1
|
Loret C, Scherrer C, Rovini A, Lesage E, Richard L, Danigo A, Sturtz F, Favreau F, Faye PA, Lia AS. Addressing Myelination Disorders: Novel Strategies using human 3D peripheral nerve model. Brain Res Bull 2025; 222:111252. [PMID: 39938756 DOI: 10.1016/j.brainresbull.2025.111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Peripheral myelination disorders encompass a variety of disorders that affect myelin sheaths in the peripheral nervous system. The Charcot-Marie-Tooth disease (CMT), the most common inherited peripheral neuropathy, is one of the most prevalent among them. CMT stems from a wide range of genetic causes that disrupt the nerve conduction, leading to progressive muscle weakness and atrophy, sensory loss, and motor function impairment. Historically, the study of these disorders has relied heavily on animal studies, owing to the challenges in accessing human cells. However, the advent of human induced pluripotent stem cell (hiPSC)-derived neuronal cells has addressed these limitations in the realm of peripheral myelination disorders. Despite this, obtaining myelin in these models remains an expensive, time-consuming, and material-intensive process. This study presents a novel, cost-effective method utilizing hiPSC-derived Schwann cells and motor neurons in a three-dimensional culture system. Our method successfully enabled the acquisition of myelin in a control clone within just four weeks, as confirmed by electron microscopy. Furthermore, the utility of these approaches was validated by studying CMT4C, also named AR-CMTde-SH3TC2, the most common recessive demyelinating form of CMT. This revealed defects in Schwann cell support to motor neuron neurite outgrowth and impaired myelination in disease-specific hiPSC-derived lines. This approach offers valuable insights into the pathogenesis of peripheral myelination disorders and provides a platform for testing potential therapeutic strategies.
Collapse
Affiliation(s)
- Camille Loret
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France.
| | - Camille Scherrer
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France
| | - Amandine Rovini
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France
| | - Esther Lesage
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France
| | - Laurence Richard
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; CHU Limoges, Service de Neurologie, F-87000 Limoges, France
| | - Aurore Danigo
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; CHU Limoges, Service de Neurologie, F-87000 Limoges, France
| | - Franck Sturtz
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Frédéric Favreau
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Pierre-Antoine Faye
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Anne-Sophie Lia
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France; CHU Limoges, Department of Bioinformatics, F-87000 Limoges, France
| |
Collapse
|
2
|
Salzer J, Feltri ML, Jacob C. Schwann Cell Development and Myelination. Cold Spring Harb Perspect Biol 2024; 16:a041360. [PMID: 38503507 PMCID: PMC11368196 DOI: 10.1101/cshperspect.a041360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Glial cells in the peripheral nervous system (PNS), which arise from the neural crest, include axon-associated Schwann cells (SCs) in nerves, synapse-associated SCs at the neuromuscular junction, enteric glia, perikaryon-associated satellite cells in ganglia, and boundary cap cells at the border between the central nervous system (CNS) and the PNS. Here, we focus on axon-associated SCs. These SCs progress through a series of formative stages, which culminate in the generation of myelinating SCs that wrap large-caliber axons and of nonmyelinating (Remak) SCs that enclose multiple, small-caliber axons. In this work, we describe SC development, extrinsic signals from the axon and extracellular matrix (ECM) and the intracellular signaling pathways they activate that regulate SC development, and the morphogenesis and organization of myelinating SCs and the myelin sheath. We review the impact of SCs on the biology and integrity of axons and their emerging role in regulating peripheral nerve architecture. Finally, we explain how transcription and epigenetic factors control and fine-tune SC development and myelination.
Collapse
Affiliation(s)
- James Salzer
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - M Laura Feltri
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203, USA
- IRCCS Neurological Institute Carlo Besta, Milano 20133, Italy
- Department of Biotechnology and Translational Sciences, Universita' Degli Studi di Milano, Milano 20133, Italy
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| |
Collapse
|
3
|
Gunsch G, Paradie E, Townsend KL. Peripheral nervous system glia in support of metabolic tissue functions. Trends Endocrinol Metab 2023; 34:622-639. [PMID: 37591710 DOI: 10.1016/j.tem.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
The peripheral nervous system (PNS) relays information between organs and tissues and the brain and spine to maintain homeostasis, regulate tissue functions, and respond to interoceptive and exteroceptive signals. Glial cells perform support roles to maintain nerve function, plasticity, and survival. The glia of the central nervous system (CNS) are well characterized, but PNS glia (PNSG) populations, particularly tissue-specific subtypes, are underexplored. PNSG are found in large nerves (such as the sciatic), the ganglia, and the tissues themselves, and can crosstalk with a range of cell types in addition to neurons. PNSG are also subject to phenotypic changes in response to signals from their local tissue environment, including metabolic changes. These topics and the importance of PNSG in metabolically active tissues, such as adipose, muscle, heart, and lymphatic tissues, are outlined in this review.
Collapse
Affiliation(s)
- Gilian Gunsch
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Emma Paradie
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Yang Y, Song R, Gao Y, Yu H, Wang S. Regulatory mechanisms and therapeutic potential of JAB1 in neurological development and disorders. Mol Med 2023; 29:80. [PMID: 37365502 DOI: 10.1186/s10020-023-00675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
c-Jun activation domain binding protein-1 (JAB1) is a multifunctional regulator that plays vital roles in diverse cellular processes. It regulates AP-1 transcriptional activity and also acts as the fifth component of the COP9 signalosome complex. While JAB1 is considered an oncoprotein that triggers tumor development, recent studies have shown that it also functions in neurological development and disorders. In this review, we summarize the general features of the JAB1 gene and protein, and present recent updates on the regulation of JAB1 expression. Moreover, we also highlight the functional roles and regulatory mechanisms of JAB1 in neurodevelopmental processes such as neuronal differentiation, synaptic morphogenesis, myelination, and hair cell development and in the pathogenesis of some neurological disorders such as Alzheimer's disease, multiple sclerosis, neuropathic pain, and peripheral nerve injury. Furthermore, current challenges and prospects are discussed, including updates on drug development targeting JAB1.
Collapse
Affiliation(s)
- Yu Yang
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Ruying Song
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Yiming Gao
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China.
| | - Shuai Wang
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
5
|
Numata-Uematasu Y, Wakatsuki S, Kobayashi-Ujiie Y, Sakai K, Ichinohe N, Araki T. In vitro myelination using explant culture of dorsal root ganglia: An efficient tool for analyzing peripheral nerve differentiation and disease modeling. PLoS One 2023; 18:e0285897. [PMID: 37224113 DOI: 10.1371/journal.pone.0285897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
Peripheral nerves conducting motor and somatosensory signals in vertebrate consist of myelinated and unmyelinated axons. In vitro myelination culture, generated by co-culturing Schwann cells (SCs) and dorsal root ganglion (DRG) neurons, is an indispensable tool for modeling physiological and pathological conditions of the peripheral nervous system (PNS). This technique allows researchers to overexpress or downregulate molecules investigated in neurons or SCs to evaluate the effect of such molecules on myelination. In vitro myelination experiments are usually time-consuming and labor-intensive to perform. Here we report an optimized protocol for in vitro myelination using DRG explant culture. We found that our in vitro myelination using DRG explant (IVMDE) culture not only achieves myelination with higher efficiency than conventional in vitro myelination methods, but also can be used to observe Remak bundle and non-myelinating SCs, which were unrecognizable in conventional methods. Because of these characteristics, IVMDE may be useful in modeling PNS diseases, including Charcot Marie Tooth disease (CMT), in vitro. These results suggest that IVMDE may achieve a condition more similar to peripheral nerve myelination observed during physiological development.
Collapse
Affiliation(s)
- Yurika Numata-Uematasu
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shuji Wakatsuki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuka Kobayashi-Ujiie
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuhisa Sakai
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
6
|
Kong L, Hassinan CW, Gerstner F, Buettner JM, Petigrow JB, Valdivia DO, Chan-Cortés MH, Mistri A, Cao A, McGaugh SA, Denton M, Brown S, Ross J, Schwab MH, Simon CM, Sumner CJ. Boosting neuregulin 1 type-III expression hastens SMA motor axon maturation. Acta Neuropathol Commun 2023; 11:53. [PMID: 36997967 PMCID: PMC10061791 DOI: 10.1186/s40478-023-01551-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/12/2023] [Indexed: 04/01/2023] Open
Abstract
Intercellular communication between axons and Schwann cells is critical for attaining the complex morphological steps necessary for axon maturation. In the early onset motor neuron disease spinal muscular atrophy (SMA), many motor axons are not ensheathed by Schwann cells nor grow sufficiently in radial diameter to become myelinated. These developmentally arrested motor axons are dysfunctional and vulnerable to rapid degeneration, limiting efficacy of current SMA therapeutics. We hypothesized that accelerating SMA motor axon maturation would improve their function and reduce disease features. A principle regulator of peripheral axon development is neuregulin 1 type III (NRG1-III). Expressed on axon surfaces, it interacts with Schwann cell receptors to mediate axon ensheathment and myelination. We examined NRG1 mRNA and protein expression levels in human and mouse SMA tissues and observed reduced expression in SMA spinal cord and in ventral, but not dorsal root axons. To determine the impact of neuronal NRG1-III overexpression on SMA motor axon development, we bred NRG1-III overexpressing mice to SMA∆7 mice. Neonatally, elevated NRG1-III expression increased SMA ventral root size as well as axon segregation, diameter, and myelination resulting in improved motor axon conduction velocities. NRG1-III was not able to prevent distal axonal degeneration nor improve axon electrophysiology, motor behavior, or survival of older mice. Together these findings demonstrate that early SMA motor axon developmental impairments can be ameliorated by a molecular strategy independent of SMN replacement providing hope for future SMA combinatorial therapeutic approaches.
Collapse
Affiliation(s)
- Lingling Kong
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Cera W Hassinan
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Florian Gerstner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Jannik M Buettner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Jeffrey B Petigrow
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - David O Valdivia
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Michelle H Chan-Cortés
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Amy Mistri
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Annie Cao
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Scott Alan McGaugh
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Madeline Denton
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Stephen Brown
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Joshua Ross
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Markus H Schwab
- Department of Neuropathology, University Hospital Leipzig, Leipzig, Germany
| | - Christian M Simon
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Charlotte J Sumner
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA.
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis 2023; 176:105952. [PMID: 36493976 DOI: 10.1016/j.nbd.2022.105952] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The glial cell of the peripheral nervous system (PNS), the Schwann cell (SC), counts among the most multifaceted cells of the body. During development, SCs secure neuronal survival and participate in axonal path finding. Simultaneously, they orchestrate the architectural set up of the developing nerves, including the blood vessels and the endo-, peri- and epineurial layers. Perinatally, in rodents, SCs radially sort and subsequently myelinate individual axons larger than 1 μm in diameter, while small calibre axons become organised in non-myelinating Remak bundles. SCs have a vital role in maintaining axonal health throughout life and several specialized SC types perform essential functions at specific locations, such as terminal SC at the neuromuscular junction (NMJ) or SC within cutaneous sensory end organs. In addition, neural crest derived satellite glia maintain a tight communication with the soma of sensory, sympathetic, and parasympathetic neurons and neural crest derivatives are furthermore an indispensable part of the enteric nervous system. The remarkable plasticity of SCs becomes evident in the context of a nerve injury, where SC transdifferentiate into intriguing repair cells, which orchestrate a regenerative response that promotes nerve repair. Indeed, the multiple adaptations of SCs are captivating, but remain often ill-resolved on the molecular level. Here, we summarize and discuss the knowns and unknowns of the vast array of functions that this single cell type can cover in peripheral nervous system development, maintenance, and repair.
Collapse
|
8
|
Cristobal CD, Lee HK. Development of myelinating glia: An overview. Glia 2022; 70:2237-2259. [PMID: 35785432 PMCID: PMC9561084 DOI: 10.1002/glia.24238] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Collapse
Affiliation(s)
- Carlo D. Cristobal
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA,Department of PediatricsBaylor College of MedicineHoustonTexasUSA,Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
9
|
Reed CB, Feltri ML, Wilson ER. Peripheral glia diversity. J Anat 2022; 241:1219-1234. [PMID: 34131911 PMCID: PMC8671569 DOI: 10.1111/joa.13484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Recent years have seen an evolving appreciation for the role of glial cells in the nervous system. As we move away from the typical neurocentric view of neuroscience, the complexity and variability of central nervous system glia is emerging, far beyond the three main subtypes: astrocytes, oligodendrocytes, and microglia. Yet the diversity of the glia found in the peripheral nervous system remains rarely discussed. In this review, we discuss the developmental origin, morphology, and function of the different populations of glia found in the peripheral nervous system, including: myelinating Schwann cells, Remak Schwann cells, repair Schwann cells, satellite glia, boundary cap-derived glia, perineurial glia, terminal Schwann cells, glia found in the skin, olfactory ensheathing cells, and enteric glia. The morphological and functional heterogeneity of glia found in the periphery reflects the diverse roles the nervous system performs throughout the body. Further, it highlights a complexity that should be appreciated and considered when it comes to a complete understanding of the peripheral nervous system in health and disease.
Collapse
Affiliation(s)
- Chelsey B. Reed
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of NeurologyJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| | - M. Laura Feltri
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of NeurologyJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| | - Emma R. Wilson
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| |
Collapse
|
10
|
Liu Y, Yue W, Yu S, Zhou T, Zhang Y, Zhu R, Song B, Guo T, Liu F, Huang Y, Wu T, Wang H. A physical perspective to understand myelin II: The physical origin of myelin development. Front Neurosci 2022; 16:951998. [PMID: 36263368 PMCID: PMC9574017 DOI: 10.3389/fnins.2022.951998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The physical principle of myelin development is obtained from our previous study by explaining Peter's quadrant mystery: an externally applied negative and positive E-field can promote and inhibit the growth of the inner tongue of the myelin sheath, respectively. In this study, this principle is considered as a fundamental hypothesis, named Hypothesis-E, to explain more phenomena about myelin development systematically. Specifically, the g-ratio and the fate of the Schwann cell's differentiation are explained in terms of the E-field. Moreover, an experiment is proposed to validate this theory.
Collapse
Affiliation(s)
- Yonghong Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Wenji Yue
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Shoujun Yu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Tian Zhou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yapeng Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Ran Zhu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Bing Song
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Tianruo Guo
- Key Laboratory of Health Bioinformatics, Chinese Academy of Sciences, Shenzhen, China
| | - Fenglin Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yubin Huang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Tianzhun Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Hao Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
11
|
Maeda S, Minato Y, Kuwahara-Otani S, Yamanaka H, Maeda M, Kataoka Y, Yagi H. Morphology of Schwann Cell Processes Supports Renal Sympathetic Nerve Terminals With Local Distribution of Adrenoceptors. J Histochem Cytochem 2022; 70:495-513. [PMID: 35708491 DOI: 10.1369/00221554221106812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nerves in the renal parenchyma comprise sympathetic nerves that act on renal arteries and tubules to decrease blood flow and increase primary urine reabsorption, respectively. Synaptic vesicles release neurotransmitters that activate their effector tissues. However, the mechanisms by which neurotransmitters exert individual responses to renal effector cells remain unknown. Here, we investigated the spatial and molecular compositional associations of renal Schwann cells (SC) supporting the nerve terminals in male rats. The nerve terminals of vascular smooth muscle cells (SMCs) enclosed by renal SC processes were exposed through windows facing the effectors with presynaptic specializations. We found that the adrenergic receptors (ARs) α2A, α2C, and β2 were localized in the SMC and the basal side of the tubules, where the nerve terminals were attached, whereas the other subtypes of ARs were distributed in the glomerular and luminal side, where the norepinephrine released from nerve endings may have indirect access to ARs. In addition, integrins α4 and β1 were coexpressed in the nerve terminals. Thus, renal nerve terminals could contact their effectors via integrins and may have a structure, covered by SC processes, suitable for intensive and directional release of neurotransmitters into the blood, rather than specialized structures in the postsynaptic region.
Collapse
Affiliation(s)
| | | | | | - Hiroki Yamanaka
- Department of Anatomy and Cell Biology.,Department of Anatomy and Neuroscience
| | - Mitsuyo Maeda
- Hyogo College of Medicine, Nishinomiya, Japan; Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, RIKEN, Hyogo, Japan.,Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, RIKEN, Hyogo, Japan
| | - Yosky Kataoka
- Hyogo College of Medicine, Nishinomiya, Japan; Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, RIKEN, Hyogo, Japan.,Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, RIKEN, Hyogo, Japan
| | | |
Collapse
|
12
|
Sardella-Silva G, Mietto BS, Ribeiro-Resende VT. Four Seasons for Schwann Cell Biology, Revisiting Key Periods: Development, Homeostasis, Repair, and Aging. Biomolecules 2021; 11:1887. [PMID: 34944531 PMCID: PMC8699407 DOI: 10.3390/biom11121887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/28/2023] Open
Abstract
Like the seasons of the year, all natural things happen in stages, going through adaptations when challenged, and Schwann cells are a great example of that. During maturation, these cells regulate several steps in peripheral nervous system development. The Spring of the cell means the rise and bloom through organized stages defined by time-dependent regulation of factors and microenvironmental influences. Once matured, the Summer of the cell begins: a high energy stage focused on maintaining adult homeostasis. The Schwann cell provides many neuron-glia communications resulting in the maintenance of synapses. In the peripheral nervous system, Schwann cells are pivotal after injuries, balancing degeneration and regeneration, similarly to when Autumn comes. Their ability to acquire a repair phenotype brings the potential to reconnect axons to targets and regain function. Finally, Schwann cells age, not only by growing old, but also by imposed environmental cues, like loss of function induced by pathologies. The Winter of the cell presents as reduced activity, especially regarding their role in repair; this reflects on the regenerative potential of older/less healthy individuals. This review gathers essential information about Schwann cells in different stages, summarizing important participation of this intriguing cell in many functions throughout its lifetime.
Collapse
Affiliation(s)
- Gabriela Sardella-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Guerra Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias 25255-030, RJ, Brazil
| | - Bruno Siqueira Mietto
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil;
| | - Victor Túlio Ribeiro-Resende
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Guerra Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias 25255-030, RJ, Brazil
| |
Collapse
|
13
|
Pompili E, De Franchis V, Giampietri C, Leone S, De Santis E, Fornai F, Fumagalli L, Fabrizi C. Protease Activated Receptor 1 and Its Ligands as Main Regulators of the Regeneration of Peripheral Nerves. Biomolecules 2021; 11:1668. [PMID: 34827666 PMCID: PMC8615415 DOI: 10.3390/biom11111668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/16/2022] Open
Abstract
In contrast with the brain and spinal cord, peripheral nerves possess a striking ability to regenerate after damage. This characteristic of the peripheral nervous system is mainly due to a specific population of glial cells, the Schwann cells. Schwann cells promptly activate after nerve injury, dedifferentiate assuming a repair phenotype, and assist axon regrowth. In general, tissue injury determines the release of a variety of proteases which, in parallel with the degradation of their specific targets, also activate plasma membrane receptors known as protease-activated receptors (PARs). PAR1, the prototypical member of the PAR family, is also known as thrombin receptor and is present at the Schwann cell plasma membrane. This receptor is emerging as a possible regulator of the pro-regenerative capacity of Schwann cells. Here, we summarize the most recent literature data describing the possible contribution of PAR1 and PAR1-activating proteases in regulating the regeneration of peripheral nerves.
Collapse
Affiliation(s)
- Elena Pompili
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (V.D.F.); (C.G.); (E.D.S.); (L.F.); (C.F.)
| | - Valerio De Franchis
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (V.D.F.); (C.G.); (E.D.S.); (L.F.); (C.F.)
| | - Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (V.D.F.); (C.G.); (E.D.S.); (L.F.); (C.F.)
| | - Stefano Leone
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Rome, Italy;
| | - Elena De Santis
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (V.D.F.); (C.G.); (E.D.S.); (L.F.); (C.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Lorenzo Fumagalli
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (V.D.F.); (C.G.); (E.D.S.); (L.F.); (C.F.)
| | - Cinzia Fabrizi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (V.D.F.); (C.G.); (E.D.S.); (L.F.); (C.F.)
| |
Collapse
|
14
|
Previtali SC. Peripheral Nerve Development and the Pathogenesis of Peripheral Neuropathy: the Sorting Point. Neurotherapeutics 2021; 18:2156-2168. [PMID: 34244926 PMCID: PMC8804061 DOI: 10.1007/s13311-021-01080-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Nerve development requires a coordinated sequence of events and steps to be accomplished for the generation of functional peripheral nerves to convey sensory and motor signals. Any abnormality during development may result in pathological structure and function of the nerve, which evolves in peripheral neuropathy. In this review, we will briefly describe different steps of nerve development while we will mostly focus on the molecular mechanisms involved in radial sorting of axons, one of these nerve developmental steps. We will summarize current knowledge of molecular pathways so far reported in radial sorting and their possible interactions. Finally, we will describe how disruption of these pathways may result in human neuropathies.
Collapse
Affiliation(s)
- Stefano C Previtali
- Neuromuscular Repair Unit, InSpe (Institute of Experimental Neurology) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
15
|
Yang Y, Zhou X, Liu X, Song R, Gao Y, Wang S. Implications of FBXW7 in Neurodevelopment and Neurodegeneration: Molecular Mechanisms and Therapeutic Potential. Front Cell Neurosci 2021; 15:736008. [PMID: 34512273 PMCID: PMC8424092 DOI: 10.3389/fncel.2021.736008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) mediated protein degradation is crucial to maintain quantitive and functional homeostasis of diverse proteins. Balanced cellular protein homeostasis controlled by UPS is fundamental to normal neurological functions while impairment of UPS can also lead to some neurodevelopmental and neurodegenerative disorders. Functioning as the substrate recognition component of the SCF-type E3 ubiquitin ligase, FBXW7 is essential to multiple aspects of cellular processes via targeting a wide range of substrates for proteasome-mediated degradation. Accumulated evidence shows that FBXW7 is fundamental to neurological functions and especially implicated in neurodevelopment and the nosogenesis of neurodegeneration. In this review, we describe general features of FBXW7 gene and proteins, and mainly present recent findings that highlight the vital roles and molecular mechanisms of FBXW7 in neurodevelopment such as neurogenesis, myelination and cerebral vasculogenesis and in the pathogenesis of some typical neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease. Additionally, we also provide a prospect on focusing FBXW7 as a potential therapeutic target to rescue neurodevelopmental and neurodegenerative impairment.
Collapse
Affiliation(s)
- Yu Yang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Xuan Zhou
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Research Center for Quality of Life and Applied Psychology, School of Humanities and Management, Guangdong Medical University, Dongguan, China
| | - Xinpeng Liu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Ruying Song
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Yiming Gao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
16
|
Nazareth L, St John J, Murtaza M, Ekberg J. Phagocytosis by Peripheral Glia: Importance for Nervous System Functions and Implications in Injury and Disease. Front Cell Dev Biol 2021; 9:660259. [PMID: 33898462 PMCID: PMC8060502 DOI: 10.3389/fcell.2021.660259] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
The central nervous system (CNS) has very limited capacity to regenerate after traumatic injury or disease. In contrast, the peripheral nervous system (PNS) has far greater capacity for regeneration. This difference can be partly attributed to variances in glial-mediated functions, such as axon guidance, structural support, secretion of growth factors and phagocytic activity. Due to their growth-promoting characteristic, transplantation of PNS glia has been trialed for neural repair. After peripheral nerve injuries, Schwann cells (SCs, the main PNS glia) phagocytose myelin debris and attract macrophages to the injury site to aid in debris clearance. One peripheral nerve, the olfactory nerve, is unique in that it continuously regenerates throughout life. The olfactory nerve glia, olfactory ensheathing cells (OECs), are the primary phagocytes within this nerve, continuously clearing axonal debris arising from the normal regeneration of the nerve and after injury. In contrast to SCs, OECs do not appear to attract macrophages. SCs and OECs also respond to and phagocytose bacteria, a function likely critical for tackling microbial invasion of the CNS via peripheral nerves. However, phagocytosis is not always effective; inflammation, aging and/or genetic factors may contribute to compromised phagocytic activity. Here, we highlight the diverse roles of SCs and OECs with the focus on their phagocytic activity under physiological and pathological conditions. We also explore why understanding the contribution of peripheral glia phagocytosis may provide us with translational strategies for achieving axonal regeneration of the injured nervous system and potentially for the treatment of certain neurological diseases.
Collapse
Affiliation(s)
- Lynn Nazareth
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia
| | - James St John
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Mariyam Murtaza
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Jenny Ekberg
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
17
|
Brifault C, Romero H, Van-Enoo A, Pizzo D, Azmoon P, Kwon H, Nasamran C, Gonias SL, Campana WM. Deletion of the Gene Encoding the NMDA Receptor GluN1 Subunit in Schwann Cells Causes Ultrastructural Changes in Remak Bundles and Hypersensitivity in Pain Processing. J Neurosci 2020; 40:9121-9136. [PMID: 33051351 PMCID: PMC7672997 DOI: 10.1523/jneurosci.0663-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022] Open
Abstract
Abnormalities in interactions between sensory neurons and Schwann cells (SCs) may result in heightened pain processing and chronic pain states. We previously reported that SCs express the NMDA receptor (NMDA-R), which activates cell signaling in response to glutamate and specific protein ligands, such as tissue-type plasminogen activator. Herein, we genetically targeted grin1 encoding the essential GluN1 NMDA-R subunit, conditionally in SCs, to create a novel mouse model in which SCs are NMDA-R-deficient (GluN1- mice). These mice demonstrated increased sensitivity to light touch, pinprick, and thermal hyperalgesia in the absence of injury, without associated changes in motor function. Ultrastructural analysis of adult sciatic nerve in GluN1- mice revealed increases in the density of Aδ fibers and Remak bundles and a decrease in the density of Aβ fibers, without altered g-ratios. Abnormalities in adult Remak bundle ultrastructure were also present including aberrant C-fiber ensheathment, distances between axons, and increased poly-axonal pockets. Developmental and post radial sorting defects contributed to altered nerve fiber densities in adult. Uninjured sciatic nerves in GluN1- mice did not demonstrate an increase in neuroinflammatory infiltrates. Transcriptome profiling of dorsal root ganglia (DRGs) revealed 138 differentially regulated genes in GluN1- mice. One third of the regulated genes are known to be involved in pain processing, including sprr1a, npy, fgf3, atf3, and cckbr, which were significantly increased. The intraepidermal nerve fiber density (IENFD) was significantly decreased in the skin of GluN1- mice. Collectively, these findings demonstrate that SC NMDA-R is essential for normal PNS development and for preventing development of pain states.SIGNIFICANCE STATEMENT Chronic unremitting pain is a prevalent medical condition; however, the molecular mechanisms that underlie heightened pain processing remain incompletely understood. Emerging data suggest that abnormalities in Schwann cells (SCs) may cause neuropathic pain. We established a novel mouse model for small fiber neuropathy (SFN) in which grin1, the gene that encodes the NMDA receptor (NMDA-R) GluN1 subunit, is deleted in SCs. These mice demonstrate hypersensitivity in pain processing in the absence of nerve injury. Changes in the density of intraepidermal small fibers, the ultrastructure of Remak bundles, and the transcriptome of dorsal root ganglia (DRGs) provide possible explanations for the increase in pain processing. Our results support the hypothesis that abnormalities in communication between sensory nerve fibers and SCs may result in pain states.
Collapse
Affiliation(s)
- Coralie Brifault
- Department of Anesthesiology, University of California San Diego, La Jolla, California 92093
- Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - Haylie Romero
- Department of Anesthesiology, University of California San Diego, La Jolla, California 92093
- Program in Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Alicia Van-Enoo
- Department of Anesthesiology, University of California San Diego, La Jolla, California 92093
- Program in Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Don Pizzo
- Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - Pardis Azmoon
- Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - HyoJun Kwon
- Department of Anesthesiology, University of California San Diego, La Jolla, California 92093
| | - Chanond Nasamran
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - Wendy M Campana
- Department of Anesthesiology, University of California San Diego, La Jolla, California 92093
- Program in Neurosciences, University of California, San Diego, La Jolla, California 92093
- San Diego Veterans Administration Health Care System, San Diego, California 92161
| |
Collapse
|
18
|
Epidermal expression of human TRPM8, but not of TRPA1 ion channels, is associated with sensory responses to local skin cooling. Pain 2020; 160:2699-2709. [PMID: 31343541 DOI: 10.1097/j.pain.0000000000001660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human cold perception and nociception play an important role in persisting pain. However, species differences in the target temperature of thermosensitive ion channels expressed in peripheral nerve endings have fueled discussions about the mechanism of cold nociception in humans. Most frequently implicated thermosensors are members of the transient receptor potential (TRP) ion channel family TRPM8 and TRPA1. Regularly observed, distinct cold pain phenotype groups suggested the existence of interindividually differing molecular bases. In 28 subjects displaying either high or medium sensitivity to local cooling of the skin, the density at epidermal nerve fibers of TRPM8, but not that of TRPA1 expression, correlated significantly with the cold pain threshold. Moreover, reproducible grouping of the subjects, based on high or medium sensitivity to cooling, was reflected in an analogous grouping based on high or low TRPM8 expression at epidermal nerve fibers. The distribution of TRPM8 expression in epidermal nerve fibers provided an explanation for the previously observed (bi)modal distribution of human cold pain thresholds which was reproduced in this study. In the light of current controversies on the role of human TRPA1 ion channels in cold pain perception, the present observations demonstrating a lack of association of TRPA1 channel expression with cold sensitivity-related measures reinforce doubts about involvement of this channel in cold pain in humans. Since TRP inhibitors targeting TRPM8 and TRPA1 are currently entering clinical phases of drug development, the existence of known species differences, in particular in the function of TRPA1, emphasizes the increasing importance of new methods to directly approach the roles of TRPs in humans.
Collapse
|
19
|
Previtali SC, Zambon AA. LAMA2 Neuropathies: Human Findings and Pathomechanisms From Mouse Models. Front Mol Neurosci 2020; 13:60. [PMID: 32390798 PMCID: PMC7190814 DOI: 10.3389/fnmol.2020.00060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Merosin deficient Congenital Muscular Dystrophy (MDC1A), or LAMA2-related muscular dystrophy (LAMA2-RD), is a recessive disorder resulting from mutations in the LAMA2 gene, encoding for the alpha-2 chain of laminin-211. The disease is predominantly characterized by progressive muscular dystrophy affecting patient motor function and reducing life expectancy. However, LAMA2-RD also comprises a developmentally-associated dysmyelinating neuropathy that contributes to the disease progression, in addition to brain abnormalities; the latter often underappreciated. In this brief review, we present data supporting the impact of peripheral neuropathy in the LAMA2-RD phenotype, including both mouse models and human studies. We discuss the molecular mechanisms underlying nerve abnormalities and involved in the laminin-211 pathway, which affects axon sorting, ensheathing and myelination. We conclude with some final considerations of consequences on nerve regeneration and potential therapeutic strategies.
Collapse
Affiliation(s)
- Stefano Carlo Previtali
- Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy.,Department of Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | | |
Collapse
|
20
|
Fledrich R, Kungl T, Nave KA, Stassart RM. Axo-glial interdependence in peripheral nerve development. Development 2019; 146:146/21/dev151704. [PMID: 31719044 DOI: 10.1242/dev.151704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During the development of the peripheral nervous system, axons and myelinating Schwann cells form a unique symbiotic unit, which is realized by a finely tuned network of molecular signals and reciprocal interactions. The importance of this complex interplay becomes evident after injury or in diseases in which aspects of axo-glial interaction are perturbed. This Review focuses on the specific interdependence of axons and Schwann cells in peripheral nerve development that enables axonal outgrowth, Schwann cell lineage progression, radial sorting and, finally, formation and maintenance of the myelin sheath.
Collapse
Affiliation(s)
- Robert Fledrich
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany .,Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Theresa Kungl
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany.,Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Ruth M Stassart
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany .,Department of Neuropathology, University Clinic Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
21
|
Ommer A, Figlia G, Pereira JA, Datwyler AL, Gerber J, DeGeer J, Lalli G, Suter U. Ral GTPases in Schwann cells promote radial axonal sorting in the peripheral nervous system. J Cell Biol 2019; 218:2350-2369. [PMID: 31201267 PMCID: PMC6605813 DOI: 10.1083/jcb.201811150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/03/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Small GTPases of the Rho and Ras families are important regulators of Schwann cell biology. The Ras-like GTPases RalA and RalB act downstream of Ras in malignant peripheral nerve sheath tumors. However, the physiological role of Ral proteins in Schwann cell development is unknown. Using transgenic mice with ablation of one or both Ral genes, we report that Ral GTPases are crucial for axonal radial sorting. While lack of only one Ral GTPase was dispensable for early peripheral nerve development, ablation of both RalA and RalB resulted in persistent radial sorting defects, associated with hallmarks of deficits in Schwann cell process formation and maintenance. In agreement, ex vivo-cultured Ral-deficient Schwann cells were impaired in process extension and the formation of lamellipodia. Our data indicate further that RalA contributes to Schwann cell process extensions through the exocyst complex, a known effector of Ral GTPases, consistent with an exocyst-mediated function of Ral GTPases in Schwann cells.
Collapse
Affiliation(s)
- Andrea Ommer
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Gianluca Figlia
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jorge A Pereira
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Anna Lena Datwyler
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Joanne Gerber
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jonathan DeGeer
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Giovanna Lalli
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination. J Neurosci 2017; 37:9086-9099. [PMID: 28904214 PMCID: PMC5597985 DOI: 10.1523/jneurosci.1453-17.2017] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 01/23/2023] Open
Abstract
There is consensus that, distal to peripheral nerve injury, myelin and Remak cells reorganize to form cellular columns, Bungner's bands, which are indispensable for regeneration. However, knowledge of the structure of these regeneration tracks has not advanced for decades and the structure of the cells that form them, denervated or repair Schwann cells, remains obscure. Furthermore, the origin of these cells from myelin and Remak cells and their ability to give rise to myelin cells after regeneration has not been demonstrated directly, although these conversions are believed to be central to nerve repair. Using genetic lineage-tracing and scanning-block face electron microscopy, we show that injury of sciatic nerves from mice of either sex triggers extensive and unexpected Schwann cell elongation and branching to form long, parallel processes. Repair cells are 2- to 3-fold longer than myelin and Remak cells and 7- to 10-fold longer than immature Schwann cells. Remarkably, when repair cells transit back to myelinating cells, they shorten ∼7-fold to generate the typically short internodes of regenerated nerves. The present experiments define novel morphological transitions in injured nerves and show that repair Schwann cells have a cell-type-specific structure that differentiates them from other cells in the Schwann cell lineage. They also provide the first direct evidence using genetic lineage tracing for two basic assumptions in Schwann cell biology: that myelin and Remak cells generate the elongated cells that build Bungner bands in injured nerves and that such cells can transform to myelin cells after regeneration. SIGNIFICANCE STATEMENT After injury to peripheral nerves, the myelin and Remak Schwann cells distal to the injury site reorganize and modify their properties to form cells that support the survival of injured neurons, promote axon growth, remove myelin-associated growth inhibitors, and guide regenerating axons to their targets. We show that the generation of these repair-supportive Schwann cells involves an extensive cellular elongation and branching, often to form long, parallel processes. This generates a distinctive repair cell morphology that is favorable for the formation of the regeneration tracks that are essential for nerve repair. Remyelination, conversely, involves a striking cell shortening to form the typical short myelin cells of regenerated nerves. We also provide evidence for direct lineage relationships between: (1) repair cells and myelin and Remak cells of uninjured nerves and (2) remyelinating cells in regenerated nerves.
Collapse
|
23
|
Smith CJ, Wheeler MA, Marjoram L, Bagnat M, Deppmann CD, Kucenas S. TNFa/TNFR2 signaling is required for glial ensheathment at the dorsal root entry zone. PLoS Genet 2017; 13:e1006712. [PMID: 28379965 PMCID: PMC5397050 DOI: 10.1371/journal.pgen.1006712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/19/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
Somatosensory information from the periphery is routed to the spinal cord through centrally-projecting sensory axons that cross into the central nervous system (CNS) via the dorsal root entry zone (DREZ). The glial cells that ensheath these axons ensure rapid propagation of this information. Despite the importance of this glial-axon arrangement, how this afferent nerve is assembled during development is unknown. Using in vivo, time-lapse imaging we show that as centrally-projecting pioneer axons from dorsal root ganglia (DRG) enter the spinal cord, they initiate expression of the cytokine TNFalpha. This induction coincides with ensheathment of these axons by associated glia via a TNF receptor 2 (TNFR2)-mediated process. This work identifies a signaling cascade that mediates peripheral glial-axon interactions and it functions to ensure that DRG afferent projections are ensheathed after pioneer axons complete their navigation, which promotes efficient somatosensory neural function.
Collapse
Affiliation(s)
- Cody J. Smith
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael A. Wheeler
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, United States of America
| | - Lindsay Marjoram
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Christopher D. Deppmann
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, United States of America
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
24
|
Grove M, Kim H, Santerre M, Krupka AJ, Han SB, Zhai J, Cho JY, Park R, Harris M, Kim S, Sawaya BE, Kang SH, Barbe MF, Cho SH, Lemay MA, Son YJ. YAP/TAZ initiate and maintain Schwann cell myelination. eLife 2017; 6:e20982. [PMID: 28124973 PMCID: PMC5287714 DOI: 10.7554/elife.20982] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/22/2017] [Indexed: 12/12/2022] Open
Abstract
Nuclear exclusion of the transcriptional regulators and potent oncoproteins, YAP/TAZ, is considered necessary for adult tissue homeostasis. Here we show that nuclear YAP/TAZ are essential regulators of peripheral nerve development and myelin maintenance. To proliferate, developing Schwann cells (SCs) require YAP/TAZ to enter S-phase and, without them, fail to generate sufficient SCs for timely axon sorting. To differentiate, SCs require YAP/TAZ to upregulate Krox20 and, without them, completely fail to myelinate, resulting in severe peripheral neuropathy. Remarkably, in adulthood, nuclear YAP/TAZ are selectively expressed by myelinating SCs, and conditional ablation results in severe peripheral demyelination and mouse death. YAP/TAZ regulate both developmental and adult myelination by driving TEAD1 to activate Krox20. Therefore, YAP/TAZ are crucial for SCs to myelinate developing nerve and to maintain myelinated nerve in adulthood. Our study also provides a new insight into the role of nuclear YAP/TAZ in homeostatic maintenance of an adult tissue.
Collapse
Affiliation(s)
- Matthew Grove
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Hyukmin Kim
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Maryline Santerre
- FELS Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Alexander J Krupka
- Department of Bioengineering, Temple University, Philadelphia, United States
| | - Seung Baek Han
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Jinbin Zhai
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Jennifer Y Cho
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Raehee Park
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Michele Harris
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Seonhee Kim
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Bassel E Sawaya
- FELS Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Shin H Kang
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Seo-Hee Cho
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Michel A Lemay
- Department of Bioengineering, Temple University, Philadelphia, United States
| | - Young-Jin Son
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| |
Collapse
|
25
|
17 β-Estradiol Promotes Schwann Cell Proliferation and Differentiation, Accelerating Early Remyelination in a Mouse Peripheral Nerve Injury Model. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7891202. [PMID: 27872858 PMCID: PMC5107215 DOI: 10.1155/2016/7891202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/04/2016] [Indexed: 12/25/2022]
Abstract
Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2) on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG) explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP) expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation.
Collapse
|
26
|
YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells. Nat Neurosci 2016; 19:879-87. [PMID: 27273766 PMCID: PMC4925303 DOI: 10.1038/nn.4316] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/04/2016] [Indexed: 12/13/2022]
Abstract
Myelination is essential for nervous system function. Schwann cells interact with neurons and the basal lamina to myelinate axons, using known receptors, signals and transcription factors. In contrast, the transcriptional control of axonal sorting and the role of mechanotransduction in myelination are largely unknown. Yap and Taz are effectors of the Hippo pathway that integrate chemical and mechanical signals in cells. We describe a previously unknown role for the Hippo pathway in myelination. Using conditional mutagenesis in mice we show that Taz is required in Schwann cells for radial sorting and myelination, and that Yap is redundant with Taz. Yap/Taz are activated in Schwann cells by mechanical stimuli, and regulate Schwann cell proliferation and transcription of basal lamina receptor genes, both necessary for proper radial sorting of axons and subsequent myelination. These data link transcriptional effectors of the Hippo pathway and of mechanotransduction to myelin formation in Schwann cells.
Collapse
|
27
|
Lentivirus-Mediated RNA Interference Targeting RhoA Slacks the Migration, Proliferation, and Myelin Formation of Schwann Cells. Mol Neurobiol 2016; 54:1229-1239. [DOI: 10.1007/s12035-016-9733-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/19/2016] [Indexed: 10/24/2022]
|
28
|
Monk KR, Feltri ML, Taveggia C. New insights on Schwann cell development. Glia 2015; 63:1376-93. [PMID: 25921593 PMCID: PMC4470834 DOI: 10.1002/glia.22852] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
In the peripheral nervous system, Schwann cells are glial cells that are in intimate contact with axons throughout development. Schwann cells generate the insulating myelin sheath and provide vital trophic support to the neurons that they ensheathe. Schwann cell precursors arise from neural crest progenitor cells, and a highly ordered developmental sequence controls the progression of these cells to become mature myelinating or nonmyelinating Schwann cells. Here, we discuss both seminal discoveries and recent advances in our understanding of the molecular mechanisms that drive Schwann cell development and myelination with a focus on cell-cell and cell-matrix signaling events.
Collapse
Affiliation(s)
- Kelly R Monk
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| | - M Laura Feltri
- Department of Biochemistry and Neurology, Hunter James Kelly Research Institute, University at Buffalo, State University of New York, Buffalo, New York
| | - Carla Taveggia
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
29
|
Yurchenco PD. Integrating Activities of Laminins that Drive Basement Membrane Assembly and Function. CURRENT TOPICS IN MEMBRANES 2015; 76:1-30. [PMID: 26610910 DOI: 10.1016/bs.ctm.2015.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies on extracellular matrix proteins, cells, and genetically modified animals have converged to reveal mechanisms of basement membrane self-assembly as mediated by γ1 subunit-containing laminins, the focus of this chapter. The basic model is as follows: A member of the laminin family adheres to a competent cell surface and typically polymerizes followed by laminin binding to the extracellular adaptor proteins nidogen, perlecan, and agrin. Assembly is completed by the linking of nidogen and heparan sulfates to type IV collagen, allowing it to form a second stabilizing network polymer. The assembled matrix provides structural support, anchoring the extracellular matrix to the cytoskeleton, and acts as a signaling platform. Heterogeneity of function is created in part by the isoforms of laminin that vary in their ability to polymerize and to interact with integrins, dystroglycan, and other receptors. Mutations in laminin subunits, affecting expression or LN domain-specific functions, are a cause of human diseases that include those of muscle, nerve, brain, and kidney.
Collapse
Affiliation(s)
- Peter D Yurchenco
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
30
|
Abstract
Schwann cells develop from the neural crest in a well-defined sequence of events. This involves the formation of the Schwann cell precursor and immature Schwann cells, followed by the generation of the myelin and nonmyelin (Remak) cells of mature nerves. This review describes the signals that control the embryonic phase of this process and the organogenesis of peripheral nerves. We also discuss the phenotypic plasticity retained by mature Schwann cells, and explain why this unusual feature is central to the striking regenerative potential of the peripheral nervous system (PNS).
Collapse
Affiliation(s)
- Kristján R Jessen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Rhona Mirsky
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Alison C Lloyd
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
31
|
Abstract
Peripheral nerves contain large myelinated and small unmyelinated (Remak) fibers that perform different functions. The choice to myelinate or not is dictated to Schwann cells by the axon itself, based on the amount of neuregulin I-type III exposed on its membrane. Peripheral axons are more important in determining the final myelination fate than central axons, and the implications for this difference in Schwann cells and oligodendrocytes are discussed. Interestingly, this choice is reversible during pathology, accounting for the remarkable plasticity of Schwann cells, and contributing to the regenerative potential of the peripheral nervous system. Radial sorting is the process by which Schwann cells choose larger axons to myelinate during development. This crucial morphogenetic step is a prerequisite for myelination and for differentiation of Remak fibers, and is arrested in human diseases due to mutations in genes coding for extracellular matrix and linkage molecules. In this review we will summarize progresses made in the last years by a flurry of reverse genetic experiments in mice and fish. This work revealed novel molecules that control radial sorting, and contributed unexpected ideas to our understanding of the cellular and molecular mechanisms that control radial sorting of axons.
Collapse
Affiliation(s)
- M Laura Feltri
- Hunter James Kelly Research Institute, Departments of Biochemistry & Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yannick Poitelon
- Hunter James Kelly Research Institute, Departments of Biochemistry & Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Stefano Carlo Previtali
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
32
|
Romano NH, Lampe KJ, Xu H, Ferreira MM, Heilshorn SC. Microfluidic gradients reveal enhanced neurite outgrowth but impaired guidance within 3D matrices with high integrin ligand densities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:722-30. [PMID: 25315156 PMCID: PMC4528974 DOI: 10.1002/smll.201401574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/11/2014] [Indexed: 05/08/2023]
Abstract
The density of integrin-binding ligands in an extracellular matrix (ECM) is known to regulate cell migration speed by imposing a balance of traction forces between the leading and trailing edges of the cell, but the effect of cell-adhesive ligands on neurite chemoattraction is not well understood. A platform is presented here that combines gradient-generating microfluidic devices with 3D protein-engineered hydrogels to study the effect of RGD ligand density on neurite pathfinding from chick dorsal root ganglia-derived spheroids. Spheroids are encapsulated in elastin-like polypeptide (ELP) hydrogels presenting either 3.2 or 1.6 mM RGD ligands and exposed to a microfluidic gradient of nerve growth factor (NGF). While the higher ligand density matrix enhanced neurite initiation and persistence of neurite outgrowth, the lower ligand density matrix significantly improved neurite pathfinding and increased the frequency of growth cone turning up the NGF gradient. The apparent trade-off between neurite extension and neurite guidance is reminiscent of the well-known trade-off between adhesive forces at the leading and trailing edges of a migrating cell, implying that a similar matrix-mediated balance of forces regulates neurite elongation and growth cone turning. These results have implications in the design of engineered materials for in vitro models of neural tissue and in vivo nerve guidance channels.
Collapse
Affiliation(s)
| | | | - Hui Xu
- 476 Lomita Mall, McCullough 246, Stanford, CA 94305
| | | | | |
Collapse
|
33
|
FAK is required for Schwann cell spreading on immature basal lamina to coordinate the radial sorting of peripheral axons with myelination. J Neurosci 2015; 34:13422-34. [PMID: 25274820 DOI: 10.1523/jneurosci.1764-14.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Without Focal Adhesion Kinase (FAK), developing murine Schwann cells (SCs) proliferate poorly, sort axons inefficiently, and cannot myelinate peripheral nerves. Here we show that FAK is required for the development of SCs when their basal lamina (BL) is fragmentary, but not when it is mature in vivo. Mutant SCs fail to spread on fragmentary BL during development in vivo, and this is phenocopied by SCs lacking functional FAK on low laminin (LN) in vitro. Furthermore, SCs without functional FAK initiate differentiation prematurely, both in vivo and in vitro. In contrast to their behavior on high levels of LN, SCs lacking functional FAK grown on low LN display reduced spreading, proliferation, and indicators of contractility (i.e., stress fibers, arcs, and focal adhesions) and are primed to differentiate. Growth of SCs lacking functional FAK on increasing LN concentrations in vitro revealed that differentiation is not regulated by G1 arrest but rather by cell spreading and the level of contractile actomyosin. The importance of FAK as a critical regulator of the specific response of developing SCs to fragmentary BL was supported by the ability of adult FAK mutant SCs to remyelinate demyelinated adult nerves on mature BL in vivo. We conclude that FAK promotes the spreading and actomyosin contractility of immature SCs on fragmentary BL, thus maintaining their proliferation, and preventing differentiation until they reach high density, thereby promoting radial sorting. Hence, FAK has a critical role in the response of SCs to limiting BL by promoting proliferation and preventing premature SC differentiation.
Collapse
|
34
|
Peripheral nervous system defects in a mouse model for peroxisomal biogenesis disorders. Dev Biol 2014; 395:84-95. [PMID: 25176044 DOI: 10.1016/j.ydbio.2014.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/19/2022]
Abstract
Peroxisome biogenesis disorders (PBD) are autosomal recessive disorders in humans characterized by skeletal, eye and brain abnormalities. Despite the fact that neurological deficits, including peripheral nervous system (PNS) defects, can be observed at birth in some PBD patients including those with PEX10 mutations, the embryological basis of the PNS defects is unclear. Using a forward genetic screen, we identified a mouse model for Pex10 deficiency that exhibits neurological abnormalities during fetal development. Homozygous Pex10 mutant mouse embryos display biochemical abnormalities related to a PBD deficiency. During late embryogenesis, Pex10 homozygous mutant mice experience progressive loss of movement and at birth they become cyanotic and die shortly thereafter. Homozygous Pex10 mutant fetuses display decreased integrity of axons and synapses, over-extension of axons in the diaphragm and decreased Schwann cell numbers. Our neuropathological, molecular and electrophysiological studies provide new insights into the embryological basis of the PNS deficits in a PBD model. Our findings identify PEX10 function, and likely other PEX proteins, as an essential component of the spinal locomotor circuit.
Collapse
|
35
|
Faroni A, Castelnovo LF, Procacci P, Caffino L, Fumagalli F, Melfi S, Gambarotta G, Bettler B, Wrabetz L, Magnaghi V. Deletion of GABA-B receptor in Schwann cells regulates remak bundles and small nociceptive C-fibers. Glia 2014; 62:548-65. [PMID: 24474699 DOI: 10.1002/glia.22625] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 12/16/2023]
Abstract
The mechanisms regulating the differentiation into non-myelinating Schwann cells is not completely understood. Recent evidence indicates that GABA-B receptors may regulate myelination and nociception in the peripheral nervous system. GABA-B receptor total knock-out mice exhibit morphological and molecular changes in peripheral myelin. The number of small myelinated fibers is higher and associated with altered pain sensitivity. Herein, we analyzed whether these changes may be produced by a specific deletion of GABA-B receptors in Schwann cells. The conditional mice (P0-GABA-B1(fl/fl)) show a morphological phenotype characterized by a peculiar increase in the number of small unmyelinated fibers and Remak bundles, including nociceptive C-fibers. The P0-GABA-B1(fl/fl) mice are hyperalgesic and allodynic. In these mice, the morphological and behavioral changes are associated with a downregulation of neuregulin 1 expression in nerves. Our findings suggest that the altered pain sensitivity derives from a Schwann cell-specific loss of GABA-B receptor functions, pointing to a role for GABA-B receptors in the regulation of Schwann cell maturation towards the non-myelinating phenotype.
Collapse
Affiliation(s)
- Alessandro Faroni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy; Blond McIndoe Laboratories, The University of Manchester, Institute of Inflammation and Repair, M13 9PT, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Montani L, Buerki-Thurnherr T, de Faria JP, Pereira JA, Dias NG, Fernandes R, Gonçalves AF, Braun A, Benninger Y, Böttcher RT, Costell M, Nave KA, Franklin RJM, Meijer D, Suter U, Relvas JB. Profilin 1 is required for peripheral nervous system myelination. Development 2014; 141:1553-61. [PMID: 24598164 DOI: 10.1242/dev.101840] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myelination allows rapid saltatory propagation of action potentials along the axon and is an essential prerequisite for the normal functioning of the nervous system. During peripheral nervous system (PNS) development, myelin-forming Schwann cells (SCs) generate radial lamellipodia to sort and ensheath axons. This process requires controlled cytoskeletal remodeling, and we show that SC lamellipodia formation depends on the function of profilin 1 (Pfn1), an actin-binding protein involved in microfilament polymerization. Pfn1 is inhibited upon phosphorylation by ROCK, a downstream effector of the integrin linked kinase pathway. Thus, a dramatic reduction of radial lamellipodia formation is observed in SCs lacking integrin-linked kinase or treated with the Rho/ROCK activator lysophosphatidic acid. Knocking down Pfn1 expression by lentiviral-mediated shRNA delivery impairs SC lamellipodia formation in vitro, suggesting a direct role for this protein in PNS myelination. Indeed, SC-specific gene ablation of Pfn1 in mice led to profound radial sorting and myelination defects, confirming a central role for this protein in PNS development. Our data identify Pfn1 as a key effector of the integrin linked kinase/Rho/ROCK pathway. This pathway, acting in parallel with integrin β1/LCK/Rac1 and their effectors critically regulates SC lamellipodia formation, radial sorting and myelination during peripheral nervous system maturation.
Collapse
Affiliation(s)
- Laura Montani
- Instituto de Biologia Molecular e Celular, 4150-180 Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
During development, Schwann cells extend lamellipodia-like processes to segregate large- and small-caliber axons during the process of radial sorting. Radial sorting is a prerequisite for myelination and is arrested in human neuropathies because of laminin deficiency. Experiments in mice using targeted mutagenesis have confirmed that laminins 211, 411, and receptors containing the β1 integrin subunit are required for radial sorting; however, which of the 11 α integrins that can pair with β1 forms the functional receptor is unknown. Here we conditionally deleted all the α subunits that form predominant laminin-binding β1 integrins in Schwann cells and show that only α6β1 and α7β1 integrins are required and that α7β1 compensates for the absence of α6β1 during development. The absence of either α7β1 or α6β1 integrin impairs the ability of Schwann cells to spread and to bind laminin 211 or 411, potentially explaining the failure to extend cytoplasmic processes around axons to sort them. However, double α6/α7 integrin mutants show only a subset of the abnormalities found in mutants lacking all β1 integrins, and a milder phenotype. Double-mutant Schwann cells can properly activate all the major signaling pathways associated with radial sorting and show normal Schwann cell proliferation and survival. Thus, α6β1 and α7β1 are the laminin-binding integrins required for axonal sorting, but other Schwann cell β1 integrins, possibly those that do not bind laminins, may also contribute to radial sorting during peripheral nerve development.
Collapse
|
38
|
Porrello E, Rivellini C, Dina G, Triolo D, Del Carro U, Ungaro D, Panattoni M, Feltri ML, Wrabetz L, Pardi R, Quattrini A, Previtali SC. Jab1 regulates Schwann cell proliferation and axonal sorting through p27. ACTA ACUST UNITED AC 2013; 211:29-43. [PMID: 24344238 PMCID: PMC3892969 DOI: 10.1084/jem.20130720] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Jab1 constitutes a regulatory molecule that integrates laminin211 signals in Schwann cells to govern cell cycle, cell number, and differentiation. Axonal sorting is a crucial event in nerve formation and requires proper Schwann cell proliferation, differentiation, and contact with axons. Any defect in axonal sorting results in dysmyelinating peripheral neuropathies. Evidence from mouse models shows that axonal sorting is regulated by laminin211– and, possibly, neuregulin 1 (Nrg1)–derived signals. However, how these signals are integrated in Schwann cells is largely unknown. We now report that the nuclear Jun activation domain–binding protein 1 (Jab1) may transduce laminin211 signals to regulate Schwann cell number and differentiation during axonal sorting. Mice with inactivation of Jab1 in Schwann cells develop a dysmyelinating neuropathy with axonal sorting defects. Loss of Jab1 increases p27 levels in Schwann cells, which causes defective cell cycle progression and aberrant differentiation. Genetic down-regulation of p27 levels in Jab1-null mice restores Schwann cell number, differentiation, and axonal sorting and rescues the dysmyelinating neuropathy. Thus, Jab1 constitutes a regulatory molecule that integrates laminin211 signals in Schwann cells to govern cell cycle, cell number, and differentiation. Finally, Jab1 may constitute a key molecule in the pathogenesis of dysmyelinating neuropathies.
Collapse
Affiliation(s)
- Emanuela Porrello
- Institute of Experimental Neurology (INSPE), Division of Neuroscience; 2 Department of Neurology; and 3 Division of Immunology, Transplantation, and Infectious Disease; San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Guo L, Moon C, Zheng Y, Ratner N. Cdc42 regulates Schwann cell radial sorting and myelin sheath folding through NF2/merlin-dependent and independent signaling. Glia 2013; 61:1906-21. [PMID: 24014231 DOI: 10.1002/glia.22567] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/02/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022]
Abstract
The Rho family GTPase Cdc42 has been implicated in developmental Schwann cell (SC) proliferation, providing sufficient SCs for radial sorting of axons preceding SC differentiation in the peripheral nervous system. We generated Cdc42 conditional knockout (Cdc42-CKO) mice and confirmed aberrant axon sorting in Cdc42-CKO nerves. In adult Cdc42-CKO nerves, blood vessels were enlarged, and mature Remak bundles containing small axons were absent. Abnormal infoldings and outfoldings of myelin sheaths developed in Cdc42-CKO nerves, mimicking pathological features of Charcot-Marie-Tooth (CMT) disease. The NF2/merlin tumor suppressor has been implicated up- and down-stream of Cdc42. In Cdc42-CKO;NF2-del double mutant mice, radial sorting defects seen in Cdc42-CKO nerves were rescued, while changes in myelin sheaths in Cdc42-CKO nerves were not. Phosphorylation of Focal adhesion kinase (FAK) and P-GSK3β, as well as expression of β-catenin were decreased in Cdc42-CKO nerves, and these changes were rescued by NF2/merlin mutation in Cdc42-CKO;NF2-del double mutant mice. Thus, Cdc42 regulates SC radial sorting in vivo through NF2/merlin dependent signaling pathways, while Cdc42 modulation of myelin sheath folding is NF2/merlin independent.
Collapse
Affiliation(s)
- Li Guo
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital University of Cincinnati, Cincinnati, Ohio
| | | | | | | |
Collapse
|
40
|
Regional differences in myelination of chick vestibulocochlear ganglion cells. Int J Dev Neurosci 2013; 31:568-79. [PMID: 23872348 DOI: 10.1016/j.ijdevneu.2013.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 06/15/2013] [Accepted: 07/01/2013] [Indexed: 11/21/2022] Open
Abstract
In vertebrates, vestibular and cochlear ganglion (VG and CG, respectively) cells are bipolar neurons with myelinated axons and perikarya. The time course of the myelination of the VG and CG cells during development of chick embryos was investigated. Chick VG and CG from embryonic day at 7-20 (E7-20) were prepared for a transmission electron microscopy, myelin basic protein immunohistochemistry, and real-time quantitative RT-PCR. In the VG cells, myelination was first observed on the peripheral axons of the ampullar nerves at E10, on the utricular and saccular nerves at E12, and on the lagenar and neglecta nerves at E13. In the VG central axons, myelination was first seen on the ampullar nerves at E11, on the utricular and saccular nerves at E13, and on the lagenar nerves at E13. In the CG cells, the myelination was first observed on the peripheral and central axons at E14. In both VG and CG, myelination was observed on the perikarya at E17. These results suggest that the onset of the axonal myelination on the VG cells occurred earlier than that on the CG cells, whereas the perikaryal myelination occurred at about the same time on the both types of ganglion cells. Moreover, the myelination on the ampullar nerves occurred earlier than that on the utricular and saccular nerves. The myelination on the peripheral axons occurred earlier than that on the central axons of the VG cells, whereas that on the central and peripheral axons of the CG cells occurred at about the same time. The regional differences in myelination in relation to the onset of functional activities in the VG and CG cells are discussed.
Collapse
|
41
|
Monk KR, Voas MG, Franzini-Armstrong C, Hakkinen IS, Talbot WS. Mutation of sec63 in zebrafish causes defects in myelinated axons and liver pathology. Dis Model Mech 2013; 6:135-45. [PMID: 22864019 PMCID: PMC3529346 DOI: 10.1242/dmm.009217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 07/19/2012] [Indexed: 12/17/2022] Open
Abstract
Mutations in SEC63 cause polycystic liver disease in humans. Sec63 is a member of the endoplasmic reticulum (ER) translocon machinery, although it is unclear how mutations in SEC63 lead to liver cyst formation in humans. Here, we report the identification and characterization of a zebrafish sec63 mutant, which was discovered in a screen for mutations that affect the development of myelinated axons. Accordingly, we show that disruption of sec63 in zebrafish leads to abnormalities in myelinating glia in both the central and peripheral nervous systems. In the vertebrate nervous system, segments of myelin are separated by the nodes of Ranvier, which are unmyelinated regions of axonal membrane containing a high density of voltage-gated sodium channels. We show that sec63 mutants have morphologically abnormal and reduced numbers of clusters of voltage-gated sodium channels in the spinal cord and along peripheral nerves. Additionally, we observed reduced myelination in both the central and peripheral nervous systems, as well as swollen ER in myelinating glia. Markers of ER stress are upregulated in sec63 mutants. Finally, we show that sec63 mutants develop liver pathology. As in glia, the primary defect, detectable at 5 dpf, is fragmentation and swelling of the ER, indicative of accumulation of proteins in the lumen. At 8 dpf, ER swelling is severe; other pathological features include disrupted bile canaliculi, altered cytoplasmic matrix and accumulation of large lysosomes. Together, our analyses of sec63 mutant zebrafish highlight the possible role of ER stress in polycystic liver disease and suggest that these mutants will serve as a model for understanding the pathophysiology of this disease and other abnormalities involving ER stress.
Collapse
Affiliation(s)
- Kelly R. Monk
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Matthew G. Voas
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | - Ian S. Hakkinen
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - William S. Talbot
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
42
|
McKee KK, Yang DH, Patel R, Chen ZL, Strickland S, Takagi J, Sekiguchi K, Yurchenco PD. Schwann cell myelination requires integration of laminin activities. J Cell Sci 2012; 125:4609-19. [PMID: 22767514 DOI: 10.1242/jcs.107995] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Laminins promote early stages of peripheral nerve myelination by assembling basement membranes (BMs) on Schwann cell surfaces, leading to activation of β1 integrins and other receptors. The BM composition, structural bonds and ligands needed to mediate this process, however, are not well understood. Mice hypomorphic for laminin γ1-subunit expression that assembled endoneurial BMs with reduced component density exhibited an axonal sorting defect with amyelination but normal Schwann cell proliferation, the latter unlike the null. To identify the basis for this, and to dissect participating laminin interactions, LAMC1 gene-inactivated dorsal root ganglia were treated with recombinant laminin-211 and -111 lacking different architecture-forming and receptor-binding activities, to induce myelination. Myelin-wrapping of axons by Schwann cells was found to require higher laminin concentrations than either proliferation or axonal ensheathment. Laminins that were unable to polymerize through deletions that removed critical N-terminal (LN) domains, or that lacked cell-adhesive globular (LG) domains, caused reduced BMs and almost no myelination. Laminins engineered to bind weakly to α6β1 and/or α7β1 integrins through their LG domains, even though they could effectively assemble BMs, decreased myelination. Proliferation depended upon both integrin binding to LG domains and polymerization. Collectively these findings reveal that laminins integrate scaffold-forming and cell-adhesion activities to assemble an endoneurial BM, with myelination and proliferation requiring additional α6β1/α7β1-laminin LG domain interactions, and that a high BM ligand/structural density is needed for efficient myelination.
Collapse
Affiliation(s)
- Karen K McKee
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
In developing peripheral nerves, differentiating Schwann cells sort individual axons from bundles and ensheath them to generate multiple layers of myelin. In recent years, there has been an increased understanding of the extracellular and intracellular factors that initiate and stimulate Schwann cell myelination, together with a growing appreciation of some of the signaling pathways involved. However, our knowledge of how Schwann cell growth is regulated during myelination is still incomplete. The mammalian target of rapamycin (mTOR) is a core kinase in two major complexes, mTORC1 and mTORC2, that regulate cell growth and differentiation in a variety of mammalian cells. Here we show that elimination of mTOR from murine Schwann cells prevented neither radial sorting nor the initiation of myelination. However, normal postnatal growth of myelinating Schwann cells, both radially and longitudinally, was highly retarded. The myelin sheath in the mutant was much thinner than normal; nevertheless, sheath thickness relative to axon diameter (g-ratio) remained constant in both wild-type and mutant nerves from P14 to P90. Although axon diameters were normal in the mutant at the initiation of myelination, further growth as myelination proceeded was retarded, and this was associated with reduced phosphorylation of neurofilaments. Consistent with thinner axonal diameters and internodal lengths, conduction velocities in mutant quadriceps nerves were also reduced. These data establish a critical role for mTOR signaling in both the longitudinal and radial growth of the myelinating Schwann cell.
Collapse
|
44
|
Hedgehog signaling regulates myelination in the peripheral nervous system through primary cilia. Differentiation 2012; 83:S78-85. [DOI: 10.1016/j.diff.2011.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 11/19/2022]
|
45
|
Berti C, Bartesaghi L, Ghidinelli M, Zambroni D, Figlia G, Chen ZL, Quattrini A, Wrabetz L, Feltri ML. Non-redundant function of dystroglycan and β1 integrins in radial sorting of axons. Development 2011; 138:4025-37. [PMID: 21862561 DOI: 10.1242/dev.065490] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Radial sorting allows the segregation of axons by a single Schwann cell (SC) and is a prerequisite for myelination during peripheral nerve development. Radial sorting is impaired in models of human diseases, congenital muscular dystrophy (MDC) 1A, MDC1D and Fukuyama, owing to loss-of-function mutations in the genes coding for laminin α2, Large or fukutin glycosyltransferases, respectively. It is not clear which receptor(s) are activated by laminin 211, or glycosylated by Large and fukutin during sorting. Candidates are αβ1 integrins, because their absence phenocopies laminin and glycosyltransferase deficiency, but the topography of the phenotypes is different and β1 integrins are not substrates for Large and fukutin. By contrast, deletion of the Large and fukutin substrate dystroglycan does not result in radial sorting defects. Here, we show that absence of dystroglycan in a specific genetic background causes sorting defects with topography identical to that of laminin 211 mutants, and recapitulating the MDC1A, MDC1D and Fukuyama phenotypes. By epistasis studies in mice lacking one or both receptors in SCs, we show that only absence of β1 integrins impairs proliferation and survival, and arrests radial sorting at early stages, that β1 integrins and dystroglycan activate different pathways, and that the absence of both molecules is synergistic. Thus, the function of dystroglycan and β1 integrins is not redundant, but is sequential. These data identify dystroglycan as a functional laminin 211 receptor during axonal sorting and the key substrate relevant to the pathogenesis of glycosyltransferase congenital muscular dystrophies.
Collapse
Affiliation(s)
- Caterina Berti
- Divisions of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gardiner NJ. Integrins and the extracellular matrix: Key mediators of development and regeneration of the sensory nervous system. Dev Neurobiol 2011; 71:1054-72. [DOI: 10.1002/dneu.20950] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Jin F, Dong B, Georgiou J, Jiang Q, Zhang J, Bharioke A, Qiu F, Lommel S, Feltri ML, Wrabetz L, Roder JC, Eyer J, Chen X, Peterson AC, Siminovitch KA. N-WASp is required for Schwann cell cytoskeletal dynamics, normal myelin gene expression and peripheral nerve myelination. Development 2011; 138:1329-37. [PMID: 21385763 DOI: 10.1242/dev.058677] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Schwann cells elaborate myelin sheaths around axons by spirally wrapping and compacting their plasma membranes. Although actin remodeling plays a crucial role in this process, the effectors that modulate the Schwann cell cytoskeleton are poorly defined. Here, we show that the actin cytoskeletal regulator, neural Wiskott-Aldrich syndrome protein (N-WASp), is upregulated in myelinating Schwann cells coincident with myelin elaboration. When N-WASp is conditionally deleted in Schwann cells at the onset of myelination, the cells continue to ensheath axons but fail to extend processes circumferentially to elaborate myelin. Myelin-related gene expression is also severely reduced in the N-WASp-deficient cells and in vitro process and lamellipodia formation are disrupted. Although affected mice demonstrate obvious motor deficits these do not appear to progress, the mutant animals achieving normal body weights and living to advanced age. Our observations demonstrate that N-WASp plays an essential role in Schwann cell maturation and myelin formation.
Collapse
Affiliation(s)
- Fuzi Jin
- Department of Haematology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Higginson JR, Barnett SC. The culture of olfactory ensheathing cells (OECs)--a distinct glial cell type. Exp Neurol 2011; 229:2-9. [PMID: 20816825 PMCID: PMC3089736 DOI: 10.1016/j.expneurol.2010.08.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 08/04/2010] [Accepted: 08/22/2010] [Indexed: 11/26/2022]
Abstract
Olfactory ensheathing cells (OECs) have become a popular candidate for the transplant-mediated repair of the damaged CNS. In this review a description is made of the origins of these cells and a historical development of their purification and maintenance in culture. In addition, we illustrate the cellular and molecular characteristics of OECs and emphasise that although they share many properties with Schwann cells, they possess several inherent differences which may allow them to be more beneficial for CNS repair. In summary, OECs are distinct glial cells and the detailed understanding of their biological and molecular properties is essential in ensuring their clinical efficacy after cell transplantation. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
| | - Susan C. Barnett
- Institute of Infection, Immunity and Inflammation College of Medical, Veterinary & Life Sciences (MVLS), Glasgow Biomedical Research Centre (GBRC), 120 University Place, Glasgow, G12 8TA, UK
| |
Collapse
|
49
|
Raphael AR, Lyons DA, Talbot WS. ErbB signaling has a role in radial sorting independent of Schwann cell number. Glia 2011; 59:1047-55. [PMID: 21491500 DOI: 10.1002/glia.21175] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/18/2011] [Indexed: 11/05/2022]
Abstract
In the peripheral nervous system, Schwann cells make myelin, a specialized sheath that is essential for rapid axonal conduction of action potentials. Immature Schwann cells initially interact with many axons, but, through a process termed radial sorting, eventually interact with one segment of a single axon as promyelinating Schwann cells. Previous studies have identified genes that are required for Schwann cell process extension and proliferation during radial sorting. Previous analyses also show that ErbB signaling is required for Schwann cell proliferation, myelination, radial sorting, and the proper formation of unmyelinated Remak bundles. Because ErbB signaling and Schwann cell proliferation are both required during radial sorting, we sought to determine if the primary function of ErbB signaling in this process is to regulate Schwann cell proliferation or if ErbB signaling also controls other aspects of radial sorting. To address this question, we applied small molecule inhibitors in vivo in zebrafish to independently block ErbB signaling and proliferation. Ultrastructural analysis of treated animals revealed that both ErbB signaling and Schwann cell proliferation are required for radial sorting in vivo. ErbB signaling, however, is required for Schwann cell process extension, while Schwann cell proliferation is not. These results provide in vivo evidence that ErbB signaling plays a direct role in process extension during radial sorting, in addition to its role in regulating Schwann cell proliferation.
Collapse
Affiliation(s)
- Alya R Raphael
- Department of Developmental Biology, Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
50
|
Yurchenco PD. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004911. [PMID: 21421915 DOI: 10.1101/cshperspect.a004911] [Citation(s) in RCA: 638] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Basement membranes are widely distributed extracellular matrices that coat the basal aspect of epithelial and endothelial cells and surround muscle, fat, and Schwann cells. These extracellular matrices, first expressed in early embryogenesis, are self-assembled on competent cell surfaces through binding interactions among laminins, type IV collagens, nidogens, and proteoglycans. They form stabilizing extensions of the plasma membrane that provide cell adhesion and that act as solid-phase agonists. Basement membranes play a role in tissue and organ morphogenesis and help maintain function in the adult. Mutations adversely affecting expression of the different structural components are associated with developmental arrest at different stages as well as postnatal diseases of muscle, nerve, brain, eye, skin, vasculature, and kidney.
Collapse
Affiliation(s)
- Peter D Yurchenco
- Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| |
Collapse
|