1
|
Nicklin EF, Cohen KE, Cooper RL, Mitchell G, Fraser GJ. Evolution, development, and regeneration of tooth-like epithelial appendages in sharks. Dev Biol 2024; 516:221-236. [PMID: 39154741 DOI: 10.1016/j.ydbio.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Sharks and their relatives are typically covered in highly specialized epithelial appendages embedded in the skin called dermal denticles; ancient tooth-like units (odontodes) composed of dentine and enamel-like tissues. These 'skin teeth' are remarkably similar to oral teeth of vertebrates and share comparable morphological and genetic signatures. Here we review the histological and morphological data from embryonic sharks to uncover characters that unite all tooth-like elements (odontodes), including teeth and skin denticles in sharks. In addition, we review the differences between the skin and oral odontodes that reflect their varied capacity for renewal. Our observations have begun to decipher the developmental and genetic shifts that separate these seemingly similar dental units, including elements of the regenerative nature in both oral teeth and the emerging skin denticles from the small-spotted catshark (Scyliorhinus canicula) and other chondrichthyan models. Ultimately, we ask what defines a tooth at both the molecular and morphological level. These insights aim to help us understand how nature makes, replaces and evolves a vast array of odontodes.
Collapse
Affiliation(s)
- Ella F Nicklin
- Department of Biology, University of Florida, Gainesville, USA
| | - Karly E Cohen
- Department of Biology, University of Florida, Gainesville, USA; Department of Biology, California State University Fullerton, Fullerton, USA
| | - Rory L Cooper
- Department of Genetics and Evolution, University of Geneva, Switzerland
| | - Gianna Mitchell
- Department of Biology, University of Florida, Gainesville, USA
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, USA.
| |
Collapse
|
2
|
Dhouailly D. The avian ectodermal default competence to make feathers. Dev Biol 2024; 508:64-76. [PMID: 38190932 DOI: 10.1016/j.ydbio.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Feathers originate as protofeathers before birds, in pterosaurs and basal dinosaurs. What characterizes a feather is not only its outgrowth, but its barb cells differentiation and a set of beta-corneous proteins. Reticula appear concomitantly with feathers, as small bumps on plantar skin, made only of keratins. Avian scales, with their own set of beta-corneous proteins, appear more recently than feathers on the shank, and only in some species. In the chick embryo, when feather placodes form, all the non-feather areas of the integument are already specified. Among them, midventral apterium, cornea, reticula, and scale morphogenesis appear to be driven by negative regulatory mechanisms, which modulate the inherited capacity of the avian ectoderm to form feathers. Successive dermal/epidermal interactions, initiated by the Wnt/β-catenin pathway, and involving principally Eda/Edar, BMP, FGF20 and Shh signaling, are responsible for the formation not only of feather, but also of scale placodes and reticula, with notable differences in the level of Shh, and probably FGF20 expressions. This sequence is a dynamic and labile process, the turning point being the FGF20 expression by the placode. This epidermal signal endows its associated dermis with the memory to aggregate and to stimulate the morphogenesis that follows, involving even a re-initiation of the placode.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, University Grenoble-Alpes, Institute for Advanced Biosciences, 38700, La Tronche, France.
| |
Collapse
|
3
|
Mäkelä OJM, Mikkola ML. Mesenchyme governs hair follicle induction. Development 2023; 150:dev202140. [PMID: 37982496 DOI: 10.1242/dev.202140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023]
Abstract
Tissue interactions are essential for guiding organ development and regeneration. Hair follicle formation relies on inductive signalling between two tissues, the embryonic surface epithelium and the adjacent mesenchyme. Although previous research has highlighted the hair-inducing potential of the mesenchymal component of the hair follicle - the dermal papilla and its precursor, the dermal condensate - the source and nature of the primary inductive signal before dermal condensate formation have remained elusive. Here, we performed epithelial-mesenchymal tissue recombination experiments using hair-forming back skin and glabrous plantar skin from mouse embryos to unveil that the back skin mesenchyme is inductive even before dermal condensate formation. Moreover, the naïve, unpatterned mesenchyme was sufficient to trigger hair follicle formation even in the oral epithelium. Building on previous knowledge, we explored the hair-inductive ability of the Wnt agonist R-spondin 1 and a Bmp receptor inhibitor in embryonic skin explants. Although R-spondin 1 instigated precocious placode-specific transcriptional responses, it was insufficient for hair follicle induction, either alone or in combination with Bmp receptor inhibition. Our findings pave the way for identifying the hair follicle-inducing cue.
Collapse
Affiliation(s)
- Otto J M Mäkelä
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
4
|
Dhouailly D. Evo Devo of the Vertebrates Integument. J Dev Biol 2023; 11:25. [PMID: 37367479 DOI: 10.3390/jdb11020025] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
All living jawed vertebrates possess teeth or did so ancestrally. Integumental surface also includes the cornea. Conversely, no other anatomical feature differentiates the clades so readily as skin appendages do, multicellular glands in amphibians, hair follicle/gland complexes in mammals, feathers in birds, and the different types of scales. Tooth-like scales are characteristic of chondrichthyans, while mineralized dermal scales are characteristic of bony fishes. Corneous epidermal scales might have appeared twice, in squamates, and on feet in avian lineages, but posteriorly to feathers. In contrast to the other skin appendages, the origin of multicellular glands of amphibians has never been addressed. In the seventies, pioneering dermal-epidermal recombination between chick, mouse and lizard embryos showed that: (1) the clade type of the appendage is determined by the epidermis; (2) their morphogenesis requires two groups of dermal messages, first for primordia formation, second for appendage final architecture; (3) the early messages were conserved during amniotes evolution. Molecular biology studies that have identified the involved pathways, extending those data to teeth and dermal scales, suggest that the different vertebrate skin appendages evolved in parallel from a shared placode/dermal cells unit, present in a common toothed ancestor, c.a. 420 mya.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, Institute for Advanced Biosciences, University Grenoble-Alpes, 38700 La Tronche, France
| |
Collapse
|
5
|
Cooper RL, Milinkovitch MC. Transient agonism of the sonic hedgehog pathway triggers a permanent transition of skin appendage fate in the chicken embryo. SCIENCE ADVANCES 2023; 9:eadg9619. [PMID: 37196093 DOI: 10.1126/sciadv.adg9619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
Vertebrate skin appendage early development is mediated by conserved molecular signaling composing a dynamical reaction-diffusion-like system. Variations to such systems contribute to the remarkable diversity of skin appendage forms within and among species. Here, we demonstrate that stage-specific transient agonism of sonic hedgehog (Shh) pathway signaling in chicken triggers a complete and permanent transition from reticulate scales to feathers on the ventral surfaces of the foot and digits. Resulting ectopic feathers are developmentally comparable to feathers adorning the body, with down-type feathers transitioning into regenerative, bilaterally symmetric contour feathers in adult chickens. Crucially, this spectacular transition of skin appendage fate (from nodular reticulate scales to bona fide adult feathers) does not require sustained treatment. Our RNA sequencing analyses confirm that smoothened agonist treatment specifically promotes the expression of key Shh pathway-associated genes. These results indicate that variations in Shh pathway signaling likely contribute to the natural diversity and regionalization of avian integumentary appendages.
Collapse
Affiliation(s)
- Rory L Cooper
- Laboratory of Artificial and Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
| | - Michel C Milinkovitch
- Laboratory of Artificial and Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
- SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| |
Collapse
|
6
|
Gellisch M, Bablok M, Divvela SSK, Morosan-Puopolo G, Brand-Saberi B. Systemic Prenatal Stress Exposure through Corticosterone Application Adversely Affects Avian Embryonic Skin Development. BIOLOGY 2023; 12:biology12050656. [PMID: 37237470 DOI: 10.3390/biology12050656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
Prenatal stress exposure is considered a risk factor for developmental deficits and postnatal behavioral disorders. While the effect of glucocorticoid-associated prenatal stress exposure has been comprehensively studied in many organ systems, there is a lack of in-depth embryological investigations regarding the effects of stress on the integumentary system. To approach this, we employed the avian embryo as a model organism and investigated the effects of systemic pathologically-elevated glucocorticoid exposure on the development of the integumentary system. After standardized corticosterone injections on embryonic day 6, we compared the stress-exposed embryos with a control cohort, using histological and immunohistochemical analyses as well as in situ hybridization. The overarching developmental deficits observed in the stress-exposed embryos were reflected through downregulation of both vimentin as well as fibronectin. In addition, a deficient composition in the different skin layers became apparent, which could be linked to a reduced expression of Dermo-1 along with significantly reduced proliferation rates. An impairment of skin appendage formation could be demonstrated by diminished expression of Sonic hedgehog. These results contribute to a more profound understanding of prenatal stress causing severe deficits in the integumentary system of developing organisms.
Collapse
Affiliation(s)
- Morris Gellisch
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Martin Bablok
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Satya Srirama Karthik Divvela
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Gabriela Morosan-Puopolo
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
7
|
Warren J, Kumar JP. Patterning of the Drosophila retina by the morphogenetic furrow. Front Cell Dev Biol 2023; 11:1151348. [PMID: 37091979 PMCID: PMC10117938 DOI: 10.3389/fcell.2023.1151348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Pattern formation is the process by which cells within a homogeneous epithelial sheet acquire distinctive fates depending upon their relative spatial position to each other. Several proposals, starting with Alan Turing's diffusion-reaction model, have been put forth over the last 70 years to describe how periodic patterns like those of vertebrate somites and skin hairs, mammalian molars, fish scales, and avian feather buds emerge during development. One of the best experimental systems for testing said models and identifying the gene regulatory networks that control pattern formation is the compound eye of the fruit fly, Drosophila melanogaster. Its cellular morphogenesis has been extensively studied for more than a century and hundreds of mutants that affect its development have been isolated. In this review we will focus on the morphogenetic furrow, a wave of differentiation that takes an initially homogeneous sheet of cells and converts it into an ordered array of unit eyes or ommatidia. Since the discovery of the furrow in 1976, positive and negative acting morphogens have been thought to be solely responsible for propagating the movement of the furrow across a motionless field of cells. However, a recent study has challenged this model and instead proposed that mechanical driven cell flow also contributes to retinal pattern formation. We will discuss both models and their impact on patterning.
Collapse
Affiliation(s)
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN, United States
| |
Collapse
|
8
|
Weasner BP, Kumar JP. The early history of the eye-antennal disc of Drosophila melanogaster. Genetics 2022; 221:6573236. [PMID: 35460415 PMCID: PMC9071535 DOI: 10.1093/genetics/iyac041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
A pair of eye-antennal imaginal discs give rise to nearly all external structures of the adult Drosophila head including the compound eyes, ocelli, antennae, maxillary palps, head epidermis, and bristles. In the earliest days of Drosophila research, investigators would examine thousands of adult flies in search of viable mutants whose appearance deviated from the norm. The compound eyes are dispensable for viability and perturbations to their structure are easy to detect. As such, the adult compound eye and the developing eye-antennal disc emerged as focal points for studies of genetics and developmental biology. Since few tools were available at the time, early researchers put an enormous amount of thought into models that would explain their experimental observations-many of these hypotheses remain to be tested. However, these "ancient" studies have been lost to time and are no longer read or incorporated into today's literature despite the abundance of field-defining discoveries that are contained therein. In this FlyBook chapter, I will bring these forgotten classics together and draw connections between them and modern studies of tissue specification and patterning. In doing so, I hope to bring a larger appreciation of the contributions that the eye-antennal disc has made to our understanding of development as well as draw the readers' attention to the earliest studies of this important imaginal disc. Armed with the today's toolkit of sophisticated genetic and molecular methods and using the old papers as a guide, we can use the eye-antennal disc to unravel the mysteries of development.
Collapse
Affiliation(s)
- Brandon P Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA,Corresponding author: Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
9
|
Painter KJ, Ptashnyk M, Headon DJ. Systems for intricate patterning of the vertebrate anatomy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200270. [PMID: 34743605 PMCID: PMC8580425 DOI: 10.1098/rsta.2020.0270] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/11/2021] [Indexed: 05/05/2023]
Abstract
Periodic patterns form intricate arrays in the vertebrate anatomy, notably the hair and feather follicles of the skin, but also internally the villi of the gut and the many branches of the lung, kidney, mammary and salivary glands. These tissues are composite structures, being composed of adjoined epithelium and mesenchyme, and the patterns that arise within them require interaction between these two tissue layers. In embryonic development, cells change both their distribution and state in a periodic manner, defining the size and relative positions of these specialized structures. Their placement is determined by simple spacing mechanisms, with substantial evidence pointing to a variety of local enhancement/lateral inhibition systems underlying the breaking of symmetry. The nature of the cellular processes involved, however, has been less clear. While much attention has focused on intercellular soluble signals, such as protein growth factors, experimental evidence has grown for contributions of cell movement or mechanical forces to symmetry breaking. In the mesenchyme, unlike the epithelium, cells may move freely and can self-organize into aggregates by chemotaxis, or through generation and response to mechanical strain on their surrounding matrix. Different modes of self-organization may coexist, either coordinated into a single system or with hierarchical relationships. Consideration of a broad range of distinct biological processes is required to advance understanding of biological pattern formation. This article is part of the theme issue 'Recent progress and open frontiers in Turing's theory of morphogenesis'.
Collapse
Affiliation(s)
- Kevin J. Painter
- Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio, Politecnico di Torino, Torino, Italy
| | - Mariya Ptashnyk
- School of Mathematical and Computer Sciences and Maxwell Institute, Heriot-Watt University, Edinburgh, UK
| | | |
Collapse
|
10
|
Ho WKW, Freem L, Zhao D, Painter KJ, Woolley TE, Gaffney EA, McGrew MJ, Tzika A, Milinkovitch MC, Schneider P, Drusko A, Matthäus F, Glover JD, Wells KL, Johansson JA, Davey MG, Sang HM, Clinton M, Headon DJ. Feather arrays are patterned by interacting signalling and cell density waves. PLoS Biol 2019; 17:e3000132. [PMID: 30789897 PMCID: PMC6383868 DOI: 10.1371/journal.pbio.3000132] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/17/2019] [Indexed: 12/30/2022] Open
Abstract
Feathers are arranged in a precise pattern in avian skin. They first arise during development in a row along the dorsal midline, with rows of new feather buds added sequentially in a spreading wave. We show that the patterning of feathers relies on coupled fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) signalling together with mesenchymal cell movement, acting in a coordinated reaction-diffusion-taxis system. This periodic patterning system is partly mechanochemical, with mechanical-chemical integration occurring through a positive feedback loop centred on FGF20, which induces cell aggregation, mechanically compressing the epidermis to rapidly intensify FGF20 expression. The travelling wave of feather formation is imposed by expanding expression of Ectodysplasin A (EDA), which initiates the expression of FGF20. The EDA wave spreads across a mesenchymal cell density gradient, triggering pattern formation by lowering the threshold of mesenchymal cells required to begin to form a feather bud. These waves, and the precise arrangement of feather primordia, are lost in the flightless emu and ostrich, though via different developmental routes. The ostrich retains the tract arrangement characteristic of birds in general but lays down feather primordia without a wave, akin to the process of hair follicle formation in mammalian embryos. The embryonic emu skin lacks sufficient cells to enact feather formation, causing failure of tract formation, and instead the entire skin gains feather primordia through a later process. This work shows that a reaction-diffusion-taxis system, integrated with mechanical processes, generates the feather array. In flighted birds, the key role of the EDA/Ectodysplasin A receptor (EDAR) pathway in vertebrate skin patterning has been recast to activate this process in a quasi-1-dimensional manner, imposing highly ordered pattern formation.
Collapse
Affiliation(s)
- William K. W. Ho
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Lucy Freem
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Debiao Zhao
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin J. Painter
- School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Thomas E. Woolley
- School of Mathematics, Cardiff University, Cathays, Cardiff, United Kingdom
| | - Eamonn A. Gaffney
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Michael J. McGrew
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Athanasia Tzika
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Armin Drusko
- FIAS and Faculty of Biological Sciences, University of Frankfurt, Frankfurt, Germany
| | - Franziska Matthäus
- FIAS and Faculty of Biological Sciences, University of Frankfurt, Frankfurt, Germany
| | - James D. Glover
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kirsty L. Wells
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeanette A. Johansson
- Cancer Research UK Edinburgh Centre and MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Megan G. Davey
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen M. Sang
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Clinton
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Denis J. Headon
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Gupta K, Levinsohn J, Linderman G, Chen D, Sun TY, Dong D, Taketo MM, Bosenberg M, Kluger Y, Choate K, Myung P. Single-Cell Analysis Reveals a Hair Follicle Dermal Niche Molecular Differentiation Trajectory that Begins Prior to Morphogenesis. Dev Cell 2019; 48:17-31.e6. [PMID: 30595533 PMCID: PMC6361530 DOI: 10.1016/j.devcel.2018.11.032] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/18/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022]
Abstract
Delineating molecular and cellular events that precede appendage morphogenesis has been challenging due to the inability to distinguish quantitative molecular differences between cells that lack histological distinction. The hair follicle (HF) dermal condensate (DC) is a cluster of cells critical for HF development and regeneration. Events that presage emergence of this distinctive population are poorly understood. Using unbiased single-cell RNA sequencing and in vivo methods, we infer a sequence of transcriptional states through which DC cells pass that begins prior to HF morphogenesis. Our data indicate that Wnt/β-catenin signaling is required to progress into an intermediate stage that precedes quiescence and differentiation. Further, we provide evidence that quiescent DC cells are recent progeny of selectively proliferating cells present prior to morphogenesis and that are later identified in the peri-DC zone during DC expansion. Together, these findings provide an inferred path of molecular states that lead to DC cell differentiation.
Collapse
Affiliation(s)
- Khusali Gupta
- Department of Dermatology, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Jonathan Levinsohn
- Department of Dermatology, Yale University, New Haven, CT 06520, USA; Genetics Department, Yale University, New Haven, CT 06520, USA
| | - George Linderman
- Applied Mathematics Program, Yale University, New Haven, CT 06511, USA
| | - Demeng Chen
- Department of Dermatology, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Thomas Yang Sun
- Genetics Department, Yale University, New Haven, CT 06520, USA
| | - Danni Dong
- Department of Dermatology, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - M Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoé-Cho, Sakyo, Kyoto 606-8501, Japan
| | - Marcus Bosenberg
- Department of Dermatology, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA; Yale Cancer Center, New Haven, CT 06520, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Yuval Kluger
- Department of Pathology, Yale University, New Haven, CT 06520, USA; Applied Mathematics Program, Yale University, New Haven, CT 06511, USA
| | - Keith Choate
- Department of Dermatology, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA; Genetics Department, Yale University, New Haven, CT 06520, USA; Yale Cancer Center, New Haven, CT 06520, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Peggy Myung
- Department of Dermatology, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA; Yale Cancer Center, New Haven, CT 06520, USA; Yale Stem Cell Center, New Haven, CT 06520, USA.
| |
Collapse
|
12
|
Biggs LC, Mäkelä OJ, Myllymäki SM, Das Roy R, Närhi K, Pispa J, Mustonen T, Mikkola ML. Hair follicle dermal condensation forms via Fgf20 primed cell cycle exit, cell motility, and aggregation. eLife 2018; 7:36468. [PMID: 30063206 PMCID: PMC6107334 DOI: 10.7554/elife.36468] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal condensation is a critical step in organogenesis, yet the underlying molecular and cellular mechanisms remain poorly understood. The hair follicle dermal condensate is the precursor to the permanent mesenchymal unit of the hair follicle, the dermal papilla, which regulates hair cycling throughout life and bears hair inductive potential. Dermal condensate morphogenesis depends on epithelial Fibroblast Growth Factor 20 (Fgf20). Here, we combine mouse models with 3D and 4D microscopy to demonstrate that dermal condensates form de novo and via directional migration. We identify cell cycle exit and cell shape changes as early hallmarks of dermal condensate morphogenesis and find that Fgf20 primes these cellular behaviors and enhances cell motility and condensation. RNAseq profiling of immediate Fgf20 targets revealed induction of a subset of dermal condensate marker genes. Collectively, these data indicate that dermal condensation occurs via directed cell movement and that Fgf20 orchestrates the early cellular and molecular events. All mammal hair springs from hair follicles under the skin. These follicles sit in the dermis, beneath the outermost skin layer, the epidermis. In the embryo, hair follicles develop from unspecialized cells in two tissues, the epithelium and the mesenchyme, which will later develop into the dermis and epidermis, respectively. As development progresses, the cells of these tissues begin to cluster, and signals passing back and forth between the epithelium and mesenchyme instruct the cells what to do. In the mesenchyme, cells called fibroblasts squeeze up against their neighbors, forming patches called dermal condensates. These mature into so-called dermal papillae, which supply specific molecules called growth factors that regulate hair formation throughout lifetime. Fibroblasts in the developing skin respond to a signal from the epithelium called fibroblast growth factor 20 (Fgf20), but we do not yet understand its effects. It is possible that Fgf20 tells the cells to divide, forming clusters of daughter cells around their current location. Or, it could be that Fgf20 tells the cells to move, encouraging them to travel towards one another to form groups. To address this question, Biggs, Mäkelä et al. examined developing mouse skin grown in the laboratory. They traced cells marked with fluorescent tags to analyze their behavior as the condensates formed. This revealed that the Fgf20 signal acts as a rallying call, triggering fibroblast movement. The cells changed shape and moved towards one another, rather than dividing to create their own clusters. In fact, they switched off their own cell cycle as the condensates formed, halting their ability to divide. A technique called RNA sequencing revealed that Fgf20 also promotes the use of genes known to be active in dermal condensates. Dermal papillae control hair growth, and transplanting them under the skin can form new hair follicles. However, these cells lose this ability when grown in the laboratory. Understanding how they develop could be beneficial for future hair growth therapy. Further work could also address fundamental questions in embryology. Condensates of cells from the mesenchyme also precede the formation of limbs, bones, muscles and organs. Extending this work could help us to understand this critical developmental step.
Collapse
Affiliation(s)
- Leah C Biggs
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Otto Jm Mäkelä
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Satu-Marja Myllymäki
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Rishi Das Roy
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Katja Närhi
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Johanna Pispa
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tuija Mustonen
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marja L Mikkola
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Schneider RA. Neural crest and the origin of species-specific pattern. Genesis 2018; 56:e23219. [PMID: 30134069 PMCID: PMC6108449 DOI: 10.1002/dvg.23219] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
For well over half of the 150 years since the discovery of the neural crest, the special ability of these cells to function as a source of species-specific pattern has been clearly recognized. Initially, this observation arose in association with chimeric transplant experiments among differentially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted. Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific information on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its differentiation became readily apparent. Since then, what has emerged is a deeper understanding of how the neural crest accomplishes such a presumably difficult mission, and this includes a more complete picture of the molecular and cellular programs whereby neural crest shapes the face of each species. This review covers studies on a broad range of vertebrates and describes neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of cell-autonomous and non-autonomous signaling interactions through which neural crest generates species-specific pattern in the craniofacial integument, skeleton, and musculature. By controlling size and shape throughout the development of these systems, the neural crest underlies the structural and functional integration of the craniofacial complex during evolution.
Collapse
Affiliation(s)
- Richard A. Schneider
- Department of Orthopedic SurgeryUniversity of California at San Francisco, 513 Parnassus AvenueS‐1161San Francisco, California
| |
Collapse
|
14
|
Thulabandu V, Chen D, Atit RP. Dermal fibroblast in cutaneous development and healing. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 29244903 DOI: 10.1002/wdev.307] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/27/2017] [Accepted: 10/07/2017] [Indexed: 01/09/2023]
Abstract
The skin is the largest organ of the body and is composed of two layers: the overlying epidermis and the underlying dermis. The dermal fibroblasts originate from distinct locations of the embryo and contain the positional identity and patterning information in the skin. The dermal fibroblast progenitors differentiate into various cell types that are fated to perform specific functions such as hair follicle initiation and scar formation during wound healing. Recent studies have revealed the heterogeneity and plasticity of dermal fibroblasts within skin, which has implications for skin disease and tissue engineering. The objective of this review is to frame our current understanding and provide new insights on the origin and differentiation of dermal fibroblasts and their function during cutaneous development and healing. WIREs Dev Biol 2018, 7:e307. doi: 10.1002/wdev.307 This article is categorized under: Birth Defects > Organ Anomalies Signaling Pathways > Cell Fate Signaling Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Venkata Thulabandu
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Demeng Chen
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
15
|
Di-Poï N, Milinkovitch MC. The anatomical placode in reptile scale morphogenesis indicates shared ancestry among skin appendages in amniotes. SCIENCE ADVANCES 2016; 2:e1600708. [PMID: 28439533 PMCID: PMC5392058 DOI: 10.1126/sciadv.1600708] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/03/2016] [Indexed: 05/12/2023]
Abstract
Most mammals, birds, and reptiles are readily recognized by their hairs, feathers, and scales, respectively. However, the lack of fossil intermediate forms between scales and hairs and substantial differences in their morphogenesis and protein composition have fueled the controversy pertaining to their potential common ancestry for decades. Central to this debate is the apparent lack of an "anatomical placode" (that is, a local epidermal thickening characteristic of feathers' and hairs' early morphogenesis) in reptile scale development. Hence, scenarios have been proposed for the independent development of the anatomical placode in birds and mammals and parallel co-option of similar signaling pathways for their morphogenesis. Using histological and molecular techniques on developmental series of crocodiles and snakes, as well as of unique wild-type and EDA (ectodysplasin A)-deficient scaleless mutant lizards, we show for the first time that reptiles, including crocodiles and squamates, develop all the characteristics of an anatomical placode: columnar cells with reduced proliferation rate, as well as canonical spatial expression of placode and underlying dermal molecular markers. These results reveal a new evolutionary scenario where hairs, feathers, and scales of extant species are homologous structures inherited, with modification, from their shared reptilian ancestor's skin appendages already characterized by an anatomical placode and associated signaling molecules.
Collapse
Affiliation(s)
- Nicolas Di-Poï
- Laboratory of Artificial and Natural Evolution, Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Michel C. Milinkovitch
- Laboratory of Artificial and Natural Evolution, Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
- SIB Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
- Corresponding author.
| |
Collapse
|
16
|
Musser JM, Wagner GP, Prum RO. Nuclear β-catenin localization supports homology of feathers, avian scutate scales, and alligator scales in early development. Evol Dev 2015; 17:185-94. [PMID: 25963196 DOI: 10.1111/ede.12123] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Feathers are an evolutionary novelty found in all extant birds. Despite recent progress investigating feather development and a revolution in dinosaur paleontology, the relationship of feathers to other amniote skin appendages, particularly reptile scales, remains unclear. Disagreement arises primarily from the observation that feathers and avian scutate scales exhibit an anatomical placode-defined as an epidermal thickening-in early development, whereas alligator and other avian scales do not. To investigate the homology of feathers and archosaur scales we examined patterns of nuclear β-catenin localization during early development of feathers and different bird and alligator scales. In birds, nuclear β-catenin is first localized to the feather placode, and then exhibits a dynamic pattern of localization in both epidermis and dermis of the feather bud. We found that asymmetric avian scutate scales and alligator scales share similar patterns of nuclear β-catenin localization with feathers. This supports the hypothesis that feathers, scutate scales, and alligator scales are homologous during early developmental stages, and are derived from early developmental stages of an asymmetric scale present in the archosaur ancestor. Furthermore, given that the earliest stage of β-catenin localization in feathers and archosaur scales is also found in placodes of several mammalian skin appendages, including hair and mammary glands, we hypothesize that a common skin appendage placode originated in the common ancestor of all amniotes. We suggest a skin placode should not be defined by anatomical features, but as a local, organized molecular signaling center from which an epidermal appendage develops.
Collapse
Affiliation(s)
- Jacob M Musser
- Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, 21 Sachem St, New Haven, CT 06511, USA.,Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, CT 06516, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, 21 Sachem St, New Haven, CT 06511, USA.,Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, CT 06516, USA
| | - Richard O Prum
- Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, 21 Sachem St, New Haven, CT 06511, USA
| |
Collapse
|
17
|
Suksaweang S, Jiang TX, Roybal P, Chuong CM, Widelitz R. Roles of EphB3/ephrin-B1 in feather morphogenesis. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2012; 56:719-28. [PMID: 23319347 PMCID: PMC3684256 DOI: 10.1387/ijdb.120021rw] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ephrin receptor (Eph) tyrosine kinases and their ephrin ligands are involved in morphogenesis during organ formation. We studied their role in feather morphogenesis, focusing on ephrin-B1 and its receptor EphB3. Early in feather development, ephrin-B1 mRNA and protein were found to be expressed in the dermal condensation, but not in the inter-bud mesenchyme. Later, in feather buds, expression was found in both the epithelium and mesenchyme. In the feather follicle, ephrin-B1 protein expression was found to be enriched in the feather filament epithelium and in the marginal plate which sets the boundary between the barb ridges. EphB3 mRNA was also expressed in epithelia. In the feather bud, its expression was restricted to the posterior bud. In the follicle, its expression formed a circle at the bud base which may set the boundary between bud and inter-bud domains. Perturbation with ephrin-B1/Fc altered feather primordia segregation and feather bud elongation. Analyses revealed that ephrin-B1/Fc caused three types of changes: blurred placode boundaries with loose dermal condensations, incomplete follicle invagination with less compact dermal papillae, and aberrant barb ridge patterning in feather filament morphogenesis. Thus, while ephrin-B1 suppression does not inhibit the initial emergence of a new epithelial domain, Eph/ephrin-B1 interaction is required for its proper completion. Consequently, we propose that interaction between ephrin-B1 and its receptor is involved in boundary stabilization during feather morphogenesis.
Collapse
Affiliation(s)
- Sanong Suksaweang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Pathology and Laboratory Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, 30000 Thailand
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Paul Roybal
- Department of Biochemistry, Keck School of Medicine, University of Southern California, Los Angeles, 90033
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Randall Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
18
|
Hughes MW, Wu P, Jiang TX, Lin SJ, Dong CY, Li A, Hsieh FJ, Widelitz RB, Chuong CM. In search of the Golden Fleece: unraveling principles of morphogenesis by studying the integrative biology of skin appendages. Integr Biol (Camb) 2011; 3:388-407. [PMID: 21437328 DOI: 10.1039/c0ib00108b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mythological story of the Golden Fleece symbolizes the magical regenerative power of skin appendages. Similar to the adventurous pursuit of the Golden Fleece by the multi-talented Argonauts, today we also need an integrated multi-disciplined approach to understand the cellular and molecular processes during development, regeneration and evolution of skin appendages. To this end, we have explored several aspects of skin appendage biology that contribute to the Turing activator/inhibitor model in feather pattern formation, the topo-biological arrangement of stem cells in organ shape determination, the macro-environmental regulation of stem cells in regenerative hair waves, and potential novel molecular pathways in the morphological evolution of feathers. Here we show our current integrative biology efforts to unravel the complex cellular behavior in patterning stem cells and the control of regional specificity in skin appendages. We use feather/scale tissue recombination to demonstrate the timing control of competence and inducibility. Feathers from different body regions are used to study skin regional specificity. Bioinformatic analyses of transcriptome microarrays show the potential involvement of candidate molecular pathways. We further show Hox genes exhibit some region specific expression patterns. To visualize real time events, we applied time-lapse movies, confocal microscopy and multiphoton microscopy to analyze the morphogenesis of cultured embryonic chicken skin explants. These modern imaging technologies reveal unexpectedly complex cellular flow and organization of extracellular matrix molecules in three dimensions. While these approaches are in preliminary stages, this perspective highlights the challenges we face and new integrative tools we will use. Future work will follow these leads to develop a systems biology view and understanding in the morphogenetic principles that govern the development and regeneration of ectodermal organs.
Collapse
Affiliation(s)
- Michael W Hughes
- Department of Pathology, School of Medicine, University of Southern California, HMR 315B, 2011 Zonal Ave., Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Westergaard B, Ferguson MWJ. Development of the dentition in Alligator mississippiensis. Early embryonic development in the lower jaw. J Zool (1987) 2009. [DOI: 10.1111/j.1469-7998.1986.tb03657.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Formation and Differentiation of Avian Somite Derivatives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 638:1-41. [DOI: 10.1007/978-0-387-09606-3_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Michon F, Forest L, Collomb E, Demongeot J, Dhouailly D. BMP2 and BMP7 play antagonistic roles in feather induction. Development 2008; 135:2797-805. [PMID: 18635609 DOI: 10.1242/dev.018341] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Feathers, like hairs, first appear as primordia consisting of an epidermal placode associated with a dermal condensation that is necessary for the continuation of their differentiation. Previously, the BMPs have been proposed to inhibit skin appendage formation. We show that the function of specific BMPs during feather development is more complex. BMP2 and BMP7, which are expressed in both the epidermis and the dermis, are involved in an antagonistic fashion in regulating the formation of dermal condensations, and thus are both necessary for subsequent feather morphogenesis. BMP7 is expressed earlier and functions as a chemoattractant that recruits cells into the condensation, whereas BMP2 is expressed later, and leads to an arrest of cell migration, likely via its modulation of the EIIIA fibronectin domain and alpha4 integrin expression. Based on the observed cell proliferation, chemotaxis and the timing of BMP2 and BMP7 expression, we propose a mathematical model, a reaction-diffusion system, which not only simulates feather patterning, but which also can account for the negative effects of excess BMP2 or BMP7 on feather formation.
Collapse
Affiliation(s)
- Frederic Michon
- Equipe Ontogenèse et Cellules Souches du Tégument, Centre de Recherche INSERM UJF - U823, Institut Albert Bonniot, Site Santé, La Tronche, BP170, 38042 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
22
|
Michon F, Charveron M, Dhouailly D. Dermal condensation formation in the chick embryo: requirement for integrin engagement and subsequent stabilization by a possible notch/integrin interaction. Dev Dyn 2007; 236:755-68. [PMID: 17279577 DOI: 10.1002/dvdy.21080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During embryonic development, feathers appear first as primordia consisting of an epidermal placode associated with a dermal condensation. When 7-day chick embryo dorsal skin fragments showing three rows of feather primordia are cultured, they undergo a complete reorganization, which involves the down-regulation of morphogenetic genes and dispersal of dermal fibroblasts, leading to the disappearance of primordia. This loss of organisation is followed by de novo differentiation events. We have used this model to study potential factors involved in the formation of dermal condensations. Activation of Integrins by extracellular Manganese or intracellular Calcium prevents the initial disappearance of the dermal condensations. New primordia formation occurs even after inhibition of the Notch pathway albeit with some fusion between primordia. In conclusion, dermal fibroblast migration requires beta1-Integrin whereas the stability of dermal condensations could depend on Notch/Integrin interaction.
Collapse
Affiliation(s)
- Frederic Michon
- Centre de Recherche INSERM-Institut Albert Bonniot U823, Ontogenesis and Stem Cell of the Tegument Team, Grenoble, France
| | | | | |
Collapse
|
23
|
Pummila M, Fliniaux I, Jaatinen R, James MJ, Laurikkala J, Schneider P, Thesleff I, Mikkola ML. Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression. Development 2007; 134:117-25. [PMID: 17164417 DOI: 10.1242/dev.02708] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ectodermal organogenesis is regulated by inductive and reciprocal signalling cascades that involve multiple signal molecules in several conserved families. Ectodysplasin-A (Eda), a tumour necrosis factor-like signalling molecule, and its receptor Edar are required for the development of a number of ectodermal organs in vertebrates. In mice, lack of Edaleads to failure in primary hair placode formation and missing or abnormally shaped teeth, whereas mice overexpressing Eda are characterized by enlarged hair placodes and supernumerary teeth and mammary glands. Here, we report two signalling outcomes of the Eda pathway: suppression of bone morphogenetic protein (Bmp) activity and upregulation of sonic hedgehog (Shh)signalling. Recombinant Eda counteracted Bmp4 activity in developing teeth and, importantly, inhibition of BMP activity by exogenous noggin partially restored primary hair placode formation in Eda-deficient skin in vitro, indicating that suppression of Bmp activity was compromised in the absence of Eda. The downstream effects of the Eda pathway are likely to be mediated by transcription factor nuclear factor-κB (NF-κB), but the transcriptional targets of Edar have remained unknown. Using a quantitative approach, we show in cultured embryonic skin that Eda induced the expression of two Bmp inhibitors, Ccn2/Ctgf (CCN family protein 2/connective tissue growth factor) and follistatin. Moreover, our data indicate that Shh is a likely transcriptional target of Edar, but, unlike noggin, recombinant Shh was unable to rescue primary hair placode formation in Eda-deficient skin explants.
Collapse
Affiliation(s)
- Marja Pummila
- Institute of Biotechnology, Developmental Biology Program, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Yamazaki Y, Sejima H, Yuguchi M, Namba Y, Isokawa K. Late Deposition of Elastin to Vertical Microfibrillar Fibers in the Presumptive Dermis of the Chick Embryonic Tarsometatarsus. Anat Rec (Hoboken) 2007; 290:1300-8. [PMID: 17724711 DOI: 10.1002/ar.20586] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fibrillin microfibrils are integral components of elastic fibers and serve as a scaffold for elastin deposition. However, microfibrillar fibers (MFs) are not necessarily committed to develop into so-called elastic fibers. In dermis, elastin-free oxytalan MFs originating from the dermoepidermal junction are continuous to elaunin-type MFs (with a small amount of elastin) in the deeper papillary dermis, whereas the reticular dermis contains elastic fibers, or MFs embedded largely in elastin. In this study, we have investigated temporospatial patterns of elastin deposition on the MFs in tarsometatarsal presumptive dermis. While the earliest expression of elastin was demonstrated immunohistochemically as early as embryonic day 4 (ED4) in the wall of cardiac outflow and pharyngeal arch arteries, its deposition in the tarsometatarsus was first detected at ED6 in the deeper mesenchyme and at ED13 in the subectodermal mesenchyme. In the latter tissue, MFs had been organized perpendicularly to the covering ectoderm by ED4, well before an overt accumulation of collagenous matrix. Elastin deposition was observed initially in a punctate manner at ED13 and afterward became continuous along MFs. However, a characteristic spaced array of subectodermal vertical MFs was disorganized by ED17. These findings suggest that elastin deposition in the subectodermal MFs is not deployed by continuous, orderly propagation from elastic fibers in the deeper mesenchyme but occurs de novo in multiple foci along vertical MFs. Moreover, the present chronology of elastin deposition indicates that subectodermal, elastin-free MFs function as a transient, but primary fibrous structure in the presumptive dermis before the accumulation of collagenous matrix.
Collapse
Affiliation(s)
- Yosuke Yamazaki
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | | | |
Collapse
|
25
|
Abstract
Beaks and feathers epitomize inimitable avian traits. Within individuals and across species there exists astounding diversity in the size, shape, arrangement, and colour of beaks and feathers in association with various functional adaptations. What has enabled the concomitantly divergent evolution of beaks and feathers? The common denominator may lie in their developmental programmes. As revealed through recent transplant experiments using quail and duck embryos, the developmental programme for each structure utilizes mesenchyme as a dominant source of species-specific patterning information, acts as a module of closely coupled molecular and histogenic events, and operates with a high degree of spatial and temporal plasticity. By synergizing these three features, the developmental programmes underlying beaks and feathers likely have the essential potential to react spontaneously to novel conditions and new gene functions, and as a consequence are well equipped to generate and accommodate innovative phenotypes during the course of evolution.
Collapse
Affiliation(s)
- Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, CA 94143-0514, USA.
| |
Collapse
|
26
|
Kim JY, Cho SW, Song WC, Lee MJ, Cai J, Ohk SH, Song HK, Degan A, Jung HS. Formation of spacing pattern and morphogenesis of chick feather buds is regulated by cytoskeletal structures. Differentiation 2005; 73:240-8. [PMID: 16026546 DOI: 10.1111/j.1432-0436.2005.00020.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chick feather buds develop sequentially in a hexagonal array. Each feather bud develops with anterior posterior polarity, which is thought to develop in response to signals derived from specialized regions of mesenchymal condensation and epithelial thickening. These developmental processes are performed by cellular mechanisms, such as cell proliferation and migration, which occur during chick feather bud development. In order to understand the mechanisms regulating the formation of mesenchymal condensation and their role in feather bud development, we explanted chick dorsal skin at stage HH29+ with cytochalasin D, which inhibits cytoskeletal formation. We show that the aggregation of mesenchymal cells can be prevented by cytochalasin D treatment in a concentration-dependent manner. Subsequently, cytochalasin D disrupts the spacing pattern and inhibits feather bud axis formation as well. In addition, expression patterns of Bmp-4 and Msx-2, key molecules for early feather bud development, were disturbed by cytochalasin D treatment. Our results fully indicate that both the cytoskeletal structure and cell activity via gene regulation are of fundamental importance in mesenchymal condensation leading to proper morphogenesis of feather bud and spacing pattern formation.
Collapse
Affiliation(s)
- Jae-Young Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology Research Center for Orofacial Hard Tissue Regeneration, Oral Science Research Center, College of Dentistry, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Song HK, Lee SH, Goetinck PF. FGF-2 signaling is sufficient to induce dermal condensations during feather development. Dev Dyn 2005; 231:741-9. [PMID: 15532057 DOI: 10.1002/dvdy.20243] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a previous report, we showed that fibroblast growth factor-2 (FGF-2) is a signal produced by epidermal placode cells during feather development and that this growth factor can induce feathers in scaleless mutant skins that fail to form feathers due to a defective epidermis (Song et al., [1996] Proc Natl Acad Sci USA 93:10246-10249). Here, we test whether FGF-2 is sufficient to induce dermal condensations, structures that normally form under the control of signals from the epidermal placode and are identified on the basis of aggregation of cells, the expression of FGF receptor-1 and bone morphogenetic protein-2 transcripts and the cessation of proliferation of the condensed cells. By using denuded 8-day scaleless dermis as a test system, we have established that FGF-2 is sufficient to induce dermal condensation. We suggest that the primary effect of FGF-2 is an increase in cellular density mediated through cell migration, followed by the expression of dermal condensation-specific genes and cessation of cell proliferation. The FGF-2 effect can be abolished by heparin, suggesting the involvement of heparan sulfate proteoglycans (HSPGs) in growth factor signaling. The spatiotemporal expression of syndecan-3 during feather development suggests that this cell-surface HSPG may be involved in the response of competent embryonic skin dermis to FGF-2.
Collapse
Affiliation(s)
- Hee-Kyung Song
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
28
|
Eames BF, Schneider RA. Quail-duck chimeras reveal spatiotemporal plasticity in molecular and histogenic programs of cranial feather development. Development 2005; 132:1499-509. [PMID: 15728671 PMCID: PMC2835538 DOI: 10.1242/dev.01719] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The avian feather complex represents a vivid example of how a developmental module composed of highly integrated molecular and histogenic programs can become rapidly elaborated during the course of evolution. Mechanisms that facilitate this evolutionary diversification may involve the maintenance of plasticity in developmental processes that underlie feather morphogenesis. Feathers arise as discrete buds of mesenchyme and epithelium, which are two embryonic tissues that respectively form dermis and epidermis of the integument. Epithelial-mesenchymal signaling interactions generate feather buds that are neatly arrayed in space and time. The dermis provides spatiotemporal patterning information to the epidermis but precise cellular and molecular mechanisms for generating species-specific differences in feather pattern remain obscure. In the present study, we exploit the quail-duck chimeric system to test the extent to which the dermis regulates the expression of genes required for feather development. Quail and duck have distinct feather patterns and divergent growth rates, and we exchange pre-migratory neural crest cells destined to form the craniofacial dermis between them. We find that donor dermis induces host epidermis to form feather buds according to the spatial pattern and timetable of the donor species by altering the expression of members and targets of the Bone Morphogenetic Protein, Sonic Hedgehog and Delta/Notch pathways. Overall, we demonstrate that there is a great deal of spatiotemporal plasticity inherent in the molecular and histogenic programs of feather development, a property that may have played a generative and regulatory role throughout the evolution of birds.
Collapse
Affiliation(s)
- B. Frank Eames
- Department of Orthopaedic Surgery, University of California at San Francisco, 533 Parnassus Avenue, U-453, San Francisco, CA 94143-0514, USA
| | - Richard A. Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, 533 Parnassus Avenue, U-453, San Francisco, CA 94143-0514, USA
| |
Collapse
|
29
|
Sawyer RH, Rogers L, Washington L, Glenn TC, Knapp LW. Evolutionary origin of the feather epidermis. Dev Dyn 2005; 232:256-67. [PMID: 15637693 DOI: 10.1002/dvdy.20291] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The formation of scales and feathers in reptiles and birds has fascinated biologists for decades. How might the developmental processes involved in the evolution of the amniote ectoderm be interpreted to shed light on the evolution of integumental appendages? An Evo-Devo approach to this question is proving essential to understand the observation that there is homology between the transient embryonic layers covering the scale epidermis of alligators and birds and the epidermal cell populations of embryonic feather filaments. Whereas the embryonic layers of scutate scales are sloughed off at hatching, that their homologues persist in feathers demonstrates that the predecessors of birds took advantage of the ability of their ectoderm to generate embryonic layers by recruiting them to make the epidermis of the embryonic feather filament. Furthermore, observations on mutant chickens with altered scale and feather development (Abbott and Asmundson [1957] J. Hered. 18:63-70; Abbott [1965] Poult. Sci. 44:1347; Abbott [1967] Methods in developmental biology. New York: Thomas Y. Crowell) suggest that the ectodermal placodes of feathers, which direct the formation of unique dermal condensations and subsequently appendage outgrowth, provided the mechanism by which the developmental processes generating the embryonic layers diverged during evolution to support the morphogenesis of the epidermis of the primitive feather filament with its barb ridges.
Collapse
Affiliation(s)
- Roger H Sawyer
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29802, USA.
| | | | | | | | | |
Collapse
|
30
|
Hornik C, Krishan K, Yusuf F, Scaal M, Brand-Saberi B. cDermo-1 misexpression induces dense dermis, feathers, and scales. Dev Biol 2005; 277:42-50. [PMID: 15572138 DOI: 10.1016/j.ydbio.2004.08.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 08/26/2004] [Accepted: 08/26/2004] [Indexed: 11/24/2022]
Abstract
Reciprocal epithelio-mesenchymal interactions between the prospective epidermis and the underlying dermis are the major driving forces in the development of skin appendages. Feather development is initiated by a still unknown signal from the dermis in feather-forming skin. The morphological response of the ectoderm to this signal is the formation of an epidermal placode, which signals back to the mesenchyme to induce dermal condensations. Together, epidermal and dermal components constitute the outgrowing feather bud. The bHLH transcription factor cDermo-1 is expressed in developing dermis and is the earliest known marker of prospective feather tracts. To test its function during feather development, we forced cDermo-1 expression in embryonic chicken dermis using a retroviral expression vector. In featherless (apteric) regions, cDermo-1 misexpression induced dense, thickened dermis normally observed in feathered skin (pterylae), and leads to the development of regularly spaced and normally shaped ectopic feather buds. In pterylae, cDermo-1 misexpression enhanced feather growth. In hindlimb skin, according to the local skin identity, misexpression of cDermo-1 induced ectopic scale formation. Thus, we show that forced cDermo-1 expression in developing dermis is sufficient to launch the developmental program leading to skin appendage formation. We propose a role of cDermo-1 at the initial stages of feather induction upstream of FGF10.
Collapse
Affiliation(s)
- Christoph Hornik
- Institute of Anatomy and Cell Biology II, Albert-Ludwigs-Universität, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
31
|
Fliniaux I, Viallet JP, Dhouailly D. Signaling dynamics of feather tract formation from the chick somatopleure. Development 2004; 131:3955-66. [PMID: 15269169 DOI: 10.1242/dev.01263] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the chick, most feathers are restricted to specific areas of the skin, the feather tracts or pterylae, while other areas, such as the apteria, remain bare. In the embryo, the expansion and closure of the somatopleure leads to the juxtaposition of the ventral pteryla, midventral apterium and amnion. The embryonic proximal somatopleural mesoderm is determined to form a feather-forming dermis at 2 days of incubation (E2), while the embryonic distal and the extra-embryonic somatopleure remain open to determination. We found a progressive, lateral expression of Noggin in the embryonic area, and downregulation of Msx1, a BMP4 target gene, with Msx1 expression being ultimately restricted to the most distal embryonic and extra-embryonic somatopleural mesoderm. Msx1 downregulation thus correlates with the formation of the pterylae, and its maintenance to that of the apterium. Suspecting that the inhibition of BMP4 signaling might be linked to the determination of a feather-forming dermis, we grafted Noggin-expressing cells in the distal somatopleure at E2. This elicited the formation of a supplementary pteryla in the midventral apterium. Endogenous Noggin, which is secreted by the intermediate mesoderm at E2, then by the proximal somatopleure at E4, could be sufficient to suppress BMP4 signaling in the proximal somatopleural mesoderm and then in part of the distal somatopleure, thus in turn allowing the formation of the dense dermis of the future pterylae. The same result was obtained with the graft of Shh-producing cells, but Noggin and Shh are both required in order to change the future amnion into a feather-bearing skin. A possible synergistic role of endogenous Shh from the embryonic endoderm remains to be confirmed.
Collapse
Affiliation(s)
- Ingrid Fliniaux
- Equipe Biologie de la Différenciation Epithéliale, UMR CNRS 5538, LEDAC, Institut Albert Bonniot, Université Joseph Fourier, BP 53-38041 Grenoble Cedex 9, France
| | | | | |
Collapse
|
32
|
Rouzankina I, Abate-Shen C, Niswander L. Dlx genes integrate positive and negative signals during feather bud development. Dev Biol 2004; 265:219-33. [PMID: 14697365 DOI: 10.1016/j.ydbio.2003.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the embryonic chicken skin, feather buds and the intervening interbud tissue form in a reiterated and sequential pattern that is dependent on interactions between the epidermis and dermis. Feather promoting and inhibiting signals such as fibroblast growth factors (FGF) and bone morphogenetic proteins (BMP), respectively, direct the formation of this periodic pattern. However, the transcription factors that mediate the response to these signals and transmit this information to downstream effector genes are largely unknown. Here we have explored the DLX transcription factors as candidate transcriptional mediators downstream of the described feather patterning signals. We show that several Dlx members are expressed in the dermis and epidermis of the developing feather buds and their expression is induced in embryonic chick skin by the ectopic activation of BMP and FGF signaling. Misexpression of Dlx in the chick skin leads to both feather loss and feather bud fusions, suggesting that DLX proteins play a negative as well as a positive role in feather development. Moreover, DLX regulates the expression of NCAM and tenascin, molecules that are important for feather bud initiation as well as bud outgrowth and morphogenesis. Our results suggest that DLX transcription factors serve to integrate and transduce feather patterning signals to downstream effector molecules.
Collapse
Affiliation(s)
- Iaroslava Rouzankina
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan-Kettering Institute and Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
33
|
Abstract
All ectodermal organs, e.g. hair, teeth, and many exocrine glands, originate from two adjacent tissue layers: the epithelium and the mesenchyme. Similar sequential and reciprocal interactions between the epithelium and mesenchyme regulate the early steps of development in all ectodermal organs. Generally, the mesenchyme provides the first instructive signal, which is followed by the formation of the epithelial placode, an early signaling center. The placode buds into or out of the mesenchyme, and subsequent proliferation, cell movements, and differentiation of the epithelium and mesenchyme contribute to morphogenesis. The molecular signals regulating organogenesis, such as molecules in the FGF, TGFbeta, Wnt, and hedgehog families, regulate the development of all ectodermal appendages repeatedly during advancing morphogenesis and differentiation. In addition, signaling by ectodysplasin, a recently identified member of the TNF family, and its receptor Edar is required for ectodermal organ development across vertebrate species. Here the current knowledge on the molecular regulation of the initiation, placode formation, and morphogenesis of ectodermal organs is discussed with emphasis on feathers, hair, and teeth.
Collapse
Affiliation(s)
- Johanna Pispa
- Developmental Biology Programme, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, 00014, Helsinki, Finland
| | | |
Collapse
|
34
|
Sawyer RH, Knapp LW. Avian skin development and the evolutionary origin of feathers. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 298:57-72. [PMID: 12949769 DOI: 10.1002/jez.b.26] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The discovery of several dinosaurs with filamentous integumentary appendages of different morphologies has stimulated models for the evolutionary origin of feathers. In order to understand these models, knowledge of the development of the avian integument must be put into an evolutionary context. Thus, we present a review of avian scale and feather development, which summarizes the morphogenetic events involved, as well as the expression of the beta (beta) keratin multigene family that characterizes the epidermal appendages of reptiles and birds. First we review information on the evolution of the ectodermal epidermis and its beta (beta) keratins. Then we examine the morphogenesis of scutate scales and feathers including studies in which the extraembryonic ectoderm of the chorion is used to examine dermal induction. We also present studies on the scaleless (sc) mutant, and, because of the recent discovery of "four-winged" dinosaurs, we review earlier studies of a chicken strain, Silkie, that expresses ptilopody (pti), "feathered feet." We conclude that the ability of the ectodermal epidermis to generate discrete cell populations capable of forming functional structural elements consisting of specific members of the beta keratin multigene family was a plesiomorphic feature of the archosaurian ancestor of crocodilians and birds. Evidence suggests that the discrete epidermal lineages that make up the embryonic feather filament of extant birds are homologous with similar embryonic lineages of the developing scutate scales of birds and the scales of alligators. We believe that the early expression of conserved signaling modules in the embryonic skin of the avian ancestor led to the early morphogenesis of the embryonic feather filament, with its periderm, sheath, and barb ridge lineages forming the first protofeather. Invagination of the epidermis of the protofeather led to formation of the follicle providing for feather renewal and diversification. The observations that scale formation in birds involves an inhibition of feather formation coupled with observations on the feathered feet of the scaleless (High-line) and Silkie strains support the view that the ancestor of modern birds may have had feathered hind limbs similar to those recently discovered in nonavian dromaeosaurids. And finally, our recent observation on the bristles of the wild turkey beard raises the possibility that similar integumentary appendages may have adorned nonavian dinosaurs, and thus all filamentous integumentary appendages may not be homologous to modern feathers.
Collapse
Affiliation(s)
- Roger H Sawyer
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | | |
Collapse
|
35
|
Homberger DG, de Silva KN. The role of mechanical forces on the patterning of the avian feather-bearing skin: A biomechanical analysis of the integumentary musculature in birds. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 298:123-39. [PMID: 12949773 DOI: 10.1002/jez.b.30] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The integumentary musculature of birds consists of three distinct components. The smooth musculature comprises feather and apterial muscles, which form a continuous musculo-elastic layer within the dermis. The feather muscles, which consistently include at least erectors and depressors, interconnect contour feathers within pterylae (i.e., feather tracts) along gridlines that are oriented diagonally to the longitudinal and transverse axes of the body. The apterial muscles interconnect pterylae by attaching to the contour feathers along their peripheries. The striated musculature is composed of individual subcutaneous muscles, most of which attach to contour feathers along the caudal periphery of pterylae A new integrative functional analysis of the integumentary musculature proposes how apterial muscles stabilize the pterylae and modulate the tension of the musculo-elastic layer, and how subcutaneous muscles provide the initial stimulus for erector muscles being able to ruffle the contour feathers within pterylae. It also shows how the arrangement of the contour feathers and integumentary muscles reflects the stresses and strains that act on the avian skin. These mechanical forces are in effect not only in the adult, especially during flight, but may also be active during feather morphogenesis. The avian integument with its complex structural organization may, therefore, represent an excellent model for analyzing the nature of interactions between the environment and genetic material. The predictions of our model are testable, and our study demonstrates the relevance of integrated analyses of complex organs as mechanically coherent systems for evolutionary and developmental biology.
Collapse
Affiliation(s)
- Dominique G Homberger
- Departement of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | |
Collapse
|
36
|
Sawyer RH, Washington LD, Salvatore BA, Glenn TC, Knapp LW. Origin of archosaurian integumentary appendages: the bristles of the wild turkey beard express feather-type beta keratins. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 297:27-34. [PMID: 12955841 DOI: 10.1002/jez.b.17] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery that structurally unique "filamentous integumentary appendages" are associated with several different non-avian dinosaurs continues to stimulate the development of models to explain the evolutionary origin of feathers. Taking the phylogenetic relationships of the non-avian dinosaurs into consideration, some models propose that the "filamentous integumentary appendages" represent intermediate stages in the sequential evolution of feathers. Here we present observations on a unique integumentary structure, the bristle of the wild turkey beard, and suggest that this non-feather appendage provides another explanation for some of the "filamentous integumentary appendages." Unlike feathers, beard bristles grow continuously from finger-like outgrows of the integument lacking follicles. We find that these beard bristles, which show simple branching, are hollow, distally, and express the feather-type beta keratins. The significance of these observations to explanations for the evolution of archosaurian integumentary appendages is discussed.
Collapse
Affiliation(s)
- Roger H Sawyer
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Cell signaling plays a key role in the development of all multicellular organisms. Numerous studies have established the importance of Hedgehog signaling in a wide variety of regulatory functions during the development of vertebrate and invertebrate organisms. Several reviews have discussed the signaling components in this pathway, their various interactions, and some of the general principles that govern Hedgehog signaling mechanisms. This review focuses on the developing systems themselves, providing a comprehensive survey of the role of Hedgehog signaling in each of these. We also discuss the increasing significance of Hedgehog signaling in the clinical setting.
Collapse
Affiliation(s)
- Andrew P McMahon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
38
|
Chodankar R, Chang CH, ZhicaoYue, Jiang TX, Suksaweang S, Burrus LW, Chuong CM, Widelitz RB. Shift of localized growth zones contributes to skin appendage morphogenesis: role of the Wnt/beta-catenin pathway. J Invest Dermatol 2003; 120:20-6. [PMID: 12535194 PMCID: PMC4386651 DOI: 10.1046/j.1523-1747.2003.12008.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Skin appendage formation represents a process of regulated new growth. Bromodeoxyuridine labeling of developing chicken skin demonstrated the presence of localized growth zones, which first promote appendage formation and then move within each appendage to produce specific shapes. Initially, cells proliferate all over the presumptive skin. During the placode stage they are organized to form periodic rings. At the short feather bud stage, the localized growth zones shifted to the posterior and then the distal bud. During the long bud stage, the localized growth zones descended through the flank region toward the feather collar (equivalent to the hair matrix). During feather branch formation, the localized growth zones were positioned periodically in the basilar layer to enhance branching of barb ridges. Wnts were expressed in a dynamic fashion during feather morphogenesis that coincided with the shifting localized growth zones positions. The expression pattern of Wnt 6 was examined and compared with other members of the Wnt pathway. Early in feather development Wnt 6 expression overlapped with the location of the localized growth zones. Its function was tested through misexpression studies. Ectopic Wnt 6 expression produced abnormal localized outgrowths from the skin appendages at either the base, the shaft, or the tip of the developing feathers. Later in feather filament morphogenesis, several Wnt markers were expressed in regions undergoing rearrangements and differentiation of barb ridge keratinocytes. These data suggest that skin appendages are built to specific shapes by adding new cells from well-positioned and controlled localized growth zones and that Wnt activity is involved in regulating such localized growth zone activity.
Collapse
Affiliation(s)
- Rajas Chodankar
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, U.S.A
| | - Chung-Hsing Chang
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, U.S.A.,Department of Dermatology, Kaoshiung Medical University, Kaoshiung,Taiwan
| | - ZhicaoYue
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, U.S.A
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, U.S.A
| | - Sanong Suksaweang
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, U.S.A
| | - Laura W. Burrus
- Biology Department, San Francisco State University, 1600 Halloway Avenue, San Francisco, CA 94132, U.S.A
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, U.S.A
| | - Randall B. Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, U.S.A
| |
Collapse
|
39
|
Scaal M, Pröls F, Füchtbauer EM, Patel K, Hornik C, Köhler T, Christ B, Brand-Saberi B. BMPs induce dermal markers and ectopic feather tracts. Mech Dev 2002; 110:51-60. [PMID: 11744368 DOI: 10.1016/s0925-4773(01)00552-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone morphogenetic protein (BMP) signaling is known to be involved in multiple inductive events during embryogenesis including the development of amniote skin. Here, we demonstrate that early application of BMP-2 to the lateral trunk of chick embryos induces the formation of dense dermis, which is competent to participate in feather development. We show that BMPs induce the dermis markers Msx-1 and cDermo-1 and lead to dermal proliferation, to expression of beta-catenin, and eventually to the formation of ectopic feather tracts in originally featherless regions of chick skin. Moreover, we present a detailed analysis of cDermo-1 expression during early feather development. The data implicate that cDermo-1 is located downstream of BMP in a signaling pathway that leads to condensation of dermal cells. The roles of BMP and cDermo-1 during development of dermis and feather primordia are discussed.
Collapse
Affiliation(s)
- Martin Scaal
- Institute of Anatomy, University of Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Olivera-Martinez I, Thélu J, Teillet MA, Dhouailly D. Dorsal dermis development depends on a signal from the dorsal neural tube, which can be substituted by Wnt-1. Mech Dev 2001; 100:233-44. [PMID: 11165480 DOI: 10.1016/s0925-4773(00)00540-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To investigate the origin and nature of the signals responsible for specification of the dermatomal lineage, excised axial organs in 2-day-old chick embryos were replaced by grafts of the dorsal neural tube, or the ventral neural tube plus the notochord, or aggregates of cells engineered to produce Sonic hedgehog (Shh), Noggin, BMP-2, Wnt-1, or Wnt-3a. By E10, grafts of the ventral neural tube plus notochord or of cells producing Shh led to differentiation of cartilage and muscles, and an impaired dermis derived from already segmented somites. In contrast, grafts of the dorsal neural tube, or of cells producing Wnt-1, triggered the formation of a feather-inducing dermis. These results show that the dermatome inducer is produced by the dorsal neural tube. The signal can be Wnt-1 itself, or can be mediated, or at least mimicked by Wnt-1.
Collapse
Affiliation(s)
- I Olivera-Martinez
- Equipe Biologie de la Différenciation Epithéliale, UMR Centre National de la Recherche Scientifique (CNRS) 5538, LEDAC, Institut Albert Bonniot, Université Joseph Fourier, Grenoble, France
| | | | | | | |
Collapse
|
41
|
Jiang TX, Jung HS, Widelitz RB, Chuong CM. Self-organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. Development 1999; 126:4997-5009. [PMID: 10529418 DOI: 10.1242/dev.126.22.4997] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Periodic patterning is a fundamental organizing process in biology. Using a feather reconstitution assay, we traced back to the initial stage of the patterning process. Cells started from an equivalent state and self-organized into a periodic pattern without previous cues or sequential propagation. When different numbers of dissociated mesenchymal cells were confronted with a piece of same-sized epithelium, the size of feather primordia remained constant, not the number or interbud spacing, suggesting size determination is intrinsic to dissociated cells. Increasing bone morphogenetic protein (BMP) receptor expression in mesenchymal cells decreased the size of primordia while antagonizing the BMP pathway with Noggin increased the size of primordia. A threshold number of mesenchymal cells with a basal level of adhesion molecules such as NCAM were sufficient to trigger the patterning process. The process is best visualized by the progressive restriction of beta-catenin transcripts in the epidermis. Therefore, feather size, number and spacing are modulated through the available morphogen ligands and receptors in the system.
Collapse
Affiliation(s)
- T X Jiang
- Department of Pathology, School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
42
|
Patel K, Makarenkova H, Jung HS. The role of long range, local and direct signalling molecules during chick feather bud development involving the BMPs, follistatin and the Eph receptor tyrosine kinase Eph-A4. Mech Dev 1999; 86:51-62. [PMID: 10446265 DOI: 10.1016/s0925-4773(99)00107-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of the feather buds during avian embryogenesis is a classic example of a spacing pattern. The regular arrangement of feather buds is achieved by a process of lateral inhibition whereby one developing feather bud prevents the formation of similar buds in the immediate vicinity. Lateral inhibition during feather formation implicates a role of long range signalling during this process. Recent work has shown that BMPs are able to enforce lateral inhibition during feather bud formation. However these results do not explain how the feather bud escapes the inhibition itself. We show that this could be achieved by the expression of the BMP antagonist, Follistatin. Furthermore we show that local application of Follistatin leads to the development of ectopic feather buds. We suggest that Follistatin locally antagonises the action of the BMPs and so permits the cellular changes associated with feather placode formation. We also provide evidence for the role of short range signalling during feather formation. We have correlated changes in cellular morphology in feather placodes with the expression of the gene Eph-A4 which encodes a receptor tyrosine kinase that requires direct cell-cell contact for activation. We show that the expression of this gene precedes cellular reorganisation required for feather bud formation.
Collapse
Affiliation(s)
- K Patel
- Zoology Division, School of Animal and Microbial Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK.
| | | | | |
Collapse
|
43
|
Widelitz RB, Jiang TX, Chen CW, Stott NS, Jung HS, Chuong CM. Wnt-7a in feather morphogenesis: involvement of anterior-posterior asymmetry and proximal-distal elongation demonstrated with an in vitro reconstitution model. Development 1999; 126:2577-87. [PMID: 10331970 DOI: 10.1242/dev.126.12.2577] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
How do vertebrate epithelial appendages form from the flat epithelia? Following the formation of feather placodes, the previously radially symmetrical primordia become anterior-posterior (A-P) asymmetrical and develop a proximo-distal (P-D) axis. Analysis of the molecular heterogeneity revealed a surprising parallel of molecular profiles in the A-P feather buds and the ventral-dorsal (V-D) Drosophila appendage imaginal discs. The functional significance was tested with an in vitro feather reconstitution model. Wnt-7a expression initiated all over the feather tract epithelium, intensifying as it became restricted first to the primordia domain, then to an accentuated ring pattern within the primordia border, and finally to the posterior bud. In contrast, sonic hedgehog expression was induced later as a dot within the primordia. RCAS was used to overexpress Wnt-7a in reconstituted feather explants derived from stage 29 dorsal skin to further test its function in feather formation. Control skin formed normal elongated, slender buds with A-P orientation, but Wnt-7a overexpression led to plateau-like skin appendages lacking an A-P axis. Feathers in the Wnt-7a overexpressing skin also had inhibited elongation of the P-D axes. This was not due to a lack of cell proliferation, which actually was increased although randomly distributed. While morphogenesis was perturbed, differentiation proceeded as indicated by the formation of barb ridges. Wnt-7a buds have reduced expression of anterior (Tenascin) bud markers. Middle (Notch-1) and posterior bud markers including Delta-1 and Serrate-1 were diffusely expressed. The results showed that ectopic Wnt-7a expression enhanced properties characteristic of the middle and posterior feather buds and suggest that P-D elongation of vertebrate skin appendages requires balanced interactions between the anterior and posterior buds.
Collapse
Affiliation(s)
- R B Widelitz
- Department of Pathology, School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
44
|
Robinson GW, Karpf AB, Kratochwil K. Regulation of mammary gland development by tissue interaction. J Mammary Gland Biol Neoplasia 1999; 4:9-19. [PMID: 10219903 DOI: 10.1023/a:1018748418447] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Development of the mammary glands is initiated in the embryo but the major part of their development occurs in the adult. While development in puberty and pregnancy is dependent on hormones, prenatal and early postnatal development appear to progress autonomously. Mutual and reciprocal epithelial-mesenchymal interactions are critical for both phases of development. Specific steps such as the formation of the bud, the first appearance of hormone receptors, formation of the primary sprout and ductal elongation have been shown to be governed by epithelial-mesenchymal signaling. In recent years, some of the signaling molecules that are required in these processes have been identified through gene inactivation. We discuss the potential role of these factors in mediating growth and differentiation. In addition we provide evidence that mammary epithelial cells from late embryonic stages are already capable of synthesizing milk proteins when subjected to appropriate hormonal stimulation.
Collapse
Affiliation(s)
- G W Robinson
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20982-0822, USA.
| | | | | |
Collapse
|
45
|
Noramly S, Morgan BA. BMPs mediate lateral inhibition at successive stages in feather tract development. Development 1998; 125:3775-87. [PMID: 9729486 DOI: 10.1242/dev.125.19.3775] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The spacing of feather buds in a tract is thought to arise from the interaction between an inducing signal from the dermis and an inhibitory signal generated in the nascent buds. Local BMP-2 expression in the ectoderm precedes the formation of the ectodermal placodes, which are the first morphological sign of bud differentiation. We have altered the activity of BMP-2 or BMP-4 in the ectoderm of the feather field by expressing them or their inhibitor noggin using retroviral vectors. These experiments demonstrate that BMP-2 is necessary and sufficient to mediate the lateral inhibition that positions buds in a tract. After buds are initiated, BMP-2 and BMP-4 continue to inhibit the adoption of bud fates and help to specify the size and shape of the bud. They may do so in part by their regulation of Fgf receptor expression in both the ectoderm and dermis. Additional insights into pattern formation in the feather bud can be inferred from the effects of altered BMP activity on bud morphogenesis.
Collapse
Affiliation(s)
- S Noramly
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | |
Collapse
|
46
|
Morgan BA, Orkin RW, Noramly S, Perez A. Stage-specific effects of sonic hedgehog expression in the epidermis. Dev Biol 1998; 201:1-12. [PMID: 9733569 DOI: 10.1006/dbio.1998.8969] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sonic hedgehog (Shh) is expressed in the ectoderm of the forming hair follicle and feather bud during normal development. However, inappropriate activation of the Shh signal transduction cascade in human epidermis can cause basal cell carcinoma. Here we show that during normal development of avian skin, Shh is first expressed only after the responsiveness to this protein has been suppressed in most of the surrounding ectodermal cells. Forced expression of Shh in avian skin prior to this time causes a disorganized ectodermal proliferation. However, as skin begins to differentiate, the forced expression of Shh causes feather bud formation. Subsequently, expression of Shh in interfollicular epidermis has little or no morphological effect. Restricted responsiveness to Shh in developing skin has functional consequences for morphogenesis and may have important implications for cutaneous pathologies as well.
Collapse
Affiliation(s)
- B A Morgan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, 02129, USA.
| | | | | | | |
Collapse
|
47
|
Viallet JP, Prin F, Olivera-Martinez I, Hirsinger E, Pourquié O, Dhouailly D. Chick Delta-1 gene expression and the formation of the feather primordia. Mech Dev 1998; 72:159-68. [PMID: 9533960 DOI: 10.1016/s0925-4773(98)00027-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The chick dermis is known to control the formation of feathers and interfeathery skin in a hexagonal pattern. The evidence that the segregation of two types of fibroblasts involves Delta/Notch signalling is based on three facts. Rings of C-Delta-1-expressing fibroblasts precede and delimit the forming feather primordia. C-Delta-1 is uniformly expressed in the dermis of the scaleless mutant, which is almost entirely devoid of feathers. Feather development is inhibited by overexpression of C-Delta-1 in wild type dermis using a retroviral construct. We also show that the distribution of C-Delta-1 in the mutant dermis can be rescued by its association with a wild type epidermis, which acts as a permissive inducer, or by epidermal secreted proteins like FGF2.
Collapse
Affiliation(s)
- J P Viallet
- Equipe Biologie de la Différenciation Epithéliale, UMR CNRS 5538, Laboratoire d'Etude de la Différenciation et de l'Adhérence Cellulaires, Institut Albert Bonniot, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | |
Collapse
|
48
|
Crowe R, Henrique D, Ish-Horowicz D, Niswander L. A new role for Notch and Delta in cell fate decisions: patterning the feather array. Development 1998; 125:767-75. [PMID: 9435296 DOI: 10.1242/dev.125.4.767] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chick embryonic feather buds arise in a distinct spatial and temporal pattern. Although many genes are implicated in the growth and differentiation of the feather buds, little is known about how the discrete pattern of the feather array is formed and which gene products may be involved. Possible candidates include Notch and its ligands, Delta and Serrate, as they play a role in numerous cell fate decisions in many organisms. Here we show that Notch-1 and Notch-2 mRNAs are expressed in the skin in a localized pattern prior to feather bud initiation. In the early stages of feather bud development, Delta-1 and Notch-1 are localized to the forming buds while Notch-2 expression is excluded from the bud. Thus, Notch and Delta-1 are expressed at the correct time and place to be players in the formation of the feather pattern. Once the initial buds form, expression of Notch and its ligands is observed within each bud. Notch-1 and −2 and Serrate-1 and −2 are expressed throughout the growth and differentiation of the feathers whereas Delta-1 transcripts are downregulated. We have also misexpressed chick Delta-1 using a replication competent retrovirus. This results in induction of Notch-1 and-2 and a loss of feather buds from the embryo in either large or small patches. In large regions of Delta-1 misexpression, feathers are lost throughout the infected area. In contrast, in small regions of misexpression, Delta-1 expressing cells differentiate into feather buds more quickly than normal and inhibit their neighbors from accepting a feather fate. We propose a dual role for Delta-1 in promoting feather bud development and in lateral inhibition. These results implicate the Notch/Delta receptor ligand pair in the formation of the feather array.
Collapse
Affiliation(s)
- R Crowe
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | |
Collapse
|
49
|
Fischer D, Tucker RP, Chiquet-Ehrismann R, Adams JC. Cell-adhesive responses to tenascin-C splice variants involve formation of fascin microspikes. Mol Biol Cell 1997; 8:2055-75. [PMID: 9348542 PMCID: PMC25670 DOI: 10.1091/mbc.8.10.2055] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/1997] [Accepted: 07/16/1997] [Indexed: 02/05/2023] Open
Abstract
Tenascin-C is an adhesion-modulating matrix glycoprotein that has multiple effects on cell behavior. Tenascin-C transcripts are expressed in motile cells and at sites of tissue modeling during development, and alternative splicing generates variants that encode different numbers of fibronectin type III repeats. We have examined the in vivo expression and cell adhesive properties of two full-length recombinant tenascin-C proteins: TN-190, which contains the eight constant fibronectin type III repeats, and TN-ADC, which contains the additional AD2, AD1, and C repeats. In situ hybridization with probes specific for the AD2, AD1, and C repeats shows that these splice variants are expressed at sites of active tissue modeling and fibronectin expression in the developing avian feather bud and sternum. Transcripts incorporating the AD2, AD1, and C repeats are present in embryonic day 10 wing bud but not in embryonic day 10 lung. By using a panel of nine cell lines in attachment assays, we have found that C2C12, G8, and S27 myoblastic cells undergo concentration-dependent adhesion to both variants, organize actin microspikes that contain the actin-bundling protein fascin, and do not assemble focal contacts. On a molar basis, TN-ADC is more active than TN-190 in promoting cell attachment and irregular cell spreading. The addition of either TN-190 or TN-ADC in solution to C2C12, COS-7, or MG-63 cells adherent on fibronectin decreases cell attachment and results in decreased organization of actin microfilament bundles, with formation of cortical membrane ruffles and retention of residual points of substratum contact that contain filamentous actin and fascin. These data establish a biochemical similarity in the processes of cell adhesion to tenascin-C and thrombospondin-1, also an "antiadhesive" matrix component, and also demonstrate that both the adhesive and adhesion-modulating properties of tenascin-C involve similar biochemical events in the cortical cytoskeleton. In addition to these generic properties, TN-ADC is less active in adhesion modulation than TN-190. The coordinated expression of different tenascin-C transcripts during development may, therefore, provide appropriate microenvironments for regulated changes in cell shape, adhesion, and movement.
Collapse
Affiliation(s)
- D Fischer
- Friedrich-Miescher Institut, Basel, Switzerland
| | | | | | | |
Collapse
|
50
|
Ting-Berreth SA, Chuong CM. Sonic Hedgehog in feather morphogenesis: induction of mesenchymal condensation and association with cell death. Dev Dyn 1996; 207:157-70. [PMID: 8906419 DOI: 10.1002/(sici)1097-0177(199610)207:2<157::aid-aja4>3.0.co;2-g] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sonic hedgehog is involved in vertebrate tissue interactions during development. During early feather development, Sonic hedgehog appears very early in epithelial placodes. During late feather development, Sonic hedgehog expression precedes the development of the marginal plates and is specifically localized in the marginal plate epithelium, which will later undergo cell death. By using retroviral vectors, exogenous Sonic hedgehog overexpression in developing feathers induced enlarged feather buds that have either lost their anterior-posterior polarity or exhibited reverse orientation. The enlarged dermal condensations may be mediated through broader TGF-beta 2 expression and reduced protein kinase C (PKC) expression. Reciprocal mesenchymal interaction is required for the induction and maintenance of Sonic hedgehog in the epithelial placodes. In scaleless mutant, Sonic hedgehog is absent in the apteric region and aberrantly expressed in the mesenchyme of the abnormal feather ridge. These findings suggest that Sonic hedgehog mediates key interactions between the epithelium and mesenchyme during feather morphogenesis.
Collapse
Affiliation(s)
- S A Ting-Berreth
- Department of Pathology, University of Southern California, Los Angeles 90033, USA
| | | |
Collapse
|