1
|
Hu Y, Lyu C, Teng L, Wu A, Zhu Z, He Y, Lu J. Glycopolypeptide hydrogels with adjustable enzyme-triggered degradation: A novel proteoglycans analogue to repair articular-cartilage defects. Mater Today Bio 2023; 20:100659. [PMID: 37229212 PMCID: PMC10205498 DOI: 10.1016/j.mtbio.2023.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Proteoglycans (PGs), also known as a viscous lubricant, is the main component of the cartilage extracellular matrix (ECM). The loss of PGs is accompanied by the chronic degeneration of cartilage tissue, which is an irreversible degeneration process that eventually develops into osteoarthritis (OA). Unfortunately, there is still no substitute for PGs in clinical treatments. Herein, we propose a new PGs analogue. The Glycopolypeptide hydrogels in the experimental groups with different concentrations were prepared by Schiff base reaction (Gel-1, Gel-2, Gel-3, Gel-4, Gel-5 and Gel-6). They have good biocompatibility and adjustable enzyme-triggered degradability. The hydrogels have a loose and porous structure suitable for the proliferation, adhesion, and migration of chondrocytes, good anti-swelling, and reduce the reactive oxygen species (ROS) in chondrocytes. In vitro experiments confirmed that the glycopolypeptide hydrogels significantly promoted ECM deposition and up-regulated the expression of cartilage-specific genes, such as type-II collagen, aggrecan, and glycosaminoglycans (sGAG). In vivo, the New Zealand rabbit knee articular cartilage defect model was established and the hydrogels were implanted to repair it, the results showed good cartilage regeneration potential. It is worth noting that the Gel-3 group, with a pore size of 122 ± 12 μm, was particularly prominent in the above experiments, and provides a theoretical reference for the design of cartilage-tissue regeneration materials in the future.
Collapse
Affiliation(s)
- Yinghan Hu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chengqi Lyu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lin Teng
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Anqian Wu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zeyu Zhu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - YuShi He
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiayu Lu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
2
|
Blum N, Harris MP. Localized heterochrony integrates overgrowth potential of oncogenic clones. Dis Model Mech 2023; 16:286292. [PMID: 36621776 PMCID: PMC9932785 DOI: 10.1242/dmm.049793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
Somatic mutations occur frequently and can arise during embryogenesis, resulting in the formation of a patchwork of mutant clones. Such mosaicism has been implicated in a broad range of developmental anomalies; however, their etiology is poorly understood. Patients carrying a common somatic oncogenic mutation in either PIK3CA or AKT1 can present with disproportionally large digits or limbs. How mutant clones, carrying an oncogenic mutation that often drives unchecked proliferation, can lead to controlled and coordinated overgrowth is unknown. We use zebrafish to explore the growth dynamics of oncogenic clones during development. Here, in a subset of clones, we observed a local increase in proportion of the fin skeleton closely resembling overgrowth phenotypes in patients. We unravel the cellular and developmental mechanisms of these overgrowths, and pinpoint the cell type and timing of clonal expansion. Coordinated overgrowth is associated with rapid clone expansion during early pre-chondrogenic phase of bone development, inducing a heterochronic shift that drives the change in bone size. Our study details how development integrates and translates growth potential of oncogenic clones, thereby shaping the phenotypic consequences of somatic mutations.
Collapse
Affiliation(s)
- Nicola Blum
- Department of Orthopaedics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Matthew P Harris
- Department of Orthopaedics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
3
|
Haq-Siddiqi NA, Britton D, Kim Montclare J. Protein-engineered biomaterials for cartilage therapeutics and repair. Adv Drug Deliv Rev 2023; 192:114647. [PMID: 36509172 DOI: 10.1016/j.addr.2022.114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Cartilage degeneration and injury are major causes of pain and disability that effect millions, and yet treatment options for conditions like osteoarthritis (OA) continue to be mainly palliative or involve complete replacement of injured joints. Several biomaterial strategies have been explored to address cartilage repair either by the delivery of therapeutics or as support for tissue repair, however the complex structure of cartilage tissue, its mechanical needs, and lack of regenerative capacity have hindered this goal. Recent advances in synthetic biology have opened new possibilities for engineered proteins to address these unique needs. Engineered protein and peptide-based materials benefit from inherent biocompatibility and nearly unlimited tunability as they utilize the body's natural building blocks to fabricate a variety of supramolecular structures. The pathophysiology and needs of OA cartilage are presented here, along with an overview of the current state of the art and next steps for protein-engineered repair strategies for cartilage.
Collapse
Affiliation(s)
- Nada A Haq-Siddiqi
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States; Department of Chemistry, New York University, New York 10003, United States; Department of Radiology, New York University Grossman School of Medicine, New York 10016, United States; Department of Biomaterials, NYU College of Dentistry, New York, NY 10010, United States; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States.
| |
Collapse
|
4
|
McDonough RC, Price C. Targeted Activation of GPCR-Mediated Ca 2+ Signaling Drives Enhanced Cartilage-Like Matrix Formation. Tissue Eng Part A 2021; 28:405-419. [PMID: 34693731 PMCID: PMC9271335 DOI: 10.1089/ten.tea.2021.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Intracellular calcium ([Ca2+]i) signaling is a critical regulator of chondrogenesis, chondrocyte differentiation, and cartilage development. Calcium (Ca2+) signaling is known to direct processes that govern chondrocyte gene expression, protein synthesis, cytoskeletal remodeling, and cell fate. Control of chondrocyte/chondroprogenitor Ca2+ signaling has been attempted through mechanical and/or pharmacological activation of endogenous Ca2+ signaling transducers; however, such approaches can lack specificity and/or precision regarding Ca2+ activation mechanisms. Synthetic signaling platforms permitting precise and selective Ca2+ signal transduction can improve dissection of the roles that [Ca2+]i signaling play in chondrocyte behavior. One such platform is the chemogenetic hM3Dq DREADD (designer receptor exclusively activated by designer drugs) that activates [Ca2+]i signaling via the Gαq-PLCβ-IP3-ER pathway upon clozapine N-oxide (CNO) administration. We previously demonstrated hM3Dq's ability to precisely and synthetically initiate robust [Ca2+]i transients and oscillatory [Ca2+]i signaling in chondrocyte-like ATDC5 cells. Here, we investigate the effects that long-term CNO stimulatory culture have on hM3Dq [Ca2+]i signaling dynamics, proliferation, and protein deposition in 2D ATDC5 cultures. Long-term culturing under repeated CNO stimulation modified the temporal dynamics of hM3Dq [Ca2+]i signaling, increased cell proliferation, and enhanced matrix production in a CNO dose- and frequency-dependent manner, and triggered the formation of cell condensations that developed aligned, anisotropic neotissue structures rich in cartilaginous proteoglycans and collagens, all in the absence of differentiation inducers. This study demonstrated Gαq-GPCR-mediated [Ca2+]i signaling involvement in chondroprogenitor proliferation and cartilage-like matrix production, and established hM3Dq as a powerful tool for elucidating the role of GPCR-mediated Ca2+ signaling in chondrogenesis and chondrocyte differentiation.
Collapse
Affiliation(s)
- Ryan C McDonough
- University of Delaware, 5972, Biomedical Engineering, 161 Colburn Lab, Newark, Delaware, United States, 19716-5600;
| | - Christopher Price
- University of Delaware, 5972, Biomedical Engineering, Newark, Delaware, United States;
| |
Collapse
|
5
|
Kim YS, Mehta SM, Guo JL, Pearce HA, Smith BT, Watson E, Koons GL, Navara AM, Lam J, Grande-Allen KJ, Mikos AG. Evaluation of tissue integration of injectable, cell-laden hydrogels of cocultures of mesenchymal stem cells and articular chondrocytes with an ex vivo cartilage explant model. Biotechnol Bioeng 2021; 118:2958-2966. [PMID: 33913514 DOI: 10.1002/bit.27804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022]
Abstract
This study investigated the chondrogenic activity of encapsulated mesenchymal stem cells (MSCs) and articular chondrocytes (ACs) and its impact on the mechanical properties of injectable poly(N-isopropylacrylamide)-based dual-network hydrogels loaded with poly( l -lysine) (PLL). To this effect, an ex vivo study model was employed to assess the behavior of the injected hydrogels-specifically, their surface stiffness and integration strength with the surrounding cartilage. The highest chondrogenic activity was observed from AC-encapsulated hydrogels, while the effect of PLL on MSC chondrogenesis was not apparent from biochemical analyses. Mechanical testing showed that there were no significant differences in either surface stiffness or integration strength among the different study groups. Altogether, the results suggest that the ex vivo model can allow further understanding of the relationship between biochemical changes within the hydrogel and their impact on the hydrogel's mechanical properties.
Collapse
Affiliation(s)
- Yu Seon Kim
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Shail M Mehta
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Jason L Guo
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Hannah A Pearce
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Brandon T Smith
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Emma Watson
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Gerry L Koons
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Adam M Navara
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Johnny Lam
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, Texas, USA
| |
Collapse
|
6
|
Teng B, Zhang S, Pan J, Zeng Z, Chen Y, Hei Y, Fu X, Li Q, Ma M, Sui Y, Wei S. A chondrogenesis induction system based on a functionalized hyaluronic acid hydrogel sequentially promoting hMSC proliferation, condensation, differentiation, and matrix deposition. Acta Biomater 2021; 122:145-159. [PMID: 33444801 DOI: 10.1016/j.actbio.2020.12.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Hydrogel scaffolds are widely used in cartilage tissue engineering as a natural stem cell niche. In particular, hydrogels based on multiple biological signals can guide behaviors of mesenchymal stem cells (MSCs) during neo-chondrogenesis. In the first phase of this study, we showed that functionalized hydrogels with grafted arginine-glycine-aspartate (RGD) peptides and lower degree of crosslinking can promote the proliferation of human mesenchymal stem cells (hMSCs) and upregulate the expression of cell receptor proteins. Moreover, grafted RGD and histidine-alanine-valine (HAV) peptides in hydrogel scaffolds can regulate the adhesion of the intercellular at an early stage. In the second phase, we confirmed that simultaneous use of HAV and RGD peptides led to greater chondrogenic differentiation compared to the blank control and single-peptide groups. Furthermore, the controlled release of kartogenin (KGN) can better facilitate cell chondrogenesis compared to other groups. Interestingly, with longer culture time, cell condensation was clearly observed in the groups with RGD and HAV peptide. In all groups with RGD peptide, significant matrix deposition was observed, accompanied by glycosaminoglycan (GAG) and collagen (Coll) production. Through in vitro and in vivo experiments, this study confirmed that our hydrogel system can sequentially promote the proliferation, adhesion, condensation, chondrogenic differentiation of hMSCs, by mimicking the cell microenvironment during neo-chondrogenesis.
Collapse
|
7
|
McDonough RC, Gilbert RM, Gleghorn JP, Price C. Targeted Gq-GPCR activation drives ER-dependent calcium oscillations in chondrocytes. Cell Calcium 2021; 94:102363. [PMID: 33550208 DOI: 10.1016/j.ceca.2021.102363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 11/28/2022]
Abstract
The temporal dynamics of calcium signaling are critical regulators of chondrocyte homeostasis and chondrogenesis. Calcium oscillations regulate differentiation and anabolic processes in chondrocytes and their precursors. Attempts to control chondrocyte calcium signaling have been achieved through mechanical perturbations and synthetic ion channel modulators. However, such stimuli can lack both local and global specificity and precision when evoking calcium signals. Synthetic signaling platforms can more precisely and selectively activate calcium signaling, enabling improved dissection of the roles of intracellular calcium ([Ca2+]i) in chondrocyte behavior. One such platform is hM3Dq, a chemogenetic DREADD (Designer Receptors Exclusively Activated by Designer Drugs) that activates calcium signaling via the Gαq-PLCβ-IP3-ER pathway upon administration of clozapine N-oxide (CNO). We previously described the first-use of hM3Dq to precisely mediate targeted, synthetic calcium signals in chondrocyte-like ATDC5 cells. Here, we generated stably expressing hM3Dq-ATDC5 cells to investigate the dynamics of Gαq-GPCR calcium signaling in depth. CNO drove robust calcium responses in a temperature- and concentration-dependent (1 pM-100 μM) manner and elicited elevated levels of oscillatory calcium signaling above 10 nM. hM3Dq-mediated calcium oscillations in ATDC5 cells were reliant on ER calcium stores for both initiation and sustenance, and the downregulation and recovery dynamics of hM3Dq after CNO stimulation align with traditionally reported GPCR recycling kinetics. This study successfully generated a stable hM3Dq cell line to precisely drive Gαq-GPCR-mediated and ER-dependent oscillatory calcium signaling in ATDC5 cells and established a novel tool to elucidate the role that GPCR-mediated calcium signaling plays in chondrocyte biology, cartilage pathology, and cartilage tissue engineering.
Collapse
Affiliation(s)
- Ryan C McDonough
- Department of Biomedical Engineering, University of Delaware, United States.
| | - Rachel M Gilbert
- Department of Biomedical Engineering, University of Delaware, United States.
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, United States.
| | - Christopher Price
- Department of Biomedical Engineering, University of Delaware, United States.
| |
Collapse
|
8
|
Kim YS, Chien AJ, Guo JL, Smith BT, Watson E, Pearce HA, Koons GL, Navara AM, Lam J, Scott DW, Grande-Allen KJ, Mikos AG. Chondrogenesis of cocultures of mesenchymal stem cells and articular chondrocytes in poly(l-lysine)-loaded hydrogels. J Control Release 2020; 328:710-721. [PMID: 33010336 PMCID: PMC7749039 DOI: 10.1016/j.jconrel.2020.09.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 12/14/2022]
Abstract
This work investigated the effect of poly(l-lysine) (PLL) molecular weight and concentration on chondrogenesis of cocultures of mesenchymal stem cells (MSCs) and articular chondrocytes (ACs) in PLL-loaded hydrogels. An injectable dual-network hydrogel composed of a poly(N-isopropylacrylamide)-based synthetic thermogelling macromer and a chondroitin sulfate-based biological network was leveraged as a model to deliver PLL and encapsulate the two cell populations. Incorporation of PLL into the hydrogel did not affect the hydrogel's swelling properties and degradation characteristics, nor the viability of encapsulated cells. Coculture groups demonstrated higher type II collagen expression compared to the MSC monoculture group. Expression of hypertrophic phenotype was also limited in the coculture groups. Histological analysis indicated that the ratio of MSCs to ACs was an accurate predictor of the degree of long-term chondrogenesis, while the presence of PLL was shown to have a more substantial short-term effect. Altogether, this study demonstrates that coculturing MSCs with ACs can greatly enhance the chondrogenicity of the overall cell population and offers a platform to further elucidate the short- and long-term effect of polycationic factors on the chondrogenesis of MSC and AC cocultures.
Collapse
Affiliation(s)
- Yu Seon Kim
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, United States of America
| | - Athena J Chien
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, United States of America
| | - Jason L Guo
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, United States of America
| | - Brandon T Smith
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, United States of America
| | - Emma Watson
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, United States of America
| | - Hannah A Pearce
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, United States of America
| | - Gerry L Koons
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, United States of America
| | - Adam M Navara
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, United States of America
| | - Johnny Lam
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, United States of America
| | - David W Scott
- Department of Statistics, Rice University, 6100 Main Street, Houston, TX 77005, United States of America
| | - K Jane Grande-Allen
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, United States of America
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, United States of America.
| |
Collapse
|
9
|
Wang Y, Xiao Y, Long S, Fan Y, Zhang X. Role of N-Cadherin in a Niche-Mimicking Microenvironment for Chondrogenesis of Mesenchymal Stem Cells In Vitro. ACS Biomater Sci Eng 2020; 6:3491-3501. [PMID: 33463167 DOI: 10.1021/acsbiomaterials.0c00149] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
During the development of natural cartilage, mesenchymal condensation is the starting event of chondrogenesis, and mesenchymal stem cells (MSCs) experienced a microenvironment transition from primarily cell-cell interactions to a later stage, where cell-extracellular matrix (ECM) interactions dominate. Although micromass pellet culture has been developed to mimic mesenchymal condensation in vitro, the molecular mechanism remains elusive, and the transition from cell-cell to cell-ECM interactions has been poorly recapitulated. In this study, we first constructed MSC microspheres (MMs) and investigated their chondrogenic differentiation with functional blocking of N-cadherin. The results showed that early cartilage differentiation and cartilage-specific matrix deposition of MSCs in the group with the N-cadherin antibody were significantly postponed. Next, poly(l-lysine) treatment was transiently applied to promote the expression of N-cadherin gene, CDH2, and the treatment-promoted MSC chondrogenesis. Upon one-day culture in MMs with established cell-cell adhesions, collagen hydrogel-encapsulated MMs (CMMs) were constructed to simulate the cell-ECM interactions, and the collagen microenvironment compensated the inhibitory effects from N-cadherin blocking. Surprisingly, chondrogenic-differentiated cell migration, which has important implications in cartilage repair and integration, was found in the CMMs without N-cadherin blocking. In conclusion, our study demonstrated that N-cadherin plays the critical role in early mesenchymal condensation, and the collagen hydrogel provides a supportive microenvironment for late chondrogenic differentiation. Therefore, sequential presentations of cell-cell adhesion and cell-ECM interaction in an engineered microenvironment seem to be a promising strategy to facilitate MSC chondrogenic differentiation.
Collapse
Affiliation(s)
- Yonghui Wang
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Yun Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Shihe Long
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China.,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Parate D, Franco-Obregón A, Fröhlich J, Beyer C, Abbas AA, Kamarul T, Hui JHP, Yang Z. Enhancement of mesenchymal stem cell chondrogenesis with short-term low intensity pulsed electromagnetic fields. Sci Rep 2017; 7:9421. [PMID: 28842627 PMCID: PMC5572790 DOI: 10.1038/s41598-017-09892-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022] Open
Abstract
Pulse electromagnetic fields (PEMFs) have been shown to recruit calcium-signaling cascades common to chondrogenesis. Here we document the effects of specified PEMF parameters over mesenchymal stem cells (MSC) chondrogenic differentiation. MSCs undergoing chondrogenesis are preferentially responsive to an electromagnetic efficacy window defined by field amplitude, duration and frequency of exposure. Contrary to conventional practice of administering prolonged and repetitive exposures to PEMFs, optimal chondrogenic outcome is achieved in response to brief (10 minutes), low intensity (2 mT) exposure to 6 ms bursts of magnetic pulses, at 15 Hz, administered only once at the onset of chondrogenic induction. By contrast, repeated exposures diminished chondrogenic outcome and could be attributed to calcium entry after the initial induction. Transient receptor potential (TRP) channels appear to mediate these aspects of PEMF stimulation, serving as a conduit for extracellular calcium. Preventing calcium entry during the repeated PEMF exposure with the co-administration of EGTA or TRP channel antagonists precluded the inhibition of differentiation. This study highlights the intricacies of calcium homeostasis during early chondrogenesis and the constraints that are placed on PEMF-based therapeutic strategies aimed at promoting MSC chondrogenesis. The demonstrated efficacy of our optimized PEMF regimens has clear clinical implications for future regenerative strategies for cartilage.
Collapse
Affiliation(s)
- Dinesh Parate
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 8, IE Kent Ridge Road, Singapore, 119228, Singapore. .,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, MD6, 14 medical Drive, #14-01, Singapore, 117599, Singapore.
| | - Jürg Fröhlich
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 8, IE Kent Ridge Road, Singapore, 119228, Singapore.,Institute for Electromagnetic Fields, Swiss Federal Institute of Technology (ETH), Rämistrasse 101, 8092, Zurich, Switzerland
| | - Christian Beyer
- Institute for Electromagnetic Fields, Swiss Federal Institute of Technology (ETH), Rämistrasse 101, 8092, Zurich, Switzerland
| | - Azlina A Abbas
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Pantai Valley, Kuala Lumpur, 50603, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Pantai Valley, Kuala Lumpur, 50603, Malaysia
| | - James H P Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore. .,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510, Singapore.
| | - Zheng Yang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore. .,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510, Singapore.
| |
Collapse
|
11
|
Yan Y, Cheng X, Yang RH, Li H, Chen JL, Ma ZL, Wang G, Chuai M, Yang X. Exposure to Excess Phenobarbital Negatively Influences the Osteogenesis of Chick Embryos. Front Pharmacol 2016; 7:349. [PMID: 27746734 PMCID: PMC5044464 DOI: 10.3389/fphar.2016.00349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022] Open
Abstract
Phenobarbital is an antiepileptic drug that is widely used to treat epilepsy in a clinical setting. However, a long term of phenobarbital administration in pregnant women may produce side effects on embryonic skeletogenesis. In this study, we aim to investigate the mechanism by which phenobarbital treatment induces developmental defects in long bones. We first determined that phenobarbital treatment decreased chondrogenesis and inhibited the proliferation of chondrocytes in chick embryos. Phenobarbital treatment also suppressed mineralization in both in vivo and in vitro long bone models. Next, we established that phenobarbital treatment delayed blood vessel invasion in a cartilage template, and this finding was supported by the down-regulation of vascular endothelial growth factor in the hypertrophic zone following phenobarbital treatment. Phenobarbital treatment inhibited tube formation and the migration of human umbilical vein endothelial cells. In addition, it impaired angiogenesis in chick yolk sac membrane model and chorioallantoic membrane model. In summary, phenobarbital exposure led to shortened lengths of long bones during embryogenesis, which might result from inhibiting mesenchyme differentiation, chondrocyte proliferation, and delaying mineralization by impairing vascular invasion.
Collapse
Affiliation(s)
- Yu Yan
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University Guangzhou, China
| | - Xin Cheng
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University Guangzhou, China
| | - Ren-Hao Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University Guangzhou, China
| | - He Li
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University Guangzhou, China
| | - Jian-Long Chen
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University Guangzhou, China
| | - Zheng-Lai Ma
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University Guangzhou, China
| | - Guang Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University Guangzhou, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee Dundee, UK
| | - Xuesong Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University Guangzhou, China
| |
Collapse
|
12
|
Park H, Kim D, Lee KY. Interaction-tailored cell aggregates in alginate hydrogels for enhanced chondrogenic differentiation. J Biomed Mater Res A 2016; 105:42-50. [PMID: 27529335 DOI: 10.1002/jbm.a.35865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/14/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
Abstract
Controlling cell-matrix interactions is critical when transferring cells into the body using a scaffold, which can be elaborately tailored to successfully engineer the desired tissue. In this study, ATDC5 cells were encapsulated within alginate hydrogels and their chondrogenic differentiation was investigated in vitro. Cell-matrix interactions were introduced using RGD peptides, which improved the viability of encapsulated cells and enhanced the formation of condensed structures similar to a chondrogenic nodule. When N-cadherin of ATDC5 cells was blocked, the encapsulated cells did not form an aggregate, and chondrogenic differentiation could not be induced. Preformed cell aggregates with defined cell numbers in RGD-modified alginate gels retained adequate N-cadherin-mediated cell-cell interactions and increased chondrogenic marker gene expression, compared with the homogeneously dispersed cells in the gels. This approach may be useful to promote chondrogenesis with relatively few cells if they are encapsulated into a scaffold as a form of aggregates. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 42-50, 2017.
Collapse
Affiliation(s)
- Honghyun Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Doyun Kim
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kuen Yong Lee
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.,Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
13
|
Lam J, Clark EC, Fong ELS, Lee EJ, Lu S, Tabata Y, Mikos AG. Evaluation of cell-laden polyelectrolyte hydrogels incorporating poly(L-Lysine) for applications in cartilage tissue engineering. Biomaterials 2016; 83:332-46. [PMID: 26799859 PMCID: PMC4754156 DOI: 10.1016/j.biomaterials.2016.01.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/26/2015] [Accepted: 01/01/2016] [Indexed: 12/21/2022]
Abstract
To address the lack of reliable long-term solutions for cartilage injuries, strategies in tissue engineering are beginning to leverage developmental processes to spur tissue regeneration. This study focuses on the use of poly(L-lysine) (PLL), previously shown to up-regulate mesenchymal condensation during developmental skeletogenesis in vitro, as an early chondrogenic stimulant of mesenchymal stem cells (MSCs). We characterized the effect of PLL incorporation on the swelling and degradation of oligo(poly(ethylene) glycol) fumarate) (OPF)-based hydrogels as functions of PLL molecular weight and dosage. Furthermore, we investigated the effect of PLL incorporation on the chondrogenic gene expression of hydrogel-encapsulated MSCs. The incorporation of PLL resulted in early enhancements of type II collagen and aggrecan gene expression and type II/type I collagen expression ratios when compared to blank controls. The presentation of PLL to MSCs encapsulated in OPF hydrogels also enhanced N-cadherin gene expression under certain culture conditions, suggesting that PLL may induce the expression of condensation markers in synthetic hydrogel systems. In summary, PLL can function as an inductive factor that primes the cellular microenvironment for early chondrogenic gene expression but may require additional biochemical factors for the generation of fully functional chondrocytes.
Collapse
Affiliation(s)
- Johnny Lam
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Elisa C Clark
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Eliza L S Fong
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Esther J Lee
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Steven Lu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute of Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
14
|
Polymodal Transient Receptor Potential Vanilloid (TRPV) Ion Channels in Chondrogenic Cells. Int J Mol Sci 2015; 16:18412-38. [PMID: 26262612 PMCID: PMC4581253 DOI: 10.3390/ijms160818412] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/17/2022] Open
Abstract
Mature and developing chondrocytes exist in a microenvironment where mechanical load, changes of temperature, osmolarity and acidic pH may influence cellular metabolism. Polymodal Transient Receptor Potential Vanilloid (TRPV) receptors are environmental sensors mediating responses through activation of linked intracellular signalling pathways. In chondrogenic high density cultures established from limb buds of chicken and mouse embryos, we identified TRPV1, TRPV2, TRPV3, TRPV4 and TRPV6 mRNA expression with RT-PCR. In both cultures, a switch in the expression pattern of TRPVs was observed during cartilage formation. The inhibition of TRPVs with the non-selective calcium channel blocker ruthenium red diminished chondrogenesis and caused significant inhibition of proliferation. Incubating cell cultures at 41 °C elevated the expression of TRPV1, and increased cartilage matrix production. When chondrogenic cells were exposed to mechanical load at the time of their differentiation into matrix producing chondrocytes, we detected increased mRNA levels of TRPV3. Our results demonstrate that developing chondrocytes express a full palette of TRPV channels and the switch in the expression pattern suggests differentiation stage-dependent roles of TRPVs during cartilage formation. As TRPV1 and TRPV3 expression was altered by thermal and mechanical stimuli, respectively, these are candidate channels that contribute to the transduction of environmental stimuli in chondrogenic cells.
Collapse
|
15
|
Alexander PG, Gottardi R, Lin H, Lozito TP, Tuan RS. Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases. Exp Biol Med (Maywood) 2014; 239:1080-95. [PMID: 24994814 DOI: 10.1177/1535370214539232] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tissue engineered constructs have the potential to function as in vitro pre-clinical models of normal tissue function and disease pathogenesis for drug screening and toxicity assessment. Effective high throughput assays demand minimal systems with clearly defined performance parameters. These systems must accurately model the structure and function of the human organs and their physiological response to different stimuli. Musculoskeletal tissues present unique challenges in this respect, as they are load-bearing, matrix-rich tissues whose functionality is intimately connected to the extracellular matrix and its organization. Of particular clinical importance is the osteochondral junction, the target tissue affected in degenerative joint diseases, such as osteoarthritis (OA), which consists of hyaline articular cartilage in close interaction with subchondral bone. In this review, we present an overview of currently available in vitro three-dimensional systems for bone and cartilage tissue engineering that mimic native physiology, and the utility and limitations of these systems. Specifically, we address the need to combine bone, cartilage and other tissues to form an interactive microphysiological system (MPS) to fully capture the biological complexity and mechanical functions of the osteochondral junction of the articular joint. The potential applications of three-dimensional MPSs for musculoskeletal biology and medicine are highlighted.
Collapse
Affiliation(s)
- Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, 15219 USA
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, 15219 USA Ri.MED Foundation, Palermo, I-90133 Italy
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, 15219 USA
| | - Thomas P Lozito
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, 15219 USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, 15219 USA Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, USA Department of Mechanical Engineering and Materials Science, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, USA
| |
Collapse
|
16
|
Egawa S, Miura S, Yokoyama H, Endo T, Tamura K. Growth and differentiation of a long bone in limb development, repair and regeneration. Dev Growth Differ 2014; 56:410-24. [PMID: 24860986 DOI: 10.1111/dgd.12136] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 12/25/2022]
Abstract
Repair from traumatic bone fracture is a complex process that includes mechanisms of bone development and bone homeostasis. Thus, elucidation of the cellular/molecular basis of bone formation in skeletal development would provide valuable information on fracture repair and would lead to successful skeletal regeneration after limb amputation, which never occurs in mammals. Elucidation of the basis of epimorphic limb regeneration in amphibians would also provide insights into skeletal regeneration in mammals, since the epimorphic regeneration enables an amputated limb to re-develop the three-dimensional structure of bones. In the processes of bone development, repair and regeneration, growth of the bone is achieved through several events including not only cell proliferation but also aggregation of mesenchymal cells, enlargement of cells, deposition and accumulation of extracellular matrix, and bone remodeling.
Collapse
Affiliation(s)
- Shiro Egawa
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | | | | | | | | |
Collapse
|
17
|
Aomatsu E, Chosa N, Nishihira S, Sugiyama Y, Miura H, Ishisaki A. Cell-cell adhesion through N-cadherin enhances VCAM-1 expression via PDGFRβ in a ligand-independent manner in mesenchymal stem cells. Int J Mol Med 2013; 33:565-72. [PMID: 24378362 DOI: 10.3892/ijmm.2013.1607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/17/2013] [Indexed: 11/06/2022] Open
Abstract
Cell-cell adhesions induce various intracellular signals through hierarchical and synergistic molecular interactions. Recently, we demonstrated that a high cell density induces the expression of vascular cell adhesion molecule-1 (VCAM-1) through the nuclear factor-κB (NF-κB) pathway in human bone marrow-derived mesenchymal stem cells (MSCs). However, the specific molecules that activated the NF-κB pathway were not determined. In the present study, in experiments with receptor tyrosine kinase inhibitors, VCAM-1 expression was completely suppressed by platelet-derived growth factor (PDGF) receptor (PDGFR) inhibitors. In addition, VCAM-1 expression was significantly suppressed by knockdown with PDGFRβ siRNA, but not with PDGFRα siRNA. However, VCAM-1 expression did not increase following treatment with PDGF. The overexpression of N-cadherin, a structural molecule in adherence junctions in MSCs, promoted VCAM-1 expression and induced the marked phosphorylation of the intracellular signaling factor, Src. In addition, VCAM-1 expression and Src phosphorylation were reduced by the overexpression of a dominant negative mutant of N-cadherin. These results suggest that cell-cell adhesion, through N-cadherin, enhances the expression of VCAM-1 via PDGFRβ and the activation of Src in a ligand-independent manner in MSCs.
Collapse
Affiliation(s)
- Emiko Aomatsu
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Soko Nishihira
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Yoshiki Sugiyama
- Division of Oral Surgery, Department of Oral and Maxillofacial Surgery, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Hiroyuki Miura
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
18
|
Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis. Proc Natl Acad Sci U S A 2013; 110:10117-22. [PMID: 23733927 DOI: 10.1073/pnas.1214100110] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Methacrylated hyaluronic acid (HA) hydrogels provide a backbone polymer with which mesenchymal stem cells (MSCs) can interact through several cell surface receptors that are expressed by MSCs, including CD44 and CD168. Previous studies showed that this 3D hydrogel environment supports the chondrogenesis of MSCs, and here we demonstrate through functional blockade that these specific cell-material interactions play a role in this process. Beyond matrix interactions, cadherin molecules, a family of transmembrane glycoproteins, play a critical role in tissue development during embryogenesis, and N-cadherin is a key factor in mediating cell-cell interactions during mesenchymal condensation and chondrogenesis. In this study, we functionalized HA hydrogels with N-cadherin mimetic peptides and evaluated their role in regulating chondrogenesis and cartilage matrix deposition by encapsulated MSCs. Our results show that conjugation of cadherin peptides onto HA hydrogels promotes both early chondrogenesis of MSCs and cartilage-specific matrix production with culture, compared with unmodified controls or those with inclusion of a scrambled peptide domain. This enhanced chondrogenesis was abolished via treatment with N-cadherin-specific antibodies, confirming the contribution of these N-cadherin peptides to chondrogenesis. Subcutaneous implantation of MSC-seeded constructs also showed superior neocartilage formation in implants functionalized with N-cadherin mimetic peptides compared with controls. This study demonstrates the inherent biologic activity of HA-based hydrogels, as well as the promise of biofunctionalizing HA hydrogels to emulate the complexity of the natural cell microenvironment during embryogenesis, particularly in stem cell-based cartilage regeneration.
Collapse
|
19
|
Fodor J, Matta C, Oláh T, Juhász T, Takács R, Tóth A, Dienes B, Csernoch L, Zákány R. Store-operated calcium entry and calcium influx via voltage-operated calcium channels regulate intracellular calcium oscillations in chondrogenic cells. Cell Calcium 2013; 54:1-16. [PMID: 23664335 DOI: 10.1016/j.ceca.2013.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/11/2013] [Accepted: 03/21/2013] [Indexed: 01/01/2023]
Abstract
Chondrogenesis is known to be regulated by calcium-dependent signalling pathways in which temporal aspects of calcium homeostasis are of key importance. We aimed to better characterise calcium influx and release functions with respect to rapid calcium oscillations in cells of chondrifying chicken high density cultures. We found that differentiating chondrocytes express the α1 subunit of voltage-operated calcium channels (VOCCs) at both mRNA and protein levels, and that these ion channels play important roles in generating Ca(2+) influx for oscillations as nifedipine interfered with repetitive calcium transients. Furthermore, VOCC blockade abrogated chondrogenesis and almost completely blocked cell proliferation. The contribution of internal Ca(2+) stores via store-operated Ca(2+) entry (SOCE) seems to be indispensable to both Ca(2+) oscillations and chondrogenesis. Moreover, this is the first study to show the functional expression of STIM1/STIM2 and Orai1, molecules that orchestrate SOCE, in chondrogenic cells. Inhibition of SOCE combined with ER calcium store depletion abolished differentiation and severely diminished proliferation, suggesting the important role of internal pools in calcium homeostasis of differentiating chondrocytes. Finally, we present an integrated model for the regulation of calcium oscillations of differentiating chondrocytes that may have important implications for studies of chondrogenesis induced in various stem cell populations.
Collapse
Affiliation(s)
- János Fodor
- Department of Physiology, Medical and Health Science Centre, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Malko AV, Villagomez M, Aubin JE, Opas M. Both Chondroinduction and Proliferation Account for Growth of Cartilage Nodules in Mouse Limb Bud Cultures. Stem Cell Rev Rep 2013; 9:121-31. [DOI: 10.1007/s12015-013-9434-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Xu Y, Wei K, Kulyk W, Gong SG. FLRT2 promotes cellular proliferation and inhibits cell adhesion during chondrogenesis. J Cell Biochem 2012; 112:3440-8. [PMID: 21769912 DOI: 10.1002/jcb.23271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
One of the earliest events during chondrogenesis is the formation of condensations, a necessary pre-requisite for subsequent differentiation of a chondrogenic phenotype. Members of the Fibronectin Lecucine Rich Transmembrane (FLRT) proteins have been shown to be involved in cell sorting and neurite outgrowth. Additionally, FLRT2 is highly expressed at putative sites of chondrogenic differentiation during craniofacial development. In this study, we demonstrate that FLRT2 plays a role in mediating cell proliferation and cell-cell interactions during early chondrogenesis. Clones of stable transfectants of a murine chondroprogenitor cell line, ATDC5, were established in which FLRT2 was knocked down or overexpressed. Cells in which FLRT2 was knocked down proliferated at a slower rate compared to control wild-type ATDC5 cells or those containing a non-coding shRNA. In addition, FLRT2 knockdown cells formed numerous lectin peanut agglutinin (PNA) stained aggregates and exhibited higher expression of the cell adhesion molecule, N-cadherin. In an in vitro wound healing assay, fewer FLRT2 knockdown cells appeared to migrate into the defect. Surprisingly, the FLRT2 knockdown cells demonstrated increased formation of Alcian blue-stainable extracellular matrix, suggesting that their reduced aggregate formation did not inhibit subsequent chondrogenic differentiation. The opposite trends were observed in ATDC5 clones that overexpressed FLRT2. Specifically, FLRT overexpressing cells proliferated faster, formed fewer PNA-positive aggregates, accumulated increased Alcian blue-positive matrix, and migrated faster to close a wound. Collectively, our findings provide evidence for a role of FLRT2 in enhancing cell proliferation and reducing intercellular adhesion during the early stages of chondrogenesis.
Collapse
Affiliation(s)
- Y Xu
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, Canada M5G 1G6
| | | | | | | |
Collapse
|
22
|
Alan T, Tufan AC. C-type natriuretic peptide regulation of limb mesenchymal chondrogenesis is accompanied by altered N-cadherin and collagen type X-related functions. J Cell Biochem 2008; 105:227-35. [PMID: 18461555 DOI: 10.1002/jcb.21815] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AMDM, a form of osteochondrodysplasia, is due to the loss-of-function mutations in NPR-B gene. This study investigated the functional involvement of CNP-3, chick homolog of human CNP, and its receptor NPR-B in chondrogenesis utilizing the micromass culture of the chick limb mesenchymal cells. Results revealed CNP-3 and NPR-B expression in the chick limb bud making stage-specific peak levels first at Hamburger-Hamilton stage 23-24, and second at stage 30-31, corresponding to pre-chondrogenic mesenchymal condensation and initiation of chondrogenic maturation-hypertrophy in vivo, respectively. CNP-3 and NPR-B expression in vitro increased parallel to collagen type X expression, but not to that of collagen type II. Treatment of cultures with CNP significantly increased N-cadherin, and collagen type X expression, glycosaminoglycan synthesis and chondrogenesis. Collagen type II expression was not significantly affected. Thus, results implicated CNP-3/NPR-B signaling in pre-chondrogenic mesenchymal condensation, glycosaminoglycan synthesis and late differentiation of chondrocytes in the process of endochondral ossification.
Collapse
Affiliation(s)
- Tulay Alan
- Department of Histology and Embryology, Institute of Health Sciences, Pamukkale University, Denizli, Turkey
| | | |
Collapse
|
23
|
Wescoe KE, Schugar RC, Chu CR, Deasy BM. The Role of the Biochemical and Biophysical Environment in Chondrogenic Stem Cell Differentiation Assays and Cartilage Tissue Engineering. Cell Biochem Biophys 2008; 52:85-102. [DOI: 10.1007/s12013-008-9029-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2008] [Indexed: 01/13/2023]
|
24
|
Matta C, Fodor J, Szíjgyártó Z, Juhász T, Gergely P, Csernoch L, Zákány R. Cytosolic free Ca2+ concentration exhibits a characteristic temporal pattern during in vitro cartilage differentiation: A possible regulatory role of calcineurin in Ca-signalling of chondrogenic cells. Cell Calcium 2008; 44:310-23. [DOI: 10.1016/j.ceca.2007.12.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 11/15/2007] [Accepted: 12/29/2007] [Indexed: 11/30/2022]
|
25
|
Han F, Gilbert JR, Harrison G, Adams CS, Freeman T, Tao Z, Zaka R, Liang H, Williams C, Tuan RS, Norton PA, Hickok NJ. Transforming growth factor-beta1 regulates fibronectin isoform expression and splicing factor SRp40 expression during ATDC5 chondrogenic maturation. Exp Cell Res 2007; 313:1518-32. [PMID: 17391668 PMCID: PMC1920702 DOI: 10.1016/j.yexcr.2007.01.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2005] [Revised: 01/09/2007] [Accepted: 01/17/2007] [Indexed: 11/28/2022]
Abstract
Fibronectin (FN) isoform expression is altered during chondrocyte commitment and maturation, with cartilage favoring expression of FN isoforms that includes the type II repeat extra domain B (EDB) but excludes extra domain A (EDA). We and others have hypothesized that the regulated splicing of FN mRNAs is necessary for the progression of chondrogenesis. To test this, we treated the pre-chondrogenic cell line ATDC5 with transforming growth factor-beta1, which has been shown to modulate expression of the EDA and EDB exons, as well as the late markers of chondrocyte maturation; it also slightly accelerates the early acquisition of a sulfated proteoglycan matrix without affecting cell proliferation. When chondrocytes are treated with TGF-beta1, the EDA exon is preferentially excluded at all times whereas the EDB exon is relatively depleted at early times. This regulated alternative splicing of FN correlates with the regulation of alternative splicing of SRp40, a splicing factor facilitating inclusion of the EDA exon. To determine if overexpression of the SRp40 isoforms altered FN and FN EDA organization, cDNAs encoding these isoforms were overexpressed in ATDC5 cells. Overexpression of the long-form of SRp40 yielded an FN organization similar to TGF-beta1 treatment; whereas overexpression of the short form of SRp40 (which facilitates EDA inclusion) increased formation of long-thick FN fibrils. Therefore, we conclude that the effects of TGF-beta1 on FN splicing during chondrogenesis may be largely dependent on its effect on SRp40 isoform expression.
Collapse
Affiliation(s)
- Fei Han
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - James R. Gilbert
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gerald Harrison
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher S. Adams
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Theresa Freeman
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Zhuliang Tao
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Raihana Zaka
- Division of Rheumatology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hongyan Liang
- Department of Biochemistry & Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Charlene Williams
- Department of Biochemistry & Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Division of Rheumatology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rocky S. Tuan
- Cartilage Biology and Orthopaedics Branch, NIAMS, NIH, Bethesda, MD
| | - Pamela A. Norton
- Department of Biochemistry & Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Jefferson Center for Biomedical Research, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Noreen J. Hickok
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- ‡ To Whom Correspondence Should be Addressed: Noreen J. Hickok, Ph.D., Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut St., Suite 501, Philadelphia, PA 19107, Tel: 215-955-6979, Fax: 215-955-4317, e-mail:
| |
Collapse
|
26
|
Mello MA, Tuan RS. Effects of TGF-beta1 and triiodothyronine on cartilage maturation: in vitro analysis using long-term high-density micromass cultures of chick embryonic limb mesenchymal cells. J Orthop Res 2006; 24:2095-105. [PMID: 16955422 DOI: 10.1002/jor.20233] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Endochondral ossification is initiated by differentiation of mesenchymal cells into chondrocytes, which produce a cartilaginous matrix, proliferate, mature, and undergo hypertrophy, followed by matrix calcification, and substitution of cartilage by bone. A number of hormones and growth factors have been implicated in this process. Using in vitro, long-term, high-density, micromass cultures of chick embryonic mesenchyme, that recapitulate the process of chondrogenesis, chondrocyte maturation, and hypertrophy, we have investigated the importance of a balance between proliferation and apoptosis in cartilage maturation, focusing specifically on the effects of transforming growth factor-beta1 (TGF-beta1) and the thyroid hormone, triiodothyronine (T3). Our results showed that TGF-beta1 stimulates proliferation, by week 2 of culture, and T3 inhibits proliferation by week 3. Cell size increases in cultures treated with T3. Collagen type X is expressed in all culture, and delay in matrix deposition is seen only in the cultures treated with TGF-beta1. T3 stimulates alkaline phosphatase activity, but not calcification. T3 enhances apoptosis, as seen by TUNEL staining, and internucleosomal DNA fragmentation. The results support the roles of T3 and TGF-beta in cartilage maturation, i.e., TGF-beta stimulates proliferation and suppresses hypertrophy, while T3 stimulates hypertrophy and apoptosis.
Collapse
Affiliation(s)
- Maria A Mello
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Building 50, Room 1523, MSC 8022, Bethesda, Maryland 20892-8022, USA
| | | |
Collapse
|
27
|
Shimo T, Kanyama M, Wu C, Sugito H, Billings PC, Abrams WR, Rosenbloom J, Iwamoto M, Pacifici M, Koyama E. Expression and roles of connective tissue growth factor in Meckel's cartilage development. Dev Dyn 2005; 231:136-47. [PMID: 15305294 DOI: 10.1002/dvdy.20109] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Meckel's cartilage is a prominent feature of the developing mandible, but its formation and roles remain unclear. Because connective tissue growth factor (CTGF, CCN2) regulates formation of other cartilages, we asked whether it is expressed and what roles it may have in developing mouse Meckel's cartilage. Indeed, CTGF was strongly expressed in anterior, central, and posterior regions of embryonic day (E) 12 condensing Meckel's mesenchyme. Expression decreased in E15 newly differentiated chondrocytes but surged again in E18 hypertrophic chondrocytes located in anterior region and most-rostral half of central region. These cells were part of growth plate-like structures with zones of maturation resembling those in a developing long bone and expressed such characteristic genes as Indian hedgehog (Ihh), collagen X, MMP-9, and vascular endothelial growth factor. At each stage examined perichondrial tissues also expressed CTGF. To analyze CTGF roles, mesenchymal cells isolated from E10 first branchial arches were tested for interaction and responses to recombinant CTGF (rCTGF). The cells readily formed aggregates in suspension culture and interacted with substrate-bound rCTGF, but neither event occurred in the presence of CTGF neutralizing antibodies. In good agreement, rCTGF treatment of micromass cultures stimulated both expression of condensation-associated macromolecules (fibronectin and tenascin-C) and chondrocyte differentiation. Expression of these molecules and CTGF itself was markedly up-regulated by treatment with transforming growth factor-beta1, a chondrogenic factor. In conclusion, CTGF is expressed in highly dynamic manners in developing Meckel's cartilage where it may influence multiple events, including chondrogenic cell differentiation and chondrocyte maturation. CTGF may aid chondrogenesis by acting down-stream of transforming growth factor-beta and stimulating cell-cell interactions and expression of condensation-associated genes.
Collapse
Affiliation(s)
- Tsuyoshi Shimo
- Department of Orthopaedic Surgery, Thomas Jefferson University Medical School, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Embryonic skeletal development involves the recruitment, commitment, differentiation, and maturation of mesenchymal cells into those in the skeletal tissue lineage, specifically cartilage and bone along the intramembranous and endochondral ossification pathways. The exquisite control of skeletal development is regulated at the level of gene transcription, cellular signaling, cell-cell and cell-matrix interactions, as well as systemic modulation. Mediators include transcription factors, growth factors, cytokines, metabolites, hormones, and environmentally derived influences. Understanding the mechanisms underlying developmental skeletogenesis is crucial to harnessing the inherent regenerative potential of skeletal tissues for wound healing and repair, as well as for functional skeletal tissue engineering. In this review, a number of key issues are discussed concerning the current and future challenges of the scientific investigation of developmental skeletogenesis in the embryo, specifically limb cartilage development, and how these challenges relate to regenerative or reparative skeletogenesis in the adult. Specifically, a more complete understanding the biology of skeletogenic progenitor cells and the cellular and molecular mechanisms governing tissue patterning and morphogenesis should greatly facilitate the development of regenerative approaches to cartilage repair.
Collapse
Affiliation(s)
- Rocky S Tuan
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
DeLise AM, Tuan RS. Alterations in the spatiotemporal expression pattern and function of N-cadherin inhibit cellular condensation and chondrogenesis of limb mesenchymal cells in vitro. J Cell Biochem 2004; 87:342-59. [PMID: 12397616 DOI: 10.1002/jcb.10308] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cartilage formation in the embryonic limb is presaged by a cellular condensation phase that is mediated by both cell-cell and cell-matrix interactions. N-Cadherin, a Ca(2+)-dependent cell-cell adhesion molecule, is expressed at higher levels in the condensing mesenchyme, followed by down-regulation upon chondrogenic differentiation, strongly suggesting a functional role in the cellular condensation process. To further examine the role of N-cadherin, we have generated expression constructs of wild type and two deletion mutants (extracellular and intracellular) of N-cadherin in the avian replication-competent, RCAS retrovirus, and transfected primary chick limb mesenchymal cell cultures with these constructs. The effects of altered, sustained expression of N-cadherin and its mutant forms on cellular condensation, on the basis of peanut agglutinin (DNA) staining, and chondrogenesis, based on expression of chondrocyte phenotypic markers, were characterized. Cellular condensation was relatively unchanged in cultures overexpressing wild type N-cadherin, compared to controls on all days in culture. However, expression of either of the deletion mutant forms of N-cadherin resulted in decreased condensation, with the extracellular deletion mutant demonstrating the most severe inhibition, suggesting a requirement for N-cadherin mediated cell-cell adhesion and signaling in cellular condensation. Subsequent chondrogenic differentiation was also affected in all cultures overexpressing the N-cadherin constructs, on the basis of metabolic sulfate incorporation, the presence of the cartilage matrix proteins collagen type II and cartilage proteoglycan link protein, and alcian blue staining of the matrix. The characteristics of the cultures suggest that the N-cadherin mutants disrupt proper cellular condensation and subsequent chondrogenesis, while the cultures overexpressing wild type N-cadherin appear to condense normally, but are unable to proceed toward differentiation, possibly due to the prolonged maintenance of increased cell-cell adhesiveness. Thus, spatiotemporally regulated N-cadherin expression and function, at the level of both homotypic binding and linkage to the cytoskeleton, is required for chondrogenesis of limb mesenchymal cells.
Collapse
Affiliation(s)
- Anthony M DeLise
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
30
|
Daumer KM, Tufan AC, Tuan RS. Long-term in vitro analysis of limb cartilage development: Involvement of Wnt signaling. J Cell Biochem 2004; 93:526-41. [PMID: 15372624 DOI: 10.1002/jcb.20190] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endochondral skeletal development involves the condensation of mesenchymal cells, their differentiation into chondrocytes, followed by chondrocyte maturation, hypertrophy, and matrix mineralization, and replacement by osteoblasts. The Wnt family of secreted proteins have been shown to play important roles in vertebrate limb formation. To examine the role(s) of Wnt members and their transmembrane-spanning receptor(s), Frizzled (fz), we retrovirally misexpressed Wnt-5a, Wnt-7a, chicken frizzled-1 (Chfz-1), and frizzled-7 (Chfz-7) in long-term (21 day) high density, micromass cultures of stage 23/24 chick embryonic limb mesenchyme. This culture system recapitulates in vitro the entire differentiation (days 1-10), growth (days 5-12), and maturation and hypertrophy (from day 12 on) program of cartilage development. Wnt-7a misexpression severely inhibited chondrogenesis from day 7 onward. Wnt-5a misexpression resulted in a poor hypertrophic phenotype by day 14. Chfz-7 misexpression caused a slight delay of chondrocyte maturation based on histology, whereas Chfz-1 misexpression did not affect the chondrogenic phenotype. Misexpression of all Wnt members decreased collagen type X expression and alkaline phosphatase activity at day 21. Our findings implicate functional role(s) for Wnt signaling throughout embryonic cartilage development, and show the utility of the long-term in vitro limb mesenchyme culture system for such studies.
Collapse
Affiliation(s)
- Kathleen M Daumer
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
31
|
Tuli R, Tuli S, Nandi S, Huang X, Manner PA, Hozack WJ, Danielson KG, Hall DJ, Tuan RS. Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem 2003; 278:41227-36. [PMID: 12893825 DOI: 10.1074/jbc.m305312200] [Citation(s) in RCA: 373] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The multilineage differentiation potential of adult tissue-derived mesenchymal progenitor cells (MPCs), such as those from bone marrow and trabecular bone, makes them a useful model to investigate mechanisms regulating tissue development and regeneration, such as cartilage. Treatment with transforming growth factor-beta (TGF-beta) superfamily members is a key requirement for the in vitro chondrogenic differentiation of MPCs. Intracellular signaling cascades, particularly those involving the mitogen-activated protein (MAP) kinases, p38, ERK-1, and JNK, have been shown to be activated by TGF-betas in promoting cartilage-specific gene expression. MPC chondrogenesis in vitro also requires high cell seeding density, reminiscent of the cellular condensation requirements for embryonic mesenchymal chondrogenesis, suggesting common chondro-regulatory mechanisms. Prompted by recent findings of the crucial role of the cell adhesion protein, N-cadherin, and Wnt signaling in condensation and chondrogenesis, we have examined here their involvement, as well as MAP kinase signaling, in TGF-beta1-induced chondrogenesis of trabecular bone-derived MPCs. Our results showed that TGF-beta1 treatment initiates and maintains chondrogenesis of MPCs through the differential chondro-stimulatory activities of p38, ERK-1, and to a lesser extent, JNK. This regulation of MPC chondrogenic differentiation by the MAP kinases involves the modulation of N-cadherin expression levels, thereby likely controlling condensation-like cell-cell interaction and progression to chondrogenic differentiation, by the sequential up-regulation and progressive down-regulation of N-cadherin. TGF-beta1-mediated MAP kinase activation also controls WNT-7A gene expression and Wnt-mediated signaling through the intracellular beta-catenin-TCF pathway, which likely regulates N-cadherin expression and subsequent N-cadherin-mediated cell-adhesion complexes during the early steps of MPC chondrogenesis.
Collapse
Affiliation(s)
- Richard Tuli
- Cartilage Biology and Orthopaedics Branch, NIAMS, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Torres ES, Andrade CV, Fonseca EC, Mello MA, Duarte MEL. Insulin impairs the maturation of chondrocytes in vitro. Braz J Med Biol Res 2003; 36:1185-92. [PMID: 12937784 DOI: 10.1590/s0100-879x2003000900007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The precise nature of hormones and growth factors directly responsible for cartilage maturation is still largely unclear. Since longitudinal bone growth occurs through endochondral bone formation, excess or deficiency of most hormones and growth factors strongly influences final adult height. The structure and composition of the cartilaginous extracellular matrix have a critical role in regulating the behavior of growth plate chondrocytes. Therefore, the maintenance of the three-dimensional cell-matrix interaction is necessary to study the influence of individual signaling molecules on chondrogenesis, cartilage maturation and calcification. To investigate the effects of insulin on both proliferation and induction of hypertrophy in chondrocytes in vitro we used high-density micromass cultures of chick embryonic limb mesenchymal cells. Culture medium was supplemented with 1% FCS + 60 ng/ml (0.01 microM) insulin and cultures were harvested at regular time points for later analysis. Proliferating cell nuclear antigen immunoreactivity was widely detected in insulin-treated cultures and persisted until day 21 and [ 3H]-thymidine uptake was highest on day 14. While apoptosis increased in control cultures as a function of culture time, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-labeled cells were markedly reduced in the presence of insulin. Type II collagen production, alkaline phosphatase activity and cell size were also lower in insulin-treated cultures. Our results indicate that under the influence of 60 ng/ml insulin, chick chondrocytes maintain their proliferative potential but do not become hypertrophic, suggesting that insulin can affect the regulation of chondrocyte maturation and hypertrophy, possibly through an antiapoptotic effect.
Collapse
Affiliation(s)
- E S Torres
- Departamento de Patologia, Universidade Federal Fluminense, Niterói, RJ, Brasil.
| | | | | | | | | |
Collapse
|
33
|
Coleman CM, Tuan RS. Functional role of growth/differentiation factor 5 in chondrogenesis of limb mesenchymal cells. Mech Dev 2003; 120:823-36. [PMID: 12915232 DOI: 10.1016/s0925-4773(03)00067-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Growth/Differentiation Factor 5 (GDF5) plays an important role in limb mesenchymal cell condensation and chondrogenesis. Here we demonstrate, using high density cultures of chick embryonic limb mesenchyme, that GDF5 misexpression increased condensation of chondroprogenitor cells and enhanced chondrogenic differentiation. These effects were observed in the absence of altered cellular viability or biosynthetic activity, suggesting that GDF5 action might be directed at the level of cellular adhesion or cell-cell communication. GDF5- enhanced condensation occurred independent of cell density or N-cadherin mediated adhesion and signaling, but was inhibited upon interference of gap junction mediated communication. p38 MAP kinase signaling was required for the GDF5 effect on chondrocyte differentiation, but not for mesenchymal condensation. These findings suggest gap junction involvement in the action of GDF5 in developmental chondrogenesis.
Collapse
Affiliation(s)
- Cynthia M Coleman
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
34
|
White DG, Hershey HP, Moss JJ, Daniels H, Tuan RS, Bennett VD. Functional analysis of fibronectin isoforms in chondrogenesis: Full-length recombinant mesenchymal fibronectin reduces spreading and promotes condensation and chondrogenesis of limb mesenchymal cells. Differentiation 2003; 71:251-61. [PMID: 12823226 DOI: 10.1046/j.1432-0436.2003.7104502.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fibronectin (FN), a large dimeric glycoprotein, functions primarily as a connecting molecule in the extracellular matrices of tissues by mediating both cell-matrix and matrix-matrix interactions. All members of the FN family are products of a single FN gene; heterogeneity arises from the alternative splicing of at least three regions (IIIB, IIIA, and V) during processing of a common primary transcript. During chick embryonic limb chondrogenesis, FN structure changes from B+A+ in precartilage mesenchyme to B+A- in differentiated cartilage, and exon IIIA has been shown to be necessary for the process of mesenchymal cellular condensation, a requisite event that precedes overt expression of chondrocyte phenotype. This study aims to investigate the mechanistic action of the FN isoforms in mesenchymal chondrogenesis and, in particular, to identify the specific cellular function in mesenchymal condensation mediated by the mesenchymal (B+A+) FN isoform. Full-length cDNAs corresponding to four splice variants (B+A+, B+A-, B-A+, B-A-) of FN were constructed, and expressed the corresponding proteins using a baculovirus expression vector system. Cell adhesion assays with purified proteins showed that, although the relative levels of cell attachment were approximately the same, chick limb-bud mesenchymal cells spread up to 40 % less on mesenchymal (B+A+) FN than on cartilage (B+A-) FN, (B-A+) FN, or plasma (B-A-) FN. Cellular condensation and chondrogenic differentiation were also promoted in high-density micromass cultures of limb mesenchymal cells plated onto B+A+ FN. These observations suggest that the process of mesenchymal condensation is mediated at least in part by the enhanced ability of chondrogenic mesenchymal cells to migrate and aggregate as a consequence of residing in and interacting with mesenchymal FN. Our findings are consistent with and provide a mechanistic basis for previous observations that rounding of limb mesenchymal cells precedes the onset of chondrogenesis.
Collapse
Affiliation(s)
- Denise G White
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Rocky S Tuan
- Cartilage Biology and Orthopaedics Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-8022, USA.
| |
Collapse
|
36
|
Delise AM, Tuan RS. Analysis of N-cadherin function in limb mesenchymal chondrogenesis in vitro. Dev Dyn 2003; 225:195-204. [PMID: 12242719 DOI: 10.1002/dvdy.10151] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During embryonic limb development, cartilage formation is presaged by a crucial mesenchymal cell condensation phase. N-Cadherin, a Ca2+ -dependent cell-cell adhesion molecule, is expressed in embryonic chick limb buds in a spatiotemporal pattern suggestive of its involvement during cellular condensation; functional blocking of N-cadherin homotypic binding, by using a neutralizing monoclonal antibody, results in perturbed chondrogenesis in vitro and in vivo. In high-density micromass cultures of embryonic limb mesenchymal cells, N-cadherin expression level is high during days 1 and 2, coincident with active cellular condensation, and decreases upon overt chondrogenic differentiation from day 3 on. In this study, we have used a transfection approach to evaluate the effects of gain- and loss-of-function expression of N-cadherin constructs on mesenchymal condensation and chondrogenesis in vitro. Chick limb mesenchymal cells were transfected by electroporation with recombinant expression plasmids encoding wild-type or two mutant extracellular/cytoplasmic deletion forms of N-cadherin. Expression of the transfected N-cadherin forms showed a transient profile, being high on days 1-2 of culture, and decreasing by day 3, fortuitously coincident with the temporal profile of endogenous N-cadherin gene expression. Examined by means of peanut agglutinin (PNA) staining for condensing precartilage mesenchymal cells, cultures overexpressing wild-type N-cadherin showed enhanced cellular condensation on culture days 2 and 3, whereas expression of the deletion mutant forms (extracellular/cytoplasmic) of N-cadherin resulted in a decrease in PNA staining, suggesting that a complete N-cadherin protein is required for normal cellular condensation to occur. Subsequent chondrogenesis was also affected. Cultures overexpressing the wild-type N-cadherin protein showed enhanced chondrogenesis, indicated by increased production of cartilage matrix (sulfated proteoglycans, collagen type II, and cartilage proteoglycan link protein), as well as increased cartilage nodule number and size of individual nodules, compared with control cultures and cultures transfected with either of the two mutant N-cadherin constructs. These results demonstrate that complete N-cadherin function, at the levels of both extracellular homotypic binding and cytoplasmic linkage to the cytoskeleton by means of the catenin complex, is required for chondrogenesis by mediating functional mesenchymal cell condensation.
Collapse
Affiliation(s)
- Anthony M Delise
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
37
|
Fischer L, Boland G, Tuan RS. Wnt-3A enhances bone morphogenetic protein-2-mediated chondrogenesis of murine C3H10T1/2 mesenchymal cells. J Biol Chem 2002; 277:30870-8. [PMID: 12077113 DOI: 10.1074/jbc.m109330200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have recently reported the chondrogenic effect of bone morphogenetic protein-2 (BMP-2) in high density cultures of the mouse multipotent mesenchymal C3H10T1/2 cell line and have shown the functional requirement of the cell-cell adhesion molecule N-cadherin in BMP-2-induced chondrogenesis in vitro (Denker, A. E., Nicoll, S. B., and Tuan, R. S. (1995) Differentiation 59, 25-34; Haas, A. R., and Tuan, R. S. (1999) Differentiation 64, 77-89). Furthermore, BMP-2 treatment also results in an increased protein level of beta-catenin, a known N-cadherin-associated Wnt signal transducer (Fischer, L., Haas, A., and Tuan, R. S. (2001) Signal Transduction 2, 66-78), suggesting functional cross-talk between the BMP-2 and Wnt signaling pathways. We have observed previously that BMP-2 treatment up-regulates expression of Wnt-3A in high density cultures of C3H10T1/2 cells. To assess the contribution of Wnt-3A to BMP-2-mediated chondrogenesis, we have generated C3H10T1/2 cell lines overexpressing Wnt-3A and various forms of glycogen synthase kinase-3beta (GSK-3beta), an immediate cytosolic component of the Wnt signaling pathway, and examined their response to BMP-2. We show that overexpression of either Wnt-3A or kinase-dead GSK-3beta enhances BMP-2-mediated chondrogenesis. Furthermore, Wnt-3A overexpression results in decreases in both N-cadherin and GSK-3beta protein levels, whereas Wnt-3A as well as kinase-dead GSK-3beta overexpression increase total and nuclear levels of both beta-catenin and LEF-1. Direct cross-talk between Wnts and BMP-2 was also indicated by the up-regulated interaction between beta-catenin and SMAD-4 in response to BMP-2. These results suggest that Wnt-3A acts in a manner opposite to that of other Wnts, such as Wnt-7A, which were previously identified as inhibitory to chondrogenesis, and is the first BMP-2-regulated, chondrogenesis-enhancing member of the Wnt family.
Collapse
Affiliation(s)
- Leslie Fischer
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
38
|
Fischer L, Boland G, Tuan RS. Wnt signaling during BMP-2 stimulation of mesenchymal chondrogenesis. J Cell Biochem 2002; 84:816-31. [PMID: 11835406 DOI: 10.1002/jcb.10091] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Members of both the Wnt and bone morphogenetic protein (BMP) families of signaling molecules have been implicated in the regulation of cartilage development. A key component of the Wnt signaling pathway is the cytosolic protein, beta-catenin. We have recently shown that the chondrogenic activity of BMP-2 in vitro involves the action of the cell-cell adhesion protein, N-cadherin, which functionally complexes with beta-catenin. The aim of this study is to test the hypothesis that Wnts may be involved in BMP-2 induced chondrogenesis, using an in vitro model of high-density micromass cultures of the murine multipotent mesenchymal cell line, C3H10T1/2. Expression of a number of Wnt members was detected in these cultures, including Wnt-3A and Wnt-7A, whose levels were up- and downregulated, respectively, by BMP-2. To assess the functional involvement of Wnt signaling in BMP-2 induced chondrogenesis, cultures were treated with lithium chloride, a Wnt-7A mimetic that acts by inhibiting the serine/threonine phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta). Lithium treatment significantly inhibited BMP-2 stimulation of chondrogenesis as well as GSK-3beta enzymatic activity, and decreased the levels of N-cadherin protein and mRNA. Furthermore, lithium decreased BMP-2 upregulation of total and nuclear levels of LEF-1 and beta-catenin as well as their interaction during later chondrogenesis; similarly, the interaction of beta-catenin with N-cadherin was also decreased. Interestingly, lithium treatment did not affect the ability of BMP-2 to decrease ubiquitination of beta-catenin, although it did reduce the interaction of beta-catenin with GSK-3beta during late chondrogenesis (days 9-13). We suggest that the chondro-inhibitory effect of lithium on BMP-2 induced chondrogenesis indicates antagonism between lithium-like Wnts and BMP-2 during mesenchymal condensation.
Collapse
Affiliation(s)
- Leslie Fischer
- Department of Orthopaedic Surgery and Graduate Programs of Biochemistry and Molecular Biology, and Cell and Tissue Engineering, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
39
|
Seghatoleslami MR, Tuan RS. Cell density dependent regulation of AP-1 activity is important for chondrogenic differentiation of C3H10T1/2 mesenchymal cells. J Cell Biochem 2002; 84:237-48. [PMID: 11787053 DOI: 10.1002/jcb.10019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The multipotential C3H10T1/2 mesenchymal cells undergo chondrogenic differentiation only when seeded as high-density micromass cultures, particularly upon treatment with bone morphogenetic protein-2 (BMP-2). The molecular mechanism(s) responsible for the cell density-dependent onset of cartilage-specific gene expression is presently unknown. Interestingly, a number of recent studies have indicated that activating protein-1 (AP-1), a well known downstream target of the mitogenic activated protein kinase (MAP kinase) signaling pathway, is a target of chondrogenic/osteogenic growth factors such as BMP-2, and plays a role in osteogenic gene regulation as well as in chondrogenic differentiation. The aim of this study is to examine the density-dependent alteration in the level and binding activity of AP-1 and its functional involvement in C3H10T1/2 mesenchymal chondrogenesis. To measure the activity of the AP-1 transcription factor, we generated a pool of stable C3H10T1/2 cell lines harboring a luciferase expression vector driven by a concatamer of an efficient AP-1 response element (AP1-10T1/2 cells). Luciferase activity of AP1-10T1/2 cultures was found to decrease sharply with increase in cell density, either as a function of culture time or initial cell seeding densities. In C3H10T1/2 micromass cultures undergoing chondrogenesis, AP-1 activity was further reduced and then maintained at a low, steady level for the entire 3-4 day culture period. AP-1 activity in micromass cultures was not significantly affected by BMP-2 treatment, but chondrogenesis was compromised upon competitive inhibition of AP-1 activity with a double-stranded AP-1 binding oligonucleotide. The level of AP-1 binding correlated with the activity of its response element but not with the levels of its leucine-zipper containing subunits, c-Jun and c-Fos. These findings suggest that a cell density-dependent, low but steady level of AP-1 binding and activity is required for promoting the chondrogenic potential of C3H10T1/2 cells.
Collapse
Affiliation(s)
- M Reza Seghatoleslami
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
40
|
Tufan AC, Daumer KM, DeLise AM, Tuan RS. AP-1 transcription factor complex is a target of signals from both WnT-7a and N-cadherin-dependent cell-cell adhesion complex during the regulation of limb mesenchymal chondrogenesis. Exp Cell Res 2002; 273:197-203. [PMID: 11822875 DOI: 10.1006/excr.2001.5448] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wnt signaling has been implicated in the regulation of limb mesenchymal chondrogenesis. In this study, we have analyzed the molecular mechanism of Wnt-7a inhibition of chondrogenic differentiation by examining the involvement of mitogen-activated protein kinase (MAPK) pathways, i.e., Erk and p38. The combination of Wnt-7a misexpression and Erk inhibition partially recovers Wnt-7a inhibition of chondrogenic differentiation, whereas the combination of Wnt-7a misexpression and p38 inhibition acts in a synergistic chondro-inhibitory fashion. Although Wnt-7a misexpression has no direct effect on Erk signaling, it increases the activity of one of the ultimate targets of the MAPK pathway, c-jun, a major component of the activator protein-1 (AP-1) transcription factor complex. In addition, Wnt-7a misexpression enhances the activity of an AP-1 promoter-luciferase reporter construct by approximately 2.3-fold in vitro. Interestingly, misexpression of wild-type N-cadherin in these micromass cultures suppresses the activity of the same AP-1 promoter by approximately 40%, whereas misexpression of an extracellular 390-amino-acid N-terminal deletion mutant of N-cadherin has a stimulatory effect on the AP-1 promoter activity by approximately 2.6-fold. Thus, our results suggest that at least a part of the chondro-inhibitory effect of Wnt-7a misexpression may involve AP-1 transcription factor stimulation. Furthermore, a very tightly regulated level of AP-1 activity is necessary for the process of limb mesenchymal chondrogenesis, and signals from Wnt-ligands (e.g., Wnt-7a), cell adhesion molecules (e.g., N-cadherin), and MAPK pathways (e.g., Erk and p38) are interactively involved in this regulation.
Collapse
Affiliation(s)
- A Cevik Tufan
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
41
|
Tufan AC, Tuan RS. Wnt regulation of limb mesenchymal chondrogenesis is accompanied by altered N-cadherin-related functions. FASEB J 2001; 15:1436-8. [PMID: 11387249 DOI: 10.1096/fj.00-0784fje] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- A C Tufan
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
42
|
Abstract
The long bones of the developing skeleton, such as those of the limb, arise from the process of endochondral ossification, where cartilage serves as the initial anlage element and is later replaced by bone. One of the earliest events of embryonic limb development is cellular condensation, whereby pre-cartilage mesenchymal cells aggregate as a result of specific cell-cell interactions, a requisite step in the chondrogenic pathway. In this review an extensive examination of historical and recent literature pertaining to limb development and mesenchymal condensation has been undertaken. Topics reviewed include limb initiation and axial induction, mesenchymal condensation and its regulation by various adhesion molecules, and regulation of chondrocyte differentiation and limb patterning. The complexity of limb development is exemplified by the involvement of multiple growth factors and morphogens such as Wnts, transforming growth factor-beta and fibroblast growth factors, as well as condensation events mediated by both cell-cell (neural cadherin and neural cell adhesion molecule) and cell-matrix adhesion (fibronectin, proteoglycans and collagens), as well as numerous intracellular signaling pathways transduced by integrins, mitogen activated protein kinases, protein kinase C, lipid metabolites and cyclic adenosine monophosphate. Furthermore, information pertaining to limb patterning and the functional importance of Hox genes and various other signaling molecules such as radical fringe, engrailed, Sox-9, and the Hedgehog family is reviewed. The exquisite three-dimensional structure of the vertebrate limb represents the culmination of these highly orchestrated and strictly regulated events. Understanding the development of cartilage should provide insights into mechanisms underlying the biology of both normal and pathologic (e.g. osteoarthritis) adult cartilage.
Collapse
Affiliation(s)
- A M DeLise
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
43
|
Woodward WA, Tuan RS. N-Cadherin expression and signaling in limb mesenchymal chondrogenesis: stimulation by poly-L-lysine. DEVELOPMENTAL GENETICS 2000; 24:178-87. [PMID: 10079520 DOI: 10.1002/(sici)1520-6408(1999)24:1/2<178::aid-dvg16>3.0.co;2-m] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cellular condensation is a requisite step in the initiation of mesenchymal chondrogenesis in the embryonic limb bud. We have previously shown that cellular condensation of limb chondroprogenitor mesenchymal cells is accompanied by elevated expression of N-cadherin during chondrogenesis both in vivo and in vitro. N-Cadherin-mediated cell-cell interaction is also functionally required for proper mesenchymal chondrogenesis both in vivo and in vitro. In this report, we have further analyzed the functional importance of N-cadherin in the cellular condensation-chondrogenesis pathway by examining N-cadherin expression and related activities in high density micromass cultures of chick limb mesenchymal cells in which chondrogenesis is being stimulated with the cationic polymer, poly-L-lysine (PL). The chondrogenesis-promoting action of PL is thought to involve the clustering of cells via ionic cross-linking, perhaps mimicking the action of an endogenous matrix component. Immunohistochemistry, immunoblotting, and Northern blot analysis all show that PL treatment results in a time-dependent increase in N-cadherin expression at both the protein and mRNA levels. In addition, inhibition of N-cadherin function with a neutralizing monoclonal antibody directed to its extracellular domain inhibits the chondrogenesis-stimulating effect of PL. PL treatment also alters the tyrosine-phosphorylation state of the N-cadherin associated signaling protein, beta-catenin. These results suggest that N-cadherin-mediated cell adhesion is a requisite regulatory component of the limb mesenchymal chondrogenic differentiation program, involving at least in part beta-catenin tyrosine phosphorylation as a signaling step.
Collapse
Affiliation(s)
- W A Woodward
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
44
|
Uporova TM, Norton PA, Tuan RS, Bennett VD. Alternative splicing during chondrogenesis: cis and trans factors involved in splicing of fibronectin exon EIIIA. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000201)76:2<341::aid-jcb17>3.0.co;2-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Hobson GM, Funanage VL, Elsemore J, Yagami M, Rajpurohit R, Perriard JC, Hickok NJ, Shapiro IM, Tuan RS. Developmental expression of creatine kinase isoenzymes in chicken growth cartilage. J Bone Miner Res 1999; 14:747-56. [PMID: 10320523 DOI: 10.1359/jbmr.1999.14.5.747] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have shown previously that creatine kinase (CK) activity is required for normal development and mineralization of chicken growth cartilage and that expression of the cytosolic isoforms of CK is related to the biosynthetic and energy status of the chondrocyte. In this study, we have characterized changes in isoenzyme activity and mRNA levels of CK (muscle-specific CK, M-CK; brain-type CK, B-CK; and mitochondrial CK subunits, MiaCK and MibCK) in the growth plate in situ and in chondrocyte culture systems that model the development/maturation program of the cartilage. The in vitro culture systems analyzed were as follows: tibial chondrocytes, which undergo hypertrophy; embryonic cephalic and caudal sternal chondrocytes, which differ from each other in their mineralization response to retinoic acid; and long-term micromass cultures of embryonic limb mesenchymal cells, which recapitulate the chondrocyte differentiation program. In all systems analyzed, B-CK was found to be the predominant isoform. In the growth plate, B-CK expression was highest in the most calcified regions, and M-CK was less abundant than B-CK in all regions of the growth plate. In tibial chondrocytes, an increase in B-CK expression was seen when the cells became hypertrophic. Expression of B-CK increased slightly over 15 days in mineralizing, retinoic acid-treated cephalic chondrocytes, but it decreased in nonmineralizing caudal chondrocytes, while there was little expression of M-CK. Interestingly, in limb mesenchyme cultures, significant M-CK expression was detected during chondrogenesis (days 2-7), whereas hypertrophic cells expressed only B-CK. Finally, expression of MiaCK and MibCK was low both in situ and in vitro. These observations suggest that the CK genes are differentially regulated during cartilage development and maturation and that an increase in CK expression is important in initiating chondrocyte maturation.
Collapse
Affiliation(s)
- G M Hobson
- Department of Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19899, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mello MA, Tuan RS. High density micromass cultures of embryonic limb bud mesenchymal cells: an in vitro model of endochondral skeletal development. In Vitro Cell Dev Biol Anim 1999; 35:262-9. [PMID: 10475272 DOI: 10.1007/s11626-999-0070-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To study the mechanisms regulating endochondral skeletal development, we examined the characteristics of long-term, high density micromass cultures of embryonic chicken limb bud mesenchymal cells. By culture Day 3, these cells underwent distinct chondrogenesis, evidenced by cellular condensation to form large nodules exhibiting cartilage-like morphology and extracellular matrix. By Day 14, extensive cellular hypertrophy was seen in the core of the nodules, accompanied by increased alkaline phosphatase activity, and the limitation of cellular proliferation to the periphery of the nodules and to internodular areas. By Day 14, matrix calcification was detected by alizarin red staining, and calcium incorporation increased as a function of culture time up to 2 to 3 wk and then decreased. X-ray probe elemental analysis detected the presence of hydroxyapatite. Analogous to growth cartilage developing in vivo, these cultures also exhibited time-dependent apoptosis, on the basis of DNA fragmentation detected in situ by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), ultrastructural nuclear morphology, and the appearance of internucleosomal DNA degradation. These findings showed that cellular differentiation, maturation, hypertrophy, calcification, and apoptosis occurred sequentially in the embryonic limb mesenchyme micromass cultures and indicate their utility as a convenient in vitro model to investigate the regulatory mechanisms of endochondral ossification.
Collapse
Affiliation(s)
- M A Mello
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
47
|
Chang W, Tu C, Bajra R, Komuves L, Miller S, Strewler G, Shoback D. Calcium sensing in cultured chondrogenic RCJ3.1C5.18 cells. Endocrinology 1999; 140:1911-9. [PMID: 10098531 DOI: 10.1210/endo.140.4.6639] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The availability of Ca2+ in the extracellular fluid plays an important role in regulating cartilage and bone formation. We hypothesized that chondrocytes detect changes in the extracellular [Ca2+] ([Ca2+]o) and modify their function. The effects of changing [Ca2+]o on the expression of matrix proteins were quantified by staining of cartilage nodules with alcian green and assessing RNA levels of cartilage-specific genes in chondrogenic RCJ3.1C5.18 (C5.18) cells. Alcian green staining in these cells decreased with increasing [Ca2+]o in a dose-dependent and reversible manner (ID50, approximately 2 mM Ca2+). RNA levels for aggrecan and type II collagen decreased with increasing [Ca2+]o (ID50, approximately 2.0 and 4.1 mM Ca2+, respectively). RNA levels for type X collagen and alkaline phosphatase were also reduced by high [Ca2+]o with ID50 values of approximately 2.9 and 1.6 mM Ca2+, respectively. These responses were rapid, in that increasing [Ca2+]o from 1.0 to more than 6 mM suppressed aggrecan RNA levels by about 50%, and lowering [Ca2+]o from 2.9 to 1.0 mM increased aggrecan RNA levels by about 300% within 4 h. As Ca2+ receptors (CaRs) mediate extracellular Ca2+ sensing in parathyroid and kidney, we assessed the expression of CaRs in these cells. C5.18 cells stained positively for CaR protein with an anti-CaR antiserum and for CaR RNA by in situ hybridization. An approximately 150-kDa protein was detected by immunoblotting with anti-CaR antiserum. CaR antisense oligonucleotides suppressed the expression of CaR protein and enhanced RNA levels of aggrecan in C5.18 cells. These data support the idea that CaRs are expressed in this cell system and may be involved in regulating chondrogenic gene expression.
Collapse
Affiliation(s)
- W Chang
- Endocrine Research Unit, Veterans Affairs Medical Center, University of California, San Francisco 94121, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Vertebrate Pax genes encode a family of transcription factors that play important roles in embryonic patterning and morphogenesis. Two closely related Pax genes, Pax-1 and Pax-9, are associated with early axial and limb skeleton development. To investigate the role of these genes in cartilage formation we have examined the expression profiles of Pax-1 and Pax-9 in developing chick limb mesenchyme in vivo and in vitro. Both transcripts are detected by reverse transcription polymerase chain reaction and Northern blotting throughout chick limb development, from the early bud stages (Hamburger-Hamilton 20-23) to fully patterned appendages (stage 30). Whole-mount in situ hybridization reveals complex, nonoverlapping expression domains of these two genes. Pax-1 transcripts first appear at the anterior proximal margin of the limb buds, while Pax-9 is expressed more distally at what will be the junction of the autopod and the zeugopod. In situ hybridization to serial sections of the girdles reveals that in the pectoral region Pax-1 is expressed proximally in condensed mesenchyme surrounding the junction of the developing scapula, humerus, and coracoid. In the pelvis, Pax-1 is expressed between the femur and the developing acetabulum and along the ventral edge of the ischium; this transcript was also found in the distal hindlimb along the posterior edge of the fibula. Pax-9 transcripts were not detected in the pectoral girdle at any stage, and only weakly in the pelvis along the ventral ischial margin. In the distal parts of both wings and legs, however, Pax-9 is strongly expressed between the anterior embryonic cartilages (e.g., distal radius or tibia) and the anterior ectodermal ridge. The expression of both genes was strongest in undifferentiated cells of precartilage condensations or at the margins of differentiated cartilages, and was absent from cartilage itself. In micromass cultures of chondrifying limb bud mesenchyme expression of Pax-1 and Pax-9 is maintained for up to 3 days in vitro, most strongly at the end of the culture period during chondrogenic differentiation. As seen in vivo, transcripts are found in loose mesenchyme cells at the outer margins of developing cartilage nodules, and are absent from differentiated chondrocytes at the nodule center. Taken together, these investigations extend previous studies of Pax-1 and Pax-9 expression in embryonic limb development while validating limb bud mesenchyme culture as an accessible experimental system for the study of Pax gene function and regulation. Our in vivo and in vitro observations are discussed with reference to 1) the relationship between somitic and limb expression of these two Pax genes, 2) what regulates this expression in different regions of the embryo, and 3) the putative cellular functions of Pax-1 and Pax-9 in embryonic skeletogenesis.
Collapse
Affiliation(s)
- E E LeClair
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
49
|
Denker AE, Haas AR, Nicoll SB, Tuan RS. Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: I. Stimulation by bone morphogenetic protein-2 in high-density micromass cultures. Differentiation 1999; 64:67-76. [PMID: 10234804 DOI: 10.1046/j.1432-0436.1999.6420067.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chondrogenic differentiation of mesenchymal cells is generally thought to be initiated by the inductive action of specific growth factors and depends on intimate cell-cell interactions. In this study, we have used multipotential murine C3H10T1/2 cells to analyze the effect and mechanism of action of bone morphogenetic protein 2 (BMP-2) on chondrogenesis. C3H10T1/2 cells have been previously shown to undergo multiple differentiation pathways. While chondrogenesis, osteogenesis, myogenesis and adipogenesis have been observed, chondrocytes appear significantly less frequently than the other cell types, and the appearance of chondrocytes exclusive of the other cell types has not been observed. We report here that the appearance of chondrocytes in C3H10T1/2 cells is markedly enhanced as a result of culture under conditions favorable for chondrogenesis, i.e. plating as high-density micromass and treatment with BMP-2. Such cultures contain chondrocyte-like cells, elaborate an Alcian blue stained cartilage-like matrix, express link protein and type II collagen, both cartilage matrix markers, and show increased [35S]sulfate incorporation. The appearance of Alcian blue positive material and increased sulfate incorporation are dependent on the dose of BMP-2, culture time, and cell plating density of the micromass cultures. Differentiation of cells within the micromass was specific to the chondrogenic lineage, as alkaline phosphatase staining revealed only faint staining in the micromass at the highest BMP-2 concentration. The importance of enhanced cell-cell interaction in the chondroinductive effects of BMP-2 on high-density C3H10T1/2 cultures was further implicated by the additional promotion of chondrogenesis in the presence of the polycationic compound, poly-L-lysine, which has been previously reported to enhance cellular interactions and chondrogenesis in embryonic limb mesenchymal cells. Taken together, these findings suggest that chondrogenesis in C3H10T1/2 cells is inducible by BMP-2 and requires cell-cell interaction.
Collapse
Affiliation(s)
- A E Denker
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
50
|
Haas AR, Tuan RS. Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: II. Stimulation by bone morphogenetic protein-2 requires modulation of N-cadherin expression and function. Differentiation 1999; 64:77-89. [PMID: 10234805 DOI: 10.1046/j.1432-0436.1999.6420077.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor-beta (TGF-beta) superfamily, is characterized by its ability to induce cartilage and bone formation. We have recently demonstrated that the multipotential, murine embryonic mesenchymal cell line, C3H10T1/2, when cultured at high density, is induced by BMP-2 or TGF-beta 1 to undergo chondrogenic differentiation. The high-cell-density requirement suggests that specific cell-cell interactions, such as those mediated by cell adhesion molecules, are important in the chondrogenic response. In view of our recent finding that N-cadherin, a Ca(2+)-dependent cell adhesion molecule, is functionally required in normal embryonic limb mesenchyme cellular condensation and chondrogenesis, we examine here whether N-cadherin is also involved in BMP-2 induction of chondrogenesis in C3H10T1/2 cells. BMP-2 stimulation of chondrogenesis in high-density micromass cultures of C3H10T1/2 cells was evidenced by Alcian blue staining, elevated [35S]sulfate incorporation, and expression of the cartilage matrix markers, collagen type II and cartilage proteoglycan link protein. With BMP-2 treatment, N-cadherin mRNA expression was stimulated 4-fold within 24 h, and by day 5, protein levels were stimulated 8-fold. An N-cadherin peptidomimic containing the His-Ala-Val sequence to abrogate homotypic N-cadherin interactions inhibited chondrogenesis in a concentration-dependent manner. To analyze the functional role of N-cadherin further, C3H10T1/2 cells were stably transfected with expression constructs of either full-length N-cadherin or a dominant negative, N-terminal deletion mutant of N-cadherin. Moderate (2-fold) overexpression of full-length N-cadherin augmented, whereas higher (4-fold) overexpression inhibited the BMP-2-chondrogenic effect. On the other hand, expression of the dominant negative N-cadherin mutant dramatically inhibited BMP-2 stimulated chondrogenesis. These data strongly suggest that upregulation of N-cadherin expression, at defined critical levels, is a candidate mechanistic component of BMP-2 stimulation of mesenchymal chondrogenesis.
Collapse
Affiliation(s)
- A R Haas
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|