1
|
Kai N, Ueda S. Induction of aberrant agonistic behavior by a combination of serotonergic and dopaminergic manipulation in rats. Brain Struct Funct 2021; 226:1253-1267. [PMID: 33625560 DOI: 10.1007/s00429-021-02238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/09/2021] [Indexed: 11/24/2022]
Abstract
Serotonin (5-HT) and dopamine (DA) are involved in the regulation of social behaviors. However, the effects of their interactions on social behavior are not well understood. In this study, rats received a serotonergic neurotoxin injection into the raphe nuclei and/or systemic administration of L-3, 4-dihydroxyphenylalanine (L-DOPA), and their agonistic behaviors were investigated using the resident-intruder (RI) paradigm. Rats in the DA + /5-HT-group, which were administered both monoaminergic treatments, exhibited intense jump and flight responses to intruders. These behaviors were not observed in rats that received either 5-HT lesions or L-DOPA treatment only. To address the neural basis of these aberrant behaviors, we compared c-Fos immunoreactivity in the brain among the different groups. The DA + /5-HT-group had c-Fos activation in areas related to anti-predatory defensive behaviors, such as the ventromedial hypothalamic nucleus, premammillary nucleus, and periaqueductal gray. Moreover, this group had increased c-Fos expression in the ventroposterior part of the anterior olfactory nucleus (AOVP). To test the involvement of this area in the aberrant behaviors, cytotoxic lesions were performed in the AOVP prior to the monoaminergic treatments, and subsequent behaviors were examined using the RI test. The AOVP-lesioned DA + /5-HT-rats had attenuation of the aberrant behaviors. Together, these results suggest that the AOVP is involved in the generation of the aberrant defensive behaviors, and that 5-HT/DA balance is important in the regulation of social behaviors.
Collapse
Affiliation(s)
- Nobuyuki Kai
- Department of Histology and Neurobiology, Dokkyo Medical University School of Medicine, 530 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan.
| | - Shuichi Ueda
- Department of Histology and Neurobiology, Dokkyo Medical University School of Medicine, 530 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| |
Collapse
|
2
|
Kabelik D, Alix VC, Singh LJ, Johnson AL, Choudhury SC, Elbaum CC, Scott MR. Neural activity in catecholaminergic populations following sexual and aggressive interactions in the brown anole, Anolis sagrei. Brain Res 2014; 1553:41-58. [PMID: 24472578 DOI: 10.1016/j.brainres.2014.01.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/16/2014] [Indexed: 01/01/2023]
Abstract
Social behaviors in vertebrates are modulated by catecholamine (CA; dopamine, norepinephrine, epinephrine) release within the social behavior neural network. Few studies have examined activity across CA populations in relation to social behaviors. The involvement of CAs in social behavior regulation is especially underexplored in reptiles, relative to other amniotes. In this study, we mapped CA populations throughout the brain (excluding retina and olfactory bulb) of the male brown anole lizard, Anolis sagrei, via immunofluorescent visualization of the rate-limiting enzyme for CA synthesis, tyrosine hydroxylase (TH). Colocalization of TH with the immediate early gene product Fos, an indirect marker of neural activity, also enabled us to relate activity in TH-immunoreactive (TH-ir) neurons to appetitive and consummatory sexual and aggressive behaviors. We detected most major TH-ir cell populations that are present in other amniotes (within the hypothalamus, midbrain, and hindbrain), although the A15 population was entirely absent. We also detected a few novel or rare cell clusters within the amygdala, medial septum, and inferior raphe. Many CA populations, especially dopaminergic groups, showed increased TH-Fos colocalization in association with appetitive and consummatory sexual behavior expression, while a small number of regions showed increased colocalization in relation to solely consummatory aggression (biting of an opponent). In conclusion, we here map CA populations throughout the brown anole brain and demonstrate evidence for catecholaminergic involvement in appetitive and consummatory sexual behaviors and consummatory aggressive behaviors in this species.
Collapse
Affiliation(s)
- David Kabelik
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA.
| | - Veronica C Alix
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Leah J Singh
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Alyssa L Johnson
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Shelley C Choudhury
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Caroline C Elbaum
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Madeline R Scott
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| |
Collapse
|
3
|
De Miguel Z, Vegas O, Garmendia L, Arregi A, Beitia G, Azpiroz A. Behavioral coping strategies in response to social stress are associated with distinct neuroendocrine, monoaminergic and immune response profiles in mice. Behav Brain Res 2011; 225:554-61. [DOI: 10.1016/j.bbr.2011.08.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 08/01/2011] [Accepted: 08/06/2011] [Indexed: 01/06/2023]
|
4
|
The effect of increased serotonergic neurotransmission on aggression: a critical meta-analytical review of preclinical studies. Psychopharmacology (Berl) 2009; 205:349-68. [PMID: 19404614 DOI: 10.1007/s00213-009-1543-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 04/08/2009] [Indexed: 12/28/2022]
Abstract
RATIONALE The role of serotonin (5-HT) on aggression has been extensively studied; nonetheless, the role of this neurotransmitter in aggression is still inconclusive. OBJECTIVES The current meta-analytical review investigated the role of increased 5-HT neurotransmission in aggression. METHODS Preclinical studies using serotonin reuptake inhibitors, 5-hydroxytryptophan, L-tryptophan, or serotonin (5-HT) to increase 5-HT levels were included in this meta-analysis. An overall effect of serotonin on aggression was calculated, and the role of several moderator variables was analyzed. RESULTS A total of 218 effect sizes revealed that increased 5-HT had an overall significant inhibitory effect on aggression (r = 0.3). The results showed that increased 5-HT had the strongest inhibitory effect on aggression when (1) a specific strain or species (e.g., Long Evans) was used; (2) aggression was offensive or predatory and/or induced by administration of 5,7-dihydroxytryptamine or p-chlorophenylalanine; (3) zimelidine, sertraline, L-tryptophan, citalopram, or 5-HT were used to increase 5-HT; (4) treatment was acute; (5) long chronic treatment durations were used; and (6) time between last injection and behavior testing was within 8 h before or after peak plasma concentration of drug. In contrast, the results revealed that increased-5-HT-facilitated aggression could be predicted when (1) Wistar rats, (2) social isolation or stress to induce aggression, and/or (3) animals treated for less than 3 weeks were used. CONCLUSIONS Although 5-HT has an overall inhibitory effect on aggression, the animal's genetic background, drug, treatment time, aggression inducing paradigm, and aggression type are critical variables that influence and modify this effect.
Collapse
|
5
|
Summers CH, Winberg S. Interactions between the neural regulation of stress and aggression. ACTA ACUST UNITED AC 2007; 209:4581-9. [PMID: 17114393 DOI: 10.1242/jeb.02565] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Socially aggressive interaction is stressful. What is more, social aggression is stressful for both dominant and subordinate animals. Much of the neurocircuitry for stress and aggression overlap. The pattern of neurochemical and hormonal events stimulated by social interaction make it clear that subtle differences in this pattern of response distinguish social rank. The neurotransmitter serotonin (5-HT) responds rapidly to stress, and also appears to play the most important role for inhibitory regulation of aggressive interactions. In addition, the adrenocortical/interrenal steroid hormones corticosterone and cortisol are responsive to stress and influence aggression. However, while 5-HT and glucocorticoids can both be inhibitory to aggression, the relationship between 5-HT and glucocorticoids is not straightforward, and much of the distinctions in function depend upon timing. Neither is inhibitory during the early stressful phase of aggression. This transmitter-hormone combination follows and influences a four-stage functional pattern of effect: (1) predisposed (positively or negatively) toward aggression, (2) motivated toward behavior, (3) responsive to stress (including aggression) and passively allowing aggression, and finally (4) chronically applied 5-HT and glucocorticoids inhibit aggression.
Collapse
Affiliation(s)
- Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA.
| | | |
Collapse
|
6
|
Øverli Ø, Sørensen C, Pulman KGT, Pottinger TG, Korzan W, Summers CH, Nilsson GE. Evolutionary background for stress-coping styles: relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates. Neurosci Biobehav Rev 2006; 31:396-412. [PMID: 17182101 DOI: 10.1016/j.neubiorev.2006.10.006] [Citation(s) in RCA: 335] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
Reactions to stress vary between individuals, and physiological and behavioral responses tend to be associated in distinct suites of correlated traits, often termed stress-coping styles. In mammals, individuals exhibiting divergent stress-coping styles also appear to exhibit intrinsic differences in cognitive processing. A connection between physiology, behavior, and cognition was also recently demonstrated in strains of rainbow trout (Oncorhynchus mykiss) selected for consistently high or low cortisol responses to stress. The low-responsive (LR) strain display longer retention of a conditioned response, and tend to show proactive behaviors such as enhanced aggression, social dominance, and rapid resumption of feed intake after stress. Differences in brain monoamine neurochemistry have also been reported in these lines. In comparative studies, experiments with the lizard Anolis carolinensis reveal connections between monoaminergic activity in limbic structures, proactive behavior in novel environments, and the establishment of social status via agonistic behavior. Together these observations suggest that within-species diversity of physiological, behavioral and cognitive correlates of stress responsiveness is maintained by natural selection throughout the vertebrate sub-phylum.
Collapse
Affiliation(s)
- Øyvind Øverli
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 As, Norway.
| | | | | | | | | | | | | |
Collapse
|
7
|
Korzan WJ, Forster GL, Watt MJ, Summers CH. Dopaminergic activity modulation via aggression, status, and a visual social signal. Behav Neurosci 2006; 120:93-102. [PMID: 16492120 DOI: 10.1037/0735-7044.120.1.93] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Social interaction may elicit aggression, establish social rank, and be influenced by changes in central dopaminergic activity. In the lizard Anolis carolinensis, a sign stimulus (darkening of postorbital skin or eyespots) inhibits aggressive response from opponents, in part because it forms more rapidly in dominant males. The authors report that artificially hiding or darkening eyespots influences central dopaminergic activity, social status, and aggression during dyadic social interaction. All males that viewed an opponent with eyespots painted black became subordinate and exhibited elevated dopamine in raphe, lateral amygdala, and medial amygdala but decreased dopamine in septum and locus ceruleus. In contrast, males that viewed opponents with hidden eyespots (painted green) became dominant and had increased dopamine in striatum, nucleus accumbens, hypothalamus, and combined substantia nigra/ventral tegmental area.
Collapse
Affiliation(s)
- Wayne J Korzan
- Department of Biological Sciences, Stanford University, Stanford, CA, USA
| | | | | | | |
Collapse
|
8
|
Höglund E, Kolm N, Winberg S. Stress-induced changes in brain serotonergic activity, plasma cortisol and aggressive behavior in Arctic charr (Salvelinus alpinus) is counteracted by L-DOPA. Physiol Behav 2001; 74:381-9. [PMID: 11714503 DOI: 10.1016/s0031-9384(01)00571-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Arctic charr (Salvelinus alpinus) were tested for aggressive behavior using intruder tests, before and after 2 days of dyadic social interaction. Following social interaction, half of the dominant and half of the subordinate fish were given L-DOPA (10 mg/kg, orally), whereas the remaining dominant and subordinate fish were given vehicle. One hour following drug treatment, the fish were tested for aggressive behavior again in a third and final intruder test, after which blood plasma and brain tissue were sampled for analysis of plasma cortisol concentrations and brain levels of monoamines and monoamine metabolites. Subordinate fish showed a reduction in the number of attacks launched against the intruder, as well as an increase in attack latency, as compared to prior to dyadic social interactions. Social subordination also resulted in an elevation of brain serotonergic activity. Fish receiving L-DOPA prior to the final intruder test showed shorter attack latency than vehicle controls. Drug treatment was a stressful experience and vehicle controls showed elevated plasma cortisol levels and longer attack latency as compared to before treatment. L-DOPA-treated fish showed lower plasma levels of cortisol and lower serotonergic activity in certain brain areas than vehicle controls. These results suggest that L-DOPA counteracts the stress-induced inhibition of aggressive behavior, and at the same time inhibits stress-induced effects on brain serotonergic activity and plasma cortisol concentrations.
Collapse
Affiliation(s)
- E Höglund
- Evolutionary Biology Centre, Department of Limnology, Uppsala University, Norbyvägen 20, SE-752 36 Uppsala, Sweden
| | | | | |
Collapse
|
9
|
Cohen Z, Molinatti G, Hamel E. Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J Cereb Blood Flow Metab 1997; 17:894-904. [PMID: 9290587 DOI: 10.1097/00004647-199708000-00008] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Noradrenaline (NA) has been shown to influence astrocytic and vascular functions related to brain homeostasis, metabolism, local blood flow, and blood-brain barrier permeability. In the current study, we investigate the possible associations that exist between NA-immunoreactive nerve terminals and astrocytes and intraparenchymal blood vessels in the rat frontoparietal cortex, both at the light and electron microscopic levels. As a second step, we sought to determine whether the NA innervation around intracortical microvessels arises from peripheral or central structures by means of injections of N-(2-chloroethyl-N-ethyl-2-bromobenzylamine) (DSP-4), a neurotoxin that specifically destroys NA neurons from the locus ceruleus. At the light microscopic level, 6.8% of all NA-immunoreactive nerve terminals in the frontoparietal cortex were associated with vascular walls, and this perivascular noradrenergic input, together with that of the cerebral cortex, almost completely disappeared after DSP-4 administration. When analyzed at the ultrastructural level in control rats, NA terminals in the neuropil had a mean surface area of 0.53 +/- 0.03 micron2 and were rarely junctional (synaptic incidence close to 7%). Perivascular terminals (located within a 3-micron perimeter from the vessel basal lamina) counted at the electron microscopic level represented 8.8% of the total NA terminals in the cortical tissue. They were smaller (0.29 +/- 0.01 micron2, P < 0.05) than their neuronal counterparts and were located, on average, 1.34 +/- 0.08 microns away from intracortical blood vessels, which consisted mostly of capillaries (65%). None of the perivascular NA terminals engaged in junctional contacts with surrounding neuronal or vascular elements. The primary targets of both neuronal and perivascular NA nerve terminals consisted of dendrites, nerve terminals, astrocytes, and axons, whereas in the immediate vicinity (0.25 micron or less) of the microvessels, astrocytic processes represented the major target. The results of the current study show that penetrating arteries and intracortical microvessels receive a central NA input, albeit parasynaptic in its interaction, originating from the locus ceruleus. Particularly, they point to frequent appositions between both neuronal and perivascular NA terminals and astroglial cells and their processes. Such NA neuronal-glial and neuronal-glial-vascular associations could be of significance in the regulation of local metabolic and vascular functions under normal and pathologic situations.
Collapse
Affiliation(s)
- Z Cohen
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Québec, Canada
| | | | | |
Collapse
|
10
|
Thurmond JB, Freeman GB, Soblosky JS, Ieni JR, Brown JW. Effects of dietary tyrosine on L-dopa- and amphetamine-induced changes in locomotor activity and neurochemistry in mice. Pharmacol Biochem Behav 1990; 37:259-66. [PMID: 2080188 DOI: 10.1016/0091-3057(90)90331-b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent findings suggest that intraperitoneal injections of L-tyrosine at high doses (100 mg/kg) alters amphetamine-induced changes in behavior by restoring amphetamine-induced decreases in whole brain norepinephrine (NE). The present study examined the motor effects of L-dihydroxyphenylalanine (L-dopa) and d-amphetamine sulfate in mice after treatment with a basal casein diet supplemented with L-tyrosine. The basal diet supplemented with 1-4% L-tyrosine, or 1-4% L-phenylalanine, produced no changes in motor activity in otherwise untreated mice. Whereas L-dopa (25-100 mg/kg) following inhibition of extracerebral decarboxylase by Ro 4-4602 (25 mg/kg) slightly decreased activity in diet control (casein) animals, this drug treatment enhanced motor activity in a dose-related fashion when L-tyrosine was added to the diet. Increases in motor activity following low doses of amphetamine (0.75-1.5 mg/kg) in casein control mice were antagonized by dietary L-tyrosine, but a higher dose of d-amphetamine (3 mg/kg) interacted with the addition of L-tyrosine producing an increase in motor activity. Neurochemical changes observed in brain concentrations of tyrosine, dopamine (DA), norepinephrine (NE), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), tryptophan, serotonin (5-HT) and 5-hydroxy-indoleacetic acid (5-HIAA) following drug and diet treatments suggest that 5-HT systems, in addition to catecholamine systems, may be involved in mediating these effects.
Collapse
Affiliation(s)
- J B Thurmond
- Department of Psychology, University of Louisville, KY 40292
| | | | | | | | | |
Collapse
|
11
|
Abstract
The stimulatory effects of low alcohol doses are of great interest because of their role in human drinking and their possible relation to reinforcement from alcohol. The preferred animal model for studying them is the mouse. The effects of various doses of ethanol on locomotor activity were now studied in both group-housed mice and in mice socially isolated for 36-44 weeks. The housing situation was found to have a strong influence: a large stimulatory effect was observed in isolated mice but little effect was seen in group-housed animals. The results suggest that socially isolated mice are more sensitive to the stimulatory effect of ethanol on locomotor activity.
Collapse
Affiliation(s)
- P Päivärinta
- Research Laboratories, Alko Ltd., Helsinki, Finland
| |
Collapse
|
12
|
Abstract
The behavioral effects of magnesium suggest that this divalent cation has psychomotor stimulant-like properties. Because deficiencies of this cation lead to reductions in drug-induced behaviors dependent on the levels of norepinephrine and dopamine, and numerous in vitro studies have demonstrated a relationship between magnesium and catecholamine activity, the present experiments investigate whether administration of magnesium will lead to increases in stereotyped and locomotor behaviors induced by apomorphine and l-amphetamine. Such changes would suggest that magnesium is increasing the activity of catecholamines in vivo. The results demonstrate that magnesium dose dependently increases the potency of these drugs by producing greater behavioral effects at certain drug doses, by producing shifts to the left in dose-response functions, and by producing decreases in the ED50 as dose of magnesium increases.
Collapse
Affiliation(s)
- K M Kantak
- Department of Psychology, Boston University, MA 02215
| | | |
Collapse
|
13
|
Gustafsson B, Christensson E. Amperozide--a new putatively antipsychotic drug with a limbic mode of action on dopamine mediated behaviour. PHARMACOLOGY & TOXICOLOGY 1990; 66 Suppl 1:12-7. [PMID: 1968250 DOI: 10.1111/j.1600-0773.1990.tb01600.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Amperozide, a new putatively antipsychotic drug, was found to exert a functional selectivity for the limbic system of the brain. Thus, amperozide was as active as both classical and atypical neuroleptics on hypermotility induced by a low dose of amphetamine. On the other hand, amperozide did not produce catalepsy, nor did it reverse amphetamine-induced stereotypies. Moreover, amperozide inhibited exploratory behaviour in mice. The present results indicate an antipsychotic effect of amperozide, with a minimal risk for EPS when used in the clinic.
Collapse
Affiliation(s)
- B Gustafsson
- Dept of CNS-research, Pharmacia LEO Therapeutics AB, Malmö, Sweden
| | | |
Collapse
|
14
|
Abstract
Magnesium has been shown to have certain behavioral effects similar to the stimulants cocaine and amphetamine, particularly on mouse resident-intruder aggression. Consequently, it was hypothesized that magnesium should interact with the indirect agonist cocaine and the antagonist haloperidol to alter their potency in the mouse resident-intruder model. Acute and chronic drug effects were compared. Results demonstrate an enhancement of cocaine potency by 30 and 125 mg/kg MgCl2 and a lowering of cocaine potency by a 15% required-Mg2+ deficient diet as measured by shifts in the dose response to acutely administered cocaine. Following chronic 0.5 mg/kg cocaine for 15 days, a dose of 125 mg/kg acutely administered MgCl2 prevented the disruptive effects of chronic cocaine on mouse aggression. Acutely administered haloperidol was influenced by Mg2+ treatments in a manner opposite from the effects on cocaine, while the chronic effects of haloperidol were affected in the same manner by Mg2+ treatments as those shown for chronic cocaine. Several mechanisms are suggested to explain these interactions.
Collapse
Affiliation(s)
- K M Kantak
- Department of Psychology, Boston University, MA 02215
| |
Collapse
|
15
|
Pericić D, Manev H, Levanat S, Jernej B, Vujić D, Djordjević N. Effect of dihydroergosine (DHESN) on the serotoninergic system and behaviour: is DHESN a new antidepressive agent? Psychopharmacology (Berl) 1986; 90:112-8. [PMID: 2945220 DOI: 10.1007/bf00172881] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Acute (50.0 mg/kg) and repeated (0.1-10.0 mg/kg) administration of dihydroergosine (DHESN) to rats over 5 days lowered the concentration of 5-HIAA in the brain. DHESN given acutely increased the brain 5-HT in p-CPA-treated animals and diminished the probenecid-induced increase in brain 5-HIAA. In pargyline-treated rats DHESN enhanced the 5-HT/5-HIAA ratio. DHESN administered to rats repeatedly over 5 days decreased the level of 5-HT in blood platelets, and in vitro at concentrations of 10(-4) M and 10(-3) M inhibited the uptake of [14C]-5-HT in platelets. DHESN (10.0-100.0 mg/kg) potentiated the 5-HT syndrome produced in rats by pargyline and 5-HTP. This potentiation was blocked with cyproheptadine but not with haloperidol. DHESN (1.0 and 10.0 mg/kg) lowered the locomotor activity of rats and 10.0 mg/kg DHESN also reduced the duration of immobility in rats forced to swim in a restricted space. The results indicate that DHESN, like antidepressants, decreases the turnover of serotonin in the brain and potentiates the 5-HT-mediated behaviour. This might suggest that the drug should be further investigated for its potential antidepressive properties.
Collapse
|
16
|
Ieni JR, Thurmond JB. Maternal aggression in mice: effects of treatments with PCPA, 5-HTP and 5-HT receptor antagonists. Eur J Pharmacol 1985; 111:211-20. [PMID: 3160594 DOI: 10.1016/0014-2999(85)90758-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Drug treatments which influence brain serotonergic systems were administered to lactating female mice during the early postpartum period, and their effects on aggressive behavior, locomotor activity and brain monoamines were examined. P-chlorophenylalanine (200 and 400 mg/kg) and 5-hydroxytryptophan (100 mg/kg) inhibited fighting behavior of postpartum mice toward unfamiliar male intruder mice. These drug-treated postpartum females showed increased latencies to attack male intruders and also reduced frequencies of attack. In addition, postpartum mice treated with the serotonin receptor antagonists, mianserin (2 and 4 mg/kg), methysergide (4 mg/kg) and methiothepin (0.25 and 0.5 mg/kg), displayed significantly less aggressive behavior than control mice, as measured by reduced number of attacks. Whole brain monoamine and monoamine metabolite levels were measured after drug treatments. The behavioral results are discussed in terms of drug-induced changes in brain chemistry and indicate a possible role for serotonin in the mediation of maternal aggressive behavior of mice.
Collapse
|
17
|
A guide to the literature on aggressive behavior. Aggress Behav 1984. [DOI: 10.1002/1098-2337(1984)10:3<279::aid-ab2480100311>3.0.co;2-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|