1
|
Wang C, Gamage PL, Jiang W, Mudalige T. Excipient-related impurities in liposome drug products. Int J Pharm 2024; 657:124164. [PMID: 38688429 DOI: 10.1016/j.ijpharm.2024.124164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Liposomes are widely used in the pharmaceutical industry as drug delivery systems to increase the efficacy and reduce the off-target toxicity of active pharmaceutical ingredients (APIs). The liposomes are more complex drug delivery systems than the traditional dosage forms, and phospholipids and cholesterol are the major structural excipients. These two excipients undergo hydrolysis and/or oxidation during liposome preparation and storage, resulting in lipids hydrolyzed products (LHPs) and cholesterol oxidation products (COPs) in the final liposomal formulations. These excipient-related impurities at elevated concentrations may affect liposome stability and exert biological functions. This review focuses on LHPs and COPs, two major categories of excipient-related impurities in the liposomal formulations, and discusses factors affecting their formation, and analytical methods to determine these excipient-related impurities.
Collapse
Affiliation(s)
- Changguang Wang
- Arkansas Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Prabhath L Gamage
- Arkansas Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Wenlei Jiang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA.
| | - Thilak Mudalige
- Arkansas Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
2
|
Koch E, Bagci M, Kuhn M, Hartung NM, Mainka M, Rund KM, Schebb NH. GC-MS analysis of oxysterols and their formation in cultivated liver cells (HepG2). Lipids 2023; 58:41-56. [PMID: 36195466 DOI: 10.1002/lipd.12360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/09/2022] [Accepted: 09/09/2022] [Indexed: 02/04/2023]
Abstract
Oxysterols play a key role in many (patho)physiological processes and they are potential biomarkers for oxidative stress in several diseases. Here we developed a rapid gas chromatographic-mass spectrometry-based method for the separation and quantification of 11 biologically relevant oxysterols bearing hydroxy, epoxy, and dihydroxy groups. Efficient chromatographic separation (resolution ≥ 1.9) was achieved using a medium polarity 35%-diphenyl/65%-dimethyl polysiloxane stationary phase material (30 m × 0.25 mm inner diameter and 0.25 μm film thickness). Based on thorough analysis of the fragmentation during electron ionization we developed a strategy to deduce structural information of the oxysterols. Optimized sample preparation includes (i) extraction with a mixture of n-hexane/iso-propanol, (ii) removal of cholesterol by solid phase extraction with unmodified silica, and (iii) trimethylsilylation. The method was successfully applied on the analysis of brain samples, showing consistent results with previous studies and a good intra- and interday precision of ≤20%. Finally, we used the method for the investigation of oxysterol formation during oxidative stress in HepG2 cells. Incubation with tert-butyl hydroperoxide led to a massive increase in free radical formed oxysterols (7-keto-chol > 7β-OH-chol >> 7α-OH-chol), while 24 h incubation with the glutathione peroxidase 4 inhibitor RSL3 showed no increase in oxidative stress based on the oxysterol pattern. Overall, the new method described here enables the robust analysis of a biologically meaningful pattern of oxysterols with high sensitivity and precision allowing us to gain new insights in the biological formation and role of oxysterols.
Collapse
Affiliation(s)
- Elisabeth Koch
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Mustafa Bagci
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Michael Kuhn
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nicole M Hartung
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Malwina Mainka
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Katharina M Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
3
|
Gonen A, Miller YI. From Inert Storage to Biological Activity-In Search of Identity for Oxidized Cholesteryl Esters. Front Endocrinol (Lausanne) 2020; 11:602252. [PMID: 33329402 PMCID: PMC7715012 DOI: 10.3389/fendo.2020.602252] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/23/2020] [Indexed: 12/31/2022] Open
Abstract
Esterification of cholesterol is a universal mechanism to store and transport large quantities of cholesterol between organs and tissues and to avoid toxicity of the excess of cellular cholesterol. Intended for transport and storage and thus to be inert, cholesteryl esters (CEs) reside in hydrophobic cores of circulating lipoproteins and intracellular lipid droplets. However, the inert identity of CEs is dramatically changed if cholesterol is esterified to a polyunsaturated fatty acid and subjected to oxidative modification. Post-synthetic, or epilipidomic, oxidative modifications of CEs are mediated by specialized enzymes, chief among them are lipoxygenases, and by free radical oxidation. The complex repertoire of oxidized CE (OxCE) products exhibit various, context-dependent biological activities, surveyed in this review. Oxidized fatty acyl chains in OxCE can be hydrolyzed and re-esterified, thus seeding oxidized moieties into phospholipids (PLs), with OxPLs having different from OxCEs biological activities. Technological advances in mass spectrometry and the development of new anti-OxCE antibodies make it possible to validate the presence and quantify the levels of OxCEs in human atherosclerotic lesions and plasma. The article discusses the prospects of measuring OxCE levels in plasma as a novel biomarker assay to evaluate risk of developing cardiovascular disease and efficacy of treatment.
Collapse
|
4
|
Nóbrega C, Mendonça L, Marcelo A, Lamazière A, Tomé S, Despres G, Matos CA, Mechmet F, Langui D, den Dunnen W, de Almeida LP, Cartier N, Alves S. Restoring brain cholesterol turnover improves autophagy and has therapeutic potential in mouse models of spinocerebellar ataxia. Acta Neuropathol 2019; 138:837-858. [PMID: 31197505 DOI: 10.1007/s00401-019-02019-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/04/2019] [Accepted: 04/20/2019] [Indexed: 12/31/2022]
Abstract
Spinocerebellar ataxias (SCAs) are devastating neurodegenerative disorders for which no curative or preventive therapies are available. Deregulation of brain cholesterol metabolism and impaired brain cholesterol turnover have been associated with several neurodegenerative diseases. SCA3 or Machado-Joseph disease (MJD) is the most prevalent ataxia worldwide. We show that cholesterol 24-hydroxylase (CYP46A1), the key enzyme allowing efflux of brain cholesterol and activating brain cholesterol turnover, is decreased in cerebellar extracts from SCA3 patients and SCA3 mice. We investigated whether reinstating CYP46A1 expression would improve the disease phenotype of SCA3 mouse models. We show that administration of adeno-associated viral vectors encoding CYP46A1 to a lentiviral-based SCA3 mouse model reduces mutant ataxin-3 accumulation, which is a hallmark of SCA3, and preserves neuronal markers. In a transgenic SCA3 model with a severe motor phenotype we confirm that cerebellar delivery of AAVrh10-CYP46A1 is strongly neuroprotective in adult mice with established pathology. CYP46A1 significantly decreases ataxin-3 protein aggregation, alleviates motor impairments and improves SCA3-associated neuropathology. In particular, improvement in Purkinje cell number and reduction of cerebellar atrophy are observed in AAVrh10-CYP46A1-treated mice. Conversely, we show that knocking-down CYP46A1 in normal mouse brain impairs cholesterol metabolism, induces motor deficits and produces strong neurodegeneration with impairment of the endosomal-lysosomal pathway, a phenotype closely resembling that of SCA3. Remarkably, we demonstrate for the first time both in vitro, in a SCA3 cellular model, and in vivo, in mouse brain, that CYP46A1 activates autophagy, which is impaired in SCA3, leading to decreased mutant ataxin-3 deposition. More broadly, we show that the beneficial effect of CYP46A1 is also observed with mutant ataxin-2 aggregates. Altogether, our results confirm a pivotal role for CYP46A1 and brain cholesterol metabolism in neuronal function, pointing to a key contribution of the neuronal cholesterol pathway in mechanisms mediating clearance of aggregate-prone proteins. This study identifies CYP46A1 as a relevant therapeutic target not only for SCA3 but also for other SCAs.
Collapse
Affiliation(s)
- Clévio Nóbrega
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Algarve Biomedical Center, University of Algarve, Faro, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Liliana Mendonça
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Adriana Marcelo
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
| | - Antonin Lamazière
- INSERM, Saint-Antoine Research Center, Sorbonne Université, Faculté de Médecine, AP-HP, Hôpital Saint Antoine, Département PM2, Paris, France
| | - Sandra Tomé
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Gaetan Despres
- INSERM, Saint-Antoine Research Center, Sorbonne Université, Faculté de Médecine, AP-HP, Hôpital Saint Antoine, Département PM2, Paris, France
| | - Carlos A Matos
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Fatich Mechmet
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
| | - Dominique Langui
- Institut du Cerveau et de la Moelle épinière, ICM, INSERM U1127, CNRS UMR7225, Sorbonne Université, Hôpital Pitié-Salpêtrière, 47 bd de l'Hôpital, 75013, Paris, France
| | - Wilfred den Dunnen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Luis Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal.
| | - Nathalie Cartier
- INSERM U1169 92265 Fontenay aux Roses and Université Paris-Sud, Université Paris Saclay, 91400, Orsay, France.
- INSERM U1127, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, 47 bd de l'hôpital, 75013, Paris, France.
| | - Sandro Alves
- Brainvectis, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, 47 boulevard de l'Hôpital Paris, 75646, Paris, CEDEX 13, France.
| |
Collapse
|
5
|
Pariente A, Peláez R, Pérez-Sala Á, Larráyoz IM. Inflammatory and cell death mechanisms induced by 7-ketocholesterol in the retina. Implications for age-related macular degeneration. Exp Eye Res 2019; 187:107746. [DOI: 10.1016/j.exer.2019.107746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022]
|
6
|
Liu Y, Wei Z, Ma X, Yang X, Chen Y, Sun L, Ma C, Miao QR, Hajjar DP, Han J, Duan Y. 25-Hydroxycholesterol activates the expression of cholesterol 25-hydroxylase in an LXR-dependent mechanism. J Lipid Res 2018; 59:439-451. [PMID: 29298812 DOI: 10.1194/jlr.m080440] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/06/2017] [Indexed: 12/13/2022] Open
Abstract
Cholesterol 25-hydroxylase (CH25H) catalyzes the production of 25-hydroxycholesterol (25-HC), an oxysterol that can play an important role in different biological processes. However, the mechanisms regulating CH25H expression have not been fully elucidated. In this study, we determined that CH25H is highly expressed in mouse liver and peritoneal macrophages. We identified several liver X receptor (LXR) response elements (LXREs) in the human CH25H promoter. In HepG2 cells, activation of LXR by 25-HC or other oxysterols and synthetic ligands [T0901317 (T317) and GW3965] induced CH25H protein expression, which was associated with increased CH25H mRNA expression. 25-HC or T317 activated CH25H transcription in an LXRE-dependent manner. Thus, high-expressing LXRα or LXRβ activated CH25H expression, and the activation was further enhanced by LXR ligands. In contrast, inhibition of LXRα/β expression attenuated 25-HC or T317-induced CH25H expression. Deficiency of interferon γ expression reduced, but did not block, LXR ligand-induced hepatic CH25H expression. Activation of LXR also substantially induced macrophage CH25H expression. In vivo, administration of GW3965 to mice increased CH25H expression in both liver and peritoneal macrophages. Taken together, our study demonstrates that 25-HC can activate CH25H expression in an LXR-dependent manner, which may be an important mechanism to exert the biological actions of 25-HC.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biochemistry and Molecular Biology, College of Life Sciences and Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China.,Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, Hefei, China
| | - Zhuo Wei
- Department of Biochemistry and Molecular Biology, College of Life Sciences and Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Xingzhe Ma
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xiaoxiao Yang
- Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences and Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Lei Sun
- Department of Biochemistry and Molecular Biology, College of Life Sciences and Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Chuanrui Ma
- Department of Biochemistry and Molecular Biology, College of Life Sciences and Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Qing R Miao
- Departments of Surgery and Pathology, Medical College of Wisconsin, Milwaukee, WI
| | - David P Hajjar
- Department of Pathology, Weill Cornell Medical College of Cornell University, New York, NY
| | - Jihong Han
- Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, Hefei, China .,College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yajun Duan
- Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, Hefei, China .,College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Watanabe Y, Yamaguchi T, Ishihara N, Nakamura S, Tanaka S, Oka R, Imamura H, Sato Y, Ban N, Kawana H, Ohira M, Shimizu N, Saiki A, Tatsuno I. 7-Ketocholesterol induces ROS-mediated mRNA expression of 12-lipoxygenase, cyclooxygenase-2 and pro-inflammatory cytokines in human mesangial cells: Potential role in diabetic nephropathy. Prostaglandins Other Lipid Mediat 2017; 134:16-23. [PMID: 29154978 DOI: 10.1016/j.prostaglandins.2017.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/20/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
Abstract
7-Ketocholesterol (7-KCHO) is a highly proinflammatory oxysterol and plays an important role in the pathophysiology of diabetic nephropathy (DN). Lipoxygenases (LOXs) and cyclooxygenases (COXs) are also involved in the development of DN. The aim of this study was to clarify the effects of 7-KCHO on mRNA expression of LOXs and COXs as well as pro-inflammatory cytokines in human mesangial cells (HMC). We evaluated cell viability by WST-8 assay and measured mRNA expression by reverse transcription-polymerase chain reaction. Intracellular reactive oxygen species (ROS) production was evaluated by flow cytometry. Although 7-KCHO did not affect cell viability of HMC, 7-KCHO stimulated significant increases in mRNA expression of 12-LOX, COX-2 and pro-inflammatory cytokines. 7-KCHO also induced an increase in ROS production, while N-acetylcysteine partially suppressed the increase. The 12-LOX and COX-2 inhibitors also suppressed mRNA expression of cytokines. These findings may contribute to the elucidation of the molecular mechanism of the pathophysiology of DN.
Collapse
Affiliation(s)
- Yasuhiro Watanabe
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan; Department of Diabetes, Endocrinology and Metabolism, Toho University Graduate School of Medicine, 6-1-1 Omorinisi, Ota-ku, Tokyo, Japan
| | - Takashi Yamaguchi
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Noriko Ishihara
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Shoko Nakamura
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Sho Tanaka
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Rena Oka
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Haruki Imamura
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Yuta Sato
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Noriko Ban
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Hidetoshi Kawana
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Masahiro Ohira
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Naomi Shimizu
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Atsuhito Saiki
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Ichiro Tatsuno
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan.
| |
Collapse
|
8
|
Sato Y, Ishihara N, Nagayama D, Saiki A, Tatsuno I. 7-ketocholesterol induces apoptosis of MC3T3-E1 cells associated with reactive oxygen species generation, endoplasmic reticulum stress and caspase-3/7 dependent pathway. Mol Genet Metab Rep 2017; 10:56-60. [PMID: 28116245 PMCID: PMC5233792 DOI: 10.1016/j.ymgmr.2017.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with an increased risk of bone fractures without reduction of bone mineral density. The cholesterol oxide 7-ketocholesterol (7KCHO) has been implicated in numerous diseases such as atherosclerosis, Alzheimer's disease, Parkinson's disease, cancer, age-related macular degeneration and T2DM. In the present study, 7KCHO decreased the viability of MC3T3-E1 cells, increased reactive oxygen species (ROS) production and apoptotic rate, and upregulated the caspase-3/7 pathway. Furthermore, these effects of 7KCHO were abolished by pre-incubation of the cells with N-acetylcysteine (NAC), an ROS inhibitor. Also, 7KCHO enhanced the mRNA expression of two endoplasmic reticulum (ER) stress markers; CHOP and GRP78, in MC3T3-E1 cells. Pre-incubation of the cells with NAC suppressed the 7KCHO-induced upregulation of CHOP, but not GRP78. In conclusion, we demonstrated that 7KCHO induced apoptosis of MC3T3-E1 cells associated with ROS generation, ER stress, and caspase-3/7 activity, and the effects of 7KCHO were abolished by the ROS inhibitor NAC. These findings may provide new insight into the relationship between oxysterol and pathophysiology of osteoporosis seen in T2DM. We examined the effects of 7-ketocholesterol (7KCHO) on MC3T3-E1 cells. 7KCHO increased reactive oxygen species (ROS) and apoptosis. 7KCHO enhanced CHOP and GRP78 expression. N-acetylcysteine suppressed 7KCHO-induced ROS, apoptosis and CHOP expression.
Collapse
Affiliation(s)
- Yuta Sato
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura City, Chiba 285-8741, Japan
| | - Noriko Ishihara
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura City, Chiba 285-8741, Japan
| | - Daiji Nagayama
- Center of Endocrinology and Metabolism, Shin-Oyama City Hospital, 1-1-5, Wakagi-cho, Oyama City, Tochigi 323-0028, Japan
| | - Atsuhito Saiki
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura City, Chiba 285-8741, Japan
| | - Ichiro Tatsuno
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura City, Chiba 285-8741, Japan
| |
Collapse
|
9
|
Abstract
Oxysterols have long been known for their important role in cholesterol homeostasis, where they are involved in both transcriptional and posttranscriptional mechanisms for controlling cholesterol levels. However, they are increasingly associated with a wide variety of other, sometimes surprising cell functions. They are activators of the Hedgehog pathway (important in embryogenesis), and they act as ligands for a growing list of receptors, including some that are of importance to the immune system. Oxysterols have also been implicated in several diseases such as neurodegenerative diseases and atherosclerosis. Here, we explore the latest research into the roles oxy-sterols play in different areas, and we evaluate the current evidence for these roles. In addition, we outline critical concepts to consider when investigating the roles of oxysterols in various situations, which includes ensuring that the concentration and form of the oxysterol are relevant in that context--a caveat with which many studies have struggled.
Collapse
Affiliation(s)
- Winnie Luu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| | - Isabelle Capell-Hattam
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| | - Ingrid C Gelissen
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia;
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| |
Collapse
|
10
|
Boussicault L, Alves S, Lamazière A, Planques A, Heck N, Moumné L, Despres G, Bolte S, Hu A, Pagès C, Galvan L, Piguet F, Aubourg P, Cartier N, Caboche J, Betuing S. CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington's disease. Brain 2016; 139:953-70. [PMID: 26912634 PMCID: PMC4766376 DOI: 10.1093/brain/awv384] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/04/2015] [Indexed: 11/22/2022] Open
Abstract
Huntington’s disease is an autosomal dominant neurodegenerative disease caused by abnormal polyglutamine expansion in huntingtin (Exp-HTT) leading to degeneration of striatal neurons. Altered brain cholesterol homeostasis has been implicated in Huntington’s disease, with increased accumulation of cholesterol in striatal neurons yet reduced levels of cholesterol metabolic precursors. To elucidate these two seemingly opposing dysregulations, we investigated the expression of cholesterol 24-hydroxylase (CYP46A1), the neuronal-specific and rate-limiting enzyme for cholesterol conversion to 24S-hydroxycholesterol (24S-OHC). CYP46A1 protein levels were decreased in the putamen, but not cerebral cortex samples, of post-mortem Huntington’s disease patients when compared to controls.
Cyp46A1
mRNA and CYP46A1 protein levels were also decreased in the striatum of the R6/2 Huntington’s disease mouse model and in ST
hdh
Q111 cell lines.
In vivo
, in a wild-type context, knocking down CYP46A1 expression in the striatum, via an adeno-associated virus-mediated delivery of selective shCYP46A1, reproduced the Huntington’s disease phenotype, with spontaneous striatal neuron degeneration and motor deficits, as assessed by rotarod.
In vitro
, CYP46A1 restoration protected ST
hdh
Q111 and Exp-HTT-expressing striatal neurons in culture from cell death. In the R6/2 Huntington’s disease mouse model, adeno-associated virus-mediated delivery of CYP46A1 into the striatum decreased neuronal atrophy, decreased the number, intensity level and size of Exp-HTT aggregates and improved motor deficits, as assessed by rotarod and clasping behavioural tests. Adeno-associated virus-CYP46A1 infection in R6/2 mice also restored levels of cholesterol and lanosterol and increased levels of desmosterol.
In vitro
, lanosterol and desmosterol were found to protect striatal neurons expressing Exp-HTT from death. We conclude that restoring CYP46A1 activity in the striatum promises a new therapeutic approach in Huntington’s disease.
Collapse
Affiliation(s)
- Lydie Boussicault
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Sandro Alves
- 2 INSERM U1169, Le Kremlin-Bicêtre, MIRCEN CEA and Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France
| | - Antonin Lamazière
- 3 Laboratory of Mass Spectrometry, INSERM ERL 1157, CNRS UMR 7203 LBM, Sorbonne Universités- Université Pierre et Marie Curie-Paris 6, CHU Saint-Antoine, 75012 Paris, France
| | - Anabelle Planques
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France 4 Development and Neuropharmacology, Center for Interdisciplinary Research in Biology, INSERM CNRS 7141. Collège de France
| | - Nicolas Heck
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Lara Moumné
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Gaëtan Despres
- 3 Laboratory of Mass Spectrometry, INSERM ERL 1157, CNRS UMR 7203 LBM, Sorbonne Universités- Université Pierre et Marie Curie-Paris 6, CHU Saint-Antoine, 75012 Paris, France
| | - Susanne Bolte
- 5 Cellular Imaging Facility, Institute of Biology Paris-Seine CNRS FR, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Amélie Hu
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France 6 Laboratory of Experimental Neurology, Université Libre de Bruxelles, Belgium
| | - Christiane Pagès
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Laurie Galvan
- 7 Semel Institute, University California Los Angeles, Los Angeles, USA
| | - Francoise Piguet
- 8 Department of Translational Medicine and Neurogenetics, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), UMR 7104 CNRS/UdS, INSERM U964, BP 10142, 67404 Illkirch Cedex, France
| | - Patrick Aubourg
- 2 INSERM U1169, Le Kremlin-Bicêtre, MIRCEN CEA and Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France
| | - Nathalie Cartier
- 2 INSERM U1169, Le Kremlin-Bicêtre, MIRCEN CEA and Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France
| | - Jocelyne Caboche
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Sandrine Betuing
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| |
Collapse
|
11
|
Orsó E, Matysik S, Grandl M, Liebisch G, Schmitz G. Human native, enzymatically modified and oxidized low density lipoproteins show different lipidomic pattern. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:299-306. [PMID: 25583048 DOI: 10.1016/j.bbalip.2015.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/23/2014] [Accepted: 01/03/2015] [Indexed: 11/26/2022]
Abstract
In the present paper we have performed comparative lipidomic analysis of two prototypic atherogenic LDL modifications, oxidized LDL and enzymatically modified LDL. Oxidization of LDL was carried out with different chemical modifications starting from the same native LDL preparations: (i) by copper oxidation leading to terminally oxidized LDL (oxLDL), (ii) by moderate oxidization with HOCl (HOCl LDL), (iii) by long term storage of LDL at 4°C to produce minimally modified LDL (mmLDL), or (iv) by 15-lipoxygenase, produced by a transfected fibroblast cell line (LipoxLDL). The enzymatic modification of LDL was performed by treatment of native LDL with trypsin and cholesteryl esterase (eLDL). Free cholesterol (FC) and cholesteryl esters (CE) represent the predominant lipid classes in all LDL preparations. In contrast to native LDL, which contains about two-thirds of total cholesterol as CE, enzymatic modification of LDL decreased the proportion of CE to about one-third. Free cholesterol and CE in oxLDL are reduced by their conversion to oxysterols. Oxidization of LDL preferentially influences the content of polyunsaturated phosphatidylcholine (PC) and polyunsaturated plasmalogen species, by reducing the total PC fraction in oxLDL. Concomitantly, a strong rise of the lysophosphatidylcholine (LPC) fraction can be found in oxLDL as compared to native LDL. This effect is less pronounced in eLDL. The mild oxidation of LDL with hypochlorite and/or lipoxygenase does not alter the content of the analyzed lipid classes and species in a significant manner. The lipidomic characterization of modified LDLs contributes to the better understanding their diverse cellular effects.
Collapse
Affiliation(s)
- Evelyn Orsó
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Silke Matysik
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Margot Grandl
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerd Schmitz
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
12
|
Huang JD, Amaral J, Lee JW, Rodriguez IR. 7-Ketocholesterol-induced inflammation signals mostly through the TLR4 receptor both in vitro and in vivo. PLoS One 2014; 9:e100985. [PMID: 25036103 PMCID: PMC4103802 DOI: 10.1371/journal.pone.0100985] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/01/2014] [Indexed: 12/23/2022] Open
Abstract
The cholesterol oxide 7-ketocholesterol (7KCh) has been implicated in numerous age-related diseases such as atherosclerosis, Alzheimer's disease, Parkinson's disease, cancer and age-related macular degeneration. It is formed by the autooxidation of cholesterol and especially cholesterol-fatty acid esters found in lipoprotein deposits. This molecule causes complex and potent inflammatory responses in vitro and in vivo. It is suspected of causing chronic inflammation in tissues exposed to oxidized lipoprotein deposits. In this study we have examined the inflammatory pathways activated by 7KCh both in cultured ARPE19 cells and in vivo using 7KCh-containing implants inserted into the anterior chamber of the rat eye. Our results indicate that 7KCh-induced inflammation is mediated mostly though the TLR4 receptor with some cross-activation of EGFR-related pathways. The majority of the cytokine inductions seem to signal via the TRIF/TRAM side of the TLR4 receptor. The MyD88/TIRAP side only significantly effects IL-1β inductions. The 7KCh-induced inflammation also seems to involve a robust ER stress response. However, this response does not seem to involve a calcium efflux-mediated UPR. Instead the ER stress response seems to be mediated by yet identified kinases activated through the TLR4 receptor. Some of the kinases identified are the RSKs which seem to mediate the cytokine inductions and the cell death pathway but do not seem to be involved in the ER stress response.
Collapse
Affiliation(s)
- Jiahn-Dar Huang
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Juan Amaral
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jung Wha Lee
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ignacio R. Rodriguez
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
13
|
Sharma K, Sharma NK, Anand A. Why AMD is a disease of ageing and not of development: mechanisms and insights. Front Aging Neurosci 2014; 6:151. [PMID: 25071560 PMCID: PMC4091411 DOI: 10.3389/fnagi.2014.00151] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 06/17/2014] [Indexed: 02/03/2023] Open
Abstract
Ageing disorders can be defined as the progressive and cumulative outcome of several defective cellular mechanisms as well as metabolic pathways, consequently resulting in degeneration. Environment plays an important role in its pathogenesis. In contrast, developmental disorders arise from inherited mutations and usually the role of environmental factors in development of disease is minimal. Age related macular degeneration (AMD) is one such retinal degenerative disorder which starts with the progression of age. Metabolism plays an important role in initiation of such diseases of ageing. Cholesterol metabolism and their oxidized products like 7-ketocholesterol have been shown to adversely impact retinal pigment epithelium (RPE) cells. These molecules can initiate mitochondrial apoptotic processes and also influence the complements factors and expression of angiogenic proteins like VEGF etc. In this review we highlight why and how AMD is an ageing disorder and not a developmental disease substantiated by disrupted cholesterol metabolism common to several age related diseases.
Collapse
Affiliation(s)
- Kaushal Sharma
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research Chandigarh, India
| | - Neel Kamal Sharma
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute Bethesda, MD, USA
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research Chandigarh, India
| |
Collapse
|
14
|
Mechanism of inflammation in age-related macular degeneration: an up-to-date on genetic landmarks. Mediators Inflamm 2013; 2013:435607. [PMID: 24369445 PMCID: PMC3863457 DOI: 10.1155/2013/435607] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/28/2013] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible visual impairment among people over 50 years of age, accounting for up to 50% of all cases of legal blindness in Western countries. Although the aging represents the main determinant of AMD, it must be considered a multifaceted disease caused by interactions among environmental risk factors and genetic backgrounds. Mounting evidence and/or arguments document the crucial role of inflammation and immune-mediated processes in the pathogenesis of AMD. Proinflammatory effects secondary to chronic inflammation (e.g., alternative complement activation) and heterogeneous types of oxidative stress (e.g., impaired cholesterol homeostasis) can result in degenerative damages at the level of crucial macular structures, that is photoreceptors, retinal pigment epithelium, and Bruch's membrane. In the most recent years, the association of AMD with genes, directly or indirectly, involved in immunoinflammatory pathways is increasingly becoming an essential core for AMD knowledge. Starting from the key basic-research notions detectable at the root of AMD pathogenesis, the present up-to-date paper reviews the best-known and/or the most attractive genetic findings linked to the mechanisms of inflammation of this complex disease.
Collapse
|
15
|
Poirot M, Silvente-Poirot S. Cholesterol-5,6-epoxides: Chemistry, biochemistry, metabolic fate and cancer. Biochimie 2013; 95:622-31. [DOI: 10.1016/j.biochi.2012.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/08/2012] [Indexed: 12/02/2022]
|
16
|
On the formation and possible biological role of 25-hydroxycholesterol. Biochimie 2013; 95:455-60. [DOI: 10.1016/j.biochi.2012.06.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/14/2012] [Indexed: 11/22/2022]
|
17
|
Vanmierlo T, Husche C, Schött HF, Pettersson H, Lütjohann D. Plant sterol oxidation products--analogs to cholesterol oxidation products from plant origin? Biochimie 2012; 95:464-72. [PMID: 23009926 DOI: 10.1016/j.biochi.2012.09.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/15/2012] [Indexed: 12/27/2022]
Abstract
Cholesterol and plant sterols are lipids which are abundantly present in a western type diet of animal and plant origin, respectively. The daily intake averages 300 mg/day each. Over the past decades, a steadily increasing consumption of plant sterol enriched dairy products (2-3 g/day) took place to lower circulating LDL cholesterol concentrations. Like all unsaturated components, plant sterols can be attacked by reactive oxygen species resulting in plant sterol oxidation products (POPs). The most widespread methods for POP determination are high-performance liquid chromatography and gas-liquid chromatography. Yet, based on the low plasma POP concentrations in normophytosterolemic subjects (POPs: ∼0.3-4.5 ng/mL), a reliable quantification yielding an appropriate limit of detection remains a challenge. While the more abundantly present cholesterol oxidation products (COPs) have elaborately been studied, research on the metabolism and biological effects of POPs is only emerging. In relation to atherogenity, biological effects including modulation of cholesterol homeostasis, membrane functioning, and inflammation are attributed to POPs. Although mostly supra-physiological concentrations are applied in in vitro assays, anti-tumor activity, cytotoxicity and estrogen-competition have been attributed to specific POPs. However, it is not obvious, if and how POPs may exert in vivo adverse or beneficial health effects similar to those attributed to COPs. In the field of nutritional science, standardized methods for the determination of POPs are required to perform relevant biological studies and to assess their presence in complex foods or biological tissues and fluids. The aim of this review is to provide an overview and evaluation of the published methods and an update on the biological effects attributed to POPs.
Collapse
Affiliation(s)
- T Vanmierlo
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Sigmund-Freud-Strasse 25, Bonn, Germany
| | | | | | | | | |
Collapse
|
18
|
Mitić T, Andrew R, Walker BR, Hadoke PWF. 11β-Hydroxysteroid dehydrogenase type 1 contributes to the regulation of 7-oxysterol levels in the arterial wall through the inter-conversion of 7-ketocholesterol and 7β-hydroxycholesterol. Biochimie 2012; 95:548-55. [PMID: 22940536 PMCID: PMC3585959 DOI: 10.1016/j.biochi.2012.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/13/2012] [Indexed: 11/29/2022]
Abstract
The atherogenic 7-oxysterols, 7-ketocholesterol (7-KC) and 7β-hydroxycholesterol (7βOHC), can directly impair arterial function. Inter-conversion of 7-KC and 7βOHC has recently been shown as a novel role for the glucocorticoid-metabolizing enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Since this enzyme is expressed in vascular smooth muscle cells, we addressed the hypothesis that inter-conversion of 7-KC and 7βOHC by 11β-HSD1 may contribute to regulation of arterial function. Incubation (4–24 h) of aortic rings with either 7-KC (25 μM) or 7βOHC (20 μM) had no effect on endothelium-dependent (acetylcholine) or -independent (sodium nitroprusside) relaxation. In contrast, exposure to 7-KC (but not to 7βOHC) attenuated noradrenaline-induced contraction (Emax) after 4 h (0.78 ± 0.28 vs 0.40 ± 0.08 mN/mm; p < 0.05) and 24 h (2.28 ± 0.34 vs 1.56 ± 0.48 mN/mm; p < 0.05). Both 7-oxysterols were detected by GCMS in the aortic wall of chow-fed C57Bl6/J mice, with concentrations of 7-KC (1.41 ± 0.81 ng/mg) higher (p = 0.05) than 7βOHC (0.16 ± 0.06 ng/mg). In isolated mouse aortic rings 11β-HSD1 was shown to act as an oxo-reductase, inter-converting 7-KC and 7βOHC. This activity was lost in aorta from 11β-HSD1−/− mice, which had low oxysterol levels. Renal homogenates from 11β-HSD1−/− mice were used to confirm that the type 2 isozyme of 11β-HSD does not inter-convert 7-KC and 7βOHC. These results demonstrate that 7-KC has greater effects than 7βOHC on vascular function, and that 11β-HSD1 can inter-convert 7-KC and 7βOHC in the arterial wall, contributing to the regulation of 7-oxysterol levels and potentially influencing vascular function. This mechanism may be important in the cardioprotective effects of 11β-HSD1 inhibitors.
Collapse
Affiliation(s)
- Tijana Mitić
- Endocrinology Unit, University/BHF Centre for Cardiovascular Science, College of Medicine and Veterinary Medicine, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, Scotland, UK
| | | | | | | |
Collapse
|
19
|
Shentu TP, Singh DK, Oh MJ, Sun S, Sadaat L, Makino A, Mazzone T, Subbaiah PV, Cho M, Levitan I. The role of oxysterols in control of endothelial stiffness. J Lipid Res 2012; 53:1348-58. [PMID: 22496390 DOI: 10.1194/jlr.m027102] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endothelial dysfunction is a key step in atherosclerosis development. Our recent studies suggested that oxLDL-induced increase in endothelial stiffness plays a major role in dyslipidemia-induced endothelial dysfunction. In this study, we identify oxysterols, as the major component of oxLDL, responsible for the increase in endothelial stiffness. Using Atomic Force Microscopy to measure endothelial elastic modulus, we show that endothelial stiffness increases with progressive oxidation of LDL and that the two lipid fractions that contribute to endothelial stiffening are oxysterols and oxidized phosphatidylcholines, with oxysterols having the dominant effect. Furthermore, endothelial elastic modulus increases as a linear function of oxysterol content of oxLDL. Specific oxysterols, however, have differential effects on endothelial stiffness with 7-ketocholesterol and 7α-hydroxycholesterol, the two major oxysterols in oxLDL, having the strongest effects. 27-hydroxycholesterol, found in atherosclerotic lesions, also induces endothelial stiffening. For all oxysterols, endothelial stiffening is reversible by enriching the cells with cholesterol. oxLDL-induced stiffening is accompanied by incorporation of oxysterols into endothelial cells. We find significant accumulation of three oxysterols, 7α-hydroxycholesterol, 7β-hydroxycholesterol, and 7-ketocholesterol, in mouse aortas of dyslipidemic ApoE⁻/⁻ mice at the early stage of atherosclerosis. Remarkably, these are the same oxysterols we have identified to induce endothelial stiffening.
Collapse
Affiliation(s)
- Tzu Pin Shentu
- Pulmonary, Critical Care, and Sleep Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
ALSHATWI ALIA. BENEFICIARY ANTILIPOPEROXIDATIVE EFFECT OF LYCOPENE ON H2O2-SUPPLEMENTED OXIDATIVE STRESSED RATS - A DOSE-DEPENDENT STUDY. J Food Biochem 2012. [DOI: 10.1111/j.1745-4514.2010.00521.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Demer L, Tintut Y. The roles of lipid oxidation products and receptor activator of nuclear factor-κB signaling in atherosclerotic calcification. Circ Res 2011; 108:1482-93. [PMID: 21659652 DOI: 10.1161/circresaha.110.234245] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review focuses on the roles of oxylipids and receptor activator of nuclear factor-κB ligand signaling in calcific cardiovascular disease. Both intimal and valvular calcifications are closely associated with atherosclerosis, leading investigators to study the role of atherogenic oxidatively modified lipids (oxylipids). Results have identified the molecular signaling through which oxylipids induce osteogenic differentiation and calcification in vascular cells. A surprising concomitant finding was that, in bona fide osteoblasts from skeletal bone, oxylipids have the opposite effect, ie, inhibiting osteoblastic maturation. This is the basis for the lipid hypothesis of osteoporosis. Oxylipids also induce resorptive osteoclastic cells within the bone environment, raising the question of whether resorptive osteoclasts can be harnessed in the vascular context for cell-based therapy to remove artery wall mineral deposits. The challenge is that vascular cells produce antiosteoclastogenic factors, including the soluble decoy receptor for receptor activator of nuclear factor-κB ligand, possibly accounting for the paucity of resorptive cells and the dominance of mineral in atherosclerotic plaque. These factors may have therapeutic use in osteoclastogenic removal of mineral deposits from arteries.
Collapse
Affiliation(s)
- Linda Demer
- Department of Medicine, University of California, Los Angeles, CA, USA.
| | | |
Collapse
|
22
|
Pathways of cholesterol oxidation via non-enzymatic mechanisms. Chem Phys Lipids 2011; 164:457-68. [PMID: 21703250 DOI: 10.1016/j.chemphyslip.2011.06.006] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/12/2011] [Accepted: 06/08/2011] [Indexed: 12/31/2022]
Abstract
Cholesterol has many functions, including those that affect biophysical properties of membranes, and is a precursor to hormone synthesis. These actions are governed by enzymatic pathways that modify the sterol nucleus or the isooctyl tail. The addition of oxygen to the cholesterol backbone produces its derivatives known as oxysterols. In addition to having an enzymatic origin, oxysterols can be formed in the absence of enzymatic catalysis in a pathway usually termed "autoxidation," which has been known for almost a century and observed under various experimental conditions. Autoxidation of cholesterol can occur through reactions initiated by free radical species, such as those arising from the superoxide/hydrogen peroxide/hydroxyl radical system and by non-radical highly reactive oxygen species such as singlet oxygen, HOCl, and ozone. The susceptibility of cholesterol to non-enzymatic oxidation has raised considerable interest in the function of oxysterols as biological effectors and potential biomarkers for the non-invasive study of oxidative stress in vivo.
Collapse
|
23
|
Detection of oxysterols in oxidatively modified low density lipoprotein by MALDI-TOF MS. EUR J LIPID SCI TECH 2010. [DOI: 10.1002/ejlt.201000366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Palozza P, Parrone N, Simone RE, Catalano A. Lycopene in atherosclerosis prevention: An integrated scheme of the potential mechanisms of action from cell culture studies. Arch Biochem Biophys 2010; 504:26-33. [DOI: 10.1016/j.abb.2010.06.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/14/2010] [Accepted: 06/27/2010] [Indexed: 12/31/2022]
|
25
|
Björkhem I, Lövgren-Sandblom A, Piehl F, Khademi M, Pettersson H, Leoni V, Olsson T, Diczfalusy U. High levels of 15-oxygenated steroids in circulation of patients with multiple sclerosis: fact or fiction? J Lipid Res 2010; 52:170-4. [PMID: 20934989 DOI: 10.1194/jlr.d011072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
15-Oxygenated cholesterol species such as 5α-cholest-8(14)ene-3β,15α-diol (15HC) and 3β-hydroxy-5α-cholest-8(14)-en-15-one (15KC) are commercially available synthetic products unlikely to occur in biological systems. Surprisingly, Farez et al. recently reported that these two steroids occur in human circulation at levels considerably higher than those of any other endogenous oxysterol [Farez, M. et al. 2009. Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nat. Immunol. 10: 958-964]. The levels were reported to be increased in patients with multiple sclerosis in a progressive phase and the authors suggested that this could be utilized diagnostically. Based on extensive in vitro experiments exposing cells to the same high levels of 15HC as found in vivo (1000 ng/ml) the authors concluded that 15HC may be an important pathogenetic factor in multiple sclerosis. Using combined gas chromatography-mass spectrometry we fail to detect significant plasma levels of 15HC either in healthy controls or in patients with multiple sclerosis (levels < 2 ng/ml). If 15KC is present in these plasma samples, the concentration of it must be <10 ng/ml. Our failure to detect significant levels of the above steroids could not be due to loss during hydrolysis and work-up because recovery of the added two oxysterols was close to 100%. Autoxidation of lipoprotein-bound cholesterol resulted in extensive conversion of cholesterol into 7-oxygenated but not 15-oxygenated sterols. We conclude that if present there are trace amounts only of the above 15-oxygenated steroids in human circulation and that the role of such oxysterols as pathogenetic factors and biomarkers must be reconsidered.
Collapse
Affiliation(s)
- I Björkhem
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rodríguez IR, Larrayoz IM. Cholesterol oxidation in the retina: implications of 7KCh formation in chronic inflammation and age-related macular degeneration. J Lipid Res 2010; 51:2847-62. [PMID: 20567027 DOI: 10.1194/jlr.r004820] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This review will discuss the formation and potential implications of 7-ketocholesterol (7KCh) in the retina. 7KCh is a proinflammatory oxysterol known to be present in high amounts in oxidized LDL deposits associated with atheromatous plaques. 7KCh is generated in situ in these lipoprotein deposits where it can accumulate and reach very high concentrations. In normal primate retina, 7KCh has been found associated with lipoprotein deposits in the choriocapillaris, Bruch's membrane, and the retinal pigment epithelium (RPE). In photodamaged rats, 7KCh has been found in the neural retina in areas of high mitochondrial content, ganglion cells, photoreceptor inner segments and synapses, and the RPE. Intermediates found by LCMS indicate 7KCh is formed via a free radical-mediated mechanism catalyzed by iron. 7KCh seems to activate several kinase signaling pathways that work via nuclear factor κB and cause the induction of vascular endothelial growth factor, interleukin (IL)-6, and IL-8. There seems to be little evidence of 7KCh metabolism in the retina, although some form of efflux mechanism may be active. The chronic mode of formation and the potent inflammatory properties of 7KCh indicate it may be an "age-related" risk factor in aging diseases such as atherosclerosis, Alzheimer's, and age-related macular degeneration.
Collapse
Affiliation(s)
- Ignacio R Rodríguez
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, Bethesda, MD 20892, USA.
| | | |
Collapse
|
27
|
Klimenko OV, Vobruba V, Martasek P. Influence of the lung mechanical ventilation with injurious parameters on 7-ketocholesterol synthesis in Sus Scrofa. BMB Rep 2010; 43:257-62. [DOI: 10.5483/bmbrep.2010.43.4.257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Determination of oxysterols in oxidatively modified low-density lipoprotein by semi-micro high-performance liquid chromatography with electrochemical detection. Anal Biochem 2009; 393:222-8. [PMID: 19563770 DOI: 10.1016/j.ab.2009.06.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 11/23/2022]
Abstract
A simple method for the determination of oxysterols was developed by semi-micro high-performance liquid chromatography with electrochemical detection (semi-micro HPLC-ECD). Semi-micro HPLC-ECD was established using a C30 microbore column, acetonitrile containing 50 mmol/L LiClO(4) as a mobile phase, and an applied potential at +2.8V versus Ag/AgCl. The current peak height was linearly related to the amount of sterol injected from 12.5 to 250 pmol (r>0.999) with a relative standard deviation (RSD) of less than 2.9% (n=6). This method was applied to the determination of seven oxysterols in oxidatively modified low-density lipoprotein (Ox-LDL). Oxysterols were determined with a recovery of more than 78.0% and an RSD of less than 2.9% (n=6) except for 7-ketocholesterol. 7-Ketocholesterol was determined as a sum of intact 7-ketocholesterol and its degradation product on saponification, cholesta-3,5-dien-7-one, with a recovery of 98.0% and an RSD of 2.5% (n=6). From these results, the current method enabled the simultaneous determination of seven oxysterols without any derivatization, providing a useful tool for the assessment of oxysterol contents in Ox-LDL.
Collapse
|
29
|
Rodriguez IR, Fliesler SJ. Photodamage generates 7-keto- and 7-hydroxycholesterol in the rat retina via a free radical-mediated mechanism. Photochem Photobiol 2009; 85:1116-25. [PMID: 19500292 DOI: 10.1111/j.1751-1097.2009.00568.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Albino Sprague-Dawley rats are known to undergo photoreceptor degeneration after exposure to constant light, but the molecular mechanism(s) by which the photoreceptors degenerate is not fully understood. We hypothesized that cytotoxic oxysterols are generated in situ in the retina under such conditions and may be involved in the degenerative mechanism. Thus, photodamaged and control rat retinas were analyzed for oxysterols by liquid chromatography mass spectroscopy. Elevated levels of two known cytotoxic oxysterols, 7-ketocholesterol (7KCh) and 7alphabeta-hydroxycholesterol (7HCh), were found in the photodamaged retinas, at levels six-fold and 50-fold greater, respectively, than those found in non photodamaged controls. Notably, two key intermediates, 5,6alpha,beta-epoxycholesterol (5,6-epoxyCh) and 7alphabeta-hydroperoxy-cholesterol, were also identified, indicating that the formation of 7KCh and 7HCh is mediated by a free radical mechanism. By immunohistochemistry, 7KCh was localized to the ganglion cell layer, photoreceptor inner segments and retinal pigment epithelium (RPE), which coincides with the localization of ferritin in the retina. Exposure of a mixture of ferritin and low-density lipoprotein to intense white light in vitro produced similar oxysterol species as seen in vivo. We propose that the increased levels of 7KCh and 7HCh, especially in photoreceptor inner segments and RPE, may arise due to ferritin-catalyzed reactions and may be important contributors to the photoreceptor degeneration observed in photodamaged rats.
Collapse
Affiliation(s)
- Ignacio R Rodriguez
- Laboratory of Retinal Cell and Molecular Biology, Section on Mechanisms of Retinal Diseases, National Eye Institute, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
30
|
Artifact generation and monitoring in analysis of cholesterol oxide products. Anal Biochem 2009; 388:1-14. [DOI: 10.1016/j.ab.2008.12.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 12/24/2008] [Accepted: 12/26/2008] [Indexed: 11/17/2022]
|
31
|
Moreira EF, Larrayoz IM, Lee JW, Rodríguez IR. 7-Ketocholesterol is present in lipid deposits in the primate retina: potential implication in the induction of VEGF and CNV formation. Invest Ophthalmol Vis Sci 2008; 50:523-32. [PMID: 18936140 DOI: 10.1167/iovs.08-2373] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE 7-Ketocholesterol is a highly toxic oxysterol found in abundance in atherosclerotic plaques and is believed to play a critical role in atherosclerosis. The purpose of this study was to identify and localize 7-ketocholesterol (7kCh) in the primate retina and to examine the potential consequences of its presence in oxidized lipid deposits in the retina. METHODS Unsterified 7kCh was identified and quantified by high-performance liquid chromatography-mass spectrometry. Localization of 7kCh was performed by immunohistochemistry. VEGF induction was determined by qRT-PCR. Cell viability was determined by measuring cellular dehydrogenase activity. Analyses were performed using ARPE19 and human vascular endothelial cells (HMVECs). RESULTS 7-Ketocholesterol is localized mainly to deposits in the choriocapillaris and Bruch's membrane and on the surfaces of vascular endothelial cells of the neural retina. RPE/choriocapillaris regions contained approximately four times more 7kCh than the neural retina. In ARPE19 cells and HMVECs, oxidized LDL and 7kCh induced VEGF 8- to 10-fold above controls. Hypoxia inducible factor (HIF)-1alpha levels did not increase as a result of 7kCh treatment, suggesting an HIF-independent induction pathway. Cholesterol sulfate, a liver X receptor (LXR) antagonist, had marked attenuation of the 7kCh-mediated VEGF induction. LXR-specific siRNAs also reduced VEGF induction. Inhibition of NF-kappaB with BAY 11-7082 reduced IL-8 but not VEGF induction. CONCLUSIONS The location of 7-kCh in the retina and its induction of VEGF in cultured RPE cells and HMVECs suggest it may play a critical role in choroidal neovascularization. The pathway for VEGF induction seems to be independent of HIF-1alpha and NF-kappaB but seems to be partially regulated by LXRs.
Collapse
Affiliation(s)
- Ernesto F Moreira
- Section on Mechanisms of Retinal Diseases, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
32
|
Rosa A, Melis MP, Deiana M, Atzeri A, Appendino G, Corona G, Incani A, Loru D, Dessì MA. Protective effect of the oligomeric acylphloroglucinols from Myrtus communis on cholesterol and human low density lipoprotein oxidation. Chem Phys Lipids 2008; 155:16-23. [DOI: 10.1016/j.chemphyslip.2008.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/18/2008] [Accepted: 04/23/2008] [Indexed: 11/26/2022]
|
33
|
Lordan S, Mackrill JJ, O'Brien NM. Involvement of Fas signalling in 7beta-hydroxycholesterol-and cholesterol-5beta,6beta-epoxide-induced apoptosis. Int J Toxicol 2008; 27:279-85. [PMID: 18569169 DOI: 10.1080/10915810802208616] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The induction of apoptosis in cells of the arterial wall is a critical event in the development of atheroma. 7beta-Hydroxycholesterol (7beta-OH) and cholesterol-5beta,6beta-epoxide (beta-epoxide) are components of oxLDL and have previously been shown to be potent inducers of apoptosis. However, the exact mechanisms through which these oxysterols induce apoptosis remains to be fully elucidated. The specific interaction of the Fas death receptor with Fas ligand (FasL) initiates a caspase cascade culminating in apoptosis. The purpose of the present study was to determine the involvement of Fas signalling in 7beta-OH-and beta-epoxide-induced apoptosis. To this end we employed the Fas/FasL antagonist, Kp7-6, and examined the effect of Fas inhibition on oxysterol-induced cell death in U937 cells. Fas levels were increased following 24 h exposure to 30 micro M 7beta-OH while treatment with 30 micro M beta-epoxide had no effect. Kp7-6 reduced the Fas content of 7beta-OH-treated cells to control levels and partially protected against 7beta-OH-induced apoptosis. This coincided with a decrease in cytochrome c release along with a reduction in caspase-3 and caspase-8 activity. Our data implicate Fas signalling in the apoptotic pathway induced by 7beta-OH and also highlight differences between apoptosis induced by 7beta-OH and beta-epoxide.
Collapse
Affiliation(s)
- Sinead Lordan
- Department of Food and Nutritional Sciences, University College, Cork, Republic of Ireland
| | | | | |
Collapse
|
34
|
Larsson H, Böttiger Y, Iuliano L, Diczfalusy U. In vivo interconversion of 7beta-hydroxycholesterol and 7-ketocholesterol, potential surrogate markers for oxidative stress. Free Radic Biol Med 2007; 43:695-701. [PMID: 17664133 DOI: 10.1016/j.freeradbiomed.2007.04.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/16/2007] [Accepted: 04/28/2007] [Indexed: 11/16/2022]
Abstract
The oxysterols 7beta-hydroxycholesterol and 7-ketocholesterol are cholesterol autoxidation products. These two oxysterols are formed as a result of low density lipoprotein oxidation and in a study on biomarkers for oxidative stress in patients with atherosclerosis, 7beta-hydroxycholesterol was found to be the strongest predictor of progression of carotid atherosclerosis. Interconversion of 7beta-hydroxycholesterol and 7-ketocholesterol in vitro has been reported recently, using recombinant 11beta-hydroxysteroid dehydrogenase or rodent liver microsomes. In this study deuterium-labeled 7beta-hydroxycholesterol or 7-ketocholesterol was administered intravenously to two healthy volunteers and blood samples were collected at different time points. The mean half-life for elimination of 7beta-hydroxycholesterol from the circulation was estimated to be 1.9 h. The corresponding half-life for 7-ketocholesterol was estimated to be 1.5 h. Infusion of deuterium-labeled 7-ketocholesterol resulted in labeling of 7beta-hydroxycholesterol and vice versa. In addition, the biological within-day and between-day variations of the two oxysterols were determined. In summary, the present investigation clearly shows an interconversion of 7beta-hydroxycholesterol and 7-ketocholesterol in humans.
Collapse
Affiliation(s)
- Hanna Larsson
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, SE-141 86 Stockholm, Sweden
| | | | | | | |
Collapse
|
35
|
Lemaire-Ewing S, Prunet C, Montange T, Vejux A, Berthier A, Bessède G, Corcos L, Gambert P, Néel D, Lizard G. Comparison of the cytotoxic, pro-oxidant and pro-inflammatory characteristics of different oxysterols. Cell Biol Toxicol 2006; 21:97-114. [PMID: 16142584 DOI: 10.1007/s10565-005-0141-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 02/09/2005] [Indexed: 10/25/2022]
Abstract
Oxidized low-density lipoproteins play important roles in the development of atherosclerosis and contain several lipid-derived, bioactive molecules which are believed to contribute to atherogenesis. Of these, some cholesterol oxidation products, referred to as oxysterols, are suspected to favor the formation of atherosclerotic plaques involving cytotoxic, pro-oxidant and pro-inflammatory processes. Ten commonly occurring oxysterols (7alpha-, 7beta-hydroxycholesterol, 7-ketocholesterol, 19-hydroxycholesterol, cholesterol-5alpha,6alpha-epoxide, cholesterol-5beta,6beta-epoxide, 22R-, 22S-, 25-, and 27-hydroxycholesterol) were studied for both their cytotoxicity and their ability to induce superoxide anion production (O2*-) and IL-8 secretion in U937 human promonocytic leukemia cells. Cytotoxic effects (phosphatidylserine externalization, loss of mitochondrial potential, increased permeability to propidium iodide, and occurrence of cells with swollen, fragmented and/or condensed nuclei) were only identified with 7beta-hydroxycholesterol, 7-ketocholesterol and cholesterol-5beta,6beta-epoxide, which also induce lysosomal destabilization associated or not associated with the formation of monodansylcadaverine-positive cytoplasmic structures. No relationship between oxysterol-induced cytotoxicity and HMG-CoA reductase activity was found. In addition, the highest O2*- overproduction quantified with hydroethidine was identified with 7beta-hydroxycholesterol, 7-ketocholesterol and cholesterol-5beta,6beta-epoxide, with cholesterol-5alpha, 6alpha-epoxide and 25-hydroxycholesterol. The highest capacity to simultaneously stimulate IL-8 secretion (quantified by ELISA and by using a multiplexed, particle-based flow cytometric assay) and enhance IL-8 mRNA levels (determined by RT-PCR) was observed with 7beta-hydroxycholesterol and 25-hydroxycholesterol. None of the effects observed for the oxysterols were detected for cholesterol. Therefore, oxysterols may have cytotoxic, oxidative, and/or inflammatory effects, or none whatsoever.
Collapse
Affiliation(s)
- S Lemaire-Ewing
- Inserm U498, Métabolisme des Lipoprotéines Humaines et Interactions Vasculaires, CHU/Hôpital du Bocage, Dijon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lee JW, Fuda H, Javitt NB, Strott CA, Rodriguez IR. Expression and localization of sterol 27-hydroxylase (CYP27A1) in monkey retina. Exp Eye Res 2006; 83:465-9. [PMID: 16549062 PMCID: PMC2806429 DOI: 10.1016/j.exer.2005.11.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 11/11/2005] [Indexed: 01/11/2023]
Abstract
Sterol 27-hydroxylase (CYP27A1) is a mitochondrial P-450 enzyme with broad substrate specificity for C27 sterols including 7-ketocholesterol (7kCh). CYP27A1 is widely expressed in human tissues but has not been previously demonstrated in the retina. In this study, we examined the expression and localization of CYP27A1 in the monkey retina where it localized mainly to the photoreceptor inner segments. CYP27A1 was also observed in Müller cells with faint immuno staining detected in the RPE and choriocapillaris. We also determined that the 27-hydroxylation of 7-ketocholesterol (27OH7kCh) rendered it non-toxic to cultured RPE cells. Moreover, the 27OH7kCh when mixed with 7-ketocholesterol significantly reduced the toxicity of 7-ketocholesterol. These data, when taken in context of the known functions of CYP27A1 imply that expression in the retina serves to modify the biological activity of oxidized sterols that are either transported or generated locally by photo-oxidation.
Collapse
Affiliation(s)
- Jung Wha Lee
- Section on Mechanisms of Retinal Diseases, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hirotoshi Fuda
- Section on Steroid Regulation, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Norman B. Javitt
- Divisions of Gastroenterology, New York University Medical Center, New York, NY 10016, USA
| | - Charles A. Strott
- Section on Steroid Regulation, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ignacio R. Rodriguez
- Section on Mechanisms of Retinal Diseases, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author. National Eye Institute, NIH, Mechanisms of Retinal Diseases Section, LRCMB, 7 Memorial Drive, MSC0706, Building 7, Room 302, Bethesda, MD 20892, USA. Tel.: +1 301 496 1395; fax: +1 301 402 1883. (I.R. Rodriguez)
| |
Collapse
|
37
|
|
38
|
Rodriguez IR. Rapid analysis of oxysterols by HPLC and UV spectroscopy. Biotechniques 2005; 36:952-4, 956, 958. [PMID: 15211745 DOI: 10.2144/04366bm06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Nelson TJ, Alkon DL. Oxidation of cholesterol by amyloid precursor protein and beta-amyloid peptide. J Biol Chem 2004; 280:7377-87. [PMID: 15591071 DOI: 10.1074/jbc.m409071200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by accumulation of the neurotoxic peptide beta-amyloid, which is produced by proteolysis of amyloid precursor protein (APP). APP is a large membrane-bound copper-binding protein that is essential in maintaining synaptic function and may play a role in synaptogenesis. beta-Amyloid has been shown to contribute to the oxidative stress that accompanies AD. Later stages of AD are characterized by neuronal apoptosis. However, the biochemical function of APP and the mechanism of the toxicity of beta-amyloid are still unclear. In this study, we show that both beta-amyloid and APP can oxidize cholesterol to form 7beta-hydroxycholesterol, a proapoptotic oxysterol that was neurotoxic at nanomolar concentrations. 7beta-Hydroxycholesterol inhibited secretion of soluble APP from cultured rat hippocampal H19-7/IGF-IR neuronal cells and inhibited tumor necrosis factor-alpha-converting enzyme alpha-secretase activity but had no effect on beta-site APP-cleaving enzyme 1 activity. 7beta-Hydroxycholesterol was also a potent inhibitor of alpha-protein kinase C, with a K(i) of approximately 0.2 nm. The rate of reaction between cholesterol and beta-amyloid was comparable to the rates of cholesterol-metabolizing enzymes (k(cat) = 0.211 min(-)1). The rate of production of 7beta-hydroxycholesterol by APP was approximately 200 times lower than by beta-amyloid. Oxidation of cholesterol was accompanied by stoichiometric production of hydrogen peroxide and required divalent copper. The results suggest that a function of APP may be to produce low levels of 7-hydroxycholesterol. Higher levels produced by beta-amyloid could contribute to the oxidative stress and cell loss observed in Alzheimer's disease.
Collapse
Affiliation(s)
- Thomas J Nelson
- Blanchette Rockefeller Neurosciences Institute, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
40
|
Yoshida Y, Ito N, Shimakawa S, Niki E. Susceptibility of plasma lipids to peroxidation. Biochem Biophys Res Commun 2003; 305:747-53. [PMID: 12763056 DOI: 10.1016/s0006-291x(03)00813-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lipid peroxidation is an old and yet novel subject. It induces membrane disturbance and damage and its products are known to induce the generation of various cytokines and cell signaling. In the present work, the susceptibility and specificity of human plasma lipids to oxidation were studied, aiming specifically at elucidating the effects of oxidation milieu and oxidants. Cholesteryl esters (CEs) and phosphatidylcholines (PCs) were more readily oxidized in plasma than in organic solution under similar conditions. The susceptibilities of PC and free cholesterol (FC) relative to CE to free radical-mediated lipid peroxidation induced by peroxyl radicals and peroxynitrite were smaller in plasma than in organic solution. The higher rate of CE oxidation by free radicals than PC may be accounted for by the physical effects as well as higher content of polyunsaturated lipids in CE than PC. On the contrary, PC was more readily oxidized than CE by lipoxygenases. The lipid hydroperoxides were stable in organic solution but reduced to the corresponding hydroxides in plasma, the rate being much faster for PC hydroperoxides than for CE and FC hydroperoxides. It was confirmed that free radical-mediated oxidation gave both cis,trans and trans,trans, racemic, random hydroperoxides, while that by lipoxygenase gave only regio- and stereo-specific cis,trans-hydroperoxide.
Collapse
Affiliation(s)
- Yasukazu Yoshida
- Human Stress Signal Research Center, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | | | | | | |
Collapse
|
41
|
Zhang Y, Yu C, Liu J, Spencer TA, Chang CCY, Chang TY. Cholesterol is superior to 7-ketocholesterol or 7 alpha-hydroxycholesterol as an allosteric activator for acyl-coenzyme A:cholesterol acyltransferase 1. J Biol Chem 2003; 278:11642-7. [PMID: 12533546 DOI: 10.1074/jbc.m211559200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We compared the abilities of cholesterol versus various oxysterols as substrate and/or as activator for the enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT), by monitoring the activity of purified human ACAT1 in response to sterols solubilized in mixed micelles or in reconstituted vesicles. The results showed that 5 alpha,6 alpha-epoxycholesterol and 7 alpha-hydroxycholesterol are comparable with cholesterol as the favored substrates, whereas 7-ketocholesterol, 7 beta-hydroxycholesterol, 5 beta,6 beta-epoxycholesterol, and 24(S),25-epoxycholesterol are very poor substrates for the enzyme. We then tested the ability of 7-ketocholesterol as an activator when cholesterol was measured as the substrate, and vice versa. When cholesterol was measured as the substrate, the addition of 7-ketocholesterol could not activate the enzyme. In contrast, when 7-ketocholesterol was measured as the substrate, the addition of cholesterol significantly activated the enzyme and changed the shape of the substrate saturation curve from sigmoidal to essentially hyperbolic. Additional results show that, as an activator, cholesterol is much better than all the oxysterols tested. These results suggest that ACAT1 contains two types of sterol binding sites; the structural requirement for the ACAT activator site is more stringent than it is for the ACAT substrate site. Upon activation by cholesterol, ACAT1 becomes promiscuous toward various sterols as its substrate.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Karl Bodin
- Department of Medical Laboratory Sciences and Technology, Division of Clinical Chemistry, Karolinska Institutet, Huddinge University Hospital, Huddinge, Sweden
| | - Ulf Diczfalusy
- Department of Medical Laboratory Sciences and Technology, Division of Clinical Chemistry, Karolinska Institutet, Huddinge University Hospital, Huddinge, Sweden
| |
Collapse
|
43
|
Chancharme L, Thérond P, Nigon F, Zarev S, Mallet A, Bruckert E, Chapman MJ. LDL particle subclasses in hypercholesterolemia: molecular determinants of reduced lipid hydroperoxide stability. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30152-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
44
|
Garcia-Cruset S, Carpenter KL, Guardiola F, Stein BK, Mitchinson MJ. Oxysterol profiles of normal human arteries, fatty streaks and advanced lesions. Free Radic Res 2001; 35:31-41. [PMID: 11697115 DOI: 10.1080/10715760100300571] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Human atherosclerotic lesions of different stages have quantitative differences in cholesterol and oxysterol content, but information on the oxysterol profile in fatty streaks is limited. This study aims to provide more detailed oxysterol quantification in human fatty streaks, as well as normal aorta and advanced lesions. METHODS A newly adapted method was used, including oxysterol purification by means of a silica cartridge; and it was ensured that artifactual oxysterol formation was kept to a minimum. Cholesterol and oxysterols were estimated by GC and identification confirmed by GC-MS in samples of normal human arterial intima, intima with near-confluent fatty streaks and advanced lesions, in necropsy samples. RESULTS The oxysterols 7 alpha-hydroxycholesterol, cholesterol-5 beta, 6 beta-epoxide, cholesterol-5 alpha, 6 alpha-epoxide, 7 beta-hydroxycholesterol, 7-ketocholesterol and 27-hydroxycholesterol (formerly known as 26-hydroxycholesterol) were found in all the lesions, but were at most very low in the normal aorta, both when related to wet weight and when related to cholesterol. Most components of the normal artery showed some cross-correlation on linear regression analysis, but cross-correlations were weaker in the fatty streaks and advanced lesions. However, in fatty streak there was a marked positive correlation between 27-hydroxycholesterol and cholesterol. CONCLUSION The findings confirm that oxysterols are present in fatty streaks and advanced lesions and may arise from different cholesterol oxidation mechanisms, including free radical-mediated oxidation and enzymatic oxidation.
Collapse
Affiliation(s)
- S Garcia-Cruset
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | |
Collapse
|
45
|
Maor I, Kaplan M, Hayek T, Vaya J, Hoffman A, Aviram M. Oxidized monocyte-derived macrophages in aortic atherosclerotic lesion from apolipoprotein E-deficient mice and from human carotid artery contain lipid peroxides and oxysterols. Biochem Biophys Res Commun 2000; 269:775-80. [PMID: 10720491 DOI: 10.1006/bbrc.2000.2359] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress is thought to play an important role in atherogenesis. The present study demonstrated, for the first time, that macrophages (originally derived from blood monocytes) isolated from aortas of the atherosclerotic apolipoprotein E deficient (E degrees ) mice or from human carotid artery, are oxidized as they contain lipid peroxides and oxysterols. The major oxysterol in arterial macrophages was found to be 7-ketocholesterol (51% of total oxysterols). To find out whether lipid peroxidation of monocytes occurs in vivo already in the blood, we analyzed the oxidative state of monocytes derived from E degrees mice in comparison to monocytes from control mice. Cellular lipid peroxides and total oxysterols were four and sevenfold higher respectively, in monocytes derived from E degrees mice in comparison to monocytes from control mice. The results of the present study thus demonstrated the presence of lipid-peroxidized monocytes already in the blood, which are further oxidized in the arterial wall after their conversion into macrophages. The arterial oxidized macrophages could be considered key contributors to foam cell formation, the hallmark of early atherosclerosis.
Collapse
Affiliation(s)
- I Maor
- Lipid Research Laboratory, The Rappaport Family Institute for Research in the Medical Sciences and Rambam Medical Center, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Oxygenated derivatives of cholesterol (oxysterols) present a remarkably diverse profile of biological activities, including effects on sphingolipid metabolism, platelet aggregation, apoptosis, and protein prenylation. The most notable oxysterol activities center around the regulation of cholesterol homeostasis, which appears to be controlled in part by a complex series of interactions of oxysterol ligands with various receptors, such as the oxysterol binding protein, the cellular nucleic acid binding protein, the sterol regulatory element binding protein, the LXR nuclear orphan receptors, and the low-density lipoprotein receptor. Identification of the endogenous oxysterol ligands and elucidation of their enzymatic origins are topics of active investigation. Except for 24, 25-epoxysterols, most oxysterols arise from cholesterol by autoxidation or by specific microsomal or mitochondrial oxidations, usually involving cytochrome P-450 species. Oxysterols are variously metabolized to esters, bile acids, steroid hormones, cholesterol, or other sterols through pathways that may differ according to the type of cell and mode of experimentation (in vitro, in vivo, cell culture). Reliable measurements of oxysterol levels and activities are hampered by low physiological concentrations (approximately 0.01-0.1 microM plasma) relative to cholesterol (approximately 5,000 microM) and by the susceptibility of cholesterol to autoxidation, which produces artifactual oxysterols that may also have potent activities. Reports describing the occurrence and levels of oxysterols in plasma, low-density lipoproteins, various tissues, and food products include many unrealistic data resulting from inattention to autoxidation and to limitations of the analytical methodology. Because of the widespread lack of appreciation for the technical difficulties involved in oxysterol research, a rigorous evaluation of the chromatographic and spectroscopic methods used in the isolation, characterization, and quantitation of oxysterols has been included. This review comprises a detailed and critical assessment of current knowledge regarding the formation, occurrence, metabolism, regulatory properties, and other activities of oxysterols in mammalian systems.
Collapse
Affiliation(s)
- G J Schroepfer
- Departments of Biochemistry, Rice University, Houston, Texas, USA.
| |
Collapse
|
47
|
Rapid analysis of oxidized cholesterol derivatives by high-performance liquid chromatography combined with diode-array ultraviolet and evaporative laser light-scattering detection. J AM OIL CHEM SOC 1999. [DOI: 10.1007/s11746-999-0078-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Zarev S, Thérond P, Bonnefont-Rousselot D, Beaudeux JL, Gardès-Albert M, Legrand A. Major differences in oxysterol formation in human low density lipoproteins (LDLs) oxidized by *OH/O2*- free radicals or by copper. FEBS Lett 1999; 451:103-8. [PMID: 10371147 DOI: 10.1016/s0014-5793(99)00564-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of our study was to determine the oxysterol formation in low density lipoproteins (LDLs) oxidized by defined oxygen free radicals (*OH/O2*-). This was compared to the oxysterol produced upon the classical copper oxidation procedure. The results showed a markedly lower formation of oxysterols induced by *OH/O2*- free radicals than by copper and thus suggested a poor ability of these radicals to initiate cholesterol oxidation in LDLs. Moreover, the molecular species of cholesteryl ester hydroperoxides produced by LDL copper oxidation seemed more labile than those formed upon *OH/O2*(-)-induced oxidation, probably due to their degradation by reaction with copper ions.
Collapse
Affiliation(s)
- S Zarev
- Laboratoire de Biochimie Métabolique et Clinique, Faculté de Pharmacie, Paris, France
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Oxysterols are present in human atherosclerotic plaque and are suggested to play an active role in plaque development. Moreover, the oxysterol:cholesterol ratio in plaque is much higher than in normal tissues or plasma. Oxysterols in plaque are derived both non-enzymically, either from the diet and/or from in vivo oxidation, or (e.g. 27-hydroxycholesterol) are formed enzymically during cholesterol catabolism. While undergoing many of the same reactions as cholesterol, such as being esterified by cells and in plasma, certain oxysterols in some animal and in vitro models exhibit far more potent effects than cholesterol per se. In vitro, oxysterols perturb several aspects of cellular cholesterol homeostasis (including cholesterol biosynthesis, esterification, and efflux), impair vascular reactivity and are cytotoxic and/or induce apoptosis. Injection of relatively large doses of oxysterols into animals causes acute angiotoxicity whereas oxysterol-feeding experiments have yielded contrary results as far as their atherogenicity is concerned. There is no direct evidence yet in humans that oxysterols contribute to atherogenesis. However, oxysterol levels are elevated in human low-density lipoprotein (LDL) subfractions that are considered potentially atherogenic and two recent studies have indicated that raised plasma levels of a specific oxysterol (7beta-hydroxycholesterol) may be associated with an increased risk of atherosclerosis. At the present time there are a number of significant and quite widespread problems with current literature which preclude more than a tentative suggestion that oxysterols have a causal role in atherogenesis. Further studies are necessary to definitively determine the role of oxysterols in atherosclerosis, and considering the wide-ranging tissue levels reported in the literature, special emphasis is needed on their accurate analysis, especially in view of the susceptibility of the parent cholesterol to artifactual oxidation.
Collapse
Affiliation(s)
- A J Brown
- Cell Biology Group, Heart Research Institute, Sydney, NSW, Australia. brown&
| | | |
Collapse
|
50
|
Carroll JN, Pinkerton FD, Su X, Gerst N, Wilson WK, Schroepfer GJ. Sterol synthesis. Synthesis of 3 beta-hydroxy-25,26,26,26,27,27,27-heptafluorocholest-5-en-7-one and its effects on HMG-CoA reductase activity in Chinese hamster ovary cells, on ACAT activity in rat jejunal microsomes, and serum cholesterol levels in rats. Chem Phys Lipids 1998; 94:209-25. [PMID: 9779586 DOI: 10.1016/s0009-3084(98)00058-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
3 beta-Hydroxycholest-5-en-7-one (I; 7-ketocholesterol) is an oxysterol of continuing interest in biology and medicine. In the present study, we have prepared a side-chain fluorinated analog, 3 beta-hydroxy-25,26,26,26,27,27,27-heptafluorocholest-5-en-7-one (VI), with the anticipation that the F7 substitution would block major metabolism of the 7-ketosterol, and thereby enhance its potential in vivo effects on serum cholesterol levels and other parameters. Chromium trioxide/dimethyl pyrazole oxidation of the acetate derivative of the previously described 25,26,26,26,27,27,27-heptafluorocholest-5-en-3 beta-ol (Swaminathan et al., 1993. J. Lipid Res. 34, 1805-1823) followed by mild alkaline hydrolysis gave VI. The effects of VI on 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity in Chinese hamster ovary (CHO-K1) cells, on acyl coenzyme A-cholesterol acyltransferase (ACAT) activity in rat jejunal microsomes, and on serum cholesterol levels and other parameters in male Sprague-Dawley rats were determined and compared with those obtained with I and with another alpha, beta-unsaturated ketosterol, i.e. 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one (II). I and VI showed essentially the same potency, considerably less than that of II, in lowering the levels of HMG-CoA reductase activity in CHO-K1 cells. Whereas addition of II to rat jejunal microsomes inhibited ACAT activity (IC50 approximately 3 microM), I and VI had no effect under the conditions studied (from 1 to 16 microM). Dietary administration of I, at levels of 0.1 and 0.15%, had no effect on food consumption, gain in body weight, or serum cholesterol levels. At 0.2%, I caused a modest decrease in body weight gain and a slight decrease in serum cholesterol levels (relative to ad libitum but not pair-fed control animals). The F7-7-ketosterol VI, at 0.26% in diet (the molar equivalent of 0.2% I), had no effect on food consumption, body weight, or serum cholesterol levels. Administration of I (0.1, 0.15 or 0.2% in diet) caused increases in the weight of small intestine. In contrast, no effect of VI (0.26% in diet) on small intestinal weight was observed.
Collapse
Affiliation(s)
- J N Carroll
- Department of Chemistry, Rice University, Houston, TX 77251-1892, USA
| | | | | | | | | | | |
Collapse
|