
Basso LGM, Rodrigues RZ, Naal RMZG, Costa-Filho AJ. Effects of the antimalarial drug primaquine on the dynamic structure of lipid model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:55-64. [PMID: 20713019 DOI: 10.1016/j.bbamem.2010.08.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/28/2010] [Accepted: 08/10/2010] [Indexed: 01/28/2023]
Abstract
Primaquine (PQ) is a potent therapeutic agent used in the treatment of malaria and its mechanism of action still lacks a more detailed understanding at a molecular level. In this context, we used differential scanning calorimetry (DSC), pressure perturbation calorimetry (PPC), and electron spin resonance (ESR) to investigate the effects of PQ on the lipid phase transition, acyl chain dynamics, and on volumetric properties of lipid model membranes. DSC thermograms revealed that PQ stabilizes the fluid phase of the lipid model membranes and interacts mainly with the lipid headgroups. This result was revealed by the great effect on the pretransition of phosphatidylcholines and the destabilization of the inverted hexagonal phase of a phosphatidylethanolamine bilayer. Spin probes located at different positions along the lipid chain were used to monitor different membrane regions. ESR results indicated that PQ is effective in changing the acyl chain ordering and dynamics of the whole chain of dimyristoylphosphatidylcholine (DMPC) phospholipid in the rippled gel phase. The combined ESR and PPC results revealed that the slight DMPC volume changes at the main phase transition induced by the presence of PQ is probably due to a less dense lipid gel phase. At physiological pH, the cationic amphiphilic PQ strongly interacts with the lipid headgroup region of the bilayers, causing considerable disorganization in the hydrophobic core. These results shed light on the molecular mechanism of primaquine-lipid interaction, which may be useful in the understanding of the complex mechanism of action and/or the adverse effects of this antimalarial drug.
Collapse
Affiliation(s)
- Luis G M Basso
- Grupo de Biofísica Molecular Sérgio Mascarenhas, Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense 400, C.P. 369, CEP 13560-970, São Carlos, SP, Brazil
| | | | | | | |
Collapse
|
39
|
Ip S, Li JK, Walker GC. Phase segregation of untethered zwitterionic model lipid bilayers observed on mercaptoundecanoic-acid-modified gold by AFM imaging and force mapping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:11060-11070. [PMID: 20387821 DOI: 10.1021/la100605t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Planar supported lipid bilayers (SLBs) are often studied as model cell membranes because they are accessible to a variety of surface-analytic techniques. Specifically, recent studies of lipid phase coexistence in model systems suggest that membrane lateral organization is important to a range of cellular functions and diseases. We report the formation of phase-segregated dioleoylphosphatidylcholine (DOPC)/sphingomyelin/cholesterol bilayers on mercaptoundecanoic-acid-modified (111) gold by spontaneous fusion of unilamellar vesicles, without the use of charged or chemically modified headgroups. The liquid-ordered (l(o)) and liquid-disordered (l(d)) domains are observed by atomic force microscopy (AFM) height and phase imaging. Furthermore, the mechanical properties of the bilayer were characterized by force-indentation maps. Fits of force indentation to Sneddon mechanics yields average apparent Young's moduli of the l(o) and l(d) phases of 100 +/- 2 and 59.8 +/- 0.9 MPa, respectively. The results were compared to the same lipid membrane system formed on mica with good agreement, though modulus values on mica appeared higher. Semiquantitative comparisons suggest that the mechanical properties of the l(o) phase are dominated by intermolecular van der Waals forces, while those of the fluid l(d) phase, with relatively weak van der Waals forces, are influenced appreciably by differences in surface charge density between the two substrates, which manifests as a difference in apparent Poisson ratios.
Collapse
Affiliation(s)
- Shell Ip
- Department of Chemistry, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
40
|
Strauss G, Hauser H. Stabilization of lipid bilayer vesicles by sucrose during freezing. Proc Natl Acad Sci U S A 2010; 83:2422-6. [PMID: 16593683 PMCID: PMC323309 DOI: 10.1073/pnas.83.8.2422] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The freeze-induced fusion and leakage of small unilamellar vesicles (SUV) of natural and synthetic phosphatidylcholines and the suppression of these processes by sucrose was studied by electron microscopy, by high-resolution NMR, and by ESR techniques. During slow freezing of SUV suspensions in water, the lipid was compressed into a small interstitial volume and transformed into a multilamellar aggregate without vesicular structure. When frozen in sucrose solution, the lipid also was compressed between the ice crystals but remained in the form of vesicles. The fractional amount of lipid remaining as SUV after freezing was found to increase significantly only at sucrose/lipid molar ratios above 0.4. Eu(3+) displaced sucrose from the lipid by competitive binding. During freezing in the absence of sucrose, the vesicles became transiently permeable to ions. ESR studies showed that fusion of vesicles in the absence of sucrose is far more extensive when they are frozen while above their phase-transition temperature (t(c)) than when frozen while below their t(c). It is concluded that the extent of membrane disruption depends on the membrane mobility at the moment of freezing and that sucrose exerts its protective effect by binding to the membrane interface and/or by affecting the water structure.
Collapse
Affiliation(s)
- G Strauss
- Laboratorium für Biochemie, Eidgenössische Technische Hochschule, ETH Zentrum, CH 8092 Zürich, Switzerland
| | | |
Collapse
|
41
|
Abstract
To understand the physical state of water in hydrating biological tissues, thermodynamic properties of water in cotyledons of pea and soybean with moisture contents ranging from 0.01 g H(2)O/g dw to 1.0 g H(2)O/g dw were studied using differential scanning calorimetry. The heat capacity of the tissues increased abruptly at moisture contents above 0.08 and 0.12 g H(2)O/g dw for soybean and pea cotyledons, respectively. Melting transitions of water were observed at moisture contents >0.23 and 0.26 g H(2)O/g dw for soybean and pea. However, freezing of water was not observed unless moisture contents exceeded 0.33-0.35 g H(2)O/g dw. In both seed tissues, the temperatures of the freezing and melting varied with moisture content and showed hysterisis. The energy of the transition also varied with moisture content and was similar to the heats of fusion and crystallization of pure water only at moisture contents >0.54 and 0.58 gH(2)O/g dw for soybean and pea seeds, respectively. The thermal properties of water change distinctly as seed moisture content changes: at least five states or water can be identified.
Collapse
|
42
|
Davis PJ, Keough KM. Chain arrangements in the gel state and the transition temperatures of phosphatidylcholines. Biophys J 2010; 48:915-8. [PMID: 19431601 DOI: 10.1016/s0006-3495(85)83854-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Measures of chain length, inequivalence of chain length, and chain position have been incorporated into a parameter, D, which we call the "relative chain inequivalence." D has been calculated for a number of saturated phosphatidylcholines (PC) containing one type of chain (homoacid PC), saturated PC containing two different acyl chains (heteroacid PC), and heteroacid PC containing one saturated and one unsaturated chain. The gel to liquid-crystalline transition temperatures and D are related in a regular pattern, which suggests similarity of chain packing in the gel. This pattern may have useful predictive value.
Collapse
|
43
|
Tenchov BG, Yao H, Hatta I. Time-resolved x-ray diffraction and calorimetric studies at low scan rates: I. Fully hydrated dipalmitoylphosphatidylcholine (DPPC) and DPPC/water/ethanol phases. Biophys J 2010; 56:757-68. [PMID: 19431747 DOI: 10.1016/s0006-3495(89)82723-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The phase transitions in fully hydrated dipalmitoylphosphatidylcholine (DPPC) and DPPC/water/ethanol phases have been studied by lowangle time-resolved x-ray diffraction under conditions similar to those employed in calorimetry (scan rates 0.05-0.5 degrees C/min and uniform temperature throughout the samples). This approach provides more adequate characterization of the equilibrium transition pathways and allows for close correlations between structural and thermodynamic data. No coexistence of the rippled gel (P(beta')) and liquid-crystalline (L(alpha)) phases was found in the main transition of DPPC; rather, a loss of correlation in the lamellar structure, observed as broadening of the lamellar reflections, takes place in a narrow temperature range of approximately 100 mK at the transition midpoint. Formation of a long-living metastable phase, denoted by P(beta')(mst), differing from the initial P(beta') was observed in cooling direction by both x-ray diffraction and calorimetry. No direct conversion of P(beta')(mst) into P(beta') occurs for over 24 h but only by way of the phase sequence P(beta')(mst) --> L(beta') --> P(beta'). According to differential scanning calorimetry (DSC), the enthalpy of the P(beta')(mst)-L(alpha) transition is by approximately 5% lower than that of the P(beta')-L(alpha) transition. The effects of ethanol (Rowe, E. S. 1983. Biochemistry. 22:3299-3305; Simon, S. A., and T. J. McIntosh. 1984. Biochim. Biophys. Acta 773:169-172) on the mechanism and reversibility of the DPPC main transition were clearly visualized. At ethanol concentrations inducing formation of interdigitated gel phase, the main transition proceeds through a coexistence of the initial and final phases over a finite temperature range. During the subtransition in DPPC recorded at scan rate 0.3 degrees C/min, a smooth monotonic increase of the lamellar spacing from its subgel (L(c)) to its gel (L(beta')) phase value takes place. The width of the lamellar reflections remains unchanged during this transformation. This provides grounds to propose a "sequential" relaxation mechanism for the subgel-gel transition which is not accompanied by growth of domains of the final phase within the initial one.
Collapse
Affiliation(s)
- B G Tenchov
- Department of Applied Physics, School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan
| | | | | |
Collapse
|
44
|
Okahata Y, Ando R, Kunitake T. Phase Transition of the Bilayer Membrane of Synthetic Dialkyl Amphiphiles as Studied by Differential Scanning Calorimetry. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19810850811] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Ojogun V, Vyas SM, Lehmler HJ, Knutson BL. Partitioning of homologous nicotinic acid ester prodrugs (nicotinates) into dipalmitoylphosphatidylcholine (DPPC) membrane bilayers. Colloids Surf B Biointerfaces 2010; 78:75-84. [PMID: 20227859 PMCID: PMC2873030 DOI: 10.1016/j.colsurfb.2010.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 11/30/2022]
Abstract
The partitioning behavior of a series of perhydrocarbon nicotinic acid esters (nicotinates) between aqueous solution and dipalmitoylphosphatidylcholine (DPPC) membrane bilayers is investigated as a function of increasing alkyl chain length. The hydrocarbon nicotinates represent putative prodrugs, derivatives of the polar drug nicotinic acid, whose functionalization provides the hydrophobic character necessary for pulmonary delivery in a hydrophobic, fluorocarbon solvent, such as perfluorooctyl bromide. Independent techniques of differential scanning calorimetry and 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence anisotropy measurements are used to analyze the thermotropic phase behavior and lipid bilayer fluidity as a function of nicotinate concentration. At increasing concentrations of nicotinates over the DPPC mole fraction range examined (X(DPPC)=0.6-1.0), all the nicotinates (ethyl (C2H5); butyl (C4H9); hexyl (C6H13); and octyl (C8H17)) partition into the lipid bilayer at sufficient levels to eliminate the pretransition, and decrease and broaden the gel to fluid phase transition temperature. The concentration at which these effects occur is chain length-dependent; the shortest chain nicotinate, C2H5, elicits the least dramatic response. Similarly, the DPH anisotropy results demonstrate an alteration of the bilayer organization in the liposomes as a consequence of the chain length-dependent partitioning of the nicotinates into DPPC bilayers. The membrane partition coefficients (logarithm values), determined from the depressed bilayer phase transition temperatures, increase from 2.18 for C2H5 to 5.25 for C8H17. The DPPC membrane/water partitioning of the perhydrocarbon nicotinate series correlates with trends in the octanol/water partitioning of these solutes, suggesting that their incorporation into the bilayer is driven by increasing hydrophobicity.
Collapse
Affiliation(s)
- Vivian Ojogun
- Department of Chemical and Materials Engineering 177 Anderson Hall, University of Kentucky, Lexington, KY 40506-0046
| | - Sandhya M. Vyas
- Department of Occupational and Environmental Health, 100 Oakdale Campus, #124 IREH, University of Iowa, Iowa City, IA 52242-5000
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, 100 Oakdale Campus, #124 IREH, University of Iowa, Iowa City, IA 52242-5000
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering 177 Anderson Hall, University of Kentucky, Lexington, KY 40506-0046
| |
Collapse
|
46
|
|
47
|
Knoll W, Höhne GWH. Calorimetric Investigations of Lipid Phase Transitions. II. The Heat of Transition. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19840880604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Jürgens E, Höhne G, Sackmann E. Calorimetric Study of the Dipalmitoylphosphatidylcholine/Water Phase Diagram. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19830870207] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Stefanyk LE, Coverdale N, Roy BD, Peters SJ, LeBlanc PJ. Skeletal Muscle Type Comparison of Subsarcolemmal Mitochondrial Membrane Phospholipid Fatty Acid Composition in Rat. J Membr Biol 2010; 234:207-15. [DOI: 10.1007/s00232-010-9247-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/04/2010] [Indexed: 12/22/2022]
|
50
|
Colás C, Junquera C, Pérez-Pé R, Cebrián-Pérez JA, Muiño-Blanco T. Ultrastructural study of the ability of seminal plasma proteins to protect ram spermatozoa against cold-shock. Microsc Res Tech 2009; 72:566-72. [PMID: 19322897 DOI: 10.1002/jemt.20710] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The process of sperm cryopreservation, involving cooling, freezing, and thawing, induces serious detrimental changes in sperm function. The plasma and acrosomal membranes of spermatozoa are considered to be the primary site of these modifications due to thermal, mechanical, chemical, and osmotic stress. In previous studies, we demonstrated the ability of seminal plasma (SP) proteins to protect ram spermatozoa against cold-shock by using biochemical markers and scanning electron microscopy. In this study, we have attempted to examine the potential protective effect of SP proteins in membrane ultrastructure of ram spermatozoa subjected to cold-shock, by means of transmission electron microscopy (TEM). All the experiments were carried out with fresh spermatozoa freed from SP by a dextran/swim-up procedure. The high proportion of viable spermatozoa found in the swim-up obtained sample decreased drastically after the cold-shock treatment, and a considerable blebbing and vesiculation of the plasma and acrosomal membranes was found. The addition of SP proteins increased the sperm resistance to damage due to cold-shock (48% membrane-intact spermatozoa versus 15% in the control sample), and TEM analysis revealed that membrane alteration was prevented. This protective effect seems to be specific for SP proteins, as the addition of BSA did not provide any protection.
Collapse
Affiliation(s)
- Carmen Colás
- Department of Biochemistry and Molecular and Cell Biology, School of Veterinary Medicine, University of Zaragoza, 50013 Zaragoza, Spain
| | | | | | | | | |
Collapse
|