1
|
Nie J, Ai J, Hong W, Bai Z, Wang B, Yang J, Zhang Z, Mo F, Yang J, Sun Q, Wei X. Cisplatin-induced oxPAPC release enhances MDSCs infiltration into LL2 tumour tissues through MCP-1/CCL2 and LTB4/LTB4R pathways. Cell Prolif 2024; 57:e13570. [PMID: 37905494 PMCID: PMC10984104 DOI: 10.1111/cpr.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Abstract
Lung cancer is the leading global cause of cancer-related death, however, resistance to chemotherapy drugs remains a huge barrier to effective treatment. The elevated recruitment of myeloid derived suppressor cells (MDSCs) to tumour after chemotherapy has been linked to resistance of chemotherapy drugs. Nevertheless, the specific mechanism remains unclear. oxPAPC is a bioactive principal component of minimally modified low-density lipoproteins and regulates inflammatory response. In this work, we found that cisplatin, oxaliplatin and ADM all increased oxPAPC release in tumour. Treating macrophages with oxPAPC in vitro stimulated the secretion of MCP-1 and LTB4, which strongly induced monocytes and neutrophils chemotaxis, respectively. Injection of oxPAPC in vivo significantly upregulated the percentage of MDSCs in tumour microenvironment (TME) of wild-type LL2 tumour-bearing mice, but not CCL2-/- mice and LTB4R-/- mice. Critically, oxPAPC acted as a pro-tumor factor in LL2 tumour model. Indeed, cisplatin increased oxPAPC level in tumour tissues of WT mice, CCL2-/- and LTB4R-/- mice, but caused increased infiltration of Ly6Chigh monocytes and neutrophils only in WT LL2-bearing mice. Collectively, our work demonstrates cisplatin treatment induces an overproduction of oxPAPC and thus recruits MDSCs infiltration to promote the tumour growth through the MCP-1/CCL2 and LTB4/LTB4R pathways, which may restrict the effect of multiple chemotherapy. This provides evidence for a potential strategy to enhance the efficacy of multiple chemotherapeutic drugs in the treatment of lung cancer by targeting oxPAPC.
Collapse
Affiliation(s)
- Ji Nie
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingYunnanChina
| | - Jiayuan Ai
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Weiqi Hong
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ziyi Bai
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Binhan Wang
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Jingyun Yang
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ziqi Zhang
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Fei Mo
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Jing Yang
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Qiu Sun
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
- West China Medical Publishers, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xiawei Wei
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
2
|
Giovannini I, Corsetto PA, Altiero T, Montorfano G, Guidetti R, Rizzo AM, Rebecchi L. Antioxidant Response during the Kinetics of Anhydrobiosis in Two Eutardigrade Species. Life (Basel) 2022; 12:817. [PMID: 35743848 PMCID: PMC9225123 DOI: 10.3390/life12060817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Anhydrobiosis, a peculiar adaptive strategy existing in nature, is a reversible capability of organisms to tolerate a severe loss of their body water when their surrounding habitat is drying out. In the anhydrobiotic state, an organism lacks all dynamic features of living beings since an ongoing metabolism is absent. The depletion of water in the anhydrobiotic state increases the ionic concentration and the production of reactive oxygen species (ROS). An imbalance between the increased production of ROS and the limited action of antioxidant defences is a source of biomolecular damage and can lead to oxidative stress. The deleterious effects of oxidative stress were demonstrated in anhydrobiotic unicellular and multicellular organisms, which counteract the effects using efficient antioxidant machinery, mainly represented by ROS scavenger enzymes. To gain insights into the dynamics of antioxidant patterns during the kinetics of the anhydrobiosis of two tardigrade species, Paramacrobiotus spatialis and Acutuncus antarcticus, we investigated the activity of enzymatic antioxidants (catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase) and the amount of non-enzymatic antioxidants (glutathione) in the course of rehydration. In P. spatialis, the activity of catalase increases during dehydration and decreases during rehydration, whereas in A. antarcticus, the activity of superoxide dismutase decreases during desiccation and increases during rehydration. Genomic varieties, different habitats and geographical regions, different diets, and diverse evolutionary lineages may have led to the specialization of antioxidant strategies in the two species.
Collapse
Affiliation(s)
- Ilaria Giovannini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.G.); (R.G.)
| | - Paola Antonia Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milan, Italy; (P.A.C.); (G.M.)
| | - Tiziana Altiero
- Department of Education and Humanities, University of Modena and Reggio Emilia, 42121 Reggio Emilia, Italy;
| | - Gigliola Montorfano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milan, Italy; (P.A.C.); (G.M.)
| | - Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.G.); (R.G.)
| | - Angela Maria Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milan, Italy; (P.A.C.); (G.M.)
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.G.); (R.G.)
| |
Collapse
|
3
|
Nie J, Yang J, Wei Y, Wei X. The role of oxidized phospholipids in the development of disease. Mol Aspects Med 2020; 76:100909. [PMID: 33023753 DOI: 10.1016/j.mam.2020.100909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/29/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Oxidized phospholipids (OxPLs), complex mixtures of phospholipid oxidation products generated during normal or pathological processes, are increasingly recognized to show bioactive effects on many cellular signalling pathways. There is a growing body of evidence showing that OxPLs play an important role in many diseases, so it is essential to define the specific role of OxPLs in different diseases for the design of disease therapies. In vastly diverse pathological processes, OxPLs act as pro-inflammatory agents and contribute to the progression of many diseases; in addition, they play a role in anti-inflammatory processes, promoting the dissipation of inflammation and inhibiting the progression of some diseases. In addition to participating in the regulation of inflammatory responses, OxPLs affect the occurrence and development of diseases through other pathways, such as apoptosis promotion. In this review, the different and even opposite effects of different OxPL molecular species are discussed. Furthermore, the specific effects of OxPLs in various diseases, as well as the receptor and cellular mechanisms involved, are summarized.
Collapse
Affiliation(s)
- Ji Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiration, First People's Hospital of Yunnan Province, Yunnan, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Navarro MV, Chaves AFA, Castilho DG, Casula I, Calado JCP, Conceição PM, Iwai LK, de Castro BF, Batista WL. Effect of Nitrosative Stress on the S-Nitroso-Proteome of Paracoccidioides brasiliensis. Front Microbiol 2020; 11:1184. [PMID: 32582109 PMCID: PMC7287035 DOI: 10.3389/fmicb.2020.01184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
The fungi Paracoccidioides brasiliensis and Paracoccidioides lutzii are the causative agents of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. This fungus is considered a facultative intracellular pathogen that is able to survive and replicate inside macrophages. The survival of the fungus during infection depends on its adaptability to various conditions, such as nitrosative/oxidative stress produced by the host immune cells, particularly alveolar macrophages. Currently, there is little knowledge about the Paracoccidioides spp. signaling pathways involved in the fungus evasion mechanism of the host defense response. However, it is known that some of these pathways are triggered by reactive oxygen species and reactive nitrogen species (ROS/RNS) produced by host cells. Considering that the effects of NO (nitric oxide) on pathogens are concentration dependent, such effects could alter the redox state of cysteine residues by influencing (activating or inhibiting) a variety of protein functions, notably S-nitrosylation, a highly important NO-dependent posttranslational modification that regulates cellular functions and signaling pathways. It has been demonstrated by our group that P. brasiliensis yeast cells proliferate when exposed to low NO concentrations. Thus, this work investigated the modulation profile of S-nitrosylated proteins of P. brasiliensis, as well as identifying S-nitrosylation sites after treatment with RNS. Through mass spectrometry analysis (LC-MS/MS) and label-free quantification, it was possible to identify 474 proteins in the S-nitrosylated proteome study. With this approach, we observed that proteins treated with NO at low concentrations presented a proliferative response pattern, with several proteins involved in cellular cycle regulation and growth being activated. These proteins appear to play important roles in fungal virulence. On the other hand, fungus stimulated by high NO concentrations exhibited a survival response pattern. Among these S-nitrosylated proteins we identified several potential molecular targets for fungal disease therapy, including cell wall integrity (CWI) pathway, amino acid and folic acid metabolisms. In addition, we detected that the transnitrosylation/denitrosylation redox signaling are preserved in this fungus. Finally, this work may help to uncover the beneficial and antifungal properties of NO in the P. brasiliensis and point to useful targets for the development of antifungal drugs.
Collapse
Affiliation(s)
- Marina V. Navarro
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alison F. A. Chaves
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Daniele G. Castilho
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Isis Casula
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Juliana C. P. Calado
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Palloma M. Conceição
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Leo K. Iwai
- Laboratory of Applied Toxinology, Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, Brazil
| | - Beatriz F. de Castro
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Wagner L. Batista
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
5
|
Li P, Oyang X, Xie X, Li Z, Yang H, Xi J, Guo Y, Tian X, Liu B, Li J, Xiao Z. Phytotoxicity induced by perfluorooctanoic acid and perfluorooctane sulfonate via metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121852. [PMID: 31848096 DOI: 10.1016/j.jhazmat.2019.121852] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/16/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Poly- and perfluoroalkyl substances (PFASs) are becoming common pollutants in natural environment, while the toxic effects and defense mechanisms in agricultural plants are poorly understood. Here, lettuce exposed to either perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS) at two different concentrations (500, 5000 ng/L) in hydroponic media was investigated via metabolomics. Under the tested conditions, the growth and biomass of lettuce were not affected by PFOA and PFOS, but metabolic profiles in leaves were altered. The composition and metabolism of lipids, carbohydrates, fatty acids, amino acids and some antioxidants were regulated, compromising the nutritional quality of the plants. Key pathways in energy metabolism were disturbed by both PFOA and PFOS, including tricarboxylic acid cycle, glyoxylate and dicarboxylate metabolism and pyruvate metabolism. Amino acid metabolism, e.g., phenylalanine and tyrosine, was disturbed by PFOA. The metabolism of linoleic acid was disturbed by PFOS. The changes of antioxidants and 8-hydroxy-deoxyguanosine indicated the occurrence of oxidative stress and DNA damage under PFOA or PFOS exposure. The main defense processes against PFASs exposure in lettuce included alteration in plasma membrane, activation of antioxidant systems, increase of tolerance and repair of DNA injury. These findings help elucidate the response of plants to PFASs in a molecular-scale perspective.
Collapse
Affiliation(s)
- Pengyang Li
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China; Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China
| | - Xihui Oyang
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China; Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Xiaocan Xie
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhifang Li
- Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongju Yang
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China
| | - Jialin Xi
- Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Yang Guo
- Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Xiujun Tian
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Bin Liu
- Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Jiuyi Li
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China.
| | - Zhiyong Xiao
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China; Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China.
| |
Collapse
|
6
|
Banerji B, K C, Chatterjee S, Killi SK, Prodhan C, Chaudhuri K. Cellular Detection of Hydrazine as Isoniazid Metabolite by a New Turn‐On Fluorescent Probe: Synthesis, Live Cell Imaging and In Vitro Toxicity Studies. ChemistrySelect 2018. [DOI: 10.1002/slct.201802806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Biswadip Banerji
- Organic & Medicinal Chemistry DivisionIndian Institute of Chemical Biology (CSIR-IICB)
- Academy of Scientific and Innovative Research, (AcSIR) 4 Raja S. C. Mullick Road Kolkata, Country. India- 700032
| | - Chandrasekhar K
- Organic & Medicinal Chemistry DivisionIndian Institute of Chemical Biology (CSIR-IICB)
- Academy of Scientific and Innovative Research, (AcSIR) 4 Raja S. C. Mullick Road Kolkata, Country. India- 700032
| | - Satadru Chatterjee
- Organic & Medicinal Chemistry DivisionIndian Institute of Chemical Biology (CSIR-IICB)
| | - Sunil Kumar Killi
- Organic & Medicinal Chemistry DivisionIndian Institute of Chemical Biology (CSIR-IICB)
| | - Chandraday Prodhan
- Molecular GeneticsIndian Institute of Chemical Biology (CSIR-IICB) 4 Raja S. C. Mullick Road Kolkata India- 700032
| | - Keya Chaudhuri
- Molecular GeneticsIndian Institute of Chemical Biology (CSIR-IICB) 4 Raja S. C. Mullick Road Kolkata India- 700032
| |
Collapse
|
7
|
Mijatović S, Alempijević T, Stefanović B, Jeremić V, Krstić S, Radmanović N, Jovanović S, Stefanović B. Influence of Syrgical Trauma on Nitric Oxide and Nitrotyrosine Serum Levels in Patients Undergoing Laparoscopic Or Conventional Cholecystectomy. J Med Biochem 2017; 36:171-176. [PMID: 28680361 PMCID: PMC5471650 DOI: 10.1515/jomb-2017-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/22/2016] [Indexed: 11/15/2022] Open
Abstract
Background Oxidative stress represents tissue damage caused by reactive forms of oxygen and nitrogen due to the inability of antioxidant mechanisms to reduce reactive forms into more stable ones. The aim of the study was to evaluate the influence of surgical trauma on nitric oxide (NO) and nitrotyrosine (NT) values in patients undergoing conventional and laparoscopic cholecystectomy. Methods A prospective study included sixty patients from the Department of Emergency Surgery, Clinical Centre of Serbia who were operated for gallstone related chronic cholecystitis. All the patients enrolled in the study underwent cholecystectomy; the first group was operated conventionally (30 patients – control group), while the second group was operated laparoscopically (30 patients – treatment group). Results There were no statistically significant differences in the values of NO and its postoperative changes in both groups, the conventionally operated group (p=0.943) and the laparoscopically operated group (p=0.393). We found an increase in NT values 24 hours postoperatively (p=0.000) in the conventionally operated patients, while in the group operated laparoscopically we didn’t find statistically significant changes in the values of NT (conventionally operated group (p=0.943) and laparoscopically operated group (p=0.393)). Conclusions In our study, we found a significant increase in NT values 24 hours postoperatively in conventionally operated patients i.e. the control group, vs. the treatment group. Further randomized studies are needed for a better understanding of the impact of surgical trauma on oxidative stress response.
Collapse
Affiliation(s)
- Srdjan Mijatović
- Clinic for Emergency Surgery, Clinical Centre of Serbia, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Alempijević
- School of Medicine, University of Belgrade, Belgrade, Serbia.,Clinic for Gastroenterology and Hepatology, Clinical Centre of Serbia, Belgrade, Serbia
| | - Branislava Stefanović
- School of Medicine, University of Belgrade, Belgrade, Serbia.,Department of Anesthesiology, Clinical Centre of Serbia, Belgrade, Serbia
| | - Vasilije Jeremić
- Clinic for Emergency Surgery, Clinical Centre of Serbia, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Slobodan Krstić
- Clinic for Emergency Surgery, Clinical Centre of Serbia, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nikola Radmanović
- Clinic for Emergency Surgery, Clinical Centre of Serbia, Belgrade, Serbia
| | - Sanja Jovanović
- Clinic for Emergency Surgery, Clinical Centre of Serbia, Belgrade, Serbia
| | - Branislav Stefanović
- Clinic for Emergency Surgery, Clinical Centre of Serbia, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Anthonymuthu TS, Kenny EM, Bayır H. Therapies targeting lipid peroxidation in traumatic brain injury. Brain Res 2016; 1640:57-76. [PMID: 26872597 PMCID: PMC4870119 DOI: 10.1016/j.brainres.2016.02.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 02/06/2023]
Abstract
Lipid peroxidation can be broadly defined as the process of inserting a hydroperoxy group into a lipid. Polyunsaturated fatty acids present in the phospholipids are often the targets for peroxidation. Phospholipids are indispensable for normal structure of membranes. The other important function of phospholipids stems from their role as a source of lipid mediators - oxygenated free fatty acids that are derived from lipid peroxidation. In the CNS, excessive accumulation of either oxidized phospholipids or oxygenated free fatty acids may be associated with damage occurring during acute brain injury and subsequent inflammatory responses. There is a growing body of evidence that lipid peroxidation occurs after severe traumatic brain injury in humans and correlates with the injury severity and mortality. Identification of the products and sources of lipid peroxidation and its enzymatic or non-enzymatic nature is essential for the design of mechanism-based therapies. Recent progress in mass spectrometry-based lipidomics/oxidative lipidomics offers remarkable opportunities for quantitative characterization of lipid peroxidation products, providing guidance for targeted development of specific therapeutic modalities. In this review, we critically evaluate previous attempts to use non-specific antioxidants as neuroprotectors and emphasize new approaches based on recent breakthroughs in understanding of enzymatic mechanisms of lipid peroxidation associated with specific death pathways, particularly apoptosis. We also emphasize the role of different phospholipases (calcium-dependent and -independent) in hydrolysis of peroxidized phospholipids and generation of pro- and anti-inflammatory lipid mediators. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
Affiliation(s)
- Tamil Selvan Anthonymuthu
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Elizabeth Megan Kenny
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Hülya Bayır
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15260, USA; Childrens׳s Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|
9
|
Trypanosoma cruzi infection and benznidazole therapy independently stimulate oxidative status and structural pathological remodeling of the liver tissue in mice. Parasitol Res 2015; 114:2873-81. [DOI: 10.1007/s00436-015-4488-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/16/2015] [Indexed: 12/11/2022]
|
10
|
Bernard F, Brulle F, Dumez S, Lemiere S, Platel A, Nesslany F, Cuny D, Deram A, Vandenbulcke F. Antioxidant responses of Annelids, Brassicaceae and Fabaceae to pollutants: a review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:273-303. [PMID: 24951273 DOI: 10.1016/j.ecoenv.2014.04.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 04/15/2014] [Accepted: 04/20/2014] [Indexed: 06/03/2023]
Abstract
Pollutants, such as Metal Trace Elements (MTEs) and organic compounds (polycyclic aromatic hydrocarbons, pesticides), can impact DNA structure of living organisms and thus generate damage. For instance, cadmium is a well-known genotoxic and mechanisms explaining its clastogenicity are mainly indirect: inhibition of DNA repair mechanisms and/or induction of Reactive Oxygen Species (ROS). Animal or vegetal cells use antioxidant defense systems to protect themselves against ROS produced during oxidative stress. Because tolerance of organisms depends, at least partially, on their ability to cope with ROS, the mechanisms of production and management of ROS were investigated a lot in Ecotoxicology as markers of biotic and abiotic stress. This was mainly done through the measurement of enzyme activities The present Review focuses on 3 test species living in close contact with soil that are often used in soil ecotoxicology: the worm Eisenia fetida, and two plant species, Trifolium repens (white clover) and Brassica oleracea (cabbage). E. fetida is a soil-dwelling organism commonly used for biomonitoring. T. repens is a symbiotic plant species which forms root nodule with soil bacteria, while B. oleracea is a non-symbiotic plant. In literature, some oxidative stress enzyme activities have already been measured in those species but such analyses do not allow distinction between individual enzyme involvements in oxidative stress. Gene expression studies would allow this distinction at the transcriptomic level. A literature review and a data search in molecular database were carried out on the basis of keywords in Scopus, in PubMed and in Genbank™ for each species. Molecular data regarding E. fetida were already available in databases, but a lack of data regarding oxidative stress related genes was observed for T. repens and B. oleracea. By exploiting the conservation observed between species and using molecular biology techniques, we partially cloned missing candidates involved in oxidative stress and in metal detoxification in E. fetida, T. repens and B. oleracea.
Collapse
Affiliation(s)
- F Bernard
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - F Brulle
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - S Dumez
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - S Lemiere
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France
| | - A Platel
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Toxicologie - Institut Pasteur de Lille, EA 4483, F-59800 Lille, France
| | - F Nesslany
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Toxicologie - Institut Pasteur de Lille, EA 4483, F-59800 Lille, France
| | - D Cuny
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - A Deram
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France; Faculté de Management de la Santé (ILIS) - Université de Lille 2, EA4483, F-59120 Loos, France
| | - F Vandenbulcke
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France.
| |
Collapse
|
11
|
Kloubert V, Rink L. Zinc as a micronutrient and its preventive role of oxidative damage in cells. Food Funct 2015; 6:3195-204. [DOI: 10.1039/c5fo00630a] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Zinc deficiency leads to increased ROS production, thereby causing lipid peroxidation. Subsequently, signallingviathe NF-κB pathway is increased, resulting in the expression of pro-inflammatory cytokines which in turn cause chronic inflammatory diseases.
Collapse
Affiliation(s)
- Veronika Kloubert
- Institute of Immunology
- Medical Faculty
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Lothar Rink
- Institute of Immunology
- Medical Faculty
- RWTH Aachen University
- 52074 Aachen
- Germany
| |
Collapse
|
12
|
Abdou WM, Kamel AA, Khidre MD. Design, Synthesis, and Antioxidant/Antidiabetic Activity of Nucleic Acid Bases Bearing FusedN,S-Heterocyclic Phosphor Esters. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wafaa M. Abdou
- Chemical Industries Division; National Research Centre; Elbohouth Street Dokki Cairo Egypt
| | - Azza A. Kamel
- Chemical Industries Division; National Research Centre; Elbohouth Street Dokki Cairo Egypt
| | - Maha D. Khidre
- Chemical Industries Division; National Research Centre; Elbohouth Street Dokki Cairo Egypt
| |
Collapse
|
13
|
Stanca L, Petrache SN, Serban AI, Staicu AC, Sima C, Munteanu MC, Zărnescu O, Dinu D, Dinischiotu A. Interaction of silicon-based quantum dots with gibel carp liver: oxidative and structural modifications. NANOSCALE RESEARCH LETTERS 2013; 8:254. [PMID: 23718202 PMCID: PMC3680243 DOI: 10.1186/1556-276x-8-254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/18/2013] [Indexed: 05/07/2023]
Abstract
Quantum dots (QDs) interaction with living organisms is of central interest due to their various biological and medical applications. One of the most important mechanisms proposed for various silicon nanoparticle-mediated toxicity is oxidative stress. We investigated the basic processes of cellular damage by oxidative stress and tissue injury following QD accumulation in the gibel carp liver after intraperitoneal injection of a single dose of 2 mg/kg body weight Si/SiO2 QDs after 1, 3, and 7 days from their administration.QDs gradual accumulation was highlighted by fluorescence microscopy, and subsequent histological changes in the hepatic tissue were noted. After 1 and 3 days, QD-treated fish showed an increased number of macrophage clusters and fibrosis, while hepatocyte basophilia and isolated hepatolytic microlesions were observed only after substantial QDs accumulation in the liver parenchyma, at 7 days after IP injection.Induction of oxidative stress in fish liver was revealed by the formation of malondialdehyde and advanced oxidation protein products, as well as a decrease in protein thiol groups and reduced glutathione levels. The liver enzymatic antioxidant defense was modulated to maintain the redox status in response to the changes initiated by Si/SiO2 QDs. So, catalase and glutathione peroxidase activities were upregulated starting from the first day after injection, while the activity of superoxide dismutase increased only after 7 days. The oxidative damage that still occurred may impair the activity of more sensitive enzymes. A significant inhibition in glucose-6-phosphate dehydrogenase and glutathione-S-transferase activity was noted, while glutathione reductase remained unaltered.Taking into account that the reduced glutathione level had a deep decline and the level of lipid peroxidation products remained highly increased in the time interval we studied, it appears that the liver antioxidant defense of Carassius gibelio does not counteract the oxidative stress induced 7 days after silicon-based QDs exposure in an efficient manner.
Collapse
Affiliation(s)
- Loredana Stanca
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| | - Sorina Nicoleta Petrache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| | - Andreea Iren Serban
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
- Department of Preclinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 105 Splaiul Independentei, Bucharest, 050097, Romania
| | - Andrea Cristina Staicu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| | - Cornelia Sima
- Laser Department, National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor, Bucharest-Magurele, 077125, Romania
| | - Maria Cristina Munteanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| | - Otilia Zărnescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| | - Diana Dinu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| |
Collapse
|
14
|
Naidu KRM, Rao PV, Raju CN, Srinivasulu K. Synthesis and antioxidant activity of substituted-1,3,2-diazaphosphole 1-oxides. Arch Pharm (Weinheim) 2011; 344:765-70. [PMID: 21954044 DOI: 10.1002/ardp.201000280] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 12/16/2010] [Accepted: 12/28/2010] [Indexed: 11/06/2022]
Abstract
Synthesis of 1-substituted-1,3,2-diazaphosphole 1-oxides (3a-l) were accomplished via a two-step process. It involves the preparation of diazaphospholo 1-oxide monochloride intermediate (2) and its subsequent reaction with phenols/amino acid esters in dry THF in the presence of triethylamine at 40-45°C. The structures of newly synthesized compounds were characterized by spectral and elemental analysis. The title compounds were evaluated for their in-vitro antioxidant properties.
Collapse
|
15
|
Neochoritis CG, Zarganes-Tzitzikas T, Tsoleridis CA, Stephanidou-Stephanatou J, Kontogiorgis CA, Hadjipavlou-Litina DJ, Choli-Papadopoulou T. One-pot microwave assisted synthesis under green chemistry conditions, antioxidant screening, and cytotoxicity assessments of benzimidazole Schiff bases and pyrimido[1,2-a]benzimidazol-3(4H)-ones. Eur J Med Chem 2011; 46:297-306. [DOI: 10.1016/j.ejmech.2010.11.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/29/2010] [Accepted: 11/11/2010] [Indexed: 11/28/2022]
|
16
|
Rosado T, Conim A, Alves-Pereira I, Ferreira R. Vanadium pentoxide effects on stress responses in wine Saccharomyces cerevisiae strain UE-ME3. ECOTOXICOLOGY (LONDON, ENGLAND) 2009; 18:1116-1122. [PMID: 19597706 DOI: 10.1007/s10646-009-0363-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 06/24/2009] [Indexed: 05/28/2023]
Abstract
Vanadium pentoxide mainly used as catalyst in sulphuric acid, maleic anhydride and ceramics industry, is a pollutant watering redistributed around the environment. Research on biological influence of vanadium pentoxide has gained major importance because it exerts toxic effects on a wide variety of biological systems. In this work we intent to evaluate the effects of vanadium pentoxide ranging from 0 to 2 mM in culture media on a wine wild-type Saccharomyces cerevisiae from Alentejo region of Portugal. Our results show that 2.0 mM vanadium pentoxide in culture medium induced a significant increase of malonaldehyde level and Glutathione peroxidase activity, a slightly increase of Catalase A activity as well as a decrease of wet weight and mitochondrial NADH cit c reductase of S. cerevisiae UE-ME(3). Also our results show that cycloheximide prevent cell death when cells grows 30 min in presence of 1.5 mM of vanadium pentoxide.
Collapse
Affiliation(s)
- Tânia Rosado
- Departamento de Química, Universidade de Evora, R.Romão Ramalho, 59, 7002-671, Evora, Portugal
| | | | | | | |
Collapse
|
17
|
Gurer-Orhan H, Orhan H, Suzen S, Püsküllü MO, Buyukbingol E. Synthesis and evaluation ofin vitroantioxidant capacities of some benzimidazole derivatives. J Enzyme Inhib Med Chem 2008; 21:241-7. [PMID: 16789440 DOI: 10.1080/14756360600586031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
New, except 1d, melatonin analogue benzimidazole derivatives were synthesized and characterized in the present study. The potential role of melatonin as an antioxidant by scavenging and detoxifying ROS raised the possibility that compounds that are analogous to melatonin can also be used for their antioxidant properties. Therefore the antioxidant effects of the newly synthesized compounds were investigated in vitro by means of their inhibitory effect on hydrogen peroxide-induced erythrocyte membrane lipid peroxidation (EMLP) and on various erythrocyte antioxidant enzymes viz. superoxide dismutase (SOD), catalase (CAT) and glucose-6-phosphate dehydrogenase (G6PD). The synthesized benzimidazole derivatives showed remarkable antioxidant activity in vitro in the H2O2-induced EMLP system. Furthermore their effects on various antioxidant enzymes are discussed and evaluated from the perspective of structure- activity relationships.
Collapse
Affiliation(s)
- Hande Gurer-Orhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Sihhiye 06100, Ankara, Turkey
| | | | | | | | | |
Collapse
|
18
|
Rajapakse N, Mendis E, Byun HG, Kim SK. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J Nutr Biochem 2005; 16:562-9. [PMID: 16115545 DOI: 10.1016/j.jnutbio.2005.02.005] [Citation(s) in RCA: 323] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 02/11/2005] [Accepted: 02/15/2005] [Indexed: 10/23/2022]
Abstract
Low molecular weight peptides obtained from ultrafiltration (UF) of giant squid (Dosidicus gigas) muscle protein were studied for their antioxidative effects in different in vitro oxidative systems. The most potent two peptides, Asn-Ala-Asp-Phe-Gly-Leu-Asn-Gly-Leu-Glu-Gly-Leu-Ala (1307 Da) and Asn-Gly-Leu-Glu-Gly-Leu-Lys (747 Da), exhibited their antioxidant potential to act as chain-breaking antioxidants by inhibiting radical-mediated peroxidation of linoleic acid, and their activities were closer to highly active synthetic antioxidant, butylated hydroxytoluene. Addition of these peptides could enhance the viability of cytotoxic embryonic lung fibroblasts significantly (P<.05) at a low concentration of 50 microg/ml, and it was presumed due to the suppression of radical-induced oxidation of membrane lipids. Electron spin trapping studies revealed that the peptides were potent scavengers of free radicals in the order of carbon-centered (IC(50) 396.04 and 304.67 microM), hydroxyl (IC(50) 497.32 and 428.54 microM) and superoxide radicals (IC(50) 669.34 and 573.83 microM). Even though the exact molecular mechanism for scavenging of free radicals was unclear, unusually high hydrophobic amino acid composition (more than 75%) of giant squid muscle peptides was presumed to be involved in the observed activities.
Collapse
Affiliation(s)
- Niranjan Rajapakse
- Department of Chemistry, Pukyong National University, Busan 608-737, South Korea
| | | | | | | |
Collapse
|
19
|
Spiteller G. The relation of lipid peroxidation processes with atherogenesis: A new theory on atherogenesis. Mol Nutr Food Res 2005; 49:999-1013. [PMID: 16270286 DOI: 10.1002/mnfr.200500055] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The extremely high sensitivity of polyunsaturated fatty acids (PUFAs) to oxygen is apparently used by nature to induce stepwise appropriate cell responses. It is hypothesized that any alteration in the cell membrane structure induces influx of Ca2+ ions. Ca2+ ions are required to activate degrading enzymes, such as phospholipases and lipoxygenases (LOX) that transform PUFAs bound to membrane phospholipids to lipidhydroperoxides (LOOHs). Enzymatic reduction products of LOOHs seem to serve as ligands of proteins, which induce gene activation to initiate a physiological response. Increasing external impact on cells is connected with deactivation of LOX, liberation of the iron ion in its active center followed by cleavage of LOOH molecules to LO * radicals. LO * radicals induce a second set of responses leading to generation of unsaturated aldehydic phospholipids and unsaturated epoxyhydroxy acids that contribute to induction of apoptosis. Finally peroxyl radicals are generated by attack of LO * radicals on phospholipids. The latter attack nearly all types of cell constituents: Amino- and hydroxyl groups are oxidized to carbonyl functions, sugars and proteins are cleaved, molecules containing double bonds such as unsaturated fatty acids or cholesterol suffer epoxidation. LOOH molecules and iron ions at the cell wall of an injured cell are in tight contact with phospholipids of neighboring cells and transfer to these reactive radicals. Thus, the damaging processes proceed and cause finally necrosis except the chain reaction is stopped by scavengers, such as glutathione. Consequently, PUFAs incorporated into phospholipids of the cell wall are apparently equally important for the fate of a single organism as the DNA in the nucleus for conservation of the species. This review intends to demonstrate the connection of cell alteration reactions with induction of lipid peroxidation (LPO) processes and their relation to inflammatory diseases, especially atherosclerosis and a possible involvement of food. Previously it was deduced that food rich in cholesterol and saturated fatty acids is atherogenic, while food rich in n-3 PUFAs was recognized to be protective against vascular diseases. These deductions are in contradiction to the fact that saturated fatty acids withstand oxidation while n-3 PUFAs are subjected to LPO like all other PUFAs. Considering the influence of minor food constituents a new theory about atherogenesis and the influence of n-3 PUFAs is represented that might resolve the contradictory results of feeding experiments and chemical experiences. Cholesterol-PUFA esters are minor constituents of mammalian derived food, but main components of low density lipoprotein (LDL). The PUFA part of these esters occasionally suffers oxidation by heating or storage of mammalian derived food. There are indications that these oxidized cholesterol esters are directly incorporated into lipoproteins and transferred via the LDL into endothelial cells where they induce damage and start the sequence of events outlined above. The deduction that consumption of n-3 PUFAs protects against vascular diseases is based on the observation that people living on a fish diet have a low incidence to be affected by vascular diseases. Fish are rich in n-3 PUFAs; thus, it was deduced that the protective properties of a fish diet are due to n-3 PUFAs. Fish, fish oils, and vegetables contain besides n-3 PUFAs as minor constituents furan fatty acids (F-acids). These are radical scavengers and are incorporated after consumption of these nutrients into human phospholipids, leading to the assumption that not n-3 PUFAs, but F-acids are responsible for the beneficial efficiency of a fish diet.
Collapse
Affiliation(s)
- Gerhard Spiteller
- Department of Organic Chemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
20
|
Karatas F, Kara H, Servi S, Tug T, Erulas FA, Koca M. Investigation of antioxidant vitamins (A, E, C) and lipid peroxidation levels in rats injected N-(1,3-benzothiazol-2-yl)-N-(4,5-dihydro-1H-imidazol-2-yl) amine. Molecules 2005; 10:922-8. [PMID: 18007361 PMCID: PMC6148479 DOI: 10.3390/10080922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2004] [Revised: 03/16/2005] [Accepted: 03/20/2005] [Indexed: 11/21/2022] Open
Abstract
The present study examined the influence of synthetic N-(1,3-benzothiazol-2-yl)-N-(4,5-dihydro-1H-imidazol-2-yl) amine (2-Amdz) on levels of vitamins A, E and C and malondialdehyde (MDA) in rats. A total of 30 rats, divided into two groups, were used in the study. The control group was given only a subcutaneous injection of 250 µL 75% ethanol, every other day. The other group of rats was administered a subcutaneous injection of 2-Amdz (25 mg kg-1, dissolved in 250 µL of 75% ethanol). Injections were continued for 16 days. After the application of 2-Amdz for 16 days, the serum levels of vitamins A, E and C and malondialdehyde (MDA) were determined by HPLC. The serum vitamin A, E, and C levels decreased significantly compared to controls (p<0.05) whereas serum MDA levels were higher than control levels (p<0.005). As a result, it can be suggested that 2-Amdz induced a severe stress and more importantly, increased the amount of free radicals and significantly decreased the levels of serum antioxidant vitamins.
Collapse
Affiliation(s)
- F Karatas
- Department of Chemistry, College of Science, Firat University, Elazig 23119, Turkey.
| | | | | | | | | | | |
Collapse
|
21
|
Kuş C, Ayhan-Kilcigil G, Can Eke B, Işcan M. Synthesis and antioxidant properties of some novel benzimidazole derivatives on lipid peroxidation in the rat liver. Arch Pharm Res 2004; 27:156-63. [PMID: 15022715 DOI: 10.1007/bf02980099] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Some benzimidazole derivatives namely 1-[(substituted thiocarbamoylhydrazine carbonyl) methyl]-2-phenyl-1H-benzimidazoles (1a-13a), N-[(2-phenylbenzimidazol-1-yl methyl)-[1,3,4]-thiadiazole-2-yl]-substituted phenyl amines (1b-13b) and 5-(2-phenyl benzimidazol-1-yl-methyl)-4-substituted phenyl-4H-1,2,4-triazole-3-thiones (1c-13c) were synthesized, and their in vitro effects on the rat liver microsomal NADPH-dependent lipid peroxidation (LP) levels were determined. The most active compound 10a caused an 84% inhibition of LP at 10(-3) M, which is better than that of butylated hydroxytoluene (BHT) (65%).
Collapse
Affiliation(s)
- Canan Kuş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Tandogan, Ankara-Turkey
| | | | | | | |
Collapse
|
22
|
Ayhan-Kilcigil G, Coban T, Tunçbilek M, Can-Eke B, Bozdağ-Dündar O, Ertan R, Iscan M. Antioxidant properties of flavone-6(4′)-carboxaldehyde oxime ether derivatives. Arch Pharm Res 2004; 27:610-4. [PMID: 15283461 DOI: 10.1007/bf02980158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The in vitro antioxidant properties of some flavone-6(4)-carboxaldehyde oxime ether derivatives (Ia-f, IIa-f) were determined by their effects on the rat liver microsomal NADPH-dependent lipid peroxidation (LP) levels by measuring the formation of 2-thiobarbituric acid reactive substances. The free radical scavenging properties of the compounds were also examined in vitro by determining their capacity to scavenge superoxide anions and interact with the stable free radical 2, 2-diphenyl-1-picrylhydrazyl (DPPH). The most active compounds, IIb (Flavone-4'-carboxaldehyde-O-ethyl oxime) and Id (Flavone-6-carboxaldehyde-O-[2-(1-pyrolidino) ethyl] oxime), caused 98 and 79% inhibition of superoxide anion production and DPPH stable free radical at 10(-3) M, respectively.
Collapse
Affiliation(s)
- Gülgün Ayhan-Kilcigil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Tandoğan-Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
23
|
Cheng Z, Ren J, Li Y, Chang W, Chen Z. Establishment of a quantitative structure-activity relationship model for evaluating and predicting the protective potentials of phenolic antioxidants on lipid peroxidation. J Pharm Sci 2003; 92:475-84. [PMID: 12587109 DOI: 10.1002/jps.10301] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Antioxidant activities of phenolic compounds have been extensively explored, but the determinant factors underlying their mechanisms of action remain to be elucidated. In the present work, a series of phenolic compounds (hydroxylated connamic, benzoic acid, and polyphenol) were studied for their protection against lipid peroxidation (LPO) in two model experiments, pre-emulsified linoleic acid system and phosphate buffered linolenic acid system. The mechanisms of action as well as activity determinants were investigated by computational chemistry and multiple-linear regression analysis. Upon elucidating the LPO inhibition properties and the relationship between their structural natures and antioxidant activities (SAR), a fairly satisfactory multidescriptor quantitative SAR model was derived, which extended our understanding of LPO inhibition mechanisms and should be valuable in assessing or predicting the anti-LPO activity of phenolic antioxidants.
Collapse
Affiliation(s)
- Zhiyong Cheng
- The Key Laboratory of Bioorganic & Molecular Engineering and Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China 100871
| | | | | | | | | |
Collapse
|
24
|
van der Oost R, Beyer J, Vermeulen NPE. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2003; 13:57-149. [PMID: 21782649 DOI: 10.1016/s1382-6689(02)00126-6] [Citation(s) in RCA: 2804] [Impact Index Per Article: 127.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/19/2002] [Indexed: 05/20/2023]
Abstract
In this review, a wide array of bioaccumulation markers and biomarkers, used to demonstrate exposure to and effects of environmental contaminants, has been discussed in relation to their feasibility in environmental risk assessment (ERA). Fish bioaccumulation markers may be applied in order to elucidate the aquatic behavior of environmental contaminants, as bioconcentrators to identify certain substances with low water levels and to assess exposure of aquatic organisms. Since it is virtually impossible to predict the fate of xenobiotic substances with simple partitioning models, the complexity of bioaccumulation should be considered, including toxicokinetics, metabolism, biota-sediment accumulation factors (BSAFs), organ-specific bioaccumulation and bound residues. Since it remains hard to accurately predict bioaccumulation in fish, even with highly sophisticated models, analyses of tissue levels are required. The most promising fish bioaccumulation markers are body burdens of persistent organic pollutants, like PCBs and DDTs. Since PCDD and PCDF levels in fish tissues are very low as compared with the sediment levels, their value as bioaccumulation markers remains questionable. Easily biodegradable compounds, such as PAHs and chlorinated phenols, do not tend to accumulate in fish tissues in quantities that reflect the exposure. Semipermeable membrane devices (SPMDs) have been successfully used to mimic bioaccumulation of hydrophobic organic substances in aquatic organisms. In order to assess exposure to or effects of environmental pollutants on aquatic ecosystems, the following suite of fish biomarkers may be examined: biotransformation enzymes (phase I and II), oxidative stress parameters, biotransformation products, stress proteins, metallothioneins (MTs), MXR proteins, hematological parameters, immunological parameters, reproductive and endocrine parameters, genotoxic parameters, neuromuscular parameters, physiological, histological and morphological parameters. All fish biomarkers are evaluated for their potential use in ERA programs, based upon six criteria that have been proposed in the present paper. This evaluation demonstrates that phase I enzymes (e.g. hepatic EROD and CYP1A), biotransformation products (e.g. biliary PAH metabolites), reproductive parameters (e.g. plasma VTG) and genotoxic parameters (e.g. hepatic DNA adducts) are currently the most valuable fish biomarkers for ERA. The use of biomonitoring methods in the control strategies for chemical pollution has several advantages over chemical monitoring. Many of the biological measurements form the only way of integrating effects on a large number of individual and interactive processes in aquatic organisms. Moreover, biological and biochemical effects may link the bioavailability of the compounds of interest with their concentration at target organs and intrinsic toxicity. The limitations of biomonitoring, such as confounding factors that are not related to pollution, should be carefully considered when interpreting biomarker data. Based upon this overview there is little doubt that measurements of bioaccumulation and biomarker responses in fish from contaminated sites offer great promises for providing information that can contribute to environmental monitoring programs designed for various aspects of ERA.
Collapse
Affiliation(s)
- Ron van der Oost
- Department of Environmental Toxicology, OMEGAM Environmental Research Institute, PO Box 94685, 1090 GR Amsterdam, The Netherlands
| | | | | |
Collapse
|
25
|
Panmanee W, Vattanaviboon P, Eiamphungporn W, Whangsuk W, Sallabhan R, Mongkolsuk S. OhrR, a transcription repressor that senses and responds to changes in organic peroxide levels in Xanthomonas campestris pv. phaseoli. Mol Microbiol 2002; 45:1647-54. [PMID: 12354231 DOI: 10.1046/j.1365-2958.2002.03116.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the physiological role of OhrR as an organic peroxide sensor and transcription repressor in Xanthomonas campestris pv. phaseoli. In vivo exposure of X. campestris pv. phaseoli to either tert-butyl or cumene hydroperoxides efficiently neutralized OhrR repression of expression from the OhrR-regulated P1 promoter. H2O2 was a weak and non-physiological inducer of the system while other oxidants and metabolites of organic peroxide metabolism did not induce the expression from the P1. Northern blotting results indicated a correlation between concentrations of tert-butyl hydroperoxide used in the treatment and the induction of ohr (an OhrR-regulated gene) expression. In addition, the levels of ohr mRNA in cultures induced by various concentrations of tert-butyl hydroperoxide were reduced in cells with high levels of an organic peroxide metabolising enzyme (AhpC-AhpF) but not in cells with high catalase levels suggesting that organic peroxide interacts with OhrR. DNA band shift experiments using purified OhrR and the P1 promoter fragment showed that organic peroxide treatment prevented binding of the protein to the P1 promoter by oxidation of OhrR, as the inhibition of binding to the P1 promoter was reversed by addition of a reducing agent, DTT. The highly conserved cysteine residue C22 of OhrR is required for organic peroxide inducible gene expression. A mutant protein, OhrRC22S can repress the P1 promoter activity but is insensitive to organic peroxide treatment. Thus, OhrR is the first transcription repressor characterized that appeared to evolve to physiologically sense organic peroxides.
Collapse
Affiliation(s)
- Warunya Panmanee
- Department of Biotechnology, Faculty of Sciences, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
26
|
Pedrosa RC, De Bem AF, Locatelli C, Pedrosa RC, Geremias R, Wilhelm Filho D. Time-dependent oxidative stress caused by benznidazole. Redox Rep 2002; 6:265-70. [PMID: 11642718 DOI: 10.1179/135100001101536328] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Benznidazole (BZN) is a nitroimidazole derivative which has a notable trypanocide activity, and it is the only drug used in Brazil and Argentina for the treatment of Chagas' disease. The drug in current use is thought to act, at least in part, by inducing oxidative stress within the parasite. Imidazolic compounds are involved in the production of reactive oxygen species (ROS). In order to evaluate the effect of BZN on ROS production and on the antioxidant status of the host, male rats were treated for different periods of time (2, 4, 6, 10 and 30 days) with 40 mg BZN/kg body weight. After treatment, biomarkers of oxidative stress such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST) and glutathione reductase (GR), and also thiobarbituric acid reactive species (TBARS), reduced glutathione (GSH), total glutathione (TG) and oxidized glutathione (GSSG) concentrations, were measured in crude hepatic homogenates. Our results revealed that BZN is able to cause tissue damage as shown by increased TBARS content, inhibition of some antioxidants and induction of other antioxidants in a concentration- and time-dependent manner. The tissue damage measured as TBARS increased up to the 10th day of treatment. GST activity was inhibited during the BZN treatment. On the other hand, CAT and GR showed similar increased activities at the beginning, followed by decreased activities at the end of the treatment. After 30 days of treatment, GR activity remained low while CAT activity was high, compared to controls. The SOD activities remained unchanged throughout the experimental period. GSH showed lower values at the beginning of BZN treatment but the hepatic concentrations were enhanced at the end of the experimental period. Total glutathione showed a similar profile, and oxidized glutathione showed higher values in rats treated with BZN. In conclusion, these results indicate that, at therapeutic doses, BZN treatment elicits an oxidative stress in rat hepatocytes.
Collapse
Affiliation(s)
- R C Pedrosa
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil.
| | | | | | | | | | | |
Collapse
|
27
|
Ates-Alagoz Z, Buyukbingol E. SYNTHESIS OF SOME NOVEL TETRAHYDRONAPHTHALENE BENZIMIDAZOLE DERIVATIVES. HETEROCYCL COMMUN 2001. [DOI: 10.1515/hc.2001.7.5.455] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
28
|
Patel RP, McAndrew J, Sellak H, White CR, Jo H, Freeman BA, Darley-Usmar VM. Biological aspects of reactive nitrogen species. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:385-400. [PMID: 10320671 DOI: 10.1016/s0005-2728(99)00028-6] [Citation(s) in RCA: 311] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) plays an important role as a cell-signalling molecule, anti-infective agent and, as most recently recognised, an antioxidant. The metabolic fate of NO gives rise to a further series of compounds, collectively known as the reactive nitrogen species (RNS), which possess their own unique characteristics. In this review we discuss this emerging aspect of the NO field in the context of the formation of the RNS and what is known about their effects on biological systems. While much of the insight into the RNS has been gained from the extensive chemical characterisation of these species, to reveal biological consequences this approach must be complemented by direct measures of physiological function. Although we do not know the consequences of many of the dominant chemical reactions of RNS an intriguing aspect is now emerging. This review will illustrate how, when specificity and amplification through cell signalling mechanisms are taken into account, the less significant reactions, in terms of yield or rates, can explain many of the biological responses of exposure of cells or physiological systems to RNS.
Collapse
Affiliation(s)
- R P Patel
- Center for Free Radical Biology, University of Alabama at Birmingham, Volker Hall Room GO38, 1670 University Boulevard, Birmingham, AL 35294-0019, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Tirmenstein MA, Pierce CA, Leraas TL, Fariss MW. A fluorescence plate reader assay for monitoring the susceptibility of biological samples to lipid peroxidation. Anal Biochem 1998; 265:246-52. [PMID: 9882399 DOI: 10.1006/abio.1998.2907] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The susceptibility of biological samples to lipid peroxidation can be determined by exposing samples to a lipid peroxidation initiator and measuring the length of time prior to the onset of lipid peroxidation. Previous studies have shown that aldehydes generated by lipid peroxidation can react with amines to produce fluorescent products. We have utilized this principle to develop a fluorescence plate reader assay for measuring susceptibility to lipid peroxidation. In this assay, samples are placed in glycine/phosphate buffer and loaded into a 96-well plate. Lipid peroxidation initiators are added, and fluorescence is monitored over time. Samples were assayed for susceptibility to lipid peroxidation by both the thiobarbituric acid reactive substances assay and the fluorescence plate reader assay. We found good agreement between these two methods in assessing relative susceptibility to lipid peroxidation in liver microsomes and mitochondria. The fluorescence assay was also used to monitor lipid peroxidation in liposomes and rat liver homogenates. Fluorescence was stable over an extended time period and could be induced by a variety of lipid peroxidation initiators. The fluorescence plate reader assay offers a rapid method for monitoring lipid peroxidation in a large number of samples.
Collapse
Affiliation(s)
- M A Tirmenstein
- College of Pharmacy and Graduate Program in Pharmacology/Toxicology, Washington State University, Pullman, Washington, 99164-6510, USA
| | | | | | | |
Collapse
|
30
|
Mongkolsuk S, Praituan W, Loprasert S, Fuangthong M, Chamnongpol S. Identification and characterization of a new organic hydroperoxide resistance (ohr) gene with a novel pattern of oxidative stress regulation from Xanthomonas campestris pv. phaseoli. J Bacteriol 1998; 180:2636-43. [PMID: 9573147 PMCID: PMC107214 DOI: 10.1128/jb.180.10.2636-2643.1998] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have isolated a new organic hydroperoxide resistance (ohr) gene from Xanthomonas campestris pv. phaseoli. This was done by complementation of an Escherichia coli alkyl hydroperoxide reductase mutant with an organic hydroperoxide-hypersensitive phenotype. ohr encodes a 14.5-kDa protein. Its amino acid sequence shows high homology with several proteins of unknown function. An ohr mutant was subsequently constructed, and it showed increased sensitivity to both growth-inhibitory and killing concentrations of organic hydroperoxides but not to either H2O2 or superoxide generators. No alterations in sensitivity to other oxidants or stresses were observed in the mutant. ohr had interesting expression patterns in response to low concentrations of oxidants. It was highly induced by organic hydroperoxides, weakly induced by H2O2, and not induced at all by a superoxide generator. The novel regulation pattern of ohr suggests the existence of a second organic hydroperoxide-inducible system that differs from the global peroxide regulator system, OxyR. Expression of ohr in various bacteria tested conferred increased resistance to tert-butyl hydroperoxide killing, but this was not so for wild-type Xanthomonas strains. The organic hydroperoxide hypersensitivity of ohr mutants could be fully complemented by expression of ohr or a combination of ahpC and ahpF and could be partially complemented by expression ahpC alone. The data suggested that Ohr was a new type of organic hydroperoxide detoxification protein.
Collapse
Affiliation(s)
- S Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand.
| | | | | | | | | |
Collapse
|
31
|
Can-Eke B, Puskullu MO, Buyukbingol E, Iscan M. A study on the antioxidant capacities of some benzimidazoles in rat tissues. Chem Biol Interact 1998; 113:65-77. [PMID: 9630848 DOI: 10.1016/s0009-2797(98)00020-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Seven benzimidazole compounds were synthesized and their in vitro effects on rat liver, lung and kidney microsomal NADPH-dependent lipid peroxidation (LP) levels were determined. The significant decrease in male rat liver microsomal LP level was noted only by the compound 4 at 10(-4) M (20%) and 10(-3) M (40%) concentrations whereas the other compounds were ineffective. In lung, only the compound 6 at 10(-4) M concentration exhibited significant alteration, i.e. 56% increase, in LP level. In kidney, however, apart from the compound 4, all the compounds increased LP level (35-52%) significantly. The classical antioxidant, butylated hydroxy toluene (BHT), at 10(-4) M concentration, significantly decreased LP level about 70%, in all the tissues studied. To clarify the effects of compounds 4 and 6 on LP, the responses of some CYPs, which are active in producing reactive oxygen species, to these compounds were also investigated. The compound 4 at 10(-4) and 10(-3) M concentrations inhibited the hepatic microsomal ethoxyresorufin O-deethylase (EROD) (37 and 65%) and pentoxyresorufin O-depenthylase (PROD) (14 and 62%) enzyme activities significantly. However, it did not alter the hepatic microsomal NADPH-cytochrome P450-reductase activity. BHT, at 10(-3) M concentration, significantly inhibited hepatic microsomal EROD (73%), PROD (62%) and NADPH-cytochrome P450 reductase (17%) enzyme activities. Caffeine (10(-3)M) and SKF 525A (10(-3)M), which are specific inhibitors of EROD and PROD enzyme activities, significantly decreased the enzyme activities 33 and 77%, respectively. Caffeine was unable to alter hepatic microsomal NADPH-cytochrome P450 reductase enzyme activity whereas SKF 525A significantly inhibited (80%) it. In lung and kidney, the compound 6 at 10(-4)M concentration significantly increased EROD (44 and 19%) and PROD (103 and 86%) enzyme activities. However, the elevation of PROD enzyme activity in both tissues was observed to be more pronounced than that of EROD enzyme activity. This compound was ineffective on lung and kidney microsomal P450-reductase enzyme activity. These results reveal that the synthesized benzimidazoles have variable tissue dependent in vitro effects on LP due to their distinct effects on CYP activities but not on NADPH-cytochrome P450 reductase activity in rats.
Collapse
Affiliation(s)
- B Can-Eke
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Turkey
| | | | | | | |
Collapse
|
32
|
Pushpendran CK, Subramanian M, Devasagayam TP, Singh BB. Study on lipid peroxidation potential in different tissues induced by ascorbate-Fe2+: possible factors involved in their differential susceptibility. Mol Cell Biochem 1998; 178:197-202. [PMID: 9546600 DOI: 10.1023/a:1006895531504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Susceptibility of four major rat tissues to oxidative damage in terms of lipid peroxidation induced by in vitro by ascorbate-Fe2+ in homogenates and mitochondria has been examined. Lipid peroxidation, as assessed by thiobarbituric acid reactive substances (TBARS) and conjugated dienes was maximum in brain followed by liver, kidney and heart. However, the time course of lipid peroxidation showed different patterns in tissues examined. The higher susceptibilities of brain and liver can be explained by substrate availability and to a lesser extent the level of antioxidants. The differences observed in the tissues studied may reflect their susceptibility to degenerative diseases and xenobiotic toxicity which are considered as a result of oxidative damage to membranes.
Collapse
Affiliation(s)
- C K Pushpendran
- Radiation Biology and Biochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | | | | |
Collapse
|
33
|
The effect of dietary corn oil, vitamin E, and selenium on lipid peroxidation and hemorrhage in chicken liver. J Nutr Biochem 1997. [DOI: 10.1016/s0955-2863(97)00109-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Turton HE, Dawes IW, Grant CM. Saccharomyces cerevisiae exhibits a yAP-1-mediated adaptive response to malondialdehyde. J Bacteriol 1997; 179:1096-101. [PMID: 9023189 PMCID: PMC178803 DOI: 10.1128/jb.179.4.1096-1101.1997] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Malondialdehyde (MDA) is a highly reactive aldehyde generally formed as a consequence of lipid peroxidation. MDA has been inferred to have mutagenic and cytotoxic roles and possibly to be a participant in the onset of atherosclerosis. Wild-type Saccharomyces cerevisiae acquires resistance to a lethal dose (5 mM) of MDA following prior exposure to a nonlethal concentration (1 mM). This response was completely inhibited by cycloheximide (50 microg ml(-1)), indicating a requirement for protein synthesis for adaptation. Furthermore, we have examined the roles of glutathione (GSH), mitochondrial function, and yAP-1-mediated transcription in conferring resistance and adaptation to MDA. A yap1 disruption mutant exhibited the greatest sensitivity and was unable to adapt to MDA, implicating yAP-1 in both the adaptive response and constitutive survival. The effect of MDA on GSH mutants indicated a role for GSH in initial resistance, whereas resistance acquired through adaptation was independent of GSH. Likewise, respiratory mutants (petite mutants) were sensitive to MDA but were still able to mount an adaptive response similar to that of the wild type, excluding mitochondria from any role in adaptation. MDA was detected in yeast cells by the thiobarbituric acid test and subsequent high-pressure liquid chromatography separation. Elevated levels were detected following treatment with hydrogen peroxide. However, the MDA-adaptive response was independent of that to H2O2.
Collapse
Affiliation(s)
- H E Turton
- School of Biochemistry and Molecular Genetics and C.R.C. for Food Industry Innovation, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
35
|
Abstract
Male Wistar rats were intraperitoneally injected twice with 0.4 mmol kg-1 FeSO4. One, 2 and 4 days after the second Fe injection, Fe and malondialdehyde (MDA) content in testis was measured, the morphology studied by light and electron microscopy and the number of spermatids counted. After Fe injection, Fe and MDA content had increased in parallel. Light microscopic inspection on days 1 and 2 after Fe injection revealed numerous necroses in the different cell types of the germ epithelium. Four days after Fe injection, fewer alterations were found. Electron microscopic investigations revealed that some spermatids contained up to three nuclei and at least three axonemes. In some sperm tails up to 11 axonemes were found. In some midpieces two or three complexes of axonemes, outer dense fibres and mitochondria were observed. In other midpieces axonemes were absent and replaced by granular and filamentous material. The number of spermatids was reduced 4 days after Fe treatment. The increase in the number of axonemes was similar to that seen in Mg and Zn deficiency, indicating that the increase in Fe content and oxygen free radicals is the major reason for the biochemical and morphological alterations in Mg and Zn deficiency.
Collapse
Affiliation(s)
- H J Merker
- Anatomisches Institut, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
36
|
Casalino E, Sblano C, Landriscina C. A possible mechanism for initiation of lipid peroxidation by ascorbate in rat liver microsomes. Int J Biochem Cell Biol 1996; 28:137-49. [PMID: 8729001 DOI: 10.1016/1357-2725(95)00131-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The mechanism by which lipid peroxidation progresses has been known for years, but there is disagreement regarding the mode of its initiation. The aim of this study was to examine: (a) the role of endogenous iron in the initiation of ascorbate-induced lipid peroxidation in microsomal and liposomal membranes; (b) the role of oxygen-free radicals in this process; and (c) the redox state of ascorbate during the course of lipid peroxidation. Ascorbate-induced lipid peroxidation was assessed by measuring hydroperoxide and thiobarbituric acid reactive substances (TBARS) formation in membranes after incubation in Tris-HCl buffer (pH 7.4) for 15 min. To confirm the role of endogenous iron and oxygen-free radicals, the effect of iron chelating agents (EDTA and thiourea) and radical scavengers (benzoate, mannitol, catalase and SOD) on lipid peroxidation was examined. Spectrophotometric measurements and ESR spectra have made it possible to determine ascorbate concentration and its redox state. Ascorbate promoted lipid peroxidation in both rat liver microsomes and liposomes without addition of exogenous iron. Iron chelating agents such as EDTA and thiourea inhibited lipid peroxidation, while SOD, catalase, mannitol and benzoate had no effect. The addition of 5 microM Fe2+ (or Fe3+) to the incubation mixture did not significantly alter hydroperoxide production, but that of TBARS was increased. Lipid peroxidation significantly altered the fatty acid profile in microsomes and liposomes, the most affected being the C20:4 and C22:6 species. Ascorbate in Tris-HCl buffer (pH 7.4) autoxidized very slowly. Its oxidation was catalyzed by Fe3+ ions at a rate determined by incubation time and iron concentration. In contrast, no ascorbate oxidation occurred in the presence of microsomes when lipid peroxidation was proceeding at a maximal rate. Under these conditions a typical ascorbyl radical ESR spectrum signal greater than that arising from ascorbate alone was obtained and the magnitude of this signal was unchanged by variations of microsome or ascorbate concentrations. A ferrous ion ascorbyl radical complex was responsible for this signal. These results suggest that an ascorbate-microsomal iron complex is responsible for the initiation of lipid peroxidation, and that during this process ascorbate remains in its reduced form.
Collapse
Affiliation(s)
- E Casalino
- Laboratory of Biochemistry, University of Bari, Italy
| | | | | |
Collapse
|
37
|
Affiliation(s)
- F J Kelly
- Free Radical Biology, Rayne Institute, St Thomas' Hospital, London, UK
| | | | | | | |
Collapse
|
38
|
Diaz GJ, Julian RJ, Squires EJ. Cobalt‐induced polycythaemia causing right ventricular hypertrophy and ascites in meat‐type chickens. Avian Pathol 1994; 23:91-104. [DOI: 10.1080/03079459408418977] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Tarshis M, Katzenel A, Rottem S. Use of Merocyanine 540 and Hoechst 33258 for the selective killing of contaminating mycoplasmas in cell cultures. J Immunol Methods 1994; 168:245-52. [PMID: 7508483 DOI: 10.1016/0022-1759(94)90061-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mycoplasma infection can substantially affect the biological properties of cells in vitro. We have devised a method for the selective killing of mycoplasmas, e.g., A. laidlawii, M. fermentans, M. hyorhinis and M. arginini, from experimentally infected cell cultures. This approach is based on the differential binding of the lipophilic fluorescent probe Merocyanine 540 followed by illumination with visible light. The efficiency of the procedure depends on the Merocyanine 540 concentration, the intensity of illumination, and the presence of oxygen in the medium. When A. laidlawii contaminated corneal endothelial cell cultures were treated simultaneously with Merocyanine 540 and DNA-binding fluorochrome Hoechst 33258 and then illuminated, a significant degree of eradication was observed, even after one cycle of treatment. This combined treatment is therefore recommended as an effective method of purging mycoplasmas from contaminated cultures.
Collapse
Affiliation(s)
- M Tarshis
- Department of Membrane and Ultrastructure Research, Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
40
|
Abstract
Lipid peroxidation, which plays a part in a wide variety of biological processes, is an integral process in the oxidation of unsaturated fatty acids via a radical chain reaction. Among the various species which may induce this reaction in vivo, reactive forms of oxygen such as peroxide anion, the hydroxyl radical and singlet oxygen are of cardinal importance. These species may be generated enzymatically, chemically or by various radiochemical and photochemical reactions. We present here the advantages of photochemical induction of peroxidation, and we describe the principles of the reactions, the photosensitizers that can be employed to generate the various reactive species of oxygen, and the techniques, direct (ESR) or indirect (specific traps), used to detect the reactive species. Photosensitization can induce the formation of a whole gamut of products of lipid peroxidation: conjugated dienes, aldehydes, hydroperoxides, etc. The relative proportions of the various hydroperoxides of fatty acids or cholesterol depend on the nature of the reactive species involved. Utilization of photochemical reactions is an effective and clean way of inducing peroxidation, allowing fine control of both initiation and orientation.
Collapse
Affiliation(s)
- N Paillous
- Laboratoire des IMRCP, URA 470 au CNRS, Université Paul Sabatier, Toulouse, France
| | | |
Collapse
|
41
|
Affiliation(s)
- G Desoye
- Department of Obstetrics and Gynecology, University of Graz, Austria
| | | |
Collapse
|
42
|
Affiliation(s)
- M J Penninckx
- Unité de Physiologie et Ecologie Microbiennes, Faculté des Sciences, Université libre de Bruxelles, Instut Pasteur Brabant, Belgium
| | | |
Collapse
|
43
|
Murphy ME, Scholich H, Sies H. Protection by glutathione and other thiol compounds against the loss of protein thiols and tocopherol homologs during microsomal lipid peroxidation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:139-46. [PMID: 1446667 DOI: 10.1111/j.1432-1033.1992.tb17401.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microsomes from rat liver were used to investigate the mechanisms by which thiol compounds protect cellular membranes against damage from oxidants. Glutathione (GSH), dihydrolipoate and dithioerythritol, but not cysteine, ameliorated the loss of thiol groups of microsomal proteins attacked by Fe/ADP/NADPH or Fe/ADP/ascorbate prooxidant systems. The protection by GSH, but not dihydrolipoate or dithioerythritol, appeared to be enzymic since it was lost after microsomes were heated or treated with trypsin. The blocking of microsomal protein thiols with N-ethylmaleimide also diminished the protective effect of GSH. Lipid peroxidation, as assessed by chemiluminescence and vitamin-E loss, was inhibited in parallel with the protection of protein thiols. In microsomes lacking vitamin E, the protection of protein thiols by exogenous thiols was diminished. However, the GSH-dependent protection of vitamin E showed no preference for alpha-tocopherol over other tocopherol homologs. It is suggested that a GSH-dependent enzyme maintains protein thiols in the face of oxidative damage during microsomal peroxidation. A maintenance of protein thiols might not only protect important metabolic functions, but may also afford an antioxidant capacity to membranes, and account for one facet of the GSH-dependent inhibition of lipid peroxidation.
Collapse
Affiliation(s)
- M E Murphy
- Institut für Physiologische Chemie I, Heinrich-Heine Universität Düsseldorf, Federal Republic of Germany
| | | | | |
Collapse
|
44
|
Squires EJ, Wu J. Enhanced induction of hepatic lipid peroxidation by ferric nitrilotriacetate in chickens susceptible to fatty liver rupture. Br Poult Sci 1992; 33:329-37. [PMID: 1623419 DOI: 10.1080/00071669208417471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. Two strains of single comb White Leghorn birds, one susceptible to fatty liver rupture (UCD-003) and a normal commercial strain, were injected with iron nitrilotriacetate and the extent of hepatic lipid peroxidation that occurred was estimated by measuring concentrations of malondialdehyde (MDA). 2. Higher concentrations of MDA were found in the livers of the UCD-003 strain than in the normal birds after injection of iron nitrilotriacetate. No differences were found in the activities of glutathione peroxidase, superoxide dismutase and catalase in the livers of untreated birds of either strain. 3. The degree of unsaturation of the fats in the livers of the two strains was similar. However, the UCD-003 birds had a significantly higher content of liver fat than the normal birds. The increased concentrations of liver fat could account for the increased lipid peroxidation in the UCD-003 birds. 4. The increased incidence of liver haemorrhage that occurs in the UCD-003 birds may be caused by the increased susceptibility of these birds to hepatic lipid peroxidation.
Collapse
Affiliation(s)
- E J Squires
- Department of Animal and Poultry Science, University of Guelph, Ontario, Canada
| | | |
Collapse
|
45
|
Duchstein HJ, Gurka HJ. Activated species of oxygen: a challenge to modern pharmaceutical chemistry. Arch Pharm (Weinheim) 1992; 325:129-46. [PMID: 1642513 DOI: 10.1002/ardp.19923250302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Berry MN, Halls HJ, Grivell MB. Techniques for pharmacological and toxicological studies with isolated hepatocyte suspensions. Life Sci 1992; 51:1-16. [PMID: 1614269 DOI: 10.1016/0024-3205(92)90212-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since its introduction in 1969, the high-yield preparation of isolated hepatocytes has become a frequently used tool for the study of hepatic uptake, excretion, metabolism and toxicity of drugs and other xenobiotics. Basic preparative methods are now firmly established involving perfusion of the liver with a balanced-saline solution containing collagenase. Satisfactory procedures are available for determining cell yields, for expressing cellular activities and for establishing optimal incubation conditions. Gross cellular damage can be detected by means of trypan blue or by measuring enzyme leakage, and damaged cells can be removed from the preparation. Specialized techniques are available for preparing hepatocyte couplets and suspensions enriched with periportal or perivenous hepatocytes. The isolated hepatocyte preparation is particularly convenient for the study of the kinetics of hepatic drug uptake and excretion because the cells can be rapidly separated from the incubation medium. Isolated liver cells have also proved valuable for investigating drug metabolism since they show many of the features of the intact liver. However, they also show important differences such as losses of membrane specialization, some degree of cell polarity and the capacity to form bile. The many consequences of the hepatic toxicity of xenobiotics including lipid peroxidation, free radical formation, glutathione depletion, and covalent binding to macromolecules are also readily studied with the isolated liver cell preparation. A particular advantage is the ease with which morphological changes as a result of drug exposure can be observed in isolated hepatocytes. However, it must be remembered that the isolation procedure inevitably introduces changes that may make the cells more susceptible than the normal liver to damage by xenobiotic agents. Despite its limitations, the isolated hepatocyte preparation is now firmly established in the armamentarium of the investigator examining the interaction of the liver with xenobiotics.
Collapse
Affiliation(s)
- M N Berry
- Department of Medical Biochemistry, School of Medicine, Flinders University of South Australia, Adelaide
| | | | | |
Collapse
|
47
|
Abstract
A free radical is any species capable of independent existence that contains one or more unpaired electrons. Free radical reactions have been implicated in the pathology of more than 50 human diseases. Radicals and other reactive oxygen species are formed constantly in the human body, both by deliberate synthesis (e.g. by activated phagocytes) and by chemical side-reactions. They are removed by enzymic and nonenzymic antioxidant defence systems. Oxidative stress, occurring when antioxidant defences are inadequate, can damage lipids, proteins, carbohydrates and DNA. A few clinical conditions are caused by oxidative stress, but more often the stress results from the disease. Sometimes it then makes a significant contribution to the disease pathology, and sometimes it does not. Several antioxidants are available for therapeutic use. They include molecules naturally present in the body [superoxide dismutase (SOD), alpha-tocopherol, glutathione and its precursors, ascorbic acid, adenosine, lactoferrin and carotenoids] as well as synthetic antioxidants [such as thiols, ebselen (PZ51), xanthine oxidase inhibitors, inhibitors of phagocyte function, iron ion chelators and probucol]. The therapeutic efficacy of SOD, alpha-tocopherol and ascorbic acid in the treatment of human disease is generally unimpressive to date although dietary deficiencies of the last two molecules should certainly be avoided. Xanthine oxidase inhibitors may be of limited relevance as antioxidants for human use. Exciting preliminary results with probucol (antiatherosclerosis), ebselen (anti-inflammatory), and iron ion chelators (in thalassaemia, leukaemia, malaria, stroke, traumatic brain injury and haemorrhagic shock) need to be confirmed by controlled clinical trials. Clinical testing of N-acetylcysteine in HIV-1-positive subjects may also be merited. A few drugs already in clinical use may have some antioxidant properties, but this ability is not widespread and drug-derived radicals may occasionally cause significant damage.
Collapse
Affiliation(s)
- B Halliwell
- Pulmonary Medicine, UC Davis Medical Center, Sacramento
| |
Collapse
|
48
|
Purification and characterization of the reconstitutively active tricarboxylate transporter from rat liver mitochondria. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38309-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
49
|
Pohjanvirta R, Sankari S, Kulju T, Naukkarinen A, Ylinen M, Tuomisto J. Studies on the role of lipid peroxidation in the acute toxicity of TCDD in rats. PHARMACOLOGY & TOXICOLOGY 1990; 66:399-408. [PMID: 2371248 DOI: 10.1111/j.1600-0773.1990.tb00769.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lipid peroxidation has been shown to be enhanced following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but its role in TCDD toxicity is unclear. The present study was undertaken to further elucidate the relations between lipid peroxidation and TCDD lethality. A time course and dose-response experiment in Long-Evans (L-E; LD50 ca. 10 micrograms/kg) and Han/Wistar (H/W; LD50 greater than 3000 micrograms/kg) rats showed that hepatic lipid peroxidation, measured as the amount of thiobarbituric acid-reactive substances (TBA-RS), was induced by TCDD dose-dependently in L-E, but not in H/W rats. Hepatic glutathione peroxidase activity was suppressed in much the same manner in both strains. Lipid peroxidation correlated with body weight loss in L-E rats alone. When 500 micrograms/kg of TCDD was given to L-E rats, lipid peroxidation increased about 3-fold on Day 11 in the liver, while no change was seen in cardiac or renal TBA-RS. The pair-fed controls did not survive the 11-day test period and exhibited gastrointestinal hemorrhages. At 6 days, liver atrophy and elevated (over 2-fold) TBA-RS values were recorded in pair-fed controls but not in their TCDD-treated counterparts. TCDD decreased hepatic glutathione peroxidase activity by almost 50% at 6 days, while pair-feeding was without effect. Liver morphology was different between TCDD-treated and pair-fed rats. Moreover, the livers of TCDD-treated L-E rats contained much higher concentrations of probably peripheral fat-derived fatty acids than did the livers of pair-fed or ad libitum control rats. Restricted feeding over 6 days induced hepatic lipid peroxidation more in H/W than in L-E rats. Endotoxin increased liver TBA levels similarly in both strains having an additive effect with high doses of TCDD in H/W rats. Added as a 0.5% concentration in chow, butylated hydroxyanisole (BHA), but not ethoxyquin, tended to increase survival rate and time in L-E rats exposed to 20 micrograms/kg of TCDD; at 50 micrograms/kg the only survivor was again in the BHA group. However, neither antioxidant had any effect on initial body weight loss. It is concluded that lipid peroxidation mainly arises as a secondary phenomenon in TCDD toxicity, is not the cause of the typical histopathological liver lesion, but may contribute to lethality.
Collapse
Affiliation(s)
- R Pohjanvirta
- National Public Health Institute, Department of Environmental Hygiene and Toxicology, Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
50
|
Gutteridge JM, Halliwell B. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem Sci 1990; 15:129-35. [PMID: 2187293 DOI: 10.1016/0968-0004(90)90206-q] [Citation(s) in RCA: 718] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The basic chemistry of the propagation of lipid peroxidation reactions has been known for years, but the mechanism of initiation of this process in biological membrane systems is still uncertain. Currently available assays for measuring peroxidation are reviewed--the more specific the assay used, the less peroxide is found in healthy human tissues and body fluids. Lipid peroxidation can arise as a consequence of tissue injury in many disease states and may sometimes contribute significantly to worsening the tissue injury.
Collapse
Affiliation(s)
- J M Gutteridge
- National Institute for Biological Standards and Control, Potters Bar, Herts, UK
| | | |
Collapse
|