1
|
Zhao R, Jia N, Wu S, Wen J, Huang Y, Zhao C, Chen W. Therapeutic potential and limitation of condensed and hydrolyzed tannins in Parkinson's disease. Int J Biol Macromol 2025; 307:141814. [PMID: 40057098 DOI: 10.1016/j.ijbiomac.2025.141814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
Parkinson's disease is a complex neurodegenerative disorder characterized by neuroinflammation, mitochondrial dysfunction, and the accumulation of misfolded proteins such as α-synuclein. This review explores the therapeutic potential of tannins, particularly proanthocyanidins and hydrolyzable tannins from grape seeds, in alleviating Parkinson's disease pathology. Condensed tannins exhibit significant antioxidant properties, can cross the blood-brain barrier, reduce oxidative stress, upregulate antioxidant proteins, and prevent neuronal apoptosis. Hydrolyzable tannins, through their unique chemical structure, further help reduce neuroinflammation and improve mitochondrial function. Both types of tannins can modulate inflammatory responses and enhance mitochondrial integrity, addressing key aspects of Parkinson's disease pathogenesis. Tannins possess excellent neuroprotective effects, representing a promising therapeutic approach. However, due to their chemical nature and structural characteristics, the bioavailability of tannins in the human body remains low. Current methods to enhance their bioavailability are limited. Further exploration is needed to improve their bioavailability and strengthen their potential clinical applications. Based on this, new Parkinson's disease treatment strategies can be developed, warranting in-depth research and clinical validation.
Collapse
Affiliation(s)
- Runfan Zhao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nan Jia
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyang Wu
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahui Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yajun Huang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weichao Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Zhuo Y, Zhao YG, Zhang Y. Enhancing Drug Solubility, Bioavailability, and Targeted Therapeutic Applications through Magnetic Nanoparticles. Molecules 2024; 29:4854. [PMID: 39459222 PMCID: PMC11510236 DOI: 10.3390/molecules29204854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Biological variability poses significant challenges in the development of effective therapeutics, particularly when it comes to drug solubility and bioavailability. Poor solubility across varying physiological conditions often leads to reduced absorption and inconsistent therapeutic outcomes. This review examines how nanotechnology, especially through the use of nanomaterials and magnetic nanoparticles, offers innovative solutions to enhance drug solubility and bioavailability. This comprehensive review focuses on recent advancements and approaches in nanotechnology. We highlight both the successes and remaining challenges in this field, emphasizing the role of continued innovation. Future research should prioritize developing universal therapeutic solutions, conducting interdisciplinary research, and leveraging personalized nanomedicine to address biological variability.
Collapse
Affiliation(s)
- Yue Zhuo
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 511442, China;
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yun Zhang
- School of Materials Science and Engineering, NingboTech University, Ningbo 315100, China
| |
Collapse
|
3
|
D'Angelo D, Quarta E, Glieca S, Varacca G, Flammini L, Bertoni S, Brandolini M, Sambri V, Grumiro L, Gatti G, Dirani G, Taddei F, Bianchera A, Sonvico F, Bettini R, Buttini F. An Enhanced Dissolving Cyclosporin-A Inhalable Powder Efficiently Reduces SARS-CoV-2 Infection In Vitro. Pharmaceutics 2023; 15:pharmaceutics15031023. [PMID: 36986883 PMCID: PMC10055879 DOI: 10.3390/pharmaceutics15031023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
This work illustrates the development of a dry inhalation powder of cyclosporine-A for the prevention of rejection after lung transplantation and for the treatment of COVID-19. The influence of excipients on the spray-dried powder's critical quality attributes was explored. The best-performing powder in terms of dissolution time and respirability was obtained starting from a concentration of ethanol of 45% (v/v) in the feedstock solution and 20% (w/w) of mannitol. This powder showed a faster dissolution profile (Weibull dissolution time of 59.5 min) than the poorly soluble raw material (169.0 min). The powder exhibited a fine particle fraction of 66.5% and an MMAD of 2.97 µm. The inhalable powder, when tested on A549 and THP-1, did not show cytotoxic effects up to a concentration of 10 µg/mL. Furthermore, the CsA inhalation powder showed efficiency in reducing IL-6 when tested on A549/THP-1 co-culture. A reduction in the replication of SARS-CoV-2 on Vero E6 cells was observed when the CsA powder was tested adopting the post-infection or simultaneous treatment. This formulation could represent a therapeutic strategy for the prevention of lung rejection, but is also a viable approach for the inhibition of SARS-CoV-2 replication and the COVID-19 pulmonary inflammatory process.
Collapse
Affiliation(s)
- Davide D'Angelo
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Eride Quarta
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Stefania Glieca
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Giada Varacca
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Lisa Flammini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Simona Bertoni
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Martina Brandolini
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy
- Microbiology Unit, The Great Romagna Area Hub Laboratory, Piazza della Liberazione 60, Pievesestina, 47522 Cesena, Italy
| | - Vittorio Sambri
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy
- Microbiology Unit, The Great Romagna Area Hub Laboratory, Piazza della Liberazione 60, Pievesestina, 47522 Cesena, Italy
| | - Laura Grumiro
- Microbiology Unit, The Great Romagna Area Hub Laboratory, Piazza della Liberazione 60, Pievesestina, 47522 Cesena, Italy
| | - Giulia Gatti
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy
| | - Giorgio Dirani
- Microbiology Unit, The Great Romagna Area Hub Laboratory, Piazza della Liberazione 60, Pievesestina, 47522 Cesena, Italy
| | - Francesca Taddei
- Microbiology Unit, The Great Romagna Area Hub Laboratory, Piazza della Liberazione 60, Pievesestina, 47522 Cesena, Italy
| | - Annalisa Bianchera
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| |
Collapse
|
4
|
Chhitij T, Seo JE, Keum T, Noh G, Bashyal S, Lamichhane S, Kim JH, Lee JH, Park JH, Choi J, Song SH, Lee S. Optimized self-microemulsifying drug delivery system improves the oral bioavailability and brain delivery of coenzyme Q 10. Drug Deliv 2022; 29:2330-2342. [PMID: 35850616 PMCID: PMC9848412 DOI: 10.1080/10717544.2022.2100515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Our study aimed to develop a self-microemulsifying drug delivery system for the poorly aqueous-soluble drug Coenzyme Q10, to improve the dissolution and the oral bioavailability. Excipients were selected based on their Coenzyme Q10 solubility, and their concentrations were set for the optimization of the microemulsion by using a D-optimal mixture design to achieve a minimum droplet size and a maximum solubility of Coenzyme Q10 within 15 min. The optimized formulation was composed of an oil (omega-3; 38.55%), a co-surfactant (Lauroglycol® 90; 31.42%), and a surfactant (Gelucire® 44/14; 30%) and exhibited a mean droplet size of 237.6 ± 5.8 nm and a drug solubilization (at 15 min) of 16 ± 2.48%. The drug dissolution of the optimized formulation conducted over 8 h in phosphate buffer medium (pH 6.8) was significantly higher when compared to that of the Coenzyme Q10 suspension. A pharmacokinetic study in rats revealed a 4.5-fold and a 4.1-fold increase in the area under curve and the peak plasma concentration values generated by the optimized formulation respectively, as compared to the Coenzyme Q10 suspension. A Coenzyme Q10 brain distribution study revealed a higher Coenzyme Q10 distribution in the brains of rats treated with the optimized formulation than the Coenzyme Q10 suspension. Coenzyme Q10-loaded self microemulsifying drug delivery system was successfully formulated and optimized by a response surface methodology based on a D-optimal mixture design and could be used as a delivery vehicle for the enhancement of the oral bioavailability and brain distribution of poorly soluble drugs such as Coenzyme Q10.
Collapse
Affiliation(s)
- Thapa Chhitij
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Jo-Eun Seo
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Taekwang Keum
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Gyubin Noh
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Santosh Bashyal
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Shrawani Lamichhane
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Jung Hwan Kim
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Jae Heon Lee
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Jee Hun Park
- R&D Center, Korean Drug Co., Ltd, Seoul, Republic of Korea
| | - Jaewoong Choi
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea,R&D Center, Korean Drug Co., Ltd, Seoul, Republic of Korea
| | - Se Hyun Song
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea
| | - Sangkil Lee
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA,CONTACT Sangkil Lee Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu42601, Republic of Korea, Tel: +82-53-580-6655, FAX: +82-53-580-5164
| |
Collapse
|
5
|
Gulnaz A, Chang JE, Maeng HJ, Shin KH, Lee KR, Chae YJ. A mechanism-based understanding of altered drug pharmacokinetics by gut microbiota. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Kiyota T, Kambayashi A, Takagi T, Yamashita S. Importance of Gastric Secretion and the Rapid Gastric Emptying of Ingested Water along the Lesser Curvature ("Magenstraße") in Predicting the In Vivo Performance of Liquid Oral Dosage Forms in the Fed State Using a Modeling and Simulation. Mol Pharm 2022; 19:642-653. [PMID: 35075899 DOI: 10.1021/acs.molpharmaceut.1c00778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The objective of the present study was to develop an in silico model of the stomach for predicting oral drug absorption in fed humans. We focused on a model capable of simulating dynamic fluid volume changes and included a simulated Magenstraße "stomach road," a route along the lesser curvature that often carries fluids rapidly to assess the gastric emptying of drugs. Two types of model liquid drug formulations, liquid-filled soft gelatin capsules (enzalutamide, cyclosporine, and nifedipine) and oral solutions (levofloxacin and fenfluramine), were used. An in silico model was assembled, and simulations were performed using Stella Professional software. The secretion rate of the gastric juice induced by food ingestion was assessed along with the gastric emptying of the ingested water via the Magenstraße in the fed state. The model for the fed state successfully described the in vivo performance of the model drug formulations. These results clearly indicate the importance of including gastric secretion and the kinetics of Magenstraße when predicting the in vivo performance of dosage forms using an in silico modeling and simulation of fed humans. This simulation model should be further optimized to allow for the different physiological mechanisms following the ingestion of different types of meals, as well as modifications for interindividual and intraindividual variabilities in gastrointestinal physiology in the fed state in the future.
Collapse
Affiliation(s)
- Tsuyoshi Kiyota
- Pharmaceutical Research and Technology Labs, Astellas Pharma Inc., 180 Ozumi, Yaizu, Shizuoka 425-0072, Japan
| | - Atsushi Kambayashi
- Pharmaceutical Research and Technology Labs, Astellas Pharma Inc., 180 Ozumi, Yaizu, Shizuoka 425-0072, Japan.,School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshihide Takagi
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Shinji Yamashita
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
7
|
Best practices in current models mimicking drug permeability in the gastrointestinal tract - an UNGAP review. Eur J Pharm Sci 2021; 170:106098. [PMID: 34954051 DOI: 10.1016/j.ejps.2021.106098] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022]
Abstract
The absorption of orally administered drug products is a complex, dynamic process, dependent on a range of biopharmaceutical properties; notably the aqueous solubility of a molecule, stability within the gastrointestinal tract (GIT) and permeability. From a regulatory perspective, the concept of high intestinal permeability is intrinsically linked to the fraction of the oral dose absorbed. The relationship between permeability and the extent of absorption means that experimental models of permeability have regularly been used as a surrogate measure to estimate the fraction absorbed. Accurate assessment of a molecule's intestinal permeability is of critical importance during the pharmaceutical development process of oral drug products, and the current review provides a critique of in vivo, in vitro and ex vivo approaches. The usefulness of in silico models to predict drug permeability is also discussed and an overview of solvent systems used in permeability assessments is provided. Studies of drug absorption in humans are an indirect indicator of intestinal permeability, but in vitro and ex vivo tools provide initial screening approaches are important tools for direct assessment of permeability in drug development. Continued refinement of the accuracy of in silico approaches and their validation with human in vivo data will facilitate more efficient characterisation of permeability earlier in the drug development process and will provide useful inputs for integrated, end-to-end absorption modelling.
Collapse
|
8
|
Zapke SE, Willmann S, Grebe SO, Menke K, Thürmann PA, Schmiedl S. Comparing Predictions of a PBPK Model for Cyclosporine With Drug Levels From Therapeutic Drug Monitoring. Front Pharmacol 2021; 12:630904. [PMID: 34054518 PMCID: PMC8161189 DOI: 10.3389/fphar.2021.630904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/27/2021] [Indexed: 01/05/2023] Open
Abstract
This study compared simulations of a physiologically based pharmacokinetic (PBPK) model implemented for cyclosporine with drug levels from therapeutic drug monitoring to evaluate the predictive performance of a PBPK model in a clinical population. Based on a literature search model parameters were determined. After calibrating the model using the pharmacokinetic profiles of healthy volunteers, 356 cyclosporine trough levels of 32 renal transplant outpatients were predicted based on their biometric parameters. Model performance was assessed by calculating absolute and relative deviations of predicted and observed trough levels. The median absolute deviation was 6 ng/ml (interquartile range: 30 to 31 ng/ml, minimum = -379 ng/ml, maximum = 139 ng/ml). 86% of predicted cyclosporine trough levels deviated less than twofold from observed values. The high intra-individual variability of observed cyclosporine levels was not fully covered by the PBPK model. Perspectively, consideration of clinical and additional patient-related factors may improve the model's performance. In summary, the current study has shown that PBPK modeling may offer valuable contributions for pharmacokinetic research in clinical drug therapy.
Collapse
Affiliation(s)
- Sonja E Zapke
- Department of Clinical Pharmacology, School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Stefan Willmann
- Bayer AG, Research and Development, Clinical Pharmacometrics, Wuppertal, Germany
| | - Scott-Oliver Grebe
- Medical Clinic 1, Division of Nephrology, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Kristin Menke
- Bayer AG, Research and Development, Systems Pharmacology and Medicine I, Leverkusen, Germany
| | - Petra A Thürmann
- Department of Clinical Pharmacology, School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.,Philipp Klee-Institute for Clinical Pharmacology, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Sven Schmiedl
- Department of Clinical Pharmacology, School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.,Philipp Klee-Institute for Clinical Pharmacology, Helios University Hospital Wuppertal, Wuppertal, Germany
| |
Collapse
|
9
|
Vinarov Z, Abrahamsson B, Artursson P, Batchelor H, Berben P, Bernkop-Schnürch A, Butler J, Ceulemans J, Davies N, Dupont D, Flaten GE, Fotaki N, Griffin BT, Jannin V, Keemink J, Kesisoglou F, Koziolek M, Kuentz M, Mackie A, Meléndez-Martínez AJ, McAllister M, Müllertz A, O'Driscoll CM, Parrott N, Paszkowska J, Pavek P, Porter CJH, Reppas C, Stillhart C, Sugano K, Toader E, Valentová K, Vertzoni M, De Wildt SN, Wilson CG, Augustijns P. Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Adv Drug Deliv Rev 2021; 171:289-331. [PMID: 33610694 DOI: 10.1016/j.addr.2021.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Although oral drug delivery is the preferred administration route and has been used for centuries, modern drug discovery and development pipelines challenge conventional formulation approaches and highlight the insufficient mechanistic understanding of processes critical to oral drug absorption. This review presents the opinion of UNGAP scientists on four key themes across the oral absorption landscape: (1) specific patient populations, (2) regional differences in the gastrointestinal tract, (3) advanced formulations and (4) food-drug interactions. The differences of oral absorption in pediatric and geriatric populations, the specific issues in colonic absorption, the formulation approaches for poorly water-soluble (small molecules) and poorly permeable (peptides, RNA etc.) drugs, as well as the vast realm of food effects, are some of the topics discussed in detail. The identified controversies and gaps in the current understanding of gastrointestinal absorption-related processes are used to create a roadmap for the future of oral drug absorption research.
Collapse
Affiliation(s)
- Zahari Vinarov
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Department of Chemical and Pharmaceutical Engineering, Sofia University, Sofia, Bulgaria
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Philippe Berben
- Pharmaceutical Development, UCB Pharma SA, Braine- l'Alleud, Belgium
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - James Butler
- GlaxoSmithKline Research and Development, Ware, United Kingdom
| | | | - Nigel Davies
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Gøril Eide Flaten
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | | | | | | | | | | | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Basel, Switzerland
| | - Alan Mackie
- School of Food Science & Nutrition, University of Leeds, Leeds, United Kingdom
| | | | | | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Petr Pavek
- Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | | | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Kiyohiko Sugano
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Elena Toader
- Faculty of Medicine, University of Medicine and Pharmacy of Iasi, Romania
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saskia N De Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Song Y, Li C, Liu G, Liu R, Chen Y, Li W, Cao Z, Zhao B, Lu C, Liu Y. Drug-Metabolizing Cytochrome P450 Enzymes Have Multifarious Influences on Treatment Outcomes. Clin Pharmacokinet 2021; 60:585-601. [PMID: 33723723 DOI: 10.1007/s40262-021-01001-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Drug metabolism is a critical process for the removal of unwanted substances from the body. In humans, approximately 80% of oxidative metabolism and almost 50% of the overall elimination of commonly used drugs can be attributed to one or more of various cytochrome P450 (CYP) enzymes from CYP families 1-3. In addition to the basic metabolic effects for elimination, CYP enzymes in vivo are capable of affecting the treatment outcomes in many cases. Drug-metabolizing CYP enzymes are mainly expressed in the liver and intestine, the two principal drug oxidation and elimination organs, where they can significantly influence the drug action, safety, and bioavailability by mediating phase I metabolism and first-pass metabolism. Furthermore, CYP-mediated local drug metabolism in the sites of action may also have the potential to impact drug response, according to the literature in recent years. This article underlines the ability of CYP enzymes to influence treatment outcomes by discussing CYP-mediated diversified drug metabolism in primary metabolic sites (liver and intestine) and typical action sites (brain and tumors) according to their expression levels and metabolic activity. Moreover, intrinsic and extrinsic factors of personal differential CYP phenotypes that contribute to interindividual variation of treatment outcomes are also reviewed to introduce the multifarious pivotal role of CYP-mediated metabolism and clearance in drug therapy.
Collapse
Affiliation(s)
- Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Guangzhi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Baosheng Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
11
|
Dahlgren D, Sjögren E, Lennernäs H. Intestinal absorption of BCS class II drugs administered as nanoparticles: A review based on in vivo data from intestinal perfusion models. ADMET AND DMPK 2020; 8:375-390. [PMID: 35300192 PMCID: PMC8915587 DOI: 10.5599/admet.881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
An established pharmaceutical strategy to increase oral drug absorption of low solubility–high permeability drugs is to create nanoparticles of them. Reducing the size of the solid-state particles increases their dissolution and transport rate across the mucus barrier and the aqueous boundary layer. Suspensions of nanoparticles also sometimes behave differently than those of larger particles in the fed state. This review compares the absorption mechanisms of nano- and larger particles in the lumen at different prandial states, with an emphasis on data derived from in vivo models. Four BSC class II drugs—aprepitant, cyclosporine, danazol and fenofibrate—are discussed in detail based on information from preclinical intestinal perfusion models.
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, Sweden
| | - Erik Sjögren
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, Sweden
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, Sweden
| |
Collapse
|
12
|
Di L, Artursson P, Avdeef A, Benet LZ, Houston JB, Kansy M, Kerns EH, Lennernäs H, Smith DA, Sugano K. The Critical Role of Passive Permeability in Designing Successful Drugs. ChemMedChem 2020; 15:1862-1874. [PMID: 32743945 DOI: 10.1002/cmdc.202000419] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 12/25/2022]
Abstract
Passive permeability is a key property in drug disposition and delivery. It is critical for gastrointestinal absorption, brain penetration, renal reabsorption, defining clearance mechanisms and drug-drug interactions. Passive diffusion rate is translatable across tissues and animal species, while the extent of absorption is dependent on drug properties, as well as in vivo physiology/pathophysiology. Design principles have been developed to guide medicinal chemistry to enhance absorption, which combine the balance of aqueous solubility, permeability and the sometimes unfavorable compound characteristic demanded by the target. Permeability assays have been implemented that enable rapid development of structure-permeability relationships for absorption improvement. Future advances in assay development to reduce nonspecific binding and improve mass balance will enable more accurately measurement of passive permeability. Design principles that integrate potency, selectivity, passive permeability and other ADMET properties facilitate rapid advancement of successful drug candidates to patients.
Collapse
Affiliation(s)
- Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT 06340, USA
| | - Per Artursson
- Department of Pharmacy, Uppsala University, 752 36, Uppsala, Sweden
| | - Alex Avdeef
- in-ADME Research, 1732 First Avenue, #102, New York, NY 10128, USA
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA 94143, USA
| | - J Brian Houston
- Division of Pharmacy & Optometry, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | - Hans Lennernäs
- Department of Pharmacy, Uppsala University, 752 36, Uppsala, Sweden
| | | | - Kiyohiko Sugano
- College of Pharmaceutical Sciences, Department of Pharmacy, Ritsumeikan University, Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
13
|
Chaturvedi S, Verma A, Saharan VA. Lipid Drug Carriers for Cancer Therapeutics: An Insight into Lymphatic Targeting, P-gp, CYP3A4 Modulation and Bioavailability Enhancement. Adv Pharm Bull 2020; 10:524-541. [PMID: 33072532 PMCID: PMC7539309 DOI: 10.34172/apb.2020.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
In the treatment of cancer, chemotherapy plays an important role though the efficacy of anti-cancer drug administered orally is limited, due to their poor solubility in physiological medium, inability to cross biological membrane, high Para-glycoprotein (P-gp) mediated drug efflux, and pre-systemic metabolism. These all factors cumulatively reduce drug exposure at the target site leading to multidrug resistance (MDR). Lipid based carriers systems has been explored to overcome solubility and permeability related issues of anti-cancer drugs. The lipid based formulations have also been reported to circumvent the effect of P-gp and CYP3A4. Further long chain triglycerides (LCT) has shown their ability to access Lymphatic route over Medium Chain Triglycerides, as the former has been extensively used for targeting anti-cancer drugs at proliferating cells through lymphatic route. Therefore this review tries to reflect the usefulness of lipid based drug carriers systems (viz. liposome, solid lipid nanoparticle, nano-lipid carriers, self-emulsifying, lipidic pro-drugs) in targeting lymphatic system and overcoming issues related to solubility and permeability of anti-cancer drugs. Moreover, we have also tried to reflect how critically lipid based carriers are important in maximizing therapeutic safety and efficacy of anti-cancer drugs.
Collapse
Affiliation(s)
- Shashank Chaturvedi
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anurag Verma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Vikas Anand Saharan
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| |
Collapse
|
14
|
Model-Informed Drug Discovery and Development Strategy for the Rapid Development of Anti-Tuberculosis Drug Combinations. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The increasing emergence of drug-resistant tuberculosis requires new effective and safe drug regimens. However, drug discovery and development are challenging, lengthy and costly. The framework of model-informed drug discovery and development (MID3) is proposed to be applied throughout the preclinical to clinical phases to provide an informative prediction of drug exposure and efficacy in humans in order to select novel anti-tuberculosis drug combinations. The MID3 includes pharmacokinetic-pharmacodynamic and quantitative systems pharmacology models, machine learning and artificial intelligence, which integrates all the available knowledge related to disease and the compounds. A translational in vitro-in vivo link throughout modeling and simulation is crucial to optimize the selection of regimens with the highest probability of receiving approval from regulatory authorities. In vitro-in vivo correlation (IVIVC) and physiologically-based pharmacokinetic modeling provide powerful tools to predict pharmacokinetic drug-drug interactions based on preclinical information. Mechanistic or semi-mechanistic pharmacokinetic-pharmacodynamic models have been successfully applied to predict the clinical exposure-response profile for anti-tuberculosis drugs using preclinical data. Potential pharmacodynamic drug-drug interactions can be predicted from in vitro data through IVIVC and pharmacokinetic-pharmacodynamic modeling accounting for translational factors. It is essential for academic and industrial drug developers to collaborate across disciplines to realize the huge potential of MID3.
Collapse
|
15
|
Mathur P, Rawal S, Patel B, Patel MM. Oral Delivery of Anticancer Agents Using Nanoparticulate Drug Delivery System. Curr Drug Metab 2020; 20:1132-1140. [DOI: 10.2174/1389200220666191007154017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 11/22/2022]
Abstract
Background:Conventionally, anti-cancer agents were administered through the intravenous route. The major drawbacks associated with the intravenous route of administration are: severe side effects, need of hospitalization, nursing care, and palliative treatment. In order to overcome the drawbacks associated with the intravenous route of administration, oral delivery of anti-cancer agents has gained tremendous interest among the scientific fraternity. Oral delivery of anti-cancer agents principally leads to a reduction in the overall cost of treatment, and aids in improving the quality of life of patients. Bioavailability of drugs and inter-subject variability are the major concerns with oral administration of anti-cancer agents. Factors viz. physicochemical and biological barriers (pre-systemic metabolism and transmembrane efflux of the drug) are accountable for hampering oral bioavailability of anti-cancer agents can be efficiently overcome by employing nanocarrier based drug delivery systems. Oral delivery of anticancer agents by employing these drug delivery systems will not only improve the quality of life of patients but will also provide pharmacoeconomic advantage and lead to a reduction in the overall cost of treatment of life-threatening disease like cancer.Objective:This article aims to familiarize the readers with some of the recent advancements in the field of nanobased drug delivery systems for oral delivery of anticancer agents.Conclusion:Advancement in the field of nanotechnology-based drug delivery systems has opened up gateways for the delivery of drugs that are difficult to administer orally. Oral delivery of anti-cancer agents by these drug delivery systems will not only improve the quality of life of patients but will also provide pharmacoeconomic advantage and lead to a reduction in the overall cost of treatment of life-threatening disease like cancer.
Collapse
Affiliation(s)
- Prateek Mathur
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382 481, Gujarat, India
| | - Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382 481, Gujarat, India
| | - Bhoomika Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382 481, Gujarat, India
| | - Mayur M. Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382 481, Gujarat, India
| |
Collapse
|
16
|
Fowler S, Chen WLK, Duignan DB, Gupta A, Hariparsad N, Kenny JR, Lai WG, Liras J, Phillips JA, Gan J. Microphysiological systems for ADME-related applications: current status and recommendations for system development and characterization. LAB ON A CHIP 2020; 20:446-467. [PMID: 31932816 DOI: 10.1039/c9lc00857h] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over the last decade, progress has been made on the development of microphysiological systems (MPS) for absorption, distribution, metabolism, and excretion (ADME) applications. Central to this progress has been proof of concept data generated by academic and industrial institutions followed by broader characterization studies, which provide evidence for scalability and applicability to drug discovery and development. In this review, we describe some of the advances made for specific tissue MPS and outline the desired functionality for such systems, which are likely to make them applicable for practical use in the pharmaceutical industry. Single organ MPS platforms will be valuable for modelling tissue-specific functions. However, dynamic organ crosstalk, especially in the context of disease or toxicity, can only be obtained with the use of inter-linked MPS models which will enable scientists to address questions at the intersection of pharmacokinetics (PK) and efficacy, or PK and toxicity. In the future, successful application of MPS platforms that closely mimic human physiology may ultimately reduce the need for animal models to predict ADME outcomes and decrease the overall risk and cost associated with drug development.
Collapse
Affiliation(s)
- Stephen Fowler
- Pharma Research and Early Development, F.Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH4070, Basel, Switzerland
| | | | - David B Duignan
- Department of Drug Metabolism, Pharmacokinetics & Bioanalysis, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, USA
| | - Anshul Gupta
- Amgen Research, 360 Binney St, Cambridge, MA 02141, USA
| | - Niresh Hariparsad
- Department of Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, 50 Northern Ave, Boston, MA, USA
| | - Jane R Kenny
- DMPK, Genentech, 1 DNA Way, South San Francisco 94080, USA
| | | | - Jennifer Liras
- Medicine Design, Pfizer Inc, 1 Portland Ave, Cambridge, MA 02139, USA
| | | | - Jinping Gan
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb R&D, PO Box 4000, Princeton, NJ 08543-4000, USA.
| |
Collapse
|
17
|
Investigations on hepatic and intestinal drug-metabolizing cytochrome P450 enzymes in wild boar compared to domestic swine. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-019-1345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractDrug-metabolizing cytochrome P450 (CYP) enzymes are especially important in wild animals as they are directly exposed to environmental pollutants and bioactive molecules of plants. Our main goal was to monitor the activity of certain CYP enzymes in wild boar compared to domestic swine, and to assess various modulatory factors of xenobiotic biotransformation in wild boar. Liver and intestinal mucosa (duodenum, jejunum, ileum, caecum) samples were collected from 49 hunted free-range wild boars and 15 wild boar fetuses; domestic pig samples (n = 40) were gained from a slaughter house. Specific activity of CYP1A2, CYP2C9, and CYP3A4 enzymes was assessed by luminometric assays. The activity of hepatic CYP1A2 and CYP3A4 enzymes was significantly higher in wild boars than in domestic pigs, while CYP2C9-mediated hepatic metabolism was significantly less intense in wild boars than in pigs. Certain modulatory factors (sex, sexual maturation, and season) were also confirmed in wild boars. The activity of all investigated intestinal CYP enzymes remained under detection level in each gut section in both species. Hepatic CYP2C9 and CYP3A4 enzymes were measurable in wild boar fetuses, but their activity was remarkably lower than in adults. The described interspecies differences might be explained with the altered exposure of wild and domesticated animals to specific CYP modulators. As CYP enzymes in wild boars can be highly influenced by environmental pollutants, following further studies, they may serve as ecotoxicological markers of agricultural or industrial toxicants. Investigating CYP-related drug metabolism in wildlife species can clarify some toxicokinetic interactions, thus having huge importance in the production of safe game meat.
Collapse
|
18
|
Breaking the barricade of oral chemotherapy through polysaccharide nanocarrier. Int J Biol Macromol 2019; 130:34-49. [DOI: 10.1016/j.ijbiomac.2019.02.094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/10/2019] [Accepted: 02/15/2019] [Indexed: 01/19/2023]
|
19
|
The mechanisms of pharmacokinetic food-drug interactions - A perspective from the UNGAP group. Eur J Pharm Sci 2019; 134:31-59. [PMID: 30974173 DOI: 10.1016/j.ejps.2019.04.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
The simultaneous intake of food and drugs can have a strong impact on drug release, absorption, distribution, metabolism and/or elimination and consequently, on the efficacy and safety of pharmacotherapy. As such, food-drug interactions are one of the main challenges in oral drug administration. Whereas pharmacokinetic (PK) food-drug interactions can have a variety of causes, pharmacodynamic (PD) food-drug interactions occur due to specific pharmacological interactions between a drug and particular drinks or food. In recent years, extensive efforts were made to elucidate the mechanisms that drive pharmacokinetic food-drug interactions. Their occurrence depends mainly on the properties of the drug substance, the formulation and a multitude of physiological factors. Every intake of food or drink changes the physiological conditions in the human gastrointestinal tract. Therefore, a precise understanding of how different foods and drinks affect the processes of drug absorption, distribution, metabolism and/or elimination as well as formulation performance is important in order to be able to predict and avoid such interactions. Furthermore, it must be considered that beverages such as milk, grapefruit juice and alcohol can also lead to specific food-drug interactions. In this regard, the growing use of food supplements and functional food requires urgent attention in oral pharmacotherapy. Recently, a new consortium in Understanding Gastrointestinal Absorption-related Processes (UNGAP) was established through COST, a funding organisation of the European Union supporting translational research across Europe. In this review of the UNGAP Working group "Food-Drug Interface", the different mechanisms that can lead to pharmacokinetic food-drug interactions are discussed and summarised from different expert perspectives.
Collapse
|
20
|
Tian X, Chang Y, Wei J, Liu R, Wang L, Zhang J, Zhang X. Baicalin reduces ciclosporin bioavailability by inducing intestinal p-glycoprotein in rats. J Pharm Pharmacol 2019; 71:788-796. [PMID: 30663770 DOI: 10.1111/jphp.13067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022]
Abstract
Abstract
Objectives
To investigate the effects of multiple doses of baicalin (BG) on the pharmacokinetics of ciclosporin (CsA) in rats and the potential mechanisms.
Methods
Pharmacokinetic parameters of CsA were determined in male rats after administration of CsA (3 mg/kg, i.g. or i.v.) to rats in the presence and absence of BG (80 mg/kg, i.g. or i.v.) for 7 days. The livers and intestines of rats were isolated and the CYP3A and p-glycoprotein (P-gp) expression were analysed. The effect of BG on the intestinal absorptive behaviour of CsA was also investigated using in-vitro everted rat gut sac model.
Key findings
Baicalin (80 mg/kg, i.v., 7 days) had no effect on the intravenously administered CsA. However, BG (80 mg/kg, i.g., 7 days) significantly decreased the Cmax, AUC0–t and AUC0–∞ of orally administered CsA by 38, 26 and 25%, respectively (P < 0.01 or P < 0.05). Further study revealed that the expression of P-gp in intestine increased in oral multiple doses of BG-treated rats. The in-vitro everted rat gut sac model demonstrated BG (10 μm) significantly decreased the absorption of CsA (10 μm) in intestine (P < 0.05).
Conclusions
Multiple doses of BG decreased the oral bioavailability of CsA in rats significantly, which may be mainly attributable to inhibition of absorption of CsA in intestine and induction of P-gp. The interaction between BG and CsA may occur when BG and CsA were co-administered for long-term use. The dosage adjustment and blood concentration monitoring of CsA may be required in clinic.
Collapse
Affiliation(s)
- Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Chang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jingyao Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Ruijuan Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Li Wang
- Institute of Translational Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ji Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Enright EF, Govindarajan K, Darrer R, MacSharry J, Joyce SA, Gahan CGM. Gut Microbiota-Mediated Bile Acid Transformations Alter the Cellular Response to Multidrug Resistant Transporter Substrates in Vitro: Focus on P-glycoprotein. Mol Pharm 2018; 15:5711-5727. [PMID: 30388019 DOI: 10.1021/acs.molpharmaceut.8b00875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pharmacokinetic research at the host-microbe interface has been primarily directed toward effects on drug metabolism, with fewer investigations considering the absorption process. We previously demonstrated that the transcriptional expression of genes encoding intestinal transporters involved in lipid translocation are altered in germ-free and conventionalized mice possessing distinct bile acid signatures. It was consequently hypothesized that microbial bile acid metabolism, which is the deconjugation and dehydroxylation of the bile acid steroid nucleus by gut bacteria, may impact upon drug transporter expression and/or activity and potentially alter drug disposition. Using a panel of three human intestinal cell lines (Caco-2, T84, and HT-29) that differ in basal transporter expression level, bile acid conjugation-, and hydroxylation-status was shown to influence the transcription of genes encoding several major influx and efflux transporter proteins. We further investigated if these effects on transporter mRNA would translate to altered drug disposition and activity. The results demonstrated that the conjugation and hydroxylation status of the bile acid steroid nucleus can influence the cellular response to multidrug resistance (MDR) substrates, a finding that did not directly correlate with directionality of gene or protein expression. In particular, we noted that the cytotoxicity of cyclosporine A was significantly augmented in the presence of the unconjugated bile acids deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) in P-gp positive cell lines, as compared to their taurine/glycine-conjugated counterparts, implicating P-gp in the molecular response. Overall this work identifies a novel mechanism by which gut microbial metabolites may influence drug accumulation and suggests a potential role for the microbial bile acid-deconjugating enzyme bile salt hydrolase (BSH) in ameliorating multidrug resistance through the generation of bile acid species with the capacity to access and inhibit P-gp ATPase. The physicochemical property of nonionization is suggested to underpin the preferential ability of unconjugated bile acids to attenuate the efflux of P-gp substrates and to sensitize tumorigenic cells to cytotoxic therapeutics in vitro. This work provides new impetus to investigate whether perturbation of the gut microbiota, and thereby the bile acid component of the intestinal metabolome, could alter drug pharmacokinetics in vivo. These findings may additionally contribute to the development of less toxic P-gp modulators, which could overcome MDR.
Collapse
Affiliation(s)
- Elaine F Enright
- School of Pharmacy , ‡APC Microbiome Ireland , §School of Biochemistry and Cell Biology , ∥School of Microbiology , ⊥School of Medicine , University College Cork , Cork , Ireland
| | | | | | | | | | - Cormac G M Gahan
- School of Pharmacy , ‡APC Microbiome Ireland , §School of Biochemistry and Cell Biology , ∥School of Microbiology , ⊥School of Medicine , University College Cork , Cork , Ireland
| |
Collapse
|
22
|
Fritz A, Busch D, Lapczuk J, Ostrowski M, Drozdzik M, Oswald S. Expression of clinically relevant drug-metabolizing enzymes along the human intestine and their correlation to drug transporters and nuclear receptors: An intra-subject analysis. Basic Clin Pharmacol Toxicol 2018; 124:245-255. [PMID: 30253071 DOI: 10.1111/bcpt.13137] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/18/2018] [Indexed: 12/23/2022]
Abstract
The oral bioavailability of many drugs is highly influenced not only by hepatic but also by intestinal biotransformation. To estimate the impact of intestinal phase I and II metabolism on oral drug absorption, knowledge on the expression levels of the respective enzymes is an essential prerequisite. In addition, the potential interplay of metabolism and transport contributes to drug disposition. Both mechanisms may be subjected to coordinative regulation by nuclear receptors, leading to unwanted drug-drug interactions due to induction of intestinal metabolism and transport. Thus, it was the aim of this study to comprehensively analyse the regional expression of clinically relevant phase I and II enzymes along the entire human intestine and to correlate these data to expression data of drug transporters and nuclear receptors of pharmacokinetic relevance. Gene expression of 11 drug-metabolizing enzymes (CYP2B6, 2C8, 2C9, 2C19, 2D6, 3A4, 3A5, SULT1A, UGT1A, UGT2B7, UGT2B15) was studied in duodenum, jejunum, ileum and colon from six organ donors by real-time RT-PCR. Enzyme expression was correlated with expression data of the nuclear receptors PXR, CAR and FXR as well as drug transporters observed in the same cohort. Intestinal expression of all studied metabolizing enzymes was significantly higher in the small intestine compared to colonic tissue. CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4/5, SULT1A, UGT1A and UGT2B7 expression increased from the duodenum to jejunum but was markedly lower in the ileum. In the small intestine, that is, the predominant site of drug absorption, the highest expression has been observed for CYP3A4, CYP2C9, SULT1A and UGT1A. In addition, significant correlations were found between several enzymes and PXR as well as ABC transporters in the small intestine. In conclusion, the observed substantial site-dependent intestinal expression of several enzymes may explain regional differences in intestinal drug absorption. The detected correlations between intestinal enzymes, transporters and nuclear receptors provide indirect evidence for their coordinative expression, regulation and function in the human small intestine.
Collapse
Affiliation(s)
- Anja Fritz
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | - Diana Busch
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | - Joanna Lapczuk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Marek Ostrowski
- Department of General and Transplantation Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Stefan Oswald
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
23
|
Alqahtani S, Bukhari I, Albassam A, Alenazi M. An update on the potential role of intestinal first-pass metabolism for the prediction of drug–drug interactions: the role of PBPK modeling. Expert Opin Drug Metab Toxicol 2018; 14:625-634. [DOI: 10.1080/17425255.2018.1482277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Saeed Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Clinical Pharmacokinetics and Pharmacodynamics Unit, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Ishfaq Bukhari
- Department of Pharmacology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Albassam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Maha Alenazi
- Pharmacy Department, Prince Sultan Cardiac Center, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Benet LZ. Predicting Pharmacokinetics/Pharmacodynamics in the Individual Patient: Separating Reality From Hype. J Clin Pharmacol 2018; 58:979-989. [DOI: 10.1002/jcph.1105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/24/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Leslie Z. Benet
- University of California San Francisco, Department of Bioengineering and Therapeutic Sciences; Schools of Pharmacy and Medicine; San Francisco CA USA
| |
Collapse
|
25
|
Satoh D, Abe S, Kobayashi K, Nakajima Y, Oshimura M, Kazuki Y. Human and mouse artificial chromosome technologies for studies of pharmacokinetics and toxicokinetics. Drug Metab Pharmacokinet 2018; 33:17-30. [DOI: 10.1016/j.dmpk.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/29/2017] [Accepted: 12/21/2017] [Indexed: 12/27/2022]
|
26
|
Effects of tomato juice on the pharmacokinetics of CYP3A4-substrate drugs. Asian J Pharm Sci 2017; 12:464-469. [PMID: 32104359 PMCID: PMC7032185 DOI: 10.1016/j.ajps.2017.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 04/29/2017] [Accepted: 05/08/2017] [Indexed: 01/10/2023] Open
Abstract
We previously demonstrated that tomato juice (TJ) contains potent mechanism-based inhibitor(s) of CYP3A4. In this study, we investigated the effects of TJ and grapefruit juice (GFJ) on the pharmacokinetics of the CYP3A4-substrate drugs, nifedipine (NFP) and midazolam (MDZ), in male Wistar rats. Oral administration of GFJ 90 min before the intraduodenal administration of NFP or MDZ increased the area under the concentration–time curves (AUCs) of NFP and MDZ by 32.4% and 89.4%, respectively. TJ increased MDZ blood concentrations and AUC after intraduodenal MDZ administration; however, it had no effect on NFP. When MDZ and NFP were intravenously administered, GFJ significantly increased the AUC of MDZ, but only slightly increased that of NFP. In contrast, TJ only slightly increased the AUC of MDZ. These results suggest that, similar to GFJ, TJ influences the pharmacokinetics of CYP3A4-substrate drugs; however, it may be a drug-dependent partial effect.
Collapse
Key Words
- 13-oxo-ODA, 13-oxo-9,11-octadecadenoic acid
- 9-oxo-ODA, 9-oxo-10,12-octadecadienoic acid
- AUC, area under the concentration–time curve
- CYP, cytochrome P450
- Food–drug interactions
- GFJ, grapefruit juice
- Grapefruit juice
- MDZ, midazolam
- Midazolam
- NFP, nifedipine
- Nifedipine
- Pharmacokinetic interactions
- TJ, tomato juice
- Tomato juice
Collapse
|
27
|
Cristofoletti R, Patel N, Dressman JB. Differences in Food Effects for 2 Weak Bases With Similar BCS Drug-Related Properties: What Is Happening in the Intestinal Lumen? J Pharm Sci 2016; 105:2712-2722. [DOI: 10.1016/j.xphs.2015.11.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023]
|
28
|
Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the Rule of 5 and drugability. Adv Drug Deliv Rev 2016; 101:89-98. [PMID: 27182629 PMCID: PMC4910824 DOI: 10.1016/j.addr.2016.05.007] [Citation(s) in RCA: 423] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 12/22/2022]
Abstract
The Rule of 5 methodology appears to be as useful today in defining drugability as when it was proposed, but recognizing that the database that we used includes only drugs that successfully reached the market. We do not view additional criteria necessary nor did we find significant deficiencies in the four Rule of 5 criteria originally proposed by Lipinski and coworkers. BDDCS builds upon the Rule of 5 and can quite successfully predict drug disposition characteristics for drugs both meeting and not meeting Rule of 5 criteria. More recent expansions of classification systems have been proposed and do provide useful qualitative and quantitative predictions for clearance relationships. However, the broad range of applicability of BDDCS beyond just clearance predictions gives a great deal of further usefulness for the combined Rule of 5/BDDCS system.
Collapse
Affiliation(s)
- Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, USA
| | - Chelsea M Hosey
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, USA
| | - Oleg Ursu
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Tudor I Oprea
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
29
|
|
30
|
|
31
|
Dening TJ, Rao S, Thomas N, Prestidge CA. Oral nanomedicine approaches for the treatment of psychiatric illnesses. J Control Release 2015; 223:137-156. [PMID: 26739547 DOI: 10.1016/j.jconrel.2015.12.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/12/2023]
Abstract
Psychiatric illnesses are a leading cause of disability and morbidity globally. However, the preferred orally dosed pharmacological treatment options available for depression, anxiety and schizophrenia are often limited by factors such as low drug aqueous solubility, food effects, high hepatic first-pass metabolism effects and short half-lives. Furthermore, the discovery and development of more effective psychotropic agents has stalled in recent times, with the majority of new drugs reaching the market offering similar efficacy, but suffering from the same oral delivery concerns. As such, the application of nanomedicine formulation approaches to currently available drugs is a viable option for optimizing oral drug delivery and maximizing treatment efficacy. This review focuses on the various delivery challenges encountered by psychotropic drugs, and the ability of nanomedicine formulation strategies to overcome these. Specifically, we critically review proof of concept in vitro and in vivo studies of nanoemulsions/microemulsions, solid lipid nanoparticles, dendrimers, polymeric micelles, nanoparticles of biodegradable polymers and nanosuspensions, and provide new insight into the various mechanisms for improved drug performance. The advantages and limitations of current oral nanomedicine approaches for psychotropic drugs are discussed, which will provide guidance for future research directions and assist in fostering the translation of such delivery systems to the clinical setting. Accordingly, emphasis has been placed on correlating the in vitro/in vivo performance of these nanomedicine approaches with their potential clinical outcomes and benefits for patients.
Collapse
Affiliation(s)
- Tahnee J Dening
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Shasha Rao
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Nicky Thomas
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
32
|
Zhang L, Zhao H, Liu Y, Dong H, Lv B, Fang M, Zhao H. Metabolic routes along digestive system of licorice: multicomponent sequential metabolism method in rat. Biomed Chromatogr 2015; 30:902-12. [DOI: 10.1002/bmc.3626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/16/2015] [Accepted: 09/25/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Lei Zhang
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing People's Republic of China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica; China Academy of Chinese Medical Sciences; Beijing People's Republic of China
| | - Yang Liu
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing People's Republic of China
| | - Honghuan Dong
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing People's Republic of China
| | - Beiran Lv
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing People's Republic of China
| | - Min Fang
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing People's Republic of China
| | - Huihui Zhao
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing People's Republic of China
| |
Collapse
|
33
|
Ikemura K. [Molecular Biological Analysis of Factors Influencing Pharmacokinetics to Achieve Personalized Pharmacotherapy]. YAKUGAKU ZASSHI 2015; 135:1037-41. [PMID: 26329549 DOI: 10.1248/yakushi.15-00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Large individual variations in drug efficacy and safety could be explained in part by pharmacokinetics regulated by drug transporters and drug-metabolizing enzymes. However, expression and/or function of these proteins often fluctuate in pathological conditions, causing individual pharmacokinetic variability. To achieve a personalized pharmacotherapy after liver transplantation, our group has been investigating the pharmacokinetics of drugs and factors causing its variation based on molecular biological analysis using rats with liver ischemia-reperfusion (I/R) injury as a model for injuries immediately after liver transplantation. The first finding is that the oral bioavailability of cyclosporine A (CsA), which is an immunosuppressant, was decreased by increased first-pass metabolism due to elevated CYP3A and P-glycoprotein (P-gp) specifically in the upper small intestine after liver I/R. Expression of CYP3A in the small intestine was also elevated through transcriptional regulation by endogenous bile acids, whereas expression and function of intestinal P-gp were increased by post-transcriptional regulation via microRNA-145. Next, the pharmacokinetics of a cationic drug, cimetidine, which is eliminated from the kidney, and the expressional variation of drug transporters in the kidney after liver I/R were examined. Liver I/R decreased tubular secretion of cimetidine, mainly because of decreased expression of rat organic cation transporter 2 in the kidney. These findings provide useful information on the etiology of liver I/R injury and appropriate use of immunosuppressants and drugs eliminated from the kidney after liver transplantation.
Collapse
|
34
|
Linakis MW, Roberts JK, Lala AC, Spigarelli MG, Medlicott NJ, Reith DM, Ward RM, Sherwin CMT. Challenges Associated with Route of Administration in Neonatal Drug Delivery. Clin Pharmacokinet 2015; 55:185-96. [DOI: 10.1007/s40262-015-0313-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Nakazawa R, Sato Y, Sasaki H, Shibagaki Y, Kimura K, Chikaraishi T. Pharmacokinetic analysis of cyclosporine in a renal transplant recipient with congenital absence of the portal vein. Int J Urol 2015; 22:785-7. [DOI: 10.1111/iju.12830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 04/29/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Ryuto Nakazawa
- Department of Urology; St. Marianna University School of Medicine; Kawasaki Japan
| | - Yuichi Sato
- Department of Urology; St. Marianna University School of Medicine; Kawasaki Japan
| | - Hideo Sasaki
- Department of Urology; St. Marianna University School of Medicine; Kawasaki Japan
| | - Yugo Shibagaki
- Division of Nephrology and Hypertension; Department of Internal Medicine; St. Marianna University School of Medicine; Kawasaki Japan
| | - Kenjiro Kimura
- Division of Nephrology and Hypertension; Department of Internal Medicine; St. Marianna University School of Medicine; Kawasaki Japan
| | - Tatsuya Chikaraishi
- Department of Urology; St. Marianna University School of Medicine; Kawasaki Japan
| |
Collapse
|
36
|
Pingili RB, Pawar AK, Challa SR. Systemic exposure of Paracetamol (acetaminophen) was enhanced by quercetin and chrysin co-administration in Wistar rats andin vitromodel: risk of liver toxicity. Drug Dev Ind Pharm 2015; 41:1793-800. [DOI: 10.3109/03639045.2015.1008012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Khan S, Khan S, Baboota S, Ali J. Immunosuppressive drug therapy – biopharmaceutical challenges and remedies. Expert Opin Drug Deliv 2015; 12:1333-49. [DOI: 10.1517/17425247.2015.1005072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
38
|
Cherniakov I, Domb AJ, Hoffman A. Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects. Expert Opin Drug Deliv 2015; 12:1121-33. [DOI: 10.1517/17425247.2015.999038] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Guan H, Qian D, Ren H, Zhang W, Nie H, Shang E, Duan J. Interactions of pharmacokinetic profile of different parts from Ginkgo biloba extract in rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:758-768. [PMID: 24953034 DOI: 10.1016/j.jep.2014.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 05/20/2014] [Accepted: 06/08/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Extracts from Ginkgo biloba L. leaves confer their therapeutic effects through the synergistic actions of flavonoid and terpenoid components, but some non-flavonoid and non-terpenoid components also exist in this extract. In the study of this paper, an investigation was carried out to compare the pharmacokinetic parameters of fourteen compounds to clarify the influences of non-flavonoid and non-terpenoid fraction (WEF) on the pharmacokinetics profile of the flavonoid fraction (FF) and the terpene lactone fraction (TLF) from Ginkgo biloba extracts. MATERIALS AND METHODS A selective and sensitive UPLC-MS/MS method was established to determine the plasma concentrations of the fourteen compounds to compare the pharmacokinetic parameters after orally administration of FF, TLF, FF-WEF, FF-TLF, TLF-WEF and FF-TLF-WEF with approximately the same dose. At different time points, the concentration of rutin (1), isoquercitrin (2), quercetin 3-O-[4-O-(-β-D-glucosyl)-α-L-rhamnoside] (3), ginkgolide C (4), bilobalide (5), quercitrin (6), ginkgolide B (7), ginkgolide A (8), luteolin (9), quercetin (10), apigenin (11), kaempferol (12), isorhamnetin (13), genkwanin (14) in rat plasma were determined and main pharmacokinetic parameters including T1/2, Tmax, Cmax and AUC were calculated using the DAS 3.2 software package. The statistical analysis was performed using the Student׳s t-test with P<0.05 as the level of significance. RESULTS FF and WEF had no effect on the pharmacokinetic behaviors and parameters of the four terpene lactones, but the pharmacokinetic profiles and parameters of flavonoids changed while co-administered with non-flavonoid components. It was found that Cmax and AUC of six flavonoid aglycones in group FF-WEF, FF-TLF and FF-TLF-WEF had varying degrees of reduction in comparison with group FF, especially in group FF-TLF-WEF. On the contrary, the values of Cmax, Tmax and AUC of four flavonoid glycosides in group FF-TLF-WEF were significantly increased compared with those in group FF. CONCLUSIONS These results indicate that non-flavonoid components in Ginkgo biloba extracts could increase the absorption and improve the bioavailability of flavonoid glycosides but decrease the absorption and reduce the bioavailability of flavonoid aglycones.
Collapse
Affiliation(s)
- HanLiang Guan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hao Ren
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Nie
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Erxing Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
40
|
Fagiolino P, Vázquez M, Ibarra M, Magallanes L, Guevara N, Fotaki N. Sex- and smoke-related differences in gastrointestinal transit of cyclosporin A microemulsion capsules. Eur J Pharm Sci 2014; 63:140-6. [PMID: 25051348 DOI: 10.1016/j.ejps.2014.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/13/2014] [Indexed: 11/16/2022]
Abstract
The aim of this work was to study the effect of the sex and the smoking status on the pharmacokinetics and the bioequivalence assessment of a branded and a generic cyclosporine A microemulsion formulation in soft-gelatin capsule. Sixteen healthy volunteers (eight women and eight men) participated in a CyA bioequivalence study, with nine of the volunteers being smokers. Sandimmun Neoral® (brand formulation; Reference) and Sigmasporin Microral® (generic formulation; Test) were administered under fasting conditions. Pharmacokinetic parameters were calculated through non compartmental analysis. Bioequivalence was declared based on the 90% confidence intervals (90% CI) for the T/R ratio of the geometric means for each parameter. In vitro determination of the capsules opening time was performed in simulated gastric fluid without enzyme with USP Apparatus 2. The extent of absorption was similar between both products for all subjects or each sex-group. The absorption rate was similar for both products when considering all subjects, whereas a significant difference in the TMAX between the two products was observed for the male subjects only, which relates to its slower capsule opening time observed in vitro (12.4 versus 6.0 min). No differences were observed in women that could relate to their slower gastric emptying. Differences in drug exposure were observed between smokers and non-smokers. Sex- and smoke-related differences in the gastrointestinal transit should be considered when the on-set time would be determinant for the treatment success of a drug.
Collapse
Affiliation(s)
- Pietro Fagiolino
- Department of Pharmaceutical Sciences - Faculty of Chemistry, Bioavailability and Bioequivalence Center for Medicine Evaluation, Universidad de la República, Uruguay.
| | - Marta Vázquez
- Department of Pharmaceutical Sciences - Faculty of Chemistry, Bioavailability and Bioequivalence Center for Medicine Evaluation, Universidad de la República, Uruguay
| | - Manuel Ibarra
- Department of Pharmaceutical Sciences - Faculty of Chemistry, Bioavailability and Bioequivalence Center for Medicine Evaluation, Universidad de la República, Uruguay
| | - Laura Magallanes
- Department of Pharmaceutical Sciences - Faculty of Chemistry, Bioavailability and Bioequivalence Center for Medicine Evaluation, Universidad de la República, Uruguay
| | - Natalia Guevara
- Department of Pharmaceutical Sciences - Faculty of Chemistry, Bioavailability and Bioequivalence Center for Medicine Evaluation, Universidad de la República, Uruguay
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, Faculty of Science, University of Bath, United Kingdom
| |
Collapse
|
41
|
Abstract
Concomitant administration of multiple drugs can lead to unanticipated drug interactions and resultant adverse drug events with their associated costs. A more thorough understanding of the different cytochrome P450 isoenzymes and drug transporters has led to new methods to try to predict and prevent clinically relevant drug interactions. There is also an increased recognition of the need to identify the impact of pharmacogenetic polymorphisms on drug interactions. More stringent regulatory requirements have evolved for industry to classify cytochrome inhibitors and inducers, test the effect of drug interactions in the presence of polymorphic enzymes, and evaluate multiple potentially interacting drugs simultaneously. In clinical practice, drug alert software programs have been developed. This review discusses drug interaction mechanisms and strategies for screening and minimizing exposure to drug interactions. We also provide future perspectives for reducing the risk of clinically significant drug interactions.
Collapse
Affiliation(s)
- Cara Tannenbaum
- Université de Montreal, Centre de Recherche de l’Institut universitaire de gériatrie de Montréal,
4565 Queen Mary Road #4824, Montreal, Québec H3W 1W5, Canada
| | - Nancy L Sheehan
- Université de Montréal, and Chronic Viral Illness Service, McGill University Health Centre,
3650 St. Urbain, D2.01, Montréal, Québec H2X 2P4, Canada
| |
Collapse
|
42
|
Abstract
Ciclosporin is a lipophilic cyclic polypeptide with powerful immunosuppressive and immunomodulatory properties that has been used in veterinary medicine for two decades. It is a calcineurin inhibitor whose principal mode of action is to inhibit T cell activation. The drug is principally absorbed from the small intestine and is metabolised in the intestine and liver by the cytochrome P450 enzyme system. Ciclosporin is known to interact with a wide range of pharmacological agents. Numerous studies have demonstrated good efficacy for the management of canine atopic dermatitis and this has been a licensed indication since 2003. In addition to the treatment of atopic dermatitis, it has been used as an aid in the management of numerous other dermatological conditions in animals including perianal fistulation, sebaceous adenitis, pododermatitis, chronic otitis externa and pemphigus foliaceus. This article reviews the mode of action, pharmacokinetics, indications for use and efficacy of ciclosporin in veterinary dermatology.
Collapse
Affiliation(s)
- Peter Forsythe
- The Dermatology Referral Service, 528 Paisley Road West, Glasgow G51 1RN, UK
| | | |
Collapse
|
43
|
Yang Y, Zhang Z, Li S, Ye X, Li X, He K. Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. Fitoterapia 2014; 92:133-47. [DOI: 10.1016/j.fitote.2013.10.010] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 02/07/2023]
|
44
|
Zhao G, Huang J, Xue K, Si L, Li G. Enhanced intestinal absorption of etoposide by self-microemulsifying drug delivery systems: Roles of P-glycoprotein and cytochrome P450 3A inhibition. Eur J Pharm Sci 2013; 50:429-39. [DOI: 10.1016/j.ejps.2013.08.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/16/2013] [Accepted: 08/10/2013] [Indexed: 12/20/2022]
|
45
|
Perspectives on a pharmacokinetics legend: C versus T (contributions over time). J Pharm Sci 2013; 102:2889-94. [DOI: 10.1002/jps.23628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 11/07/2022]
|
46
|
Cho HJ, Kim JE, Kim DD, Yoon IS. In vitro–in vivoextrapolation (IVIVE) for predicting human intestinal absorption and first-pass elimination of drugs: principles and applications. Drug Dev Ind Pharm 2013; 40:989-98. [DOI: 10.3109/03639045.2013.831439] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Lennernäs H. Regional intestinal drug permeation: biopharmaceutics and drug development. Eur J Pharm Sci 2013; 57:333-41. [PMID: 23988845 DOI: 10.1016/j.ejps.2013.08.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/28/2022]
Abstract
Over the last 25 years, profound changes have been seen in both the development and regulation of pharmaceutical dosage forms, due primarily to the extensive use of the biopharmaceutical classification system (BCS) in both academia and industry. The BCS and the FDA scale-up and post-approval change guidelines were both developed during the 1990s and both are currently widely used to claim biowaivers. The development of the BCS and its wide acceptance were important steps in pharmaceutical science that contributed to the more rational development of oral dosage forms. The effective permeation (Peff) of drugs through the intestine often depends on the combined outcomes of passive diffusion and multiple parallel transport processes. Site-specific jejunal Peff cannot reflect the permeability of the whole intestinal tract, since this varies along the length of the intestine, but is a useful approximation of the fraction of the oral dose that is absorbed. It appears that drugs with a jejunal Peff>1.5×10(-4)cm/s will be completely absorbed no matter which transport mechanisms are utilized. In this paper, historical clinical data originating from earlier open, single-pass perfusion studies have been used to calculate the Peff of different substances from sites in the jejunum and ileum. More exploratory in vivo studies are required in order to obtain reliable data on regional intestinal drug absorption. The development of experimental and theoretical methods of assessing drug absorption from both small intestine and various sites in the colon is encouraged. Some of the existing human in vivo data are discussed in relation to commonly used cell culture models. It is crucial to accurately determine the input parameters, such as the regional intestinal Peff, as these will form the basis for the expected increase in modeling and simulation of all the processes involved in GI drug absorption, thus facilitating successful pharmaceutical development in the future. It is suggested that it would be feasible to use open, single-pass perfusion studies for the in vivo estimation of regional intestinal Peff, but that care should be taken in the study design to optimize the absorption conditions.
Collapse
Affiliation(s)
- Hans Lennernäs
- Department of Pharmaceutics, Uppsala University, Sweden.
| |
Collapse
|
48
|
Thanki K, Gangwal RP, Sangamwar AT, Jain S. Oral delivery of anticancer drugs: Challenges and opportunities. J Control Release 2013; 170:15-40. [DOI: 10.1016/j.jconrel.2013.04.020] [Citation(s) in RCA: 330] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 12/12/2022]
|
49
|
Levitt DG. Quantitation of small intestinal permeability during normal human drug absorption. BMC Pharmacol Toxicol 2013; 14:34. [PMID: 23800230 PMCID: PMC3734790 DOI: 10.1186/2050-6511-14-34] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 06/10/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Understanding the quantitative relationship between a drug's physical chemical properties and its rate of intestinal absorption (QSAR) is critical for selecting candidate drugs. Because of limited experimental human small intestinal permeability data, approximate surrogates such as the fraction absorbed or Caco-2 permeability are used, both of which have limitations. METHODS Given the blood concentration following an oral and intravenous dose, the time course of intestinal absorption in humans was determined by deconvolution and related to the intestinal permeability by the use of a new 3 parameter model function ("Averaged Model" (AM)). The theoretical validity of this AM model was evaluated by comparing it to the standard diffusion-convection model (DC). This analysis was applied to 90 drugs using previously published data. Only drugs that were administered in oral solution form to fasting subjects were considered so that the rate of gastric emptying was approximately known. All the calculations are carried out using the freely available routine PKQuest Java (http://www.pkquest.com) which has an easy to use, simple interface. RESULTS Theoretically, the AM permeability provides an accurate estimate of the intestinal DC permeability for solutes whose absorption ranges from 1% to 99%. The experimental human AM permeabilities determined by deconvolution are similar to those determined by direct human jejunal perfusion. The small intestinal pH varies with position and the results are interpreted in terms of the pH dependent octanol partition. The permeability versus partition relations are presented separately for the uncharged, basic, acidic and charged solutes. The small uncharged solutes caffeine, acetaminophen and antipyrine have very high permeabilities (about 20 x 10-4 cm/sec) corresponding to an unstirred layer of only 45 μm. The weak acid aspirin also has a large AM permeability despite its low octanol partition at pH 7.4, suggesting that it is nearly completely absorbed in the first part of the intestine where the pH is about 5.4. CONCLUSIONS The AM deconvolution method provides an accurate estimate of the human intestinal permeability. The results for these 90 drugs should provide a useful benchmark for evaluating QSAR models.
Collapse
Affiliation(s)
- David G Levitt
- Department of Integrative Biology and Physiology, University of Minnesota, 6-125 Jackson Hall, 321 Church St. S. E, Minneapolis, MN 55455, USA.
| |
Collapse
|
50
|
Han K, Pillai VC, Venkataramanan R. Population pharmacokinetics of cyclosporine in transplant recipients. AAPS JOURNAL 2013; 15:901-12. [PMID: 23775356 DOI: 10.1208/s12248-013-9500-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 05/30/2013] [Indexed: 11/30/2022]
Abstract
A number of classical pharmacokinetic studies have been conducted in transplant patients. However, they suffer from some limitations, for example, (1) the study design was limited to intense blood sampling in small groups of patients during a certain posttransplant period, (2) patient factors were evaluated one at a time to identify their association with the pharmacokinetic parameters, and (3) mean pharmacokinetic parameters often cannot be precisely estimated due to large intraindividual variability. Population pharmacokinetics provides a potential means of addressing these limitations and is a powerful tool to evaluate the magnitude and consistency of drug exposure. Population pharmacokinetic studies of cyclosporine focused solely on developing limited sampling strategies and Bayesian estimators to estimate drug exposure, have been summarized before, and are, therefore, not a subject of this review. The major focus of this review is to describe factors (demographic factors, hepatic and gastrointestinal functions, drug-drug interactions, genetic polymorphisms of drug metabolizing enzymes and transporters) that have been identified to contribute to the large portion of observed variability in the pharmacokinetics of cyclosporine in transplant patients. This review summarizes and interprets the conclusions as well as the nonlinear mixed-effects modeling methodologies used in such studies. A highly diversified collection of structural models, variability models, and covariate submodels have been evaluated and validated using internal or external validation methods. This review also highlights areas where additional research is warranted to improve the models since a portion of model variability still remains unexplained.
Collapse
Affiliation(s)
- Kelong Han
- Department of Clinical Pharmacology, Genentech Inc, South San Francisco, California, USA
| | | | | |
Collapse
|